
1

3.3

5/13/25, 9:11 PM 3.3

2

TigerGraph Documentation

You are viewing our legacy documentation site. This site only has information for
TigerGraph 3.3 and below. View our new documentation site at: docs.tigergraph.com

To switch to a different version, select the version you want at the top of the menu

on the left. For documentation of TigerGraph versions prior to 2.2, please contact

TigerGraph Support.

• Learn more and sign up: www.tigergraph.com/cloud

• Documentation: TigerGraph Cloud

• Watch Quick Start Video and Start Your TigerGraph Cloud Solutions in 5

Minutes!

TigerGraph Cloud Quickstart

Getting Started with TigerGraph Distributed Cloud (2020)Getting Started with TigerGraph Distributed Cloud (2020)

Introducing: TigerGraph Distributed Cloud

TigerGraph Server 3.3

5/13/25, 9:11 PM 3.3

http://www.tigergraph.com/cloud
http://www.tigergraph.com/cloud
https://youtu.be/JARd9ULRP_I
https://youtu.be/JARd9ULRP_I
https://www.youtube.com/watch?v=JARd9ULRP_I

3

Major Sections Quick Links

Developers Community TigerGraph Community Forum

FAQs and Troubleshooting

Release Notes - TigerGraph Server 3.3

Change Log

Knowledge Base and FAQs

Troubleshooting Guide

Error Codes

Get Started

HW & SW Requirements

Platform Installation

GET STARTED Tutorial

GSQL 101, GSQL 102

Platform Overview

Comparing TigerGraph Editions

GSQL Graph Algorithm Library

MultiGraph Overview

TigerGraph Internal Architecture

Transaction Processing and ACID Support

GSQL

GSQL 101

GSQL 102 Pattern Matching

Accumulators Tutorial

GSQL Spec - Data Definition & Loading

GSQL Spec - Querying

Interpreted GSQL

GraphStudio and UI
GraphStudio UI Guide

Admin Portal UI Guide

Connectors and APIs

RESTPP API User Guide

Kafka Loader User Guide

S3 Loader User Guide

Spark Connection Via JDBC Driver

GSQL JSON Output Spec

Connector Ecosystem

HA Cluster Configuration

User Privileges and Authentication

MultiGraph

5/13/25, 9:11 PM 3.3

https://community.tigergraph.com/
https://community.tigergraph.com/
https://github.com/tigergraph/ecosys/tree/master/tools/etl
https://github.com/tigergraph/ecosys/tree/master/tools/etl

4

Sys Mgmt and Admin LDAP and Single Sign-On

Data Encryption

Backup and Restore

Export and Import

5/13/25, 9:11 PM 3.3

5

TigerGraph Cloud
TigerGraph Cloud is a fully-managed cloud database built on the same TigerGraph

Enterprise Server engine that is delivering the fastest and most scalable graph

database. TigerGraph Cloud handles all the complexity of deploying and managing

your deployments on the cloud service provider of your choice (AWS, Azure, and

GCP).

Most of the documentation for TigerGraph Enterprise Server also applies to

TigerGraph Cloud. However, since TigerGraph Cloud does not have a command-

line interface on the OS level, command-line features are not supported in the same

way. In many cases, we introduced a GUI-based method for the same feature. For

advanced OS-level commands, submit a support ticket for more information.

Watch Quick Start Video and Start Your TigerGraph Cloud Solutions in 5

Minutes!

• Create a free TigerGraph Cloud account

• Create a free-tier TigerGraph Cloud solution

• Access your TigerGraph Cloud solution

• Monitor a solution

• Security and user management

• Backup and restore

• Manage payment methods

Get started with TigerGraph Cloud

Manage TigerGraph Cloud solutions

Billing

5/13/25, 9:11 PM 3.3

https://www.youtube.com/watch?v=mOsfjst6Ahs&ab_channel=TigerGraph
https://www.youtube.com/watch?v=mOsfjst6Ahs&ab_channel=TigerGraph

6

• Cloud Marketplace subscriptions

See the TigerGraph Cloud FAQs for answers to common questions.

Topic
TigerGraph Enterprise

Server
TigerGraph Cloud

GSQL Graph Algorithm

Library
Yes

Installation not yet

supported. Generated

algorithms can be copied-

and-pasted into the Write

Queries code panel in

GraphStudio

Release Notes Yes

TigerGraph Cloud Provides

Two Database Versions:

V2.6.4 and V3.0.6

GSQL 101 Yes

Basic concepts still apply,

most CREATE, INSTALL,

LOAD, and RUN commands

are replaced with the

GraphStudio GUI-based

approach.

GSQL 102 Pattern Matching Yes
The same patterns can be

used in queries.

MultiGraph Overview Yes
Yes. Choose V3.0.6 in

TigerGraph Cloud

Hardware and Software

Requirements
Yes N/A

N/A. There are a few simple

steps to install a Starter Kit.

FAQs

Comparison with TigerGraph Enterprise
Server

5/13/25, 9:11 PM 3.3

7

Installation and

Configuration

Yes See the TigerGraph Cloud

FAQs.

User Access Management Yes

Yes. Choose V3.0.6 in

TigerGraph Cloud for

multiple users in one

TigerGraph solution.

Data Encryption Yes

N/A. TigerGraph Cloud is

setup already for encrypted

data at rest and at motion.

System Management Yes

The Cloud Admin Portal is

enhanced over the

TigerGraph Server Admin

Portal. Backup and Restore

is done through the Cloud

Admin Portal.

GraphStudio UI Guide Yes Yes

GSQL Demo Examples Yes Yes

GSQL Language Reference,

Part 1 Data Definition and

Loading

Yes

Yes. GSQL Web Shell (Paid

Tiers) supports Data

Definition and Loading. Data

files can be imported into

the filesystem through

GraphStudio, or submit

support request to import

into the filesystem. In

addition, the operations can

be performed through the

GraphStudio user interface.

GSQL Language Reference,

Part 2 Querying
Yes Yes

RESTPP API User Guide Yes
Yes. Note the URL assigned

to your solution.

Transaction Processing and

ACID Support
Yes Yes

Data Loader User Guides Yes

S3 Loader can be used

through the GraphStudio

interface. In addition, S3

Loader and Kafka Loader

5/13/25, 9:11 PM 3.3

8

can be used in GSQL Web

Shell (Paid Tiers).

5/13/25, 9:11 PM 3.3

9

Getting Started

TigerGraph Cloud offers an easy way to analyze and query your graph data in the

cloud. This tutorial guides you through creating your TigerGraph Cloud account,

provisioning a free-tier TigerGraph Cloud Solution, and logging into GraphStudio.

Watch Quick Start Video and Start Your TigerGraph Cloud Solutions in 5

Minutes!

Go to the TigerGraph Cloud landing page .

You can create a TigerGraph Cloud account with a Google account, a LinkedIn

account, or an email address.

1. Click Login/Register.

2. Click Sign Up.

3. Enter your email and password.

4. A verification email with the subject "Verify your email" will be sent to the

email address you provided.

5. Go to your email inbox. Find the verification email and click Confirm my

account.

1. Click Login/Register.

2. Click Sign up.

Email

Google

Overview

Create a TigerGraph Cloud account

5/13/25, 9:11 PM 3.3

https://www.youtube.com/watch?v=JARd9ULRP_I&feature=youtu.be
https://www.youtube.com/watch?v=JARd9ULRP_I&feature=youtu.be
https://tgcloud.io/
https://tgcloud.io/

10

3. Click Sign up with Google.

4. Enter the password for your Google account.

5. Click Next.

6. Review and click the checkbox to accept the Terms of Service and the

Privacy Policy.

7. Click Submit.

8. After being redirected back to TigerGraph Cloud, enter the information on

the signup form and click the checkbox to accept TigerGraph's Terms &

Conditions and Privacy Policy.

9. Click Submit.

1. Click Login/Register.

2. Click Sign up.

3. Click Sign up with LinkedIn.

4. Enter your LinkedIn credentials and click Sign in.

5. Review the Terms and Conditions and click Allow.

6. After being redirected back to TigerGraph Cloud, enter the information on

the signup form and click the checkbox to accept TigerGraph's Terms &

Conditions and Privacy Policy.

7. Click Submit.

If you already created a TigerGraph Cloud account, sign in to your account:

1. Go to the TigerGraph Cloud landing page .

2. Click Login / Register.

3. Enter your email and password, or if you registered with an identity provider,

select the correct provider and enter your credentials.

4. Click Log In.

LinkedIn

Log in to your TigerGraph Cloud account

5/13/25, 9:11 PM 3.3

https://tgcloud.io/
https://tgcloud.io/

11

TigerGraph Cloud free-tier solutions (subject to limits) offer a small-scale analytics

platform to store and query your graph data.

Free-tier solutions are for training, learning, and light scale proof of concept (POC) use
cases and do not support backup and restore. For in-depth POCs, consider adding a
valid payment method and use paid-tier solutions to access the backup and restore
feature.

After logging in, you will be directed to the dashboard page, on the right side of the

page, click My Solutions.

On the My Solutions page, click Create Solution.

TigerGraph Cloud Dashboard view

Create a free-tier solution

1. Click My Solutions.

2. Click Create Solution.

5/13/25, 9:11 PM 3.3

12

Not all TigerGraph versions that are offered on-prem are offered on TigerGraph

Cloud. In the dropdown list, choose the version of TigerGraph you want to run.

TigerGraph Cloud Starter Kits are built with sample graph data schema, dataset, and

queries focused on a specific use case to help you get started quickly. Most of our

starter kits have a demo video that walks you through the schema and the queries

built for its use case. If you wish to proceed with your own schema and data, select

Blank.

TigerGraph Cloud My Solutions view

3. Select TigerGraph version.

4. Select a starter kit.

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/starterkits/
https://www.tigergraph.com/starterkits/

13

After you have selected a starter kit, scroll down to the bottom of the page and click

Next.

Currently, TigerGraph Cloud supports free-tier solutions on AWS and GCP. Select

AWS or Google Cloud as your cloud provider and select TG.Free as your instance

type.

5. Select Cloud Provider and instance type.

5/13/25, 9:11 PM 3.3

14

6. Select Region.

Select 50 GB for your disk size. Scroll down to the bottom of the page and click

Next.

You can enter any name for your solution. A solution name may contain

alphanumerics, dashes, underscores, and spaces, and cannot be longer than 20

characters. A solution tag can be no longer than 40 characters and can contain any

character.

This is the initial password for the default TigerGraph user tigergraph . You can

change the password later in Admin Portal.

Cloud platform and instance type options

Regions for AWS

7. Select disk size.

8. Enter a name and a tag for your solution.

9. Set initial password.

5/13/25, 9:11 PM 3.3

15

This initial password allows you to log into the database when your solution is in the
ready state. If you forget this password, you will need to terminate and recreate the
solution.

Customize the subdomain for your solution. If this field is left blank, a random

subdomain will be automatically generated for the solution.

Enter an optional description of what your solution will be used for, and click Next.

Confirm your settings and click Submit. You will be redirected back to the My

Solutions view, and your solution will be ready in minutes.

After you have created your solution, it may take a few minutes for it to be ready.

Once you see the status of your solution turn to "Ready", you can proceed to log

into GraphStudio.

10. Enter a subdomain and description.

11. Confirm your settings.

Log in to GraphStudio

1. Open GraphStudio for your solution.

5/13/25, 9:11 PM 3.3

16

Go to My Solutions. Find the solution that is ready, click the blue Applications icon,

and Click GraphStudio.

Enter the initial password set during Create Solution for the default database user

tigergraph and click Login. This is not your TigerGraph Cloud account email and

password.

2. Enter your credentials.

5/13/25, 9:11 PM 3.3

17

You can learn how to use GraphStudio in our GraphStudio UI guide.

GraphStudio login page

3. You are now ready to use your free-tier TigerGraph Solution.

5/13/25, 9:11 PM 3.3

18

Solutions
Solutions are fully-managed TigerGraph deployments. Here are some resources you

can use to create, configure and manage your solutions:

• Create a new solution

◦ A step-by-step guide to creating a new solution

• Cloud Providers and Regions

◦ Information on the different cloud providers and regions available on

TigerGraph Cloud

• Sizing and Scaling

◦ Learn how to choose the appropriate instance type and disk size

• Stop, Resume and Terminate a Solution

◦ A step-by-step guide on how to stop, restart, and terminate a solution

5/13/25, 9:11 PM 3.3

19

Create a New Solution
In this tutorial, you will learn how to provision a new TigerGraph Cloud solution.

After logging into your TigerGraph Cloud account, click My Solutions on the left

side menu to go to the My Solutions page.

On the My Solutions page, click Create Solution.

Procedure

1. Navigate to My Solutions page

2. Click Create Solution

5/13/25, 9:11 PM 3.3

20

Not all TigerGraph versions that are offered on-prem are offered on TigerGraph

Cloud. In the dropdown list, choose the version of TigerGraph you want to run.

TigerGraph Cloud Starter Kits are built with sample graph data schema, dataset, and

queries focused on a specific use case to help you get started quickly. Most of our

starter kits have a demo video that walks you through the schema and the queries

built for its use case. If you wish to proceed with your own schema and data, select

Blank.

3. Select version and starter kit

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/starterkits/
https://www.tigergraph.com/starterkits/

21

After choosing the starter kit, scroll down to the bottom and click Next.

The choice of cloud provider affects the configuration options for the available

instance types and disk sizes, network latency for accessing your solution, the

geographic location of your solution, and the cost of running your solutions. For

more information, see Cloud Providers and Regions.

Each instance type indicates its vCPU and RAM specifications as well as the hourly

rate for running the instance. For suggestions on choosing the right instance type

and disk storage, see Sizing and Scaling.

4. Configure your instance

4.1. Choose a cloud provider

4.2. Choose an instance type

5/13/25, 9:11 PM 3.3

22

Region reflects the physical location of the server running your solutions. It also

affects the network latency for accessing your solution.

Disk storage refers to the root disk that is attached to your instance. If you need help

choosing the right disk storage, see Sizing and Scaling.

To ensure your solution has enough disk storage, TigerGraph mandates that any
solution's disk size must be at least 3 times the size of the solution instance's RAM.
For example, if you choose an instance type that has a RAM of 64 GB, then the
solution's disk size must be more than 192 GB.

4.3. Choose a region

4.4. Choose a disk size

5. Enter cluster settings

5.1. Choose a partitioning factor

5/13/25, 9:11 PM 3.3

23

In a High Availability (HA) cluster, the partitioning factor refers to the number of

parts or components your graph data is split into, which also equals the number of

instances that collectively store one copy of the full graph.

If you only need a single instance to store your entire graph, enter 1 as your partition

factor.

The replication factor is the number of copies of data, each on a separate machine.

TigerGraph Cloud currently supports a replication factor of up to three.

If you don't need additional copies of your data, enter 1 as your replication factor.

If you provision a cluster with a replication factor higher than 1:

• If your solution is on AWS or GCP, the replicas will automatically be provisioned

on different availability zones.

• A load balancer would be automatically attached to your cluster to balance

traffic between the replicas.

If your cluster is on GCP and it has a replication factor higher than 1, you won't be able
to use ports 9000 and 14240 to access API endpoints. Instead, you can access the
endpoints using HTTPS requests on port 443:

• To access the endpoints that normally listen on port 9000, append /restpp after

the domain and before the endpoint. Since an HTTPS request already implies port

443, specifying the port is optional. However, you need to ensure that you are

making HTTPS requests instead of HTTP requests.

◦ Example: To access the /echo endpoint: curl
"https://examplesolution.i.tgcloud.io/restpp/echo"

• To access the endpoints that normally listen on port 14240, use the original

endpoint address, but on port 443. Similar to port 9000 requests, specifying the

port is optional.

◦ Example: To access the health check endpoint on 14240: curl
"https://examplesolution.i.tgcloud.io/api/ping"

• Access to GraphStudio is not affected: opening the domain of the solution in a

browser will directly take you to GraphStudio

5.2. Choose a replication factor

5/13/25, 9:11 PM 3.3

24

Give your solution a name. A solution name can only contain alphanumeric

characters, space, dash, and underscore and may be no longer than 20 characters.

Give your solution a tag, which helps you sort and identify your solutions. A solution

tag may be no longer than 40 characters and can contain any character.

When a solution is provisioned, a default TigerGraph user tigergraph is created in

the installation process. This is the initial password for the default user.

This initial password allows you to log into the database when your solution is in the
ready state. If you forget this password, you will need to terminate and recreate the
solution.

Enter a unique subdomain for your solution. Only letters, numbers, and inner

hyphen(-) are allowed in the subdomain. You can send HTTP requests to the REST

endpoints on the domain once the solution is up and running. If you do not enter a

subdomain, an automatically generated subdomain will be assigned to the solution.

Set initial password

6. Enter solution settings

6.1. Name and tag your solution

6.2. Set initial password

6.3. Set a subdomain

6.4. Enter a description

5/13/25, 9:11 PM 3.3

25

Enter a description of what the solution is used for or anything else you would like to

note about this solution.

After making sure all your settings are correct, click Submit to start your solution.

Your solution should be ready after a brief warm-up period.

7. Review and confirm.

5/13/25, 9:11 PM 3.3

26

Cloud Providers and Regions
TigerGraph Cloud offers three cloud platform options: Amazon Web Services (AWS),

Microsoft Azure, and Google Cloud Platform (GCP). The choice of cloud providers

and regions affects the pricing and network latency of your solutions. The region

indicates the physical location of your solution.

Each cloud provider has different offerings for instance type, disk storage, and

backup storage. At the moment, TigerGraph Cloud only supports free-tier clusters

on AWS. You may choose to deploy free-tier clusters on any region in AWS. For

more information on the options of each cloud provider, see:

• Amazon Web Services (AWS)

• Microsoft Azure

• Google Cloud Platform (GCP)

5/13/25, 9:11 PM 3.3

27

Sizing and Scaling
TigerGraph Cloud offers different choices when it comes to instance types and disk

sizes. This document helps you find the right instance type and disk size for your

workload.

Larger graphs require more RAM. Higher performance calls for both more CPUs and

more RAM.

Our pricing table gives initial recommendations for which instance type to start

with if you know how much data you will be loading into the graph. We call the input

data your raw data. TigerGraph reorganizes your data into a graph, encoding and

compressing it. We assume that your stored graph will be about 70% of the size of

your raw data. This is a conservative estimate; it's often smaller.

You also need RAM for your graph querying and computation. Workloads vary

considerably. In the pricing table, we recommend that your total RAM be about 1.5

times the maximum amount of raw data you think you will load.

Disk storage refers to the root disk attached to your instance that holds the following

files:

• OS installation files

• TigerGraph database installation files

• TigerGraph Graph storage

• Other data files uploaded to the instance

• Any output files generated by querying the database

• Logs generated while running TigerGraph

Choose the right instance type

Choose the right disk size

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/tigergraph-cloud-pricing/
https://www.tigergraph.com/tigergraph-cloud-pricing/

28

When you choosing the size of the disk, consider the size of the data for all the

above installations and files.

To ensure adequate disk storage, TigerGraph Cloud mandates that any disk size of a

solution must be at least 3 times the size of its instance's RAM. For example, if your

solution instance has 64 GB of RAM, then the disk size must be higher than 192 GB.

5/13/25, 9:11 PM 3.3

29

Stop, Restart, and
Terminate a Solution

When you stop a solution, you shut down the virtual machine instance. The

TigerGraph database is frozen in its current state. Billing for that machine instance

also stops. Scheduled backups also stop, but the backup copies are kept in EFS on

AWS, Azure Files on Azure, and GCP Filestore on GCP. You will still incur charges for

disk storage and backups when a solution is stopped. You can start the solution

again. After a warm-up period, the solution will return to its previous state.

Below are the steps to stop a solution

Stop a solution

1. Navigate to My Solutions.

2. Stop the solution.

5/13/25, 9:11 PM 3.3

30

Find the solution you want to stop and click on the Solution Operations icon and

click Stop.

You can restart a stopped solution at any time. After a warm-up period, the solution

will return to the state it was in when it was stopped.

Below are the steps to restart a solution:

Find the stopped solution, and click the Solution Operations icon , and in the

dropdown list, click Start.

Restart a solution

1. Navigate to My Solutions

2. Restart the solution.

5/13/25, 9:11 PM 3.3

31

By terminating a solution, you deprovision the virtual machine and the attached disk

storage. The solution is deleted according to the cloud platform's policies and

cannot be recovered, so is everything in the attached disk storage.

Below are the steps to terminating a solution.

Find the solution you want to stop and click on the Solution Operations icon and

click Terminate.

Terminate a solution

1. Navigate to My Solutions.

2. Terminate the solution.

Archive a solution

5/13/25, 9:11 PM 3.3

32

After a solution has been terminated, it can be archived so that it no longer shows

up on the default view in the list of solutions.

To archive a solution, click on the solution row in My Solutions to expand it and click

the Archived toggle.

To view archived solutions, click the settings icon to the right of the Actions column

and toggle on Show Archived in the Display Settings.

Archive a solution

Show archived solutions

5/13/25, 9:11 PM 3.3

33

Access a Solution
Once a solution has been provisioned, there are three ways to access the solution

and interact with the database:

• GraphStudio

• REST endpoints

• GSQL web shell

5/13/25, 9:11 PM 3.3

34

Access a Solution
through GraphStudio
The TigerGraph GraphStudio™ UI (User Interface) provides an intuitive, browser-

based interface that helps users get started quickly with graph-based application

development tasks: designing a graph schema, creating a schema mapping, loading

data, exploring the graph, and writing GSQL queries. GraphStudio is supported in

the same way on TigerGraph Cloud as the on-premise version of TigerGraph.

After logging into TigerGraph Cloud , go to My Solutions.

Find the solution you want to access, and click the Applications icon in the same

row, and click GraphStudios in the dropdown list.

Open GraphStudio

1. Navigate to My Solutions

2. Open GraphStudio

5/13/25, 9:11 PM 3.3

https://tgcloud.io/
https://tgcloud.io/

35

To learn how to use GraphStudio, read our GraphStudio UI Guide.

Use GraphStudio

5/13/25, 9:11 PM 3.3

36

Send REST Requests to a Solution
Besides GraphStudio, another way to interact with your TigerGraph database is

through our REST API. Use RESTful endpoints to send requests to TigerGraph

solutions and develop applications.

On TigerGraph Cloud, RESTPP Authentication is enabled by default, and only the

requests made with a valid authorization token in the request header will be

accepted.

If your cluster is on GCP and it has a replication factor higher than 1, you won't be able
to use ports 9000 and 14240 to access API endpoints. Instead, you can access the
endpoints using HTTPS requests on port 443:

• To access the endpoints that normally listen on port 9000, append /restpp after

the domain and before the endpoint. Since an HTTPS request already implies port

443, specifying the port is optional. However, you need to ensure that you are

making HTTPS requests instead of HTTP requests.

◦ Example: To access the /echo endpoint: curl
"https://examplesolution.i.tgcloud.io/restpp/echo"

• To access the endpoints that normally listen on port 14240, use the original

endpoint address, but on port 443. Similar to port 9000 requests, specifying the

port is optional.

◦ Example: To access the health check endpoint on 14240: curl
"https://examplesolution.i.tgcloud.io/api/ping"

• Access to GraphStudio is not affected: opening the domain of the solution in a

browser will directly take you to GraphStudio

Here is a step-by-step guide to generating and using an authorization token for

RESTPP:

From GraphStudio, go to Admin Portal, and click User Management.

Generate an authorization token

1. Navigate to User Management

5/13/25, 9:11 PM 3.3

37

In the My Profile tab, find the graph you want to generate the secret for, enter an

alias for your secret and click the "+" symbol at the right side of the row.

Remember to copy and save the secret to a safe location. This is the only time the

secret will be exposed in full in Admin Portal, and you will not be able to see it

again.

Use the /requesttoken endpoint to generate an authorization token for your

solution. You can use either a GET or POST request. In this tutorial, we will be using

a GET request.

Click User Management

2. Generate a secret

3. Generate a token

5/13/25, 9:11 PM 3.3

38

If you did not enter a subdomain when setting up your solution, a random

subdomain will be automatically generated for you. Go to My Solutions, and click

the solution you are trying to access, you will find the solution's domain name in the

expanded view. Use this domain name as the server address when making REST

requests.

The endpoint takes two parameters, secret and lifetime , and the latter is

optional. Put the parameters in the query string and send the request using your

favorite REST client. The below example uses curl to request the authentication

token:

The response will look like this, where the string in the response with the key token

is your authorization token:

curl -X GET 'https://aa768d833bbf47fea6db80a7972a9477.i.tgcloud.io:9000/re

{
 "code": "REST-0000",
 "expiration": 1617232169,
 "error": false,
 "message": "Generate new token successfully.",
 "token": "eq87e740arn73pp8chbf6j930pa7qorm"
}

1. Find the domain name of your solution

2. Send the request to /requesttoken

5/13/25, 9:11 PM 3.3

39

Now that you have an authorization token, you can proceed to make requests to

your solution. To use the authorization token, include it in the request header as a

bearer token.

Refer to our RESTful API User Guide to learn about all the endpoints available. In this

tutorial, we will make a request to the List vertices endpoint on a solution with the

COVID-19 starter kit and list 5 patients and the patients' age.

Response:

curl -H "Authorization: Bearer fc6p0i2ijjt031n0sja6m9ci70p232h7" \
"https://aa768d833bbf47fea6db80a7972a9477.i.tgcloud.io:9000/graph/MyGraph/

4. Send a request using your token

5/13/25, 9:11 PM 3.3

https://www.youtube.com/watch?v=s6-QapCEz1M&feature=youtu.be&ab_channel=TigerGraph
https://www.youtube.com/watch?v=s6-QapCEz1M&feature=youtu.be&ab_channel=TigerGraph

40

{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_id": "6100000100",
 "v_type": "Patient",
 "attributes": {
 "birth_year": 1959
 }
 },
 {
 "v_id": "6023000024",
 "v_type": "Patient",
 "attributes": {
 "birth_year": 0
 }
 },
 {
 "v_id": "6022000024",
 "v_type": "Patient",
 "attributes": {
 "birth_year": 1978
 }
 },
 {
 "v_id": "6020000020",
 "v_type": "Patient",
 "attributes": {
 "birth_year": 0
 }
 },
 {
 "v_id": "6015000008",
 "v_type": "Patient",
 "attributes": {
 "birth_year": 0
 }
 }
]
}

5/13/25, 9:11 PM 3.3

41

Access a Solution
through GSQL Web Shell
With a paid tier solution and a valid payment method, you can also access the

solution through the GSQL Web Shell. The web shell allows you to run GSQL

commands on your TigerGraph Cloud solution.

After logging into TigerGraph Cloud , go to My Solutions.

Find the solution you want to access, and click on the Admin Operations icon .

Click GSQL Access from the dropdown menu.

Open GSQL Web Shell

1. Navigate to My Solutions

2. Click GSQL Access

5/13/25, 9:11 PM 3.3

https://tgcloud.io/
https://tgcloud.io/

42

In the pop-up window, provide the username of the TigerGraph user you'd like to

proceed with, and specify a validity period for the session. The GSQL Web Shell

session will terminate after the validity period is over.

When the GSQL Web Shell opens, the shell will ask you for your password. Enter the

password for the TigerGraph user whose username you just entered and press the

enter key.

Validity period and username

3. Provide session information

4. Enter your password

5/13/25, 9:11 PM 3.3

43

GSQL Web Shell

5/13/25, 9:11 PM 3.3

44

Monitor a Solution
TigerGraph Cloud offers users various ways to monitor the activities and the state of

their solutions. This page lists a few resources that can help monitor a solution's

usage:

• Monitor Solution State

• View Activity Log

5/13/25, 9:11 PM 3.3

45

Monitor Solution State
TigerGraph Cloud allows you to view detailed operational data on a running solution,

such as CPU usage, RAM usage and, and disk and network IO data.

After logging into TigerGraph Cloud , go to My Solutions.

Find the solution you want to monitor, and click on the Solution Details icon on the

right side of the same row.

Click the Monitor tab.

1. Navigate to My Solutions

2. Click Solution Details

3. Click Monitor

5/13/25, 9:11 PM 3.3

https://tgcloud.io/
https://tgcloud.io/

46

This will bring you a brief summary of your solution:

Click Open Monitor to view more detailed statistics of your solution by Netdata

monitor .

Click monitor

4. Click Open Monitor

5/13/25, 9:11 PM 3.3

https://learn.netdata.cloud/docs
https://learn.netdata.cloud/docs
https://learn.netdata.cloud/docs

47

View Activity Log
TigerGraph Cloud solutions log their activities in an activity log, which you can view

on TigerGraph Cloud.

After logging into TigerGraph Cloud , go to My Solutions.

Find the solution you want to monitor, and click on the Solution Details icon on the

right side of the same row.

Click the Activity tab, which shows you the activity log of that solution.

1. Navigate to My Solutions

2. Click Solution Details

3. Click Activity

5/13/25, 9:11 PM 3.3

https://tgcloud.io/
https://tgcloud.io/

48

5/13/25, 9:11 PM 3.3

49

Resize a Solution
As your workload changes, you can resize your TigerGraph Cloud solution to

maximize the efficiency of your resources. You can resize the instance type or

upgrade the storage volume:

• Resize instance type

• Upgrade storage volume

5/13/25, 9:11 PM 3.3

50

Resize Instance Type
As your workload changes after you have created a solution, you can choose to

resize your solution's instance type.

• If you choose to upgrade the instance type of a free-tier solution, you must also

upgrade the disk volume of the solution.

• Resizing instance types would result in a short period of downtime.

Below is the procedure to resize the instance type of a TigerGraph Cloud solution:

After logging into your TigerGraph Cloud account, click My Solutions on the left

side menu to go to the My Solutions page.

Before you begin

Procedure

Step 1: Navigate to My Solutions page

5/13/25, 9:11 PM 3.3

51

On the My Solutions page, click the Solutions Operations icon in the Actions column

and hover over Resize. In the dropdown menu that appears, select Instance Type.

In the window that appears, choose the new instance type that you'd like to change

your instance type to.

Hover over Resize

Step 2: Choose a new instance type

5/13/25, 9:11 PM 3.3

52

Click Resize to confirm and start the resizing operation.

Resize instance type window

5/13/25, 9:11 PM 3.3

53

Upgrade Storage Volume
If you decide that your solution needs more disk storage space, TigerGraph Cloud

allows you to upgrade your disk volume.

• You need a paid-tier solution in order to upgrade disk volume

Below is the procedure to upgrade the disk volume of a solution.

After logging into your TigerGraph Cloud account, click My Solutions on the left

side menu to go to the My Solutions page.

Before you begin

Procedure

Step 1: Navigate to My Solutions page

5/13/25, 9:11 PM 3.3

54

On My Solutions, click the Solutions Operations icon in the Actions column and

hover over Resize. In the dropdown menu that appears, select Disk Volume.

In the window that appears, choose your target disk volume:

Hover over Resize

Step 2: Upgrade disk volume

5/13/25, 9:11 PM 3.3

55

Click Upgrade to confirm and start the upgrade.

5/13/25, 9:11 PM 3.3

56

Security and User Management

Your TigerGraph Cloud account serves as your credential on the platform level. It

allows you to manage solutions as well as payments. It also gives you superuser

access to all of the graphs hosted by the solutions on the account.

On the solution level, the same role-based access control used by the on-prem

version of TigerGraph also applies to TigerGraph Cloud. Each solution or solution

cluster can have many TigerGraph users and each user can have different roles for

each graph with different privileges.

For more information on how to manage users and roles in Admin Portal, see User

Management.

All data loaded into TigerGraph Cloud, including data in disk storage and backups,

are automatically encrypted-at-rest using the cloud provider's native encryption

protocol with platform-managed keys.

TigerGraph Cloud uses TLS to encrypt connections to your graph databases.

TigerGraph Cloud account

TigerGraph users

Preconfigured security features

Encryption-at-rest

Transport Layer Security (TLS)

5/13/25, 9:11 PM 3.3

57

By default, all TigerGraph Cloud solutions have RESTPP authentication turned on. To

make requests to the RESTPP server, you must generate a secret in the Admin Portal

and use that secret to generate an authentication token.

RESTPP Authentication

5/13/25, 9:11 PM 3.3

58

Manage Your TigerGraph
Cloud Account

1. Go to TigerGraph Cloud login portal .

2. Click Login / Register

3. Click Don't remember your password?

4. Enter your email address. If you signed up using an identity provider, use the

email address associated with your account with the identity provider. Click

SEND EMAIL.

5. Go to your email inbox, and find an email titled Reset your password. Click on

the link in the email

6. Enter your new password.

Reset your TigerGraph Cloud account
password

5/13/25, 9:11 PM 3.3

https://tgcloud.io/
https://tgcloud.io/

59

Manage Database Users
On the solution level, the same role-based access control used by the on-prem

version of TigerGraph also applies to TigerGraph Cloud. Each solution or solution

cluster can have many TigerGraph users and each user can have different roles for

each graph with different privileges.

To learn how to manage users and roles in Admin Portal, refer to the User

Management section in Admin Portal UI Guide.

5/13/25, 9:11 PM 3.3

60

Backup and Restore
Backups are snapshots of the state of your solutions at a given point in time.

Currently, any paid solutions provisioned by an account with a valid payment

method can have a maximum of 7 backups concurrently.

The backup feature is not supported on free-tier instances or instances provisioned by
an account without a valid payment method.

Backups are saved to Amazon EFS on AWS, Azure Files on Microsoft Azure, and

GCP Filestore on GCP. Backup storage is provisioned when you start a paid-tier

solution and is based on the maximum number of backups allowed (currently fixed

at 7). It only stops incurring charges when the solution is terminated. Stopping the

solution does not stop charges for backup storage.

Backups are encrypted by default using the native encryption feature of the cloud

provider with platform-managed keys.

By default, scheduled backup is turned on when instances are running and will be

done daily. If the maximum retention number is reached when a new backup is

made, the oldest scheduled backup will be deleted. To change the backup

schedule, change your backup settings in Admin Portal.

Data Storage and Encryption

Scheduled backup

Change backup schedule

1. Go to Admin Portal.

5/13/25, 9:11 PM 3.3

61

From My Solutions page, go to GraphStudio. Then click Admin on the upper-right

corner to go to Admin Portal.

On the left side of the screen, click Backup & Restore.

3. Specify backup schedule.

Choose the backup frequency you want, and supply the password of your

TigerGraph user.

2. Click Backup & Restore.

5/13/25, 9:11 PM 3.3

62

Aside from scheduled backups, you can also make backups manually in Admin

Portal.

• If you want to perform a manual backup when there are already seven copies of

backups, you need to delete an older backup.

• The maximum number of manual backups is six, as the platform always reserves

one spot for scheduled backups.

Below are the procedures to create a backup manually:

In Backup/Restore, supply a tag for your backup and enter the password of your

TigerGraph user.

4. Click UPDATE.

Manual backup

1. Go to Admin Portal.

2. Click Backup & Restore.

3. Provide tag and password.

4. Click BACK UP.

5/13/25, 9:11 PM 3.3

63

You can use a backup to restore your solution.

Below are the procedures to restore a backup:

In Manage Backups, find the backup you want to use for the restore and click the

clipboard icon to copy the tag of the backup.

Below are the procedures to delete a backup

Restore a backup

1. Go to Admin Portal.

2. Click Back up & Restore.

3. Copy backup tag.

Delete a backup

1. Go to Admin Portal.

2. Click to Backup & Restore

5/13/25, 9:11 PM 3.3

64

In Backup List, find the backup you want to delete and click the delete button in the

Action column.

3. Go to Manage Backups

4. Delete the backup.

5/13/25, 9:11 PM 3.3

65

VPC Peering
TigerGraph Cloud supports VPC Peering connections for AWS and GCP clusters.

• Set up VPC peering connection on AWS

• Set up VPC peering connection on GCP

5/13/25, 9:11 PM 3.3

66

Set Up VPC Peering on AWS
This is a guide for setting up a VPC peering connection between your TigerGraph

Cloud VPC and another AWS VPC.

• Unterminated TigerGraph Cloud solutions on AWS

Log into the cloud portal, and navigate to the Network tab. Click Initiate VPC

peering.

In the TigerGraph VPC section, Choose the TigerGraph VPC that you want to initiate

the peering connection from.

Prerequisites

Procedure

1. Initiate VPC peering

5/13/25, 9:11 PM 3.3

67

In the Peered VPC section, fill in the information of the VPC that you hope to peer

with:

• OwnerID

◦ The ID of the VPC ownerʼs AWS account, ex: 123456789012

• Region

◦ The region of the VPC you want to peer with, ex: us-west-1

• VPC ID

◦ The ID of the VPC: vpc-123456789abcdef01

• CIDR

◦ CIDR-block of the peered VPC, ex: 10.0.0.0/16 . You can also use a IPv6

CIDR here if your peered VPC has one.

After you have completed the first step, a VPC peering connection will be sent to

your VPC. Follow the steps below to accept the peering connection on your AWS

VPC. See more in AWS's documentation on Accept VPC Peering Request .

1. Go to “VPC service” → “Peering Connections” in the AWS web console

2. Accept the connection from the TigerGraph VPC

After accepting the peering request, you still need to update your route table for the

peering connection.

To add a route for a VPC peering connection

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/ .

2. In the navigation pane, choose Route Tables.

3. Select the check box next to the route table that's associated with the subnet in

which your instance resides.

2. Accept VPC peering request

3. Update route table for VPC peering connection

5/13/25, 9:11 PM 3.3

https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html#accept-vpc-peering-connection
https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html#accept-vpc-peering-connection
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/

68

4. Choose Actions, Edit routes.

5. Choose Add route.

6. For Destination, enter the CIDR block of the TigerGraph VPC you are peering

with. You can find the CIDR block of the TigerGraph VPC at Peering

Connections in the VPC service where you accepted the peering connection.

There is a column "Requester CIDRs".

7. For Target, select the VPC peering connection, and then choose Save changes.

5/13/25, 9:11 PM 3.3

69

Set Up VPC Peering on GCP
This is a guide for setting up a VPC peering connection between your TigerGraph

Cloud VPC and another GCP VPC.

• At least one unterminated TigerGraph Cloud solution on GCP

Log in to the Cloud portal and navigate to the Network tab, click "Initiate VPC

Peering"

In the TigerGraph VPC section, choose the TigerGraph VPC that you want to initiate

the peering connection from.

Network tab

Prerequisite

Procedure

1. Initiate VPC Peering

5/13/25, 9:11 PM 3.3

70

In the Peered VPC section, fill in the information of the VPC that you hope to peer

with:

• VPC ID: projects/[projectID]/global/networks/[VPCName] , where projectID
is the ID of your GCP project, and VPCName is the name of the VPC.

After completing Step 1, your TigerGraph VPC will create a peering configuration to

the VPC you hope to peer with. At this time, the peering connection will appear as

Inactive. To complete the peering connection, your still need to create a matching

peering configuration on your peered VPC to the TigerGraph VPC:

1. In the Google Cloud Console, go to the VPC Network Peering page.

Go to VPC Network Peering

2. Click Create connection.

3. Click Continue.

4. Enter a Name for your peering connection.

5. Under Your VPC network, select a network you want to peer.

6. Select the TigerGraph network as the network to peer with.

• Select In another project. You will need to specify the project ID that

includes the network you want to peer with and the name of the VPC

network:

◦ Project ID: tgcloud-prod

◦ VPC network name: Name of your TigerGraph Cloud VPC. You can find it

in the TigerGraph Cloud portal - Network tab - VPC Peering page.

Choose GCP as the platform, and in the VPC column is the VPC name.

7. You can leave the other fields as they are (with only Export subnet routes with

public IP selected) unless you need special configurations.

8. Click Create.

2. Create VPC peering connection from peered VPC to
host VPC

5/13/25, 9:11 PM 3.3

https://console.cloud.google.com/networking/peering/list
https://console.cloud.google.com/networking/peering/list

71

After creating the matching peering configuration, the status of your VPC

connection should change to Active, meaning the two VPCs are peered

successfully.

Location of VPC name

5/13/25, 9:11 PM 3.3

72

Billing
Machine instances and storage are billed hourly, which means that you are charged

for each continuous period of operation, measured in seconds. Instances incur

charges from when they are started until they are stopped (or terminated). Disk

storage attached to instances and backup storage incur charges from when an

instance is first activated until the instance is terminated. Our billing system will total

the charges at the end of each calendar month, generate an itemized invoice, and

charge your card.

Data transfer costs from the cloud platforms are calculated according to the cloud

platform charge and will be added to your invoice in the following month.

This section only applies to the standard hourly service of TigerGraph Cloud. If you
have a committed long-term contract with TigerGraph, please contact
sales@tigergraph.com for questions.

View our pricing table for detailed rates for each type of charge.

Pricing Information

5/13/25, 9:11 PM 3.3

mailto:sales@tigergraph.com
mailto:sales@tigergraph.com
https://www.tigergraph.com/tigergraph-cloud-pricing/
https://www.tigergraph.com/tigergraph-cloud-pricing/

73

Manage Payment Methods
For standard hourly use of TigerGraph Cloud solutions, we currently support

payment through cards. This document offers is a tutorial on how to add or delete a

card and how to set a card as the default payment option.

If you need to use ACH payment, or purchase bulk cloud credits, please contact

sales@tigergraph.com

On the left-side menu, click My Account.

Add a card

1. Navigate to My Account

5/13/25, 9:11 PM 3.3

74

On the My Account page, click Payment Method.

In the Payment Method tab, click Add a new card.

Enter your card information in the window that pops up, and click Save.

2. Click Payment Method

3. Click Add a new card

4. Enter your card information

Delete a card

5/13/25, 9:11 PM 3.3

75

You can delete a card if there is more than one card associated with the account.

On the left-side menu, click My Account.

On the My Account page, click Payment Method.

1. Navigate to My Account

2. Click Payment Method

5/13/25, 9:11 PM 3.3

76

Find the card you want to delete in Card Management, and click Delete.

On the left-side menu, click My Account.

3. Delete the card

Set card as default

1. Navigate to My Account

5/13/25, 9:11 PM 3.3

77

On the My Account page, click Payment Method.

2. Click Payment Method

5/13/25, 9:11 PM 3.3

78

Find the card you want to set as the default card in Card Management, and click Set

as Default.

3. Click Set as Default

5/13/25, 9:11 PM 3.3

79

Subscriptions
TigerGraph Cloud users can pay for TigerGraph Cloud via marketplace

subscriptions through a cloud provider:

• AWS Marketplace : Pay for TigerGraph Cloud via AWS

• Azure Marketplace : Pay for TigerGraph Cloud via Azure

• GCP Marketplace : Pay for TigerGraph Cloud via GCP

5/13/25, 9:11 PM 3.3

https://aws.amazon.com/marketplace/pp/prodview-5rpjtqdqixmds
https://aws.amazon.com/marketplace/pp/prodview-5rpjtqdqixmds
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/tigergraph.tg_test_test?tab=Overview
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/tigergraph.tg_test_test?tab=Overview
https://console.cloud.google.com/marketplace/product/tigergraph-public/tigergraph-cloud
https://console.cloud.google.com/marketplace/product/tigergraph-public/tigergraph-cloud

80

Release Notes

Release Date: Sep 22, 2021

• TigerGraph V3.1.5 is now supported when creating new solutions. Users can

create solutions that include both single server and cluster deployment when

they choose TigerGraph V3.1.5.

• VPC Peering. Users can now create a VPC peering connection between their

TigerGraph Cloud VPC and another VPC on all supported cloud providers.

• Automatic load balancing for HA clusters. When users provision a cluster with

replicas in TigerGraph Cloud, a load balancer will be automatically attached to

the cluster.

• Multi-AZ deployment. When a user provisions an HA cluster, the replicas of the

cluster will automatically be provisioned on different availability zones. This

feature is supported on AWS and GCP.

• Free-tier solutions on GCP. We now offer the option to create a free-tier solution

on GCP in addition to AWS.

Release Date: May 17, 2021

• ✅ Support TigerGraph V3.1.1 for New Solutions (Single Server)

TigerGraph Cloud V3.10 - Sep 2021 Updates

New features

TigerGraph Cloud V3.6 - May 2021 Updates

New Features

5/13/25, 9:11 PM 3.3

81

Release Date: March 17, 2021

• ✅ Support GCP (Google Cloud Platform) as one of the Cloud Platforms

Release Date: March 9, 2021

• ✅ Add Azure Central India and South India Regions to Cloud Platforms

Release Date: February 17, 2021

• ✅ Add Cloud Portal Self Guided Tour

• ✅ Support Minimum Disk Size Check During New Solution Provisioning Process

TigerGraph Cloud V3.5 - March 2021
Updates

New Features

TigerGraph Cloud V3.4 - March 2021
Updates

New Features

TigerGraph Cloud V3.3 - Feb 2021 Updates

New Features

5/13/25, 9:11 PM 3.3

82

Release Date: December 16, 2020

• ✅ Pricing Change

◦ Instance Pricing Change

◦ Backup Pricing Change

◦ Replica Pricing Change

◦ New Data Transfer Cost (First 50GB free for 2 hour+ uptime per month)

• ✅ Support TigerGraph V3.0.6 for New Solutions

• ✅ Support TigerGraph v2.6.4 for New Solutions

• ✅ Support replication factor of 3 for TigerGraph V3.0.6 clusters

• ✅ New TigerGraph Cloud Instance Type TG.C4.M16 available from AWS

• ✅ SOC2 Type 2 report available to request

• ✅ 5 New TigerGraph Starter Kits

◦ Graph Convolutional Networks (V3.0.6)

◦ Healthcare Graph (Drug Interaction/FAERS) (V3.0.6)

◦ Social Network Analysis (V2.6.4 and V3.0.6)

◦ Enterprise Knowledge Graph (Corporate Data) (V2.6.4 and V3.0.6)

◦ Enterprise Knowledge Graph (Crunchbase) (V2.6.4 and V3.0.6)

Release Date: September 29, 2020

TigerGraph Cloud V3.2 - Dec 2020 Updates

New Features

TigerGraph Cloud V3.1 - September 2020
Updates

5/13/25, 9:11 PM 3.3

83

• ✅ Patch TigerGraph V3.0.5 with GSQL Bug Fixes for New Solutions

Release Date: September 17, 2020

• ✅ Support TigerGraph V3.0.5 for New Solutions

• ✅ Support TigerGraph v2.6.3 for New Solutions

• ✅ Allow Users to choose v2.6.3 or V3.0.5 at New Solution Provisioning

Release Date: July 10, 2020

• ✅ Support Microsoft Azure as one of the Cloud Platforms

Release Date: April 27, 2020

Patch

TigerGraph Cloud V3.0 - September 2020
Updates

New Features

TigerGraph Cloud V2.2 - July 2020 Updates

New Features

TigerGraph Cloud V2.1 - April 2020 Updates

New Features

5/13/25, 9:11 PM 3.3

84

• ✅ Advanced Developer Tool: GSQL Web Shell for Non-Free Tiers

• ✅ TigerGraph Database Version Upgrades to TigerGraph 2.6 For New Instances

• ✅ Starter Kit Categorization at Solution Provisioning

• ✅ 6 New TigerGraph Starter Kits

◦ COVID-19 Starter Kit

◦ In-Database Machine Learning Recommendation

◦ Low-Rank Approximation Machine Learning

◦ Graph Algorithms

▪ Shortest Path

▪ Centrality

▪ Community Detection

Release Date: January 08, 2020

• ✅ New product name: "TigerGraph Distributed Cloud"

• ✅ New URL: tgcloud.io

• ✅ Option to provision a TigerGraph Distributed Cluster

• ✅ Option to provision a Highly Available TigerGraph Cluster

• ✅ Added Steps in Cloud Portal Provision Workflow

• ✅ New TigerGraph Starter Kits

Release Date: September 25, 2019

TigerGraph Cloud V2.0

New Features

TigerGraph Cloud V1.0

5/13/25, 9:11 PM 3.3

85

Deprecation Date: March 31, 2020 (See https://docs.tigergraph.com/tigergraph-

cloud/tigergraph-cloud-v1-to-tigergraph-distributed-cloud-faqs)

• ✅ Single Server Enterprise Edition

• ✅ Self-service Signup and Registration at tgcloud.us

• ✅ Free Credits for 1st Time Sign Up

• ✅ Available in 8 Tiers of Instances (Free Tier Included) and 6 Global Regions

• ✅ Flexible Billing and Pay As You Go Pricing

• ✅ Secure and Isolated Network (VPC) for Each TigerGraph Cloud Account

• ✅ Fast Data Loading through S3 and Local Files

• ✅ 13 TigerGraph Starter Kits with Sample Datasets and Queries

• ✅ Start/Stop/Terminate TigerGraph Solutions On Demand through Cloud Portal

• ✅ Built-in Backup and Restore through TigerGraph Admin Portal

• ✅ Rich Metrics from System Monitoring Panel on Cloud Portal

• ✅ Convenient Application Development Through RESTful Endpoints

New Features

5/13/25, 9:11 PM 3.3

https://docs.tigergraph.com/tigergraph-cloud/tigergraph-cloud-v1-to-tigergraph-distributed-cloud-faqs
https://docs.tigergraph.com/tigergraph-cloud/tigergraph-cloud-v1-to-tigergraph-distributed-cloud-faqs
https://docs.tigergraph.com/tigergraph-cloud/tigergraph-cloud-v1-to-tigergraph-distributed-cloud-faqs

86

FAQs
Feedback for TigerGraph Cloud is welcome at tgcloud-feedback@tigergraph.com

A: TigerGraph Cloud gets you up and running with the fastest and best price-

performance graph platform in just minutes. TigerGraph's native parallel graph and

deep link analytics give you both speed and scale, even on the most complex tasks.

The GraphStudio visual design interface enables everyone on your team to be a

guru in graph. And our starter kits for popular use cases mean you can have an

example graph application working in minutes. Since it requires far fewer machines

to achieve high performance, TigerGraphʼs price performance sets a new bar for the

graph database industry.

A: New December 2020 pricing applies to new paid tier solutions provisioned after

December 16th 2020. You can keep the old pricing if you keep your paid tier

instances provisioned before December 16th, 2020 and keep its state (running or

stopped). If you want to take advantage of the new pricing to lower your cost, you

can migrate your workload to a newly provisioned instance, or simply start and stop

the old instance. Note that TigerGraph Cloud accounts with valid credit cards are

eligible for the paid tier migration. Please submit a support ticket for migration

assistance.

A: Yes, in both instances.

Top FAQs

Q: How does TigerGraph Cloud compare with other DBaaS
offerings?

Q: How do I migrate to the new December 2020 pricing to lower my
bill?

Q: Are there Free Tier Instances or Free Credits for the System?

5/13/25, 9:11 PM 3.3

87

Free Credits: A $25 credit will be automatically granted to each new registered

account. The free credits is valid for 30 days after initial use.

Free Tier Instance: When you select an instance type, you will see that one instance

type is designated as the Free Tier. For each registered account, you may provision

one solution from the Free Tier. Free Tier instances do not include backup and do

not include support.

If no user activity is detected for more than one hour, TigerGraph may automatically

stop a Free Tier instance. Users can manually restart the free tier instances from

their cloud portal. After 7 days of inactivity, TigerGraph may terminate the inactive

free tier instances. For additional information, see TigerGraph Cloud Terms .

Tip: If you need to save your work from a Free Tier instance, export the solution

(which saves your graph and queries) and write queries which print all your data to

files.

A: Known Capacity Issues: Free Tier instances are provisioned on a common

instance type in a data center region of the cloud provider (AWS). During the surge

cloud usage period, such as the current global lockdown due to COVID-19, cloud

providers across the globe are experiencing capacity issues.

It is possible that when you provision a free tier instance, it will not provision

successfully on the first try because of the peak usage in a certain region in the

backend cloud platform (AWS). Please be patient and try to provision in another

region, or at a later time when there is enough capacity in the region. For any

stopped free tier instances, when you restart the solution, it is possible that your

solution cannot restart with a machine because of the capacity issue from the cloud

provider. In this case, try to restart the solution at a later time when there are more

machines available in the region of the cloud provider (AWS). In both scenarios, you

can look at the log in "My Activities" and the capacity issue is logged. Submit a

support ticket if the capacity issue persists.

Q: I cannot start my free tier instances. Why is there a capacity
error in "My Activities"?

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/tigergraph-cloud-subscription-terms/
https://www.tigergraph.com/tigergraph-cloud-subscription-terms/

88

To reserve an instance for guaranteed capacity, please submit a support ticket and

contact sales@tigergraph.com to arrange a long term contract for reserved

TigerGraph instances.

A: TigerGraph Cloud offers three cloud platform options: AWS, Azure and GCP. In

AWS, supported regions are: US-West-1 (N.Cal), US-East-1 (N. Virginia), EU-West-

1(Ireland), EU-West-2(UK), EU-Central-1(Germany) and AP-Northeast-1(Japan). In

Azure, supported regions are: West US (California, US West), West Europe

(Amsterdam, Netherlands), Central India (Pune, India), South India (Chennai, India).

In GCP, supported regions are: Europe-West-2 (London, UK), US-West-1 (oregon,

US).

More regions and platforms will be added soon.

Q: Can I choose different versions of TigerGraph on TigerGraph Cloud?

A: Yes. When you create a solution, you can choose the database version you would

like to use.

A: Yes. In the latest version of TigerGraph Cloud, you can provision a highly

available TigerGraph cluster by entering 2 or 3 for the replication factor during the

provisioning process. Replication factor of 2 and 3 are supported for TigerGraph

V3.0+. For TigerGraph V2.6, only replication factor of 2 is supported. The

configuration is active-active, meaning that all copies of the data are available to

answer queries.

NOTE: HA systems must have a minimum of 3 instances. This means that the

smallest supported cluster configuration for a replicated system for TigerGraph

V3.0+ is one-way partitioning X three-way replication = three instances. In

comparison, the smallest supported cluster configuration for a replicated system for

TigerGraph V2.6 is two-way partitioning X two-way replication = four instances.

Q: In what cloud platforms and regions does TigerGraph operate?

Q: Does TigerGraph Cloud support distributed databases?

5/13/25, 9:11 PM 3.3

mailto:sales@tigergraph.com
mailto:sales@tigergraph.com

89

A: Please see the section on pricing on our website at www.tigergraph.com/cloud/

. For further assistance, contact TigerGraph at sales@tigergraph.com

A: TigerGraph Cloud includes automatic scheduled backup, built-in encryption and

other security features, patching, replication and distributed database option. In

addition, you can now provision a distributed database as well as a replica cluster

for high availability. As a cloud service, many of the administrative and operational

tasks - for monitoring, restoring, upgrading, for example - are just a click away. In

addition to operations and management for your TigerGraph databases, TigerGraph

Cloud also offers Starter Kits to provide instant experience to various graph

analytics use cases. The list of Starter Kits can be found here:

https://www.tigergraph.com/starterkits/

A: Yes. For basic accounts with credit card billing, there is a limit of 160 vCPUs and

20 instances. A solution is one logical database, which may include several

instances due to a distribution database configuration and replication. For accounts

running exclusively on Free Credit and that have not yet entered a valid credit card,

there is a limit of 16 vCPUs and two solutions. For each registered account (with or

without a valid credit card), you may only provision one solution from the Free Tier.

To allow more vCPUs and solutions, please contact TigerGraph at

sales@tigergraph.com .

Total number of instances in a cluster = replication factor x partitioning factor

Account With a Valid Credit

Card

Account Without a Valid

Credit Card

Free Tier Solution Quota 1 1

Q: What type of server should I use for my data size and
workload?

Q: What kind of services do I get?

Q: Is there a quota for the number of solutions I can provision in a
single account?

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/cloud/
https://www.tigergraph.com/cloud/
https://www.tigergraph.com/cloud/
mailto:sales@tigergraph.com
mailto:sales@tigergraph.com
https://www.tigergraph.com/starterkits/
https://www.tigergraph.com/starterkits/
mailto:sales@tigergraph.com
mailto:sales@tigergraph.com

90

A: Data must be loaded and queries must be installed first. Please perform the

following steps after the solution is provisioned:

1. Connect to GraphStudio through “Open Solution Via Domain” from the cloud

portal.

2. On the Load Data tab, click the Load button to load the sample dataset.

3. On the Write Query tab, click the Install button to install the sample queries.

Now you can run queries on the starter kit's sample data. Please visit

tigergraph.com/starterkits to watch the overview video for each starter kit.

A: TigerGraph Cloud is instance-based and offers an administrator portal to monitor

the performance and health of each machine instance.

A: TigerGraph Cloud will provide teams with the flexibility to use the cloud vendor

of their choice, so there will be no vendor lock-in. For the current version,

TigerGraph Cloud offers instances on AWS, Azure and GCP platforms. If you require

Total Instance Quota 20 2

Total vCPU Quota 160 16

Cluster Size Limit 10 instances
1 (that is, distributed data is

not enabled)

Replication Factor Limit 2 1 (that is, HA is not enabled)

Request Quota/Limit

Increase

Yes, Please contact

sales@tigergraph.com .

N/A

Please upgrade your

account by entering a valid

credit card

Q: Can I run queries directly after sample starter kits are
provisioned?

Q: How can I monitor my TigerGraph Cloud service?

Q: Is TigerGraph Cloud cloud-agnostic?

5/13/25, 9:11 PM 3.3

http://tigergraph.com/starterkits
http://tigergraph.com/starterkits
mailto:sales@tigergraph.com
mailto:sales@tigergraph.com

91

immediate assistance to manage TigerGraph on another cloud provider, please

contact sales@tigergraph.com .

A: Yes, TigerGraph supports TigerGraph cloud users using paid tiers. See the

Support Policy terms at https://www.tigergraph.com/support-policy/ . For free tier

instances, support is not included; therefore, support tickets for free tier solutions

are answered when support staff bandwidths allows. See Section 1.4 in

https://www.tigergraph.com/tigergraph-cloud-subscription-terms/ . Additional

developer resources for free tier users: join TigerGraph developer community at

https://community.tigergraph.com .

A: The TigerGraph GraphStudio™ UI (User Interface) provides an intuitive,

browser-based interface that helps users get started quickly with graph-based

application development tasks: designing a graph schema, creating a schema

mapping, loading data, exploring the graph, and writing GSQL queries.

In addition, for TigerGraph paid tier solutions, users can use GSQL Web Shell to

write GSQL Commands in an interactive command line shell. Users can access

GSQL Web Shell through the solution panel from their Cloud Portal. This GSQL Web

Shell opens up more data loading options such as S3 Loader (parquet format) and

Kafka Loader.

A: TigerGraph uses GSQL, the query language designed for fast and scalable graph

operations and analytics. GSQLʼs similarity to SQL, high-level syntax, Turing

completeness, and built-in parallelism brings faster performance, faster

development and the ability to describe any algorithm.

You can start learning GSQL from our tutorial GSQL 101. We also support a RESTful

API and JSON output for easy integration with application languages like Python,

Q: Is the support for TigerGraph Cloud the same as the support for
TigerGraph Enterprise?

Q: What is the user interface for the TigerGraph Cloud instance?

Q: What graph query language does TigerGraph support?

5/13/25, 9:11 PM 3.3

mailto:sales@tigergraph.com
mailto:sales@tigergraph.com
https://www.tigergraph.com/support-policy/
https://www.tigergraph.com/support-policy/
https://www.tigergraph.com/tigergraph-cloud-subscription-terms/
https://www.tigergraph.com/tigergraph-cloud-subscription-terms/
https://community.tigergraph.com/
https://community.tigergraph.com/
https://docs.tigergraph.com/ui/graphstudio/overview
https://docs.tigergraph.com/ui/graphstudio/overview

92

Java, and C++.

Start learning GSQL and become a TigerGraph Certified Associate today:

www.tigergraph.com/certification/

A: Yes. If you use V3.0.5+ in TigerGraph Cloud, MultiGraph is supported through

GraphStudio. Please refer to https://docs.tigergraph.com/ui/graphstudio/design-

schema for the new MultiGraph Support through GraphStudio starting TigerGraph

V3.0.

A: We support AWS S3 import and local file upload through GraphStudio. Spark

loading is available through our open source JDBC Driver. See

https://github.com/tigergraph/ecosys/tree/master/etl

In addition, for TigerGraph paid tier solutions, users can use GSQL Web Shell to

write GSQL Commands in an interactive command line shell. This GSQL Web Shell

opens up more data loading options such as S3 Loader (parquet format), Kafka

Loader and other complex loading jobs. Users can access GSQL Web Shell through

the solution panel from their Cloud Portal.

For complex loading jobs through GSQL Web Shell for paid tier solutions, please

submit a support ticket from your cloud portal for more information.

A: As long as there is remaining free credits in your account, the data of your

solutions will be preserved by the provisioned disk after you stop the solutions even

if you donʼt have a credit card in your account. The data will be available and

accessible after you restart the solutions. The free credits is valid for 30 days after

initial use. Your solutions will be deleted automatically if the following scenario is

Q: Can I have multiple graphs in one TigerGraph Cloud instance?

Q: What methods do you support for importing data?

Q: If I donʼt enter a valid credit card in the account and use the
initial $25 free credit, will the data in the provisioned solutions be
deleted if I stop the solutions?

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/certification/
https://www.tigergraph.com/certification/
https://docs.tigergraph.com/ui/graphstudio/design-schema
https://docs.tigergraph.com/ui/graphstudio/design-schema
https://docs.tigergraph.com/ui/graphstudio/design-schema
https://github.com/tigergraph/ecosys/tree/master/tools/etl
https://github.com/tigergraph/ecosys/tree/master/tools/etl

93

detected: there is no remaining valid free credits and there is no valid credit card in

your account.

To use “backup and restore” functionality, you need to enter a valid credit card in

your account and choose non free tier instances. The non free tier solutions

provisioned after the credit card is entered have backup and restore functionality

through TigerGraphʼs Admin Portal. Note that any solutions provisioned before

entering the credit card will not be upgraded with the backup and restore

functionality.

If you choose to terminate the instance, your solutions and the data will not be

preserved. Please see "Provisioning, Backup and Restore" section for detailed

explanation on the difference between stopping and terminating a solution.

A: Please check your SPAM folder. The activation email could be sent to your SPAM

folder. If you can't find it in SPAM folder, and does not receive verification email in

your mailbox after resending the verification email, please contact

support@tigergraph.com so that we can assist you with manual email verification

process.

Q: How do I develop a customized application on top of TigerGraph Cloud?

A: Please see Graph Gurus episode 24 , where we presented "How to Build

Innovative Applications with a Native Graph Database".

A: For free tier solutions, the upgrade is not supported unless you are migrating to

paid tier solutions. If you want to change the database version in your free tier, you

can terminate the existing free tier solution, and create a new free tier with the new

version. In each TigerGraph Cloud account, you can have one free tier. If you want

to migrate to paid tier solutions, please send a support ticket through your cloud

portal.

Q: I canʼt find my registration activation email after registering for
the first time. Where can I find it?

Q: Can I upgrade from V2.6.x, V3.0.5, V3.0.6 to V3.1.1?

5/13/25, 9:11 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com
https://info.tigergraph.com/graph-gurus-24
https://info.tigergraph.com/graph-gurus-24

94

For paid tier solutions, please submit a support ticket for upgrade assistance.

Downtime is expected during this upgrade. It is recommended to create a new blank

V3.1.1 solution, import your data and copy the GSQL queries to test and experiment

before upgrading your production instance from V2.6.x, V3.0.5, V3.0.6 to V3.1.1.

See www.tigergragraph.com/cloud for pricing information.

A: New December 2020 pricing applies to new paid tier solutions provisioned after

December 16th 2020. You can keep the old pricing if you keep your paid tier

instances provisioned before December 16th, 2020 and keep its state (running or

stopped). If you want to take advantage of the new pricing to lower your cost, you

can migrate your workload to a newly provisioned instance, or simply start and stop

the old instance. Note that TigerGraph Cloud accounts with valid credit cards are

eligible for the paid tier migration. Please submit a support ticket for migration

assistance.

A: Yes, there is a discount for contracting with TigerGraph for a one-year term.

Please contact sales@tigergraph.com to request your discount.

Q: Can I purchase TigerGraph Cloud Credits?

A: Yes. You can purchase cloud credits applied to TigerGraph Cloud usage. Please

refer to https://www.tigergraph.com/cloud-credits/

Pricing

Q: How do I migrate to the new December 2020 pricing to lower my
bill?

Q: Do you offer a discount for annual contracts/commitments?

Q: If I delete my instance before the end of the month, what will I
have to pay?

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/cloud
https://www.tigergraph.com/cloud
mailto:sales@tigergraph.com
mailto:sales@tigergraph.com
https://www.tigergraph.com/cloud-credits/
https://www.tigergraph.com/cloud-credits/

95

A: If you are subscribed to our standard hourly service, you will be charged only for

your hours of use, as described above.

A: We bill you and charge your credit card at the end of each calendar month.

A: You can either open a support ticket from the cloud portal by clicking “Support”

on the menu at the left of the page, or you can send an email to

billing@tigergraph.com .

A: If this happens you can contact sales@tigergraph.com and we will provide you

with other payment options.

A: You can find our terms and conditions here: www.tigergraph.com/terms .

A: With TigerGraph Cloud, you only pay for what you use. For long term contracts,

please contact sales@tigergraph.com .

Q: If I add an instance mid-month, when do I start paying for it?

Q: If I have a billing problem that I canʼt solve online, how do I
contact you?

Q: What happens if my monthly costs exceed the credit limit on my
credit card?

Q: Where can I find TigerGraph's terms and conditions for its
products and services?

Q: How is TigerGraph Cloud priced for development, test, or QA
environments?

Sizing and Scaling

5/13/25, 9:11 PM 3.3

mailto:billing@tigergraph.com
mailto:billing@tigergraph.com
mailto:sales@tigergraph.com
mailto:sales@tigergraph.com
http://www.tigergraph.com/terms
http://www.tigergraph.com/terms
mailto:sales@tigergraph.com
mailto:sales@tigergraph.com

96

TigerGraph Distributed Cloud offers eight different instances in AWS platform,

ranging from 4 vCPUs with 7.5 GiB RAM, to 96 vCPUs with 768 GiB RAM. In Azure,

TigerGraph Distributed Cloud offers seven different instances, ranging from 4

vCPUs with 16 GiB RAM, to 96 vCPUs with 672 GiB RAM. In GCP, TigerGraph

Distributed Cloud offers seven different instances, ranging from 4 vCPUs with 16

GiB RAM, to 80 vCPUs with 640 GiB RAM. Larger graphs require more RAM. Higher

performance calls for both more CPUs and more RAM.

Our pricing table gives initial recommendations for which instance to start with, if

you know how much data you will be loading into the graph. We call the input data

your "raw data". TigerGraph reorganizes your data into a graph, encoding and

compressing it. We have assumed that your stored graph will be about 70% of the

size of your raw data. This is a conservative estimate; it's often smaller.

You also need RAM for your graph querying and computation. Workloads vary

considerably. In the pricing table, we recommend that your total RAM be about 1.5

times the maximum amount of raw data you think you will load.

If you see you need more space or more compute power, then just scale up.

Please submit a support ticket from TigerGraph Cloud Portal or contact

support@tigergraph.com for more help.

Please submit a support ticket from TigerGraph Cloud Portal or contact

support@tigergraph.com for more help.

A: Contact TigerGraph Cloud Support for migrating between different instance

types. Instance migration is not yet supported through one-click operation, however,

migration can be achieved by using backup and restore for some cases.

Q: How do I determine the instance needed for my workload?

Q: How do I expand the disk size?

Q: Can I migrate my database to a larger (or smaller) instance?

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/tigergraph-cloud-pricing/
https://www.tigergraph.com/tigergraph-cloud-pricing/
mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com

97

A: Yes, you can provision a distributed database in TigerGraph Cloud. Simply

provide the partition number and replication number you would like to have. Please

see High Availability and Replication Section below.

A: A Root Disk (EBS based) is attached to TigerGraph Instances.

A: If you choose AWS as the backend, TigerGraph Cloud provisions persistent EBS

volume as the disk attached to the EC2 machines to hold installation files and data

files. The disk holds the following: OS installation, TigerGraph database installation,

TigerGraph Graph storage, other data files uploaded to the instance, and any output

files generated by querying the database, in addition to system logs generated

during the process. Hence, when you consider the size of the disk, please consider

the size of the data for all the above installations and files.

A: TigerGraph Cloud has been designed and tested for Chrome. Other browsers

may not yet be fully supported.

Q: Can I deploy a distributed TigerGraph database across a cluster
of instances?

Hardware

Q: What type of disks are attached to the provisioned TigerGraph
Instances?

Q: What does the provisioned disk include, and how should I
approach disk sizing?

Q: What browsers are supported?

Provisioning, Backup and Restore

5/13/25, 9:11 PM 3.3

https://docs.tigergraph.com/tigergraph-cloud/tigergraph-cloud-faqs#provisioning-backup-and-restore
https://docs.tigergraph.com/tigergraph-cloud/tigergraph-cloud-faqs#provisioning-backup-and-restore

98

A: A TigerGraph Solution is a graph database image which can be deployed on a

virtual machine instance. Most solutions also come with a starter kit, a sample

graph schema, sample data, and sample queries for a common use case, such as

Recommendation Engine, Anti-Fraud, and Healthcare Analytics. In a newly

provisioned solution, the data files are ready to be loaded, and the queries are ready

to be installed.

A: When you provision or restart a solution, there will be a warm-up period for the

machine instances and the disk attached to the instances. The larger the data size

and the greater the number of instances, the longer the warm-up period will be.

A: When you stop a solution, you shut down the virtual machine instance. The

TigerGraph database is frozen in its current state. Billing for that machine instance

also stops. Scheduled backups also stop, but the backup copies are kept in EFS in

AWS, Azure Files in Azure, and GCP Filestores in GCP. You will still incur charges for

disk storage and backups when a solution is stopped. You can start the solution

again. After a warm up period, the solution will return to its previous state.

When you terminate a solution, you will deprovision the virtual machine and the

attached disk space. The solution is deleted according to the cloud platforms

policies and cannot be recovered. A backup file, however, can be used to restore to

a new solution within 15 days.

A: Yes. In GraphStudio, go to Admin Portal > Backup and Restore.

Q: What is a Solution?

Q: Is there a warm-up period for TigerGraph instances and
solutions?

Q: What is the difference between stopping and terminating a
solution?

Q: Do you offer backup in TigerGraph Cloud?

5/13/25, 9:11 PM 3.3

99

A: TigerGraph Cloud offers full backups on a scheduled or on-demand basis. By

default, backup is turned on when instances are running and will be done daily.

There are four options you can choose from: backup daily, weekly, monthly, and ad

hoc. In current version, the retention policy is to retain up to seven backups.

Therefore, if you choose to backup daily; the retention of backup is for a week; if

you choose to backup weekly, the retention of backup is for seven weeks; if you

choose to backup monthly, the retention of backup is for seven months. if you want

to perform an ad hoc manual backup when there are already seven copies of

backups, you need to delete an older version of backup in order to save the most

recent ad hoc copy. The maximum number of manual backups is six, as the platform

always reserves one spot for scheduled backup. When a solution is stopped,

backup in EFS, Azure Files and GCP Filestores will be charged for the time you have

the solutions. Please see pricing for backup cost while your instance is stopped.

For a longer retention policy, more options will be coming soon.

Q: Can I restore from a backup from another solution in my account?

A: Only single server solutions can be restored from the backup of another solution

in the same account within the same cloud platform. Distributed and replicated

cluster cannot be restored from the backup of another cluster in the same account.

A: To perform an ad hoc backup, use the password of the tigergraph user of your

solution. To restore from a previous backup, use the same password that was used

to create the backup. This rule applies to restoring from a different solution in your

account. All the backups of different solutions in your account can be found through

the Admin Portal.

Q: What backup options are available?

Q: What password do I use for backup and restore?

Q: What happens to my automated backups if I terminate my
solution?

5/13/25, 9:11 PM 3.3

100

A: We will keep the latest backup for 15 days and then delete. Within that 15 days,

you may use your backup to restore into another similar solution if it is a single

server solution. To restore a cluster within 15 days, please submit a support ticket

through the cloud portal.

A: After you perform a backup, you should wait at least 15 minutes.

A: Please submit a support ticket through the cloud portal.

A: TigerGraph Distributed Cloud offers active-active replication, for increased

availability and automatic failover.

A TigerGraph system with HA is a cluster of server machines which uses replication

to provide continuous service when one or more servers are not available or when

some service components fail. TigerGraph HA service provides loading balancing

when all components are operational, as well as automatic failover in the event of a

service disruption.

A: Replication factor means how many copies of data are stored, each on a separate

machine. The default HA configuration has a replication factor of two, meaning that

a fully-functioning system maintains two copies of the data, stored on separate

machines. TigerGraph Distributed Cloud currently supports your choice of

replication factor of one (only one copy of the data, not recommended for critical

Q: How soon can I restore from a backup that I just made?

Q: How can I delete my TigerGraph Cloud account?

High Availability and Replication

Q: What kind of replicas does TigerGraph Cloud support?

Q: What is the replication factor?

5/13/25, 9:11 PM 3.3

101

systems), two. or three if you choose TigerGraph v3.0.6+. If you choose TigerGraph

v2.6.x, only replication factor of one or two are supported.

Limitation for TigerGraph v2.6.x: In TigerGraph Distributed Cloud, if replication is

used, the total number of instances must be at least 3. For TigerGraph v2.6.x, If

replication factor is 2, then the partition factor must be at least 2, for a total of 2x2 =

4 instances. For TigerGraph v3.0.6+, the configuration for a cluster with 1 partition

and 3 replicas is supported.

A: Partition factor means the number of parts or components your graph data is split

into, which also equals the number of instances that collectively store one copy of

the full graph. For example, if you select a partition factor of 3, each instance will

hold approximately 1/3 of your data. Please read

https://docs.tigergraph.com/admin/admin-guide/installation-and-configuration/ha-

cluster#examples for additional details about partitions and replications.

A: It currently takes about 4 minutes to provision a single instance. If you configure

a 2x2 replicated and distributed graph database, it will take about 15 minutes.

A: By default, you will be given your own VPC(s) for your TigerGraph Cloud account

resources in AWS and GCP, and your own Azure Virtual Networks for your

TigerGraph Cloud account resources in Azure. Your instances are separated from

other accounts by different VPCs or Virtual Networks. Within your own account, you

have different VPCs or Virtual Networks for different regions.

Q: What is the partition factor?

Q: How long do I need to wait for the cluster to be ready after
provisioning process starts?

Network, Security and User Management

Q: Can I use TigerGraph in Amazon Virtual Private Cloud (Amazon
VPC)?

5/13/25, 9:11 PM 3.3

https://docs.tigergraph.com/admin/admin-guide/installation-and-configuration/ha-cluster#examples
https://docs.tigergraph.com/admin/admin-guide/installation-and-configuration/ha-cluster#examples
https://docs.tigergraph.com/admin/admin-guide/installation-and-configuration/ha-cluster#examples

102

A: Yes, TigerGraph Cloud encrypts all data in transit and at rest.

A: You are not sharing storage with other customers. Each TigerGraph solution is

provisioned as one or more virtual machine instances of the TigerGraph engine,

used only for your account, and provisioned with its own disk space. No two

accounts are sharing the same TigerGraph database.

A: You provide the initial password through provisioning steps in your cloud portal.

Hence, remember the initial password you provided to your tigergraph user. To log

in to GraphStudio for the first time, use tigergraph/<initial password>.

A: You provide the initial password through provisioning steps in your cloud portal.

Hence, remember the initial password you provided to your tigergraph user. To

change the password, you need to log in to GraphStudio using tigergraph/<initial

password>, then go to Admin Portal. The ability to change passwords is provided

through administrator portal. You can access this page by GraphStudio > Admin

Portal > User Management.

Q: Can I create multiple users with different roles to access TigerGraph solutions?

A: If you choose V3.0.5+, the default tigergraph user with superuser role can create

other users with different roles through GraphStudio > Admin Portal > User

Management for each solution. Please read the following documentation for more

steps and information: https://docs.tigergraph.com/ui/admin-portal/user-

management

Q: Does TigerGraph Cloud support encrypting my data in transit
and at rest?

Q: Am I sharing data storage with other customers? Is TigerGraph a
multi-tenant solution?

Q: How do I log in to the GraphStudio UI of my solution for the first
time?

Q: How do I change the password to my solutions?

5/13/25, 9:11 PM 3.3

https://docs.tigergraph.com/ui/admin-portal/user-management
https://docs.tigergraph.com/ui/admin-portal/user-management
https://docs.tigergraph.com/ui/admin-portal/user-management

103

Additional information on Role Based Access Control can be found here:

https://docs.tigergraph.com/ui/graphstudio/user-access-management

A: When you register your account, you will select a username and password. You

can then log in anytime at www.tgcloud.io . You will also be given a URL, using a

subdomain name that you select.

A: You can access the database through TigerGraph's GraphStudio visual interface

and through RESTful endpoints. Use RESTful endpoints to POST to TigerGraph

solutions and develop applications. Please refer to the RESTful API User Guide . To

find the RESTful endpoints for queries created in GraphStudio, please read “Show

Query Endpoint ”. There is also a recorded webinar which demos the process in

details: https://info.tigergraph.com/graph-gurus-24

Here is the step-by-step instructions:

TigerGraph cloud enables REST++ Authentication to securely connect TigerGraph

Cloud solutions with your application through port 9000.

Step 1: [One time] Navigate to the TigerGraph solution's Admin Portal, and generate

a secret from User Management.

For example, the URL for the solution is:

and the generated secret is abcd1234 from Admin Portal.

Step 2: [Need to renew every lifetime] Use the secret generated in step 1 to get a

RESTPP token (for example, xyz789) using curl command. Note that the port is

https://SOLUTIONID.i.tgcloud.io:14240/admin/#/user-management

Q: How do I access my TigerGraph Cloud account (e.g., username
and password)?

Q: How do I access my TigerGraph database and POST to
TigerGraph?

5/13/25, 9:11 PM 3.3

https://docs.tigergraph.com/ui/graphstudio/user-access-management
https://docs.tigergraph.com/ui/graphstudio/user-access-management
http://www.tgcloud.io/
http://www.tgcloud.io/
https://docs.tigergraph.com/dev/restpp-api
https://docs.tigergraph.com/dev/restpp-api
https://docs.tigergraph.com/ui/graphstudio/write-queries#TigerGraphGraphStudioUIGuide-DeleteQuery-1
https://docs.tigergraph.com/ui/graphstudio/write-queries#TigerGraphGraphStudioUIGuide-DeleteQuery-1
https://docs.tigergraph.com/ui/graphstudio/write-queries#TigerGraphGraphStudioUIGuide-DeleteQuery-1
https://info.tigergraph.com/graph-gurus-24
https://info.tigergraph.com/graph-gurus-24
https://docs.tigergraph.com/v/2.4/dev/restpp-api/restpp-requests#rest-authentication
https://docs.tigergraph.com/v/2.4/dev/restpp-api/restpp-requests#rest-authentication

104

9000.

Here is an example where you obtain a token with a lifetime of 1,000,000 seconds

(11 days):

Step 3: Now in your application, use the token in the REST call, for example:

A: Yes. Free tier instances expose RESTful endpoints through port 9000 to allow

access to TigerGraph database, similar to non free tier instances.

A: TigerGraph's role-based access control with MultiGraph and User Management is

available if you use TigerGraph V3.0.5+.

A: When you terminate an instance in TigerGraph Distributed Cloud, the virtual

machine instance and its associated storage volume are deleted according to the

policies of the underlying cloud infrastructure vendor.

curl -X GET 'https://SOLUTIONID.i.tgcloud.io:9000/requesttoken secret=abcd

{
 "code":"REST-0000",
 "expiration":1570727825,
 "error":false,
 "message":"Generate new token successfully.",
 "token":"xyz789"
}

curl -X GET -H "Authorization: Bearer xyz789" 'https://SOLUTIONID.i.tgclou

Q: Do free tier instances expose RESTful endpoints?

Q: Does TigerGraph Cloud offer Role Based Access Control?

Q: What happens to my data if I terminate an instance or if my
account is closed?

5/13/25, 9:11 PM 3.3

105

A: TigerGraph Cloud encrypts data at rest and in transit, and SSL is enabled for

secure access.

A: The ability to use cloud portal to integrate TigerGraph Cloud into an SSO system

will be provided at a future date. If you are using a paid tier instance, please submit

a support ticket to request advanced service to integrate into an SSO system

TigerGraph supports. Please see https://docs.tigergraph.com/admin/admin-

guide/user-access-management/single-sign-on

https://docs.tigergraph.com/ui/admin-portal/management/security/sso

A: Access to TigerGraph system and component logs is coming soon via the

TigerGraph Cloud portal and administrator portal for provisioned TigerGraph

instances.

A: For free tier solutions, the upgrade is not supported unless you are migrating to

paid tier solutions. If you want to change the database version in your free tier, you

can terminate the existing free tier solution, and create a new free tier with the new

version. In each TigerGraph Cloud account, you can have one free tier. If you want

to migrate to paid tier solutions, please send a support ticket through your cloud

portal.

Q: How does TigerGraph Cloud secure my data?

Q: Can I integrate TigerGraph Cloud into my single sign on system?

Logs

Q: Does TigerGraph Cloud provide logs?

Upgrade

Q: Can I upgrade from V2.6.x, V3.0.5, V3.0.6 to V3.1.1?

5/13/25, 9:11 PM 3.3

https://docs.tigergraph.com/admin/admin-guide/user-access-management/single-sign-on
https://docs.tigergraph.com/admin/admin-guide/user-access-management/single-sign-on
https://docs.tigergraph.com/admin/admin-guide/user-access-management/single-sign-on
https://docs.tigergraph.com/ui/admin-portal/management/security/sso
https://docs.tigergraph.com/ui/admin-portal/management/security/sso

106

For paid tier solutions, please submit a support ticket for upgrade assistance.

Downtime is expected during this upgrade. It is recommended to create a new blank

V3.1.1 solution, import your data and copy the GSQL queries to test and experiment

before upgrading your production instance from V2.6.x, V3.0.5, V3.0.6 to V3.1.1.

A: In your cloud portal, on the top bar, you can submit the support ticket by clicking

on . This will generate a support ticket in TigerGraph's freshdesk support system.

You can track the ticket status in freshdesk.

A: If in rare cases, you cannot submit TigerGraph Cloud support tickets through the

cloud portal for your account, you can also submit the support request by email to

support@tigergraph.com directly. This action will automatically generates a new

freshdesk support ticket and you can track the support ticket in freshdesk portal.

Please remember to use the email account associated with your TigerGraph Cloud

account to submit the support email to support@tigergraph.com so that

TigerGraph Cloud Support can verify your account.

A: TigerGraph is a native parallel graph database built on C++. It is not built on a

NoSQL database or relational database.

TigerGraph Cloud Support

Q: How do I submit a support ticket?

Q: How do I submit a support ticket if I cannot access the Cloud
Portal?

Performance

Q: Is TigerGraph built on a NoSQL database or a relational
database?

5/13/25, 9:11 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com

107

A: The GraphStudio visual design tool provides several monitors. The Load Data

page includes a real time monitor and statistics. Query performance and many other

measures are available on the administrator portal .

A: Due to TigerGraph's massively parallel and hybrid in-memory database design,

an instance with more vCPUs and more memory will usually run faster. For a given

hardware configuration, performance can be improved by optimizing graph schema,

loading jobs, and queries. In TigerGraph Distributed Cloud, you can also choose to

provision a cluster with replication factor 2 to increase throughput. Contact

sales@tigergraph.com to discuss for query optimization services.

A: A list of third-party software used in the TigerGraph engine and TigerGraph Cloud

is available at https://docs.tigergraph.com/legal/patents-and-third-party-software.

Q: How can I monitor the speed or throughput of queries and data
loading?

Q: How can I improve the speed of my system?

Q: What third-party software is used in TigerGraph Cloud?

5/13/25, 9:11 PM 3.3

https://docs.tigergraph.com/ui/graphstudio/load-data
https://docs.tigergraph.com/ui/graphstudio/load-data
https://docs.tigergraph.com/admin/admin-guide/system-management/admin-portal
https://docs.tigergraph.com/admin/admin-guide/system-management/admin-portal
mailto:sales@tigergraph.com
mailto:sales@tigergraph.com
https://docs.tigergraph.com/legal/patents-and-third-party-software
https://docs.tigergraph.com/legal/patents-and-third-party-software

108

Support
TigerGraph provides support for TigerGraph Cloud for customers with non-free-tier

solutions. For more information on TigerGraph's support policy, visit our support

policy page .

You can submit a support ticket in the TigerGraph Cloud portal or by email.

Click on the support icon , and fill out the form that pops up with information

relevant to your issue. If you cannot access the TigerGraph Cloud portal, you can

also email support@tigergraph.com to submit your support ticket. Either approach

will automatically generate a support ticket in TigerGraph's FreshDesk support

system , and you will receive an email with the link to your ticket.

Please remember to use the email account associated with your TigerGraph Cloud
account to submit the support email to support@tigergraph.com so that TigerGraph
Cloud Support can verify your account.

Submit a support ticket

1. Submit a support ticket

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/support-policy/
https://www.tigergraph.com/support-policy/
https://www.tigergraph.com/support-policy/
https://tigergraph.freshdesk.com/support/home
https://tigergraph.freshdesk.com/support/home
https://tigergraph.freshdesk.com/support/home
mailto:support@tigergraph.com
mailto:support@tigergraph.com

109

If you already have a FreshDesk account with TigerGraph, you can skip this step.

When you submit a support ticket through TigerGraph Cloud or through email, and

you don't already have a FreshDesk account with TigerGraph, an account will be

created for you automatically. An account setup email titled Welcome to TigerGraph

Support will be sent to you at the email address associated with your TigerGraph

Cloud account, and you can follow the instructions in the email to set up your

account.

This setup email might arrive a few minutes later than the email containing the link to

your ticket.

If you have a paid subscription with TigerGraph, a support representative will be

reviewing your request and will send you a personal response (usually within 24

hours). You can follow up on your ticket either by replying to the email thread or in

FreshDesk.

2. Setup your FreshDesk account (first ticket submission
only)

3. Follow up on your ticket

5/13/25, 9:11 PM 3.3

110

Reference

5/13/25, 9:11 PM 3.3

111

Amazon Web Services (AWS)

• US-West-1 (N.Cal)

• US-East-1 (N. Virginia)

• EU-West-1 (Ireland)

• EU-West-2 (UK)

• EU-Central-1 (Germany)

• AP-Northeast-1 (Japan)

The table below shows the instance types available on AWS.

Instance name vCPU RAM (GiB) Price per hour

TG.Free 4 7.5 0

TG.C4.M16 4 16 $1.20

TG.C8.M15 8 15 $1.80

TG.C8.M32 8 32 $2.20

TG.C16.M64 16 64 $4.10

TG.C16.M122 16 122 $7.00

TG.C32.M244 32 244 $12.00

TG.C64.M488 64 488 $21.00

TG.C96.M768 96 768 $30.00

Regions

Instance types

5/13/25, 9:11 PM 3.3

112

On AWS, disk storage refers to the EBS volume attached to your TigerGraph Cloud

instance. By default, data in disk storage is encrypted-at-rest with platform-

managed keys.

Disk Storage is $0.15 /GB/month, equivalent to $0.0002083 /GB/hour

Solution backups on AWS are stored on Amazon Elastic File System (EFS) and

automatically encrypted at rest with platform-managed keys. When a solution is

provisioned, backup storage is part of the running cost of the solution and only

stops incurring charges when the solution is terminated.

Backup Storage is $1.25 /GB/month = $0.001736 /GB/hour.

Disk storage

Backup storage

5/13/25, 9:11 PM 3.3

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes.html
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/

113

Microsoft Azure

• West US

• West Europe

• Central India

• South India

On Azure, disk storage refers to Premium SSD Managed Disks . Encryption is

turned on by default and uses platform-managed keys.

Disk Storage is $0.15 /GB/month, equivalent to $0.0002083 /GB/hour

Instance name vCPU RAM (GiB) Price per hour

TG.C8.M16 8 16 $1.80

TG.C8.M32 8 32 $2.20

TG.C16.M64 16 64 $4.10

TG.C16.M128 16 128 $7.00

TG.C32.M256 32 256 $12.20

TG.C64.M432 64 432 $18.50

TG.C96.M672 96 672 $26.00

Regions

Instance types

Disk storage

5/13/25, 9:11 PM 3.3

https://azure.microsoft.com/en-us/pricing/details/managed-disks/
https://azure.microsoft.com/en-us/pricing/details/managed-disks/

114

Solutions deployed on Azure use Azure Files for storage. By default, backups are

encrypted and decrypted transparently using 256-bit AES encryption , one of the

strongest block ciphers available, and is FIPS 140-2 compliant.

Backup Storage is $1.25 /GB/month = $0.001736 /GB/hour.

Backup storage

5/13/25, 9:11 PM 3.3

https://azure.microsoft.com/en-us/services/storage/files/
https://azure.microsoft.com/en-us/services/storage/files/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

115

Google Cloud Platform (GCP)

• Oregon

• London

Disk storage on GCP uses GCP's SSD persistent disks . Encryption-at-rest is

turned on with GCP's native encryption protocol with keys managed by GCP.

Disk Storage is $0.25 /GB/month, equivalent to $0.000347222 /GB/hour.

Instance name vCPU RAM (GiB) Price per hour

TG.Free 2 8 0

TG.C4.M16 4 16 $1.20

TG.C8.M32 8 32 $2.20

TG.C16.M64 16 64 $4.10

TG.C16.M128 16 128 $7.00

TG.C32.M256 32 256 $12.20

TG.C64.M512 64 512 $22.00

TG.C80.M640 80 640 $25.00

Regions

Instance types

Disk storage

5/13/25, 9:11 PM 3.3

https://cloud.google.com/compute/docs/disks#pdspecs
https://cloud.google.com/compute/docs/disks#pdspecs

116

Backup storage on GCP uses GCP Filestore . Encryption-at-rest is turned on with

GCP's native encryption protocol with keys managed by GCP.

Backup storage is $2.1/GB/Month = $ 0.0029166 /GB/hour.

Backup storage

5/13/25, 9:11 PM 3.3

https://cloud.google.com/filestore
https://cloud.google.com/filestore

117

Service Limits
By default, TigerGraph Cloud limits how many instances and how many vCPUs a

single account can provision. These limits can be waived by request if you have a

valid credit card on your account. To waive a service limit, please contact

sales@tigergraph.com .

The table below outlines the service limits for accounts with and without a valid

credit card.

Each registered account is allowed one solution from the Free Tier. Free Tier

instances do not include backup and do not include support.

If no user activity is detected for more than one hour, TigerGraph may automatically

stop a Free Tier instance. Users can manually restart the free tier instances from

their cloud portal. After 7 days of inactivity, TigerGraph may terminate the inactive

free tier instances.

Service
Accounts with a valid

credit card

Accounts without a valid

credit card

Free Tier Solution 1 1

Total Instance 20 2

Total vCPU 160 16

Cluster Size

(replication factor * partition

factor)

10 instances 1

Replication Factor 2 1

Backup and Restore Yes No

GSQL Web Shell Access Yes No

Free tier solution limits

5/13/25, 9:11 PM 3.3

mailto:sales@tigergraph.com
mailto:sales@tigergraph.com

118

Glossary

A snapshot of the state of your solutions at a given point in time.

A virtual server in the cloud.

An internal TigerGraph characteristic of a TigerGraph cluster that determines how

the data in the database will be distributed

A characteristic of the cluster design that will determine the number of copies of

data that will be stored in the cluster.

A policy-neutral access-control mechanism defined around roles and privileges.

Fully-managed TigerGraph deployment.

backup

instance

partitioning factor

replication factor

role-based access control

solution

TigerGraph user

5/13/25, 9:11 PM 3.3

119

A database user with its own roles and privileges for different graphs stored on a

solution.

5/13/25, 9:11 PM 3.3

120

Platform Overview

Comparing TigerGraph Editions

TigerGraph Graph Data Science Library

MultiGraph Overview

TigerGraph Internal Architecture

Transaction Processing and ACID Support

Continuous Availability Overview

5/13/25, 9:11 PM 3.3

121

Continuous Availability Overview

HA (High Availability) is a generic term used to describe a computer system which

has been architected to deliver higher levels of operational performance through

enhanced uptime and throughput than would be expected from a traditional single

server node.

With Continuous Availability, TigerGraph goes beyond the standard scope and

definition of High Availability by providing the following functionality:

• Fault tolerance against loss of database server(s)

◦ Automated recovery of services for Intra-cluster failure

• Full native HA support for user-facing applications - Seamless automatic client

reconnection to standby GSQL server and GraphStudio servers

• Failover to remote cluster during Disaster Recovery

• Improve RoI with additional Replicas

◦ Enhanced Query Throughput performance

◦ Increased concurrency for operational workloads

In short, TigerGraph Continuous Availability provides not only the ability to keep the

business application running without any noticeable downtime, but also delivers

higher return on investment.

TigerGraphʼs architecture design relies on active-active replication to keep multiple

data copies in sync. This is transparent to the user. The underlying principles of

uniform distribution of data are automatically applied no matter how many replicas

are stored. Additionally, the placement of replicas is infrastructure-aware to tolerate

hardware failures. Continuous availability is a production configuration that

Introduction

Architecture Design

5/13/25, 9:11 PM 3.3

122

customers can pick at cluster installation time. Customers have flexibility to place

replicas in specific availability zones or data centers based on their infrastructure

requirements.

TigerGraph Continuous Availability design provides the following

• Throughput: Each replica is always up to date and handles its share of read

requests. This provides higher query concurrency and throughput.

• If a server goes offline for planned or unplanned reasons, TigerGraph's HA

design with Automatic Failover will reroute work to the replica nodes of that

server, maintaining continuous operation.

• Higher levels of replication provide more throughput and resilience.

TigerGraph is based on an MPP architecture. All services are distributed uniformly

across the cluster. This requires data to be distributed across the cluster. There are

two key concepts in the cluster design:

Replication Factor: Replication factor is a characteristic of the cluster design that

will determine the number of copies of data that will be stored in the cluster. This is

configurable and customers can choose at the time of installation.

Partitioning Factor: Partitioning factor is an internal TigerGraph characteristic of a

TigerGraph cluster that determines how the data in the database will be distributed.

Based on the nodes of the cluster size, TigerGraph will automatically pick a

partitioning factor taking into account the replication factor.

Continuous Availability - Definitions

5/13/25, 9:11 PM 3.3

123

In short, a TigerGraph cluster can be seen as a combination of data spread across P

partitions with multiple copies equal to the number of R Replicas.

Some Key Cluster Design Considerations:

• Any cluster size is allowed, except 1x2

• Minimum number of servers needed for Continuous availability is 3 servers - This

is due to Zookeeper quorum dependency.

TigerGraph services are based on distributed masterless architecture - all replicas

are equal and can service both read and write requests. This is a key differentiation

that ensures that no single node can be the Single Point of Failure.

Write Operations: In order to keep all replicas in sync for full consistency of all data

sets, all write operations are sent to all replicas synchronously by default. A write

operation is considered complete only if all the replicas acknowledge that the writes

are successful.

Read Operations: As all replicas are guaranteed to be in sync for all write operations,

Read requests can be sent to any replica with no need to verify the data consistency

with other replica copies. This optimizes the read performance for read-heavy

analytical queries.

Cluster dimensions = P * R

Continuous Availability - Data Operations

5/13/25, 9:11 PM 3.3

124

Example:

In the following example, the data sets in the cluster are spread across 5 partitions

with 2 replicas of data sets i.e. Partitioning Factor of 5 and Replication Factor of 2.

• All writes go to all replicas (e.g. both 1A and 1B).

• Reads can be from any one replica (e.g. either 1A or 1B).

• Distributed queries can read from a mix replicas (e.g. {1A, 2B, 3B, 4A, 5B}.

TigerGraph design ensures Automatic Failover for Continuous Availability. If a server

goes down (hardware or software, planned or unplanned), incoming DB operations

can continue. The requests are automatically routed around the unavailable server.

The TigerGraph Database scheduler tracks in real time the availability of servers

and routes the request to the right servers.

Continuous Availability - Cluster failover operations

5/13/25, 9:11 PM 3.3

125

Example:

In the event of server failure:

• If any single server is unavailable (expected or unexpected):

◦ When it fails to respond after a certain number of tries, requests will

automatically divert to another replica (e.g. 3B is unavailable, so use 3A)

◦ If it fails in the middle of a transaction, that transaction might be aborted.

• System continues to operate, with reduced throughput, until the server is

restored.

5/13/25, 9:11 PM 3.3

126

Comparing TigerGraph Editions
This document compares what is included in the Enterprise Edition vs. TigerGraph

Cloud of the TigerGraph platform.

To see what has been added or changed in different releases (versions) of

TigerGraph, see Change Log.

TigerGraph Cloud Enterprise Edition

Licensing

Pay as you go by the

minute; Annual contracts

available

A free license is available

with up to 50 GB storage

after compression - contact

us for a paid version

without storage limitations

Includes

The power of TigerGraph,

as a Service

+ Instant Deployment

+ Automatic backups

+ Scaling out & Replication

+ Security

+ Pay for what you use

All TigerGraph Database

and Enterprise features,

including

+ Distributed Graph

+ MultiGraph

+ Security

+ User Management

Support ✅

Free version includes

support from the

Community Forum .

Contact us to get

professional support.

How to Get It
www.tigergraph.com/cloud www.tigergraph.com/free-

trial

Overview

Database Features

5/13/25, 9:11 PM 3.3

https://info.tigergraph.com/pricing
https://info.tigergraph.com/pricing
https://info.tigergraph.com/pricing
https://community.tigergraph.com/
https://community.tigergraph.com/
https://www.tigergraph.com/cloud
https://www.tigergraph.com/cloud
https://www.tigergraph.com/cloud
https://info.tigergraph.com/enterprise-free
https://info.tigergraph.com/enterprise-free
https://info.tigergraph.com/enterprise-free

127

Feature TigerGraph Cloud Enterprise Edition

Native MPP Graph ✅ ✅

Real-Time Deep Link

Analytics
✅ ✅

Ultra-Fast Loading and

Updates
✅ ✅

GSQL Query and Loading

Language
✅ ✅

SQL-like syntax and built-in

parallelism
✅ ✅

Graph Size Unlimited Unlimited

Compressed Data Store ✅ ✅

In-Memory Processing;

ACID Transactions
✅ ✅

Distributed, Auto-

Partitioned Graph
✅ ✅

MultiGraph ✅ ✅

Dynamic Schema Change ✅ ✅

GraphStudio Visual SDK and

UI

Design, Load, Explore,

Query, Visualize

✅ ✅

Admin Portal ✅ ✅

Feature TigerGraph Cloud Enterprise Edition

Automated Deployment ✅ No

Automated Backups ✅ No

Enterprise Features

5/13/25, 9:11 PM 3.3

128

Backup and Restore ✅ built-in cloud feature ✅

Multiple Users ✅ ✅

Continuous Availability ✅ ✅

HA Replication ✅ ✅

Cross-region replication No ✅

Cluster resizing No ✅

Feature TigerGraph Cloud Enterprise Edition

Data Encryption

At Rest and In Motion
✅ ✅

Enterprise User

Management

LDAP and SSO
✅ through GSQL web shell ✅

Role-Based Access Control ✅ ✅

User-defined roles ✅ ✅

Audit compliance ✅ SOC 2 type 1 and type 2 Coming soon

Cloud Security:

VPC for each account
✅ N/A

Security Features

5/13/25, 9:11 PM 3.3

129

MultiGraph Overview

Beginning with Version 3.1,

• Vertex-Level Access Control greatly improves the granularity of data access

control from partitioning data at the type-level (MultiGraph) to the individual

vertex-level (VLAC).

One TigerGraph instance can manage multiple graphs, each with its own set of user

privileges. This first-of-its-kind capability, dubbed MultiGraph, is available as an

optional service in the TigerGraph platform.

MultiGraph enables several powerful use cases:

• Multiple Tenancy: Use one TigerGraph instance to support several completely

separate data sets, each with its own set of users. Each user community cannot

see the other user communities or other data sets.

MultiGraph allows one graph schema to be shared accross all departments, with different levels

of access control at the type level.

5/13/25, 9:11 PM 3.3

130

• Fine-grained privileges on the same set of data: Role-based access control,

available on single graphs, grants permission for the privilege to run queries

(include data modification queries). In a single graph scheme, there is no way to

say "Query X can be run by some users but not by others." Using multiple

graphs defined over the same set of data, each graph can have its own set of

queries and own set of users, in effect customizing who can run which queries.

• Overlapping graphs: Graphs can partially overlap, to enable a combination of

shared and private data.

• Hierarchical subgraphs: A Graph X can be defined to cover the domains of

Graphs Y and Z, that is, Graph X = (Graph Y) U (Graph Z). This provides an

interesting way to describe a data partitioning or parent-child structure. (This is

not the same as defining sub-classes of data types; data types are still

independent.)

If you implement only one graph now, you can upgrade to MultiGraph and add

additional graphs at any time, without having to redo your existing design.

A graph is defined as a set of vertex types and edge types. More precisely, it is all

the vertices and edges of that collection of types. The domain of a graph is its set of

vertex types and edge types. Each graph contains its own data loading jobs and

queries, which do not affect and are not visible to other graphs.

MultiGraph Principles

• A TigerGraph instance with a basic license key can have one graph. A TigerGraph

instance with a MultiGraph license key can create multiple graphs.

superuser and globaldesigner can define one or more graphs. The domains of

the two graphs may be completely separate, may overlap, or may coincide exactly.

• A vertex type or edge type created by a superuser is a global type.

CREATE GRAPH <gname> (<list of vertex types & edge types>)

Concepts

Graphs and Graph Domains

5/13/25, 9:11 PM 3.3

131

• A superuser or globaldesigner can include a global vertex or edge type in one

or more graphs. Global types can be shared among multiple graphs.

• Users with the admin or designer role for a particular graph can add local vertex

types and edge types to their own graph. Local types cannot be shared among

multiple graphs.

The TigerGraph system includes several predefined roles. Each role is a fixed and

logical set of privileges to perform operations. In order to access a graph, a user

must be granted a role on that graph. Without a role, a user has no meaningful

access.

Role-Based MultiGraph Access Control

• User roles are granted or revoked on a per-graph basis. Each GRANT or REVOKE

statement specifies not only a role but also a graph.

• The GRANT / REVOKE privilege is reserved for superuser and admin users.

• The superuser can grant a role to any user on any graph.

• A superuser can pick a user to be an admin on a particular graph. The admin

can then manage user privileges on their graph.

• A user may be granted different roles on different graphs.

For details about managing users, privileges, and roles, see User Privileges and

Authentication. There you will find a chart describing each of the roles in detail.

• A user must set their working graph in order to access that graph, either using the

-g flag with the GSQL command, or by using the USE GRAPH command.

• Users who have privileges on more than one graph (including superusers) may

only work with one graph at a time. The GLOBAL SCHEMA_CHANGE JOB stretches this

rule.

Graph-Specific Roles and Privileges

Setting a Working Graph

5/13/25, 9:11 PM 3.3

132

Note that the CREATE commands for queries, loading jobs, and schema_change

jobs require that the graph name be specified, even for systems with only one

graph.

1. RESTPP Endpoints: Endpoints that pertain to the graph data must include the

name of the graph in the request URL.

See RESTPP API User Guide .

2. User Authentication secrets and tokens: Our commands and procedures follow

OAuth standards.

See Managing User Privileges and Authentication.

There are many other details about using the MultiGraph feature, especially if your

application has multiple users with different roles. In the documentation, the Multiple

Graph logo is placed next to relevant topics:

Effect on Other Specifications

5/13/25, 9:11 PM 3.3

133

TigerGraph Internal Architecture
As the worldʼs first and only Native Parallel Graph (NPG) system, TigerGraph is a

complete, distributed, graph analytics platform supporting web-scale data analytics

in real time. The TigerGraph NPG is built around both local storage and computation,

supports real-time graph updates, and works like a parallel computation engine.

These capabilities provide the following unique advantages:

• Fast data loading speed to build graphs - able to load 50 to 150 GB of data per

hour, per machine

• Fast execution of parallel graph algorithms - able to traverse hundreds of million

of vertices/edges per second per machine

• Real-time updates and inserts using REST - able to stream 2B+ daily events in

real-time to a graph with 100B+ vertices and 600B+ edges on a cluster of only

20 commodity machines

• Ability to unify real-time analytics with large scale offline data processing - the

first and only such system

See the Resources section of our main website www.tigergraph.com to find

white papers and other technical reports about the TigerGraph system.

The TigerGraph Platform runs on standard, commodity-grade Linux servers. The

core components (GSE and GPE) are implemented in C++ for optimal performance.

TigerGraph system is designed to fit into your existing environment with a minimum

of fuss.

• Data Sources : The platform includes a flexible, high-performance data loader

which can stream in tabular or semi-structured data, while the system is online.

• Infrastructure : The platform is available for on-premises, cloud, or hybrid use.

• Integration : REST APIs are provided to integrate your TigerGraph with your

existing enterprise data infrastructure and workflow.

System Overview

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/resources/
https://www.tigergraph.com/resources/
https://www.tigergraph.com/
https://www.tigergraph.com/

134

The figure below takes a closer look at the TigerGraph platform itself:

5/13/25, 9:11 PM 3.3

135

Within the TigerGraph system, a message-passing design is used to coordinate the

activities of the components. RESTPP, an enhanced RESTful server, is central to the

task management. Users can choose how they wish to interact with the system:

• GSQL client. One TigerGraph instance can support multiple GSQL clients, on

remote nodes.

• GraphStudio - our graphical user interface, which provides most of the basic

GSQL functionality, with a graphical and intuitive interface.

• REST API. Enterprise applications which need to run the same queries many

times can maximize their efficiency by communicating directly with RESTPP.

• gAdmin is used for system adminstration.

5/13/25, 9:11 PM 3.3

136

Name Refers to

DDL

Data Definition Language - a generic term

for a set of commands used to define a

database schema. The GSQL Language

includes DDL commands. In GraphStudio,

the Design Schema function.

Dictionary (DICT)

The shared storage space for storing

metadata about the graph store's

configuration and state, including the

catalog (graph schema, loading jobs, and

queries).

DML

Data Manipulation Language - a generic

term for a set of commands used to add,

modify, and delete data from a database.

Query commands are often considered a

part of DML, even a pure query statement

does not manipulate (change) the data. The

GSQL Language includes full DML capability

for query, add (insert), delete, and modify

(update) commands.

gadmin

The system utility for configuring and

managing the TigerGraph System.

Analogous to mysqladmin.

gbar

Graph Backup and Restore. TigerGraph's

utility program for backing up and restoring

system data.

GPE

Graph Processing Engine. The server

component which accepts requests from

the REST++ server for querying and

updating the graph store and which returns

data.

Graph Store

The component which logically and

physically stores the graph data and

provides access to the data in a fast and

memory-efficient way. We use the term

Glossary

5/13/25, 9:11 PM 3.3

137

graph store to distinguish it from

conventional graph databases.

GraphStudio UI

The browser-based User Interface that

enables the user to interact with the

TigerGraph system in a visual and intuitive

way, as an alternative to the GSQL Shell.

The GraphStudio UI includes the following

components: Schema Designer, Data

Mapper, Data Loader, Graph Explorer, and

Query Editor.

GSE
Graph Storage Engine. The processing

component which manages the Graph Store.

GSQL

The user program which interprets and

executes graph processing operations,

including (a) schema definition, (b) data

loading, and (c) data updates, and (d) data

queries.

GSQL Language
The language used to instruct and

communicate with the GSQL program.

GSQL Shell
The interactive command shell which may

be used when running the GSQL program.

HA

High Availability - a generic term describing

a computer system which has been

architected to a higher level of operational

performance (e.g., throughput and uptime)

than would be expected from a traditional

single server node.

IDS

ID Service. A subcomponent of the GSE

which translates between user (external) IDs

for data objects and graph store (internal)

IDs.

Kafka

A free open-source "high-throughput

distributed messaging system" from the

Apache Software Foundation. Our

distributed system architecture is based on

message passing/queuing. Kafka is

automatically included during TigerGraph

system installation as one implementation of

messaging passing.

https://kafka.apache.org/

5/13/25, 9:11 PM 3.3

https://kafka.apache.org/
https://kafka.apache.org/

138

MultiGraph

A graph architecture and feature set which

enables one global graph to be viewed as

multiple logical subgraphs, each with its

own set of user privileges. The subgraphs

can overlap, meaning each subgraph can

support both shared and private data.

Native Parallel Graph

An architecture and technology which

provides for inherently highly-parallel and

highly-scalable graph data storage and

analytics. The use of vertex-level

data+compute functionality is a key

component of Native Parallel Graph design.

Nginx

A free, open-source, high-performance

HTTP server and reverse proxy. Nginx is

automatically included during TigerGraph

system installation. https://nginx.org/en/

REST++ or

RESTPP

A server component which accepts RESTful

requests from clients, validates the

requests, invokes the GPE, and sends

responses back to the client. Additionally,

REST++ provides a zero-coding interface for

users to define RESTful endpoints.REST++

offers easy-to-use APIs for customizing the

logic of handling requests and processing

responses.

Single Sign-On (SSO)

A user authentication service that permits a

user to use one set of login credentials to

access multiple applications.

TigerGraph

Platform

The TigerGraph real-time graph data

analytics software system. The TigerGraph

Platform offers complete functionality for

creating and managing a graph database

and for performing data queries and

analyses. The platform includes the Graph

Store and GSE , GPE, REST++, GSQL,

GraphStudio, plus some third-party

components, such as Apache Kafka and

Zookeeper.

The TigerGraph platform and its languages.

Based on context, the term may also include

5/13/25, 9:11 PM 3.3

https://nginx.org/en/
https://nginx.org/en/

139

TigerGraph

System

additional optional TigerGraph components

which have been installed.

TS3

TigerGraph System Service State (TS3) is a

TigerGraph sub-system which helps monitor

the TigerGraph system. It serves as

backend of TigerGraph Admin Portal.

Zookeeper

A free open-source program from the

Apache Software Foundation, providing "a

centralized service for maintaining

configuration information, naming, providing

distributed synchronization, and providing

group services." Used for running the

TigerGraph system on a cluster or other

distributed system. Zookeeper is

automatically included during TigerGraph

system installation.

https://zookeeper.apache.org/

5/13/25, 9:11 PM 3.3

https://zookeeper.apache.org/
https://zookeeper.apache.org/

140

Transaction Processing
and ACID Support
This document describes the transactional support provided by the TigerGraph

platform. A TigerGraph transaction is a sequence of operations which acts as a

single logical unit of work. A read-only operation in TigerGraph does not change

any vertex/edge attribute value and doesn't insert any new or delete any existing

vertex/edge. An update operation in TigerGraph is an operation which either

changes some vertex/edge attribute value or insert some new or delete some

existing vertex/edge.

The TigerGraph system provides full ACID transactions with sequential consistency.

Transactions are defined as follows:

• Each GSQL query is a transaction. Each query may have multiple read or write

operations.

• Each REST++ GET, POST, or DELETE operation (which may have multiple update

operations within it) is a transaction.

A transaction with update operations may insert/delete multiple vertices/edges or

update the attribute values of multiple edges/vertices. Such update requests are

“all or nothing”: either all changes are successful, or none is successful.

The TigerGraph system provides traditional ACID consistency: A transaction can

include data validation rules. The data validation rules can ensure any transaction

will bring the system from one valid state to another.

The TigerGraph system also provides distributed system Sequential Consistency:

every replica of the data performs the same operations in the same order. This is

one of the strongest forms of consistency available, stronger than causal

consistency, for example.

Atomicity

Consistency

5/13/25, 9:11 PM 3.3

141

TigerGraph supports the Serializable isolation level, the strongest form of isolation.

Internally, TigerGraph uses MVCC to implement the isolation. MVCC, or Multi-

Version Concurrency Control, makes use of multiple snapshots of portions of the

database state in order to support isolated concurrent operations. In principle, there

can be one snapshot per read or write operation.

A read-only transaction R1 will not see any changes made by an uncommitted

update transaction, whether that update transaction was submitted before or after

R1 was submitted to the system.

Multiple same reads in a single transaction T1 will get the same results, even if there

are update transactions which change vertex or edge attribute values read by T1

during T1ʼs duration.

Multiple reads in a single read-only transaction T1 will get the same results, even if

there are update transactions which deleted/inserted vertices or edges read by T1

during T1ʼs duration.

Committed transactions are written to disk (SSD or HDD). The TigerGraph platform

implements write-ahead logging (WAL) to provide durability.

The TigerGraph platform uses Snapshot/MVCC (Multi-version Concurrency Control)

to implement isolation of concurrent operations. At the high level, the platform can

Isolation Level

No Dirty Reads

Repeatable reads

No phantom reads

Durability

TigerGraph internal Snapshot Implementation

5/13/25, 9:11 PM 3.3

142

temporarily maintain multiple versions or snapshots of the graph data. When a

transaction T1 is submitted to the system, it will work on the last consistent snapshot

of the graph which has all the changes made by transactions committed before T1

was submitted but has no changes made by any transaction not yet committed

when T1 was submitted. The version of the graph T1 is working on will not be

changed by any transactions other than T1 , even if they commit before T1 is

finished.

Let us examine a few transaction processing scenarios.

A read-only transaction R1 is running. Before R1 finishes, an update transaction W2

comes in. W2 might finish before R1 is finished. But R1 will not see the changes

made by W2 before W2 is committed (no dirty reads). Even if W2 is committed

before R1 is finished, if R1 reads the same part of the graph multiple times, it will not

see the changes made by W2 (repeatable reads). There are no phantom reads

either. This is because the graph version R1 is working on cannot be changed by any

of the W2 transaction aforementioned. Bottom line: If W2 starts when R1 is not yet

committed, R1 will see results as though W2 did not exist.

An update transaction W1 is running. Before W1 is committed, a read-only

transaction R2 comes in. R2 will not wait for W1 to finish and will be executed as if

there is no W1. Later. even if W1 finishes and commits before R2 is finished, R2 will

not see any changes made by W1. This is because the graph version R2 works on is

Example Scenarios

Scenario 1 Read - Write

Scenario 2 Write - Read

5/13/25, 9:11 PM 3.3

143

'fixed' at the time when R2 is submitted and will not include the changes to be made

by W1. Bottom line: If R2 starts when W1 is not yet committed, R2 will see results as

though W1 did not exist.

An update transaction W1 is running. Before W1 finishes, a new update request W2

comes in. W2 will wait for W1 to finish before it is executed. When multiple update

transactions come in, they will be executed sequentially by the system according to

the time they are received by the system.

Scenario 3 Write - Write

5/13/25, 9:11 PM 3.3

144

Tutorials and Start Guides
This section provides tutorials and getting-started guides for users who want to get

working right away.

• GET STARTED Tutorial

• GSQL 101

• Accumulators Tutorial

• GSQL102 Pattern Matching

• GraphStudio UI Guide

GSQL

GraphStudio

5/13/25, 9:11 PM 3.3

145

Getting Started
Welcome to the TigerGraph™ Platform - the first real-time, Native Parallel Graph data

analytics platform. This document covers the various options to get started with

TigerGraph.

• If you are a laptop user (macOS or Windows), we recommend you use Docker to

start up TigerGraph on your computer:

Get Started with Docker

• If you have a Linux machine that meets our Software and Hardware

Requirements, you can install TigerGraph on your machine directly:

Installation Guide

• If you would like to run TigerGraph on a Virtual Machine with Virtual Box, follow

this guide:

Get Started with Virtual Box

• You can also start up TigerGraph instances from Cloud Images on AWS,

Microsoft Azure, or Google Cloud Platform:

Get Started from Cloud Images

5/13/25, 9:11 PM 3.3

146

Get Started with Docker
This document provides step-by-step instructions on how to pull the latest

TigerGraph Enterprise Edition docker image to your host machine. You can follow

the sections in sequence to set up the TigerGraph docker environment.

The latest TigerGraph docker image includes the following content:

• The latest version of TigerGraph

• Linux packages:

◦ openssh-server

◦ git

◦ wget

◦ curl

◦ emac

◦ vim

◦ jq

◦ tar

• Tutorial material

◦ GSQL 101

◦ GSQL 102

• The latest GSQL open-source graph algorithm library

This follow-along video shows the whole setup process:

https://www.youtube.com/watch?v=V5VvgJyjLxA

TigerGraph's Docker image isn't currently supported on Mac computers with Apple
silicon.

1. Install Docker Desktop

5/13/25, 9:11 PM 3.3

https://www.youtube.com/watch?v=V5VvgJyjLxA
https://www.youtube.com/watch?v=V5VvgJyjLxA

147

Follow the steps below to install Docker Desktop on your machine and configure it

with sufficient resources for TigerGraph:

1. Install Docker on your OS:

• To install Docker for Mac OS, follow this video:

https://www.youtube.com/watch?v=MU8HUVlJTEY

• To install Docker for Linux, follow these instructions:

◦ Centos: https://docs.docker.com/install/linux/docker-ce/centos/

◦ Ubuntu: https://docs.docker.com/install/linux/docker-ce/ubuntu/

• To install Docker for Windows OS, follow this video:

https://www.youtube.com/watch?v=ymlWt1MqURY

2. Configure Docker Desktop with sufficient resources:

• Recommended: 4 cores and 16GB memory

• Minimum: 2 cores and 10GB memory

• Click the Docker Desktop icon, click Preferences >> Resources, drag the

CPU and Memory sliders to the desired configuration, save and restart

Docker Desktop

Open a shell on your host machine and create or select a directory for sharing data

between your host machine and docker container. Grant read+write+execute

permission to the folder. For example, to create a folder called data in Linux:

You can mount (map) the data folder to a folder under the docker container, which

allows you to share files between your host OS and Docker OS.

For example, if you mount the host OS folder ~/data to the docker folder

/home/tigergraph/mydata , then anything you put on ~/data will be visible in the

 mkdir data
 chmod 777 data

2. Prepare a Shared Folder on Host OS to be
shared with Docker Container

5/13/25, 9:11 PM 3.3

https://www.youtube.com/watch?v=MU8HUVlJTEY
https://www.youtube.com/watch?v=MU8HUVlJTEY
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/centos/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://www.youtube.com/watch?v=ymlWt1MqURY
https://www.youtube.com/watch?v=ymlWt1MqURY

148

docker container under /home/tigergraph/mydata , and vice versa.

Run the following command to pull the TigerGraph docker image, bind ports, map a

shared data folder, and start a container from the image. This command is very long

- click the copy button at the end of the code block to copy the whole command.

• Here is a breakdown of the options and arguments in the command:

◦ -d : make the container run in the background.

◦ -p : map docker 22 port to host OS 14022 port, 9000 port to host OS 9000

port, 14240 port to host OS 14240 port.

◦ --name : name the container tigergraph.

◦ --ulimit : set the ulimit (the number of open file descriptors per

process) to 1 million.

◦ -v : mount the host OS ~/data folder to the docker

/home/tigergraph/mydata folder using the -v option. If you are using

Windows, change the above ~/data to something using windows file system

convention, e.g. c:\data

◦ -t : allocate a pseudo-TTY

◦ docker.tigergraph.com/tigergraph:latest : download the latest docker

image from the TigerGraph docker registry URL

docker.tigergraph.com/tigergraph.

Replace "latest" with a specific version number if a dedicated version of TigerGraph is
to be used. E.g., if you want to get the 3.0.5 version, the URL should be:

docker.tigergraph.com/tigergraph:3.0.5

To use the legacy developer editions, use:

docker.tigergraph.com/tigergraph-dev

docker run -d -p 14022:22 -p 9000:9000 -p 14240:14240 --name tigergraph --

3. Run TigerGraph Docker image as a
daemon

5/13/25, 9:11 PM 3.3

149

If you use Windows and have disk drive permission issues with the above

command, try the following command instead (this command does not map the

shared folder on your host machine to your container) :

After launching the container, you can use SSH to connect to your container:

1. Verify that the container is running. You should see a row that describes the

running container after running the command below:

2. Use ssh to open a shell to the container. At the prompt, enter tigergraph as

the password. Note that we have mapped the host 14022 port to the container's

22 port (the ssh default port), so on the host we use ssh to connect to port

14022.

1. After connecting to the container via ssh, inside the container, start all

TigerGraph services with the following command (which may take up to one

minute):

2. Run the gsql command as shown below to start the GSQL shell. If you are new

to TigerGraph, you can run the GSQL 101 tutorial now.

3. Start GraphStudio, TigerGraph's visual IDE, by visiting http://localhost:14240

in a browser on your laptop (host OS).

docker run -d -p 14022:22 -p 9000:9000 -p 14240:14240 --name tigergraph --

docker ps | grep tigergraph

ssh -p 14022 tigergraph@localhost

gadmin start all

$ gsql
GSQL >

4. Use SSH to connect to your container

5. Start TigerGraph

5/13/25, 9:11 PM 3.3

150

• After you start Docker Desktop, use the commands below to stop and restart the

container:

• Start the TigerGraph service within the container:

• ssh to the container. Note: if localhost is not recognized, remove the localhost

entry from ~/.ssh/known_hosts

Linux users can access the container through its ip address directly:

• Default user: tigergraph

• Default password: tigergraph

• After running gadmin start , you can go to GraphStudio. Open a browser on

your laptop (host OS) and access GraphStudio at the following URL:

• Check the version of GSQL:

 docker container stop tigergraph
 docker container start tigergraph

 gadmin start all
 gadmin stop all

 sed -i.bak '/localhost/d' ~/.ssh/known_hosts
 ssh -p 14022 tigergraph@localhost

 docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}
 vssh tigergraph@<container_ip_address>

 http://localhost:14240

gsql version

Operation Commands Cheat Sheet

5/13/25, 9:11 PM 3.3

151

Get Started with Virtual Box
TigerGraph offers Virtual Machine images of Linux servers with the TigerGraph

Enterprise Free Edition installed for users who want to run TigerGraph with Virtual

Box.

Watch this tutorial video to get started with TigerGraph on Virtual Box.

5/13/25, 9:11 PM 3.3

https://info.tigergraph.com/e2t/tc/VWvnzD28877sN16d7l3xR95qW5b9Bvk4jzjRKN7vvr1c9kDJhV7Wycr7CgQ7sW3Y8n4B3X1cW7W47qTMy4cCjkgW5JndVh3DkDm9W2q_M6S6xtss6W4W7h8N7V7V-lW8Tg6jq50S0MlN6ntHBkk-BYBW7hSqFk4909_bW7pxhR-2QxLXlW5Q58tw1R17FZW11wTrR3TlrxKW6nXG3V72Q4DWW3V6Zr84ZzNMbW2wT1_s58q8wPN6pt5dz9vD5qV3wk3r279hrVW8Q8PTh3yzN5hW2fyqY_7XcZPJW65G23_7z-LJmW6lTwvY7j64XdW3qb2Gl4qFSZ0W3RjmPz7gcBfrW6gX3F74jy8-8W6ZWD_m7JQHrtW8FX7KG1kr_ztW1x6CVQ17PQ0VW8XF10t6bmgDLW4kjqZB64KcPxW2-xtfN663MdNW1PFL_T5BPL3MVDVtlK1-F2_bN6BhMYyGzB1FW32GSzL5N4z-WW5rFF_d90rtd2N6rmrL8hvVgBW38ynQx1XDWFWN17s0cND7nqgW6YClJK8CqKXHW5KQ8lS2v1r82W3Ty56M6wd_jwW23Zf7F4fr7JcVDM8kM3X9RgRW9gHrQb2WW-lnW3SB9Sg47s1xZW57N3cz6qT6HfW8d3MGz7GM1WPW10gXgJ2rtHV1W3C88zh6ZrBYwW3wrVL78g0jjXW2ZqG4V3gXNNHW96TLnx8_cmSDW699Vk678gyHdN2T2Fm0BNCRMW5Rv18g9dFLyWW3HLgwp7V-97pW1kZZLQ42NbrNVmdGt935XTR2N6hnkp11pmP7W1S3HCP2qLlVhW5lDBqL19GwhLW2KgFm68LTy3hW1WjylL11q7-zW3Sg7Ww7rRNnzVbvBDt7VszXfW2cFBZN4pCVxqW5MhQ5t47MMp0W26x1KT3_qzYHW6_8CvW1XttrHVhCc9q15qSbCW814Zc01_K4MZW3GR4tV3ZQD8dW8ywqfP5bS7LnW1Nt3mM2LS9rdW3-4LmV7R1zxjW54nLHx6jM56BW732_Fg8bsXy634z01
https://info.tigergraph.com/e2t/tc/VWvnzD28877sN16d7l3xR95qW5b9Bvk4jzjRKN7vvr1c9kDJhV7Wycr7CgQ7sW3Y8n4B3X1cW7W47qTMy4cCjkgW5JndVh3DkDm9W2q_M6S6xtss6W4W7h8N7V7V-lW8Tg6jq50S0MlN6ntHBkk-BYBW7hSqFk4909_bW7pxhR-2QxLXlW5Q58tw1R17FZW11wTrR3TlrxKW6nXG3V72Q4DWW3V6Zr84ZzNMbW2wT1_s58q8wPN6pt5dz9vD5qV3wk3r279hrVW8Q8PTh3yzN5hW2fyqY_7XcZPJW65G23_7z-LJmW6lTwvY7j64XdW3qb2Gl4qFSZ0W3RjmPz7gcBfrW6gX3F74jy8-8W6ZWD_m7JQHrtW8FX7KG1kr_ztW1x6CVQ17PQ0VW8XF10t6bmgDLW4kjqZB64KcPxW2-xtfN663MdNW1PFL_T5BPL3MVDVtlK1-F2_bN6BhMYyGzB1FW32GSzL5N4z-WW5rFF_d90rtd2N6rmrL8hvVgBW38ynQx1XDWFWN17s0cND7nqgW6YClJK8CqKXHW5KQ8lS2v1r82W3Ty56M6wd_jwW23Zf7F4fr7JcVDM8kM3X9RgRW9gHrQb2WW-lnW3SB9Sg47s1xZW57N3cz6qT6HfW8d3MGz7GM1WPW10gXgJ2rtHV1W3C88zh6ZrBYwW3wrVL78g0jjXW2ZqG4V3gXNNHW96TLnx8_cmSDW699Vk678gyHdN2T2Fm0BNCRMW5Rv18g9dFLyWW3HLgwp7V-97pW1kZZLQ42NbrNVmdGt935XTR2N6hnkp11pmP7W1S3HCP2qLlVhW5lDBqL19GwhLW2KgFm68LTy3hW1WjylL11q7-zW3Sg7Ww7rRNnzVbvBDt7VszXfW2cFBZN4pCVxqW5MhQ5t47MMp0W26x1KT3_qzYHW6_8CvW1XttrHVhCc9q15qSbCW814Zc01_K4MZW3GR4tV3ZQD8dW8ywqfP5bS7LnW1Nt3mM2LS9rdW3-4LmV7R1zxjW54nLHx6jM56BW732_Fg8bsXy634z01
https://www.youtube.com/watch?v=6ZYZB5-7fUo
https://www.youtube.com/watch?v=6ZYZB5-7fUo

152

Install TigerGraph on Linux
You can install TigerGraph on a Linux machine that meets the Hardware and

Software Requirements. For a step-by-step guide on installing TigerGraph on your

Linux machine, please visit the following page:

Installation Guide

1. CHECK Hardware and Software Requirements

2. DOWNLOAD the TigerGraph platform: https://info.tigergraph.com/enterprise-

free

3. INSTALL the Platform

a. For simple single-server installation:

Assuming your downloaded file is called <your_tigergraph_package>:

b. For additional options, see TigerGraph Platform Installation Guide

tar xzf <your_tigergraph_package>.tar.gz
cd tigergraph*/

to install license in interactive mode
sudo ./install.sh

to install license in non-interactive mode
sudo ./install.sh -n

Quickstart guide for new users

Installation Checklist

5/13/25, 9:11 PM 3.3

https://info.tigergraph.com/enterprise-free
https://info.tigergraph.com/enterprise-free
https://info.tigergraph.com/enterprise-free

153

Get Started from Cloud Images
This chapter covers different options for getting started with TigerGraph in the

cloud. To continue, choose the cloud platform you wish to get started on:

Get Started on AWS

Get Started on Microsoft Azure

Get Started on Google Cloud

For all editions on cloud marketplaces, please contact TigerGraph support and

we'll assist you in upgrading from older images to the latest image.

5/13/25, 9:11 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com

154

Get Started on AWS
This tutorial will show you how to start TigerGraph Enterprise Edition from an image

on AWS.

1. Go to AWS Marketplace and search for TigerGraph.

2. Click "Continue to Subscribe".

3. Click on "Continue to Configuration".

Subscribe Page

Deploying Your Instance

5/13/25, 9:11 PM 3.3

https://aws.amazon.com/marketplace/
https://aws.amazon.com/marketplace/

155

4. Select the Software Version and Region. We recommend selecting the latest

version for the most up-to-date features. After making your selections, click on

"Continue to Launch".

Pre Configuration Page

Configuration Page

5/13/25, 9:11 PM 3.3

156

5. Select the instance type, security group settings, and other settings. The default

settings are fine for most users, but feel free to modify them. Click "Launch" when

finished.

Notes:

The instance type needs to have at least 4 CPUs and 16GB RAM for TigerGraph to

work properly.

The security group must allow inbound TCP traffic to port 14240 if you want to

access GraphStudio (TigerGraph's visualization platform). For more about

GraphStudio, see the GraphStudio UI Guide.

The security group must allow inbound TCP traffic to port 9000 if you want to send

RESTful requests to TigerGraph from outside the instance (this includes configuring

the GSQL client on a remote machine). For more about the REST API, see the

TigerGraph RESTful API User Guide.

For more about the TigerGraph Platform, see the TigerGraph Platform Overview.

6. That's it! The TigerGraph instance has been successfully deployed on AWS.

Configuration Page 2

5/13/25, 9:11 PM 3.3

157

1. Log on to the instance and switch to user tigergraph using the following

command:

2. Run the following command to check the current status of TigerGraph. The

services "ADMIN", "CTRL", "ETCD", "IFM", "KAFKA", and "ZK" are started

automatically and should be up at this point. If any of them are not or you get the

following error message, please wait for 30 to 60 seconds and check the status

again before reporting it to TigerGraph support.

Deploying Page

sudo su - tigergraph

TigerGraph Login

Starting TigerGraph on Your Instance

5/13/25, 9:11 PM 3.3

158

3. Run the following command to start TigerGraph:

4. Check the status again. All services should be up at this point:

gadmin status

Output of gadmin status

Gadmin status error message

gadmin start

Output of gadmin start

5/13/25, 9:11 PM 3.3

159

5. TigerGraph has been successfully started on your cloud instance.

The TigerGraph Enterprise edition image comes with a perpetual license that will

only work on the AWS instance it's installed on. Please run the following command

to see it:

gadmin status

Gadmin status after running gadmin start

gadmin license status

TigerGraph License on AWS Images

5/13/25, 9:11 PM 3.3

160

Gadmin license status output

5/13/25, 9:11 PM 3.3

161

Get Started on Microsoft Azure
This tutorial will show you how to start TigerGraph Enterprise Edition from an image

on Microsoft Azure.

1. Go to Microsoft Azure Marketplace and search for "TigerGraph".

2. Select your software plan and Click "Create". Select the latest plan (with the

highest version number) to access the latest features.

3. Fill out the "Resource group", "Virtual machine name", "Username" and "SSH

Public key" fields. The default values should work for the rest of the fields. Then

click "Next: Disks >".

Create Page

Deploying Your Instance

5/13/25, 9:11 PM 3.3

https://portal.azure.com/#blade/Microsoft_Azure_Marketplace/MarketplaceOffersBlade/selectedMenuItemId/home
https://portal.azure.com/#blade/Microsoft_Azure_Marketplace/MarketplaceOffersBlade/selectedMenuItemId/home

162

4. Keep the default values for all other settings and click "Next" until you see the

"Review + Create" page below. Check all your settings and click "Create" when you

are satisfied.

Notes:

The instance type needs to have at least 4 CPUs and 16GB RAM for TigerGraph to

work properly.

The "NIC network security group" must allow inbound TCP traffic to port 14240 if

you want to access GraphStudio (TigerGraph's visualization platform). For more

about GraphStudio, see the GraphStudio UI Guide.

The "NIC network security group" must allow inbound TCP traffic to port 9000 if

you want to send RESTful requests to TigerGraph from outside the instance (this

includes configuring the GSQL client on a remote machine). For more about the

REST API, see the TigerGraph RESTful API User Guide.

For more about the TigerGraph Platform, see the TigerGraph Platform Overview.

Basic Settings Page

5/13/25, 9:11 PM 3.3

163

5. That's it! The TigerGraph instance has been successfully deployed on Microsoft

Azure.

Review Page

Deploying Page

5/13/25, 9:11 PM 3.3

164

1. Log on to the instance and switch to user tigergraph using the following

command:

2. Run the following command to check the current status of TigerGraph. The

services "ADMIN", "CTRL", "ETCD", "IFM", "KAFKA", and "ZK" are started

automatically and should be up at this point. If any of them are not or you get the

following error message, please wait for 30 to 60 seconds and check the status

again before reporting it to TigerGraph support.

sudo su - tigergraph

TigerGraph Login

gadmin status

Starting TigerGraph on Your Instance

5/13/25, 9:11 PM 3.3

165

3. Run the following command to start TigerGraph:

4. Check the status again. All services should be up at this point:

Output of gadmin status

Gadmin status error message

gadmin start

Output of gadmin status

gadmin status

5/13/25, 9:11 PM 3.3

166

5. TigerGraph has been successfully started on your cloud instance.

The TigerGraph Enterprise edition image comes with a perpetual license that will

only work on the Microsoft Azure instance it's installed on. Please run the

following command to see it:

Gadmin status after running gadmin start

gadmin license status

TigerGraph License on Microsoft Azure
Images

5/13/25, 9:11 PM 3.3

167

Gadmin license status output

5/13/25, 9:11 PM 3.3

168

Get Started on Google Cloud
This tutorial will show you how to start TigerGraph from an image on Google Cloud.

Please select your edition from below:

1. Go to Google Cloud Marketplace https://console.cloud.google.com/marketplace

and search for "TigerGraph Enterprise Edition". Choose the latest edition to access

the most up-to-date features.

2. Click on "Launch" .

3. The default settings are fine for most users, but feel free to modify them. When

ready, click on "Deploy".

Notes:

The instance type needs to have at least 4 CPUs and 16GB RAM for TigerGraph to

work properly.

Deploying Your Instance

5/13/25, 9:11 PM 3.3

https://console.cloud.google.com/marketplace
https://console.cloud.google.com/marketplace

169

The "Allow TCP port 14240 traffic from the Internet" checkbox must be checked if

you want to access GraphStudio (TigerGraph's visualization platform). For more

about GraphStudio, see the GraphStudio UI Guide.

For information on how to set up authentication please see User access

management.

The "Allow TCP port 9000 traffic from the Internet" checkbox must be checked if

you want to send RESTful requests to TigerGraph from outside the instance (this

includes configuring the GSQL client on a remote machine). For more about the

REST API, see the TigerGraph RESTful API User Guide.

For more about the TigerGraph Platform, see the TigerGraph Platform Overview.

4. That's it! The TigerGraph instance has been successfully deployed on Google

Cloud.

5/13/25, 9:11 PM 3.3

170

 1. Log on to the instance and switch to user tigergraph using the following

command:

2. Run the following command to check the current status of TigerGraph. The

services "ADMIN", "CTRL", "ETCD", "IFM", "KAFKA", and "ZK" are started

automatically and should be up at this point. If any of them are not or you get the

following error message, please wait for 30 to 60 seconds and check the status

again before reporting it to TigerGraph support.

sudo su - tigergraph

gadmin status

Starting TigerGraph on Your Instance

5/13/25, 9:11 PM 3.3

171

3. Run the following command to start TigerGraph:

4. Check the status again. All services should be up at this point:

gadmin start

gadmin status

5/13/25, 9:11 PM 3.3

172

5. TigerGraph has been successfully started on your cloud instance.

The TigerGraph Enterprise edition image comes with a perpetual license that will

only work on the Google Cloud instance it's installed on. Please run the following

command to see it:

gadmin license status

TigerGraph License on Google Cloud Images

5/13/25, 9:11 PM 3.3

173

5/13/25, 9:11 PM 3.3

174

GSQL 101

In this exercise, we will go through the 3-step process of writing GSQL-- define a

schema, load data, and write a query.

This tutorial is written so that you can follow along and perform the steps on your

TigerGraph system as your read.

Get Set

Define a Schema

Load Data

Run Built-in Queries

Develop Parameterized Queries

Review

5/13/25, 9:11 PM 3.3

175

Get Set

In this tutorial, we will show you how to create a graph schema, load data in your

graph, write simple parameterized queries, and run your queries. Before you start,

you need to have installed the TigerGraph system, verified that it is working, and

cleared out any previous data. It'll also help to become familiar with our graph

terminology.

A graph is a collection of data entities and the connections between them. That is,

it's a network of data entities.

Many people call a data entity a node ; at TigerGraph we called it a vertex. The

plural is vertices. We call a connection an edge. Both vertices and edges can have

properties or attributes. The figure below is a visual representation of a graph

containing 7 vertices (shown as circles) and 7 edges (the lines).

Introduction

What is a Graph?

5/13/25, 9:11 PM 3.3

176

A graph schema is the model which describes the types of vertices (nodes) and

edge (connections) which can appear in your graph. The graph above has one type

of vertex (person) and one type of edge (friendship).

A schema diagram looks like a small graph, except each node represents one type

of vertex, and each link represents one type of edge.

The friendship loop shows that a friendship is between a person and another

person.

Friendship Social Graph

Friendship Social Graph Schema

5/13/25, 9:11 PM 3.3

177

For this tutorial, we will create and query the simple friendship social graph shown in

Figure Friendship Social Graph. The data for this graph consists of two files in csv

(comma-separated values) format. To follow along with this tutorial, please save

these two files, person.csv and friendship.csv, to your TigerGraph local disk. In our

running example, we use the /home/tigergraph/ folder to store the two csv files.

First, let's check that you can access GSQL.

1. Open a Linux shell.

2. Type gsql as below. A GSQL shell prompt should appear as below.

name,gender,age,state
Tom,male,40,ca
Dan,male,34,ny
Jenny,female,25,tx
Kevin,male,28,az
Amily,female,22,ca
Nancy,female,20,ky
Jack,male,26,fl

person1,person2,date
Tom,Dan,2017-06-03
Tom,Jenny,2015-01-01
Dan,Jenny,2016-08-03
Jenny,Amily,2015-06-08
Dan,Nancy,2016-01-03
Nancy,Jack,2017-03-02
Dan,Kevin,2015-12-30

$ gsql
GSQL >

Data Set

Prepare Your TigerGraph Environment

person.csv

friendship.csv

Linux Shell

5/13/25, 9:11 PM 3.3

178

3. If the GSQL shell does not launch, try resetting the system with "gadmin start

all". If you need further help, please see manage TigerGraph with gadmin and

TigerGraph Knowledge Base and FAQs .

If this is your first time using GSQL, the TigerGraph data store is probably empty.

However, if you or someone else has already been working on the system, there

may already be a database. You can check by listing out the database catalog with

the "ls" command. This is what should look like if it is empty:

If the data catalog is not empty, you will need to empty it to start this tutorial. We'll

assume you have your coworkers' permission. Use the command DROP ALL to

delete all the database data, its schema, and all related definitions. This command

takes about a minute to run.

Restarting TigerGraph

If you need to restart TigerGraph for any reason, use the following command
sequence:

GSQL > ls
---- Global vertices, edges, and all graphs
Vertex Types:
Edge Types:

Graphs:
Jobs:

Json API version: v2

GSQL > drop all

Dropping all, about 1 minute ...
Abort all active loading jobs
[ABORT_SUCCESS] No active Loading Job to abort.

Shutdown restpp gse gpe ...
Graph store /usr/local/tigergraph/gstore/0/ has been cleared!
Everything is dropped.

GSQL shell - an empty database catalog

GSQL shell - DROP ALL

5/13/25, 9:11 PM 3.3

https://docs.tigergraph.com/admin/admin-guide/system-management/management-with-gadmin#gadmin-start
https://docs.tigergraph.com/admin/admin-guide/system-management/management-with-gadmin#gadmin-start

179

Running GSQL commands from Linux

You can also run GSQL commands from a Linux shell. To run a single command, just
use "gsql" followed by the command line enclosed in single quotes. (The quotes aren't
necessary if there is no parsing ambiguity; it's safer to just use them.) For example,

You can also execute a series of commands which you have stored in a file, by simply
invoking "gsql" following by the name of the file.

When you are done, you can exit the GSQL shell with the command "quit" (without

the quotes).

Switch to the user account set up during installation
The default is user=tigergraph, password=tigergraph
$ su tigergraph
Password:tigergraph

Start all services
$ gadmin restart -y

"-g graphname" is need for a given graph
gsql -g social 'ls'
gsql 'drop all'
gsql 'ls'

Linux Shell - Restarting TigerGraph services

Linux shell - GSQL commands from a Linux shell

5/13/25, 9:11 PM 3.3

180

Define a Schema

For this tutorial, we will work mostly in the GSQL shell, in interactive mode. A few

commands will be from a Linux shell. The first step in creating a GSQL graph is to

define its schema. GSQL provides a set of DDL (Data Definition Language)

commands, similar to SQL DDL commands, to model vertex types, edge types and a

graph.

Use CREATE VERTEX command to define a vertex type named person. Here,

PRIMARY_ID is required: each person must have a unique identifier. The rest is the

optional list of attributes which characterize each person vertex, in the format

attribute_name data_type, attribute_name data_type, ...

We show GSQL keywords in ALL CAPS to highlight them, but they are case-insensitive.

GSQL will confirm the creation of the vertex type.

CREATE VERTEX person (
 PRIMARY_ID name STRING,
 name STRING, age INT,
 gender STRING, state STRING
)

GSQL > CREATE VERTEX person (PRIMARY_ID name STRING, name STRING, age INT,
The vertex type person is created.
GSQL >

Introduction

Create a Vertex Type

GSQL command

GSQL shell

5/13/25, 9:11 PM 3.3

181

You can create as many vertex types as you need.

Next, use the CREATE ... EDGE command to create an edge type named friendship.

The keyword UNDIRECTED indicates this edge is a bidirectional edge, meaning that

information can flow starting from either vertex. If you'd rather have a unidirectional

connection where information flows only from the FROM vertex, use the DIRECTED

keyword in place of UNDIRECTED. Here, FROM and TO are required to specify

which two vertex types the edge type connects. An individual edge is specifying by

giving the primary_ids of its source (FROM) vertex and target (TO) vertex. These are

followed by an optional list of attributes, just as in the vertex definition.

GSQL will confirm the creation of the edge type.

You can create as many edge types as you need.

Next, use the CREATE GRAPH command to create a graph named social. Here, we

just list the vertex types and edge types that we want to include in this graph.

CREATE UNDIRECTED EDGE friendship (FROM person, TO person, connect_day DAT

GSQL > CREATE UNDIRECTED EDGE friendship (FROM person, TO person, connect_
The edge type friendship is created.
GSQL >

CREATE GRAPH social (person, friendship)

Create an Edge Type

Create a Graph

GSQL command

GSQL shell

GSQL command

5/13/25, 9:11 PM 3.3

182

GSQL will confirm the creation of the first graph after several seconds, during which

it pushes the catalog information to all services, such as the GSE, GPE and RESTPP.

At this point, we have created a person vertex type, a friendship edge type, and a

social graph that includes them. You've now built your first graph schema! Let's take

a look what's in the catalog by typing the ls command in the GSQL shell.

GSQL > CREATE GRAPH social (person, friendship)

Restarting gse gpe restpp ...

Finish restarting services in 16.554 seconds!
The graph social is created.

GSQL > ls
---- Global vertices, edges, and all graphs
Vertex Types:
 - VERTEX person(PRIMARY_ID name STRING, name STRING, age INT, gender STR
Edge Types:
 - UNDIRECTED EDGE friendship(FROM person, TO person, connect_day DATETIM

Graphs:
 - Graph social(person:v, friendship:e)
Jobs:

Json API version: v2

GSQL shell

GSQL shell

5/13/25, 9:11 PM 3.3

183

Load Data
After creating a graph schema, the next step is to load data into it. The task here is

to instruct the GSQL loader how to associate ("map") the fields in a set of data files

to the attributes in your vertex types and edge types of the graph schema we just

defined.

You should have the two data files person.csv and friendship.csv on your local disk.

It's not necessary that they are in the same folder with you.

If you need to exit the GSQL shell for any reason, you can do so by typing "quit"

without the quotes. Type gsql to enter again.

The loading job below assumes that your data files are in the folder

/home/tigergraph . If they are elsewhere, then in the loading job script below

replace /home/tigergraph/person.csv and /home/tigergraph/friendship.csv

with their corresponding file path respectively. Assuming you're (back) in the GSQL

shell, enter the following set of commands.

Let's walk through the commands:

• USE GRAPH social :

Tells GSQL which graph you want to work with.

USE GRAPH social
BEGIN
CREATE LOADING JOB load_social FOR GRAPH social {
 DEFINE FILENAME file1="/home/tigergraph/person.csv";
 DEFINE FILENAME file2="/home/tigergraph/friendship.csv";

 LOAD file1 TO VERTEX person VALUES ($"name", $"name", $"age", $"gender"
 LOAD file2 TO EDGE friendship VALUES ($0, $1, $2) USING header="true",
}
END

Define a Loading Job

GSQL commands to define a loading job

5/13/25, 9:11 PM 3.3

184

• BEGIN ... END :

Indicates multiple-line mode. The GSQL shell will treat everything between

these markers as a single statement. These is only needed for interactive mode.

If you run GSQL statements that are stored in a command file, the command

interpreter will study your whole file, so it doesn't need the BEGIN and END

hints.

• CREATE LOADING JOB :

One loading job can describe the mappings from multiple files to multiple graph

objects. Each file must be assigned to a filename variable. The field labels can

be either by name or by position. By-name labelling requires a header line in the

source file. By-position labelling uses integers to indicate source column

position 0, 1,... In the example above, the first LOAD statement refers to the

source file columns by name, whereas the second LOAD statement refers to the

source file columns by position. Note the following details:

◦ The column "name" in file1 gets mapped to two fields, both the PRIMARY_ID

and the "name" attribute of the person vertex.

◦ In file1, gender comes before age. In the person vertex, gender comes after

age. When loading, state your attributes in the order needed by the target

object (in this case, the person vertex).

◦ Each LOAD statement has a USING clause. Here it tells GSQL that both files

contain a header (whether we choose to use the names or not, GSQL still

needs to know whether to consider the first line as data or not). It also says

the column separator is comma. GSQL can handle any single-character

separator, not just commas.

When you run the CREATE LOADING JOB statement, GSQL checks for syntax errors

and checks that you have data files in the locations specified. If it detects no errors,

it compiles and saves your job.

GSQL shell

5/13/25, 9:11 PM 3.3

185

You can now run your loading job to load data into your graph:

The result is shown below.

GSQL > USE GRAPH social
Using graph 'social'
GSQL > BEGIN
GSQL > CREATE LOADING JOB load_social FOR GRAPH social {
GSQL > DEFINE FILENAME file1="/home/tigergraph/person.csv";
GSQL > DEFINE FILENAME file2="/home/tigergraph/friendship.csv";
GSQL >
GSQL > LOAD file1 TO VERTEX person VALUES ($"name", $"name", $"age", $"
GSQL > LOAD file2 TO EDGE friendship VALUES ($0, $1, $2) USING header="
GSQL > }
GSQL > END
The job load_social is created.

RUN LOADING JOB load_social

GSQL > run loading job load_social
[Tip: Use "CTRL + C" to stop displaying the loading status update, then us
[Tip: Manage loading jobs with "ABORT/RESUME LOADING JOB jobid"]
Starting the following job, i.e.
 JobName: load_social, jobid: social_m1.1528095850854
 Loading log: '/home/tigergraph/tigergraph/logs/restpp/restpp_loader_logs

Job "social_m1.1528095850854" loading status
[FINISHED] m1 (Finished: 2 / Total: 2)
 [LOADED]
 +---
 | FILENAME | LOADED LINES | AVG SPEED | DURA
 |/home/tigergraph/friendship.csv | 8 | 8 l/s | 1.
 | /home/tigergraph/person.csv | 8 | 7 l/s | 1.
 +---

Run a Loading Job

GSQL command

GSQL shell

5/13/25, 9:11 PM 3.3

186

Notice the location of the loading log file. The example assumes that you installed

TigerGraph in the default location, /home/tigergraph/ . In your installation folder is

the main product folder, tigergraph. Within the tigergraph folder are several

subfolders, such as logs, document, config, bin, and gstore. If you installed in a

different location, say /usr/local/ , then you would find the product folder at

/usr/local/tigergraph .

5/13/25, 9:11 PM 3.3

187

Run Built-in Queries
You now have a graph with data! You can run some queries using the built-in REST

endpoint calls.

Below we call two functions, stat_vertex_number and stat_edge_number to return

the cardinality of each vertex and edge type.

REST endpoints return results in JSON format. JSON data are used for various
purposes. But JSON data canʼt be read easily from JSON file by using bash script like
other normal files. jq tool is used to solve this problem

We recommend you install jq and redirect the REST call result to jq before it is output.

#get vertex cardinality
curl -X POST 'http://localhost:9000/builtins/social' -d '{"function":"sta

#results
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_type": "person",
 "count": 7
 }
]
}

Get Vertex/Edge Statistics

Linux Shell

Linux Shell

5/13/25, 9:11 PM 3.3

188

If you want to lookup the details about a vertex with its primary_id, you can use the

following REST call.

Example. Find a person vertex whose primary_id is "Tom".

#get edge cardinality
curl -X POST 'http://localhost:9000/builtins/social' -d '{"function":"sta

#results
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "friendship",
 "count": 7
 }
]
}

curl -X GET "http://localhost:9000/graph/{graph_name}/vertices/{vertex_typ

 curl -X GET "http://localhost:9000/graph/social/vertices/person/Tom" | jq

Select Vertices

Linux Shell

Linux Shell

5/13/25, 9:11 PM 3.3

189

In similar fashion, we can see details about edges. To describe an edge, you name

the types of vertices and edges in the two parts or three parts of a URL.

Example. Find all friendship edges whose source vertex's primary_id is "Tom".

 #result
 {
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_id": "Tom",
 "v_type": "person",
 "attributes": {
 "name": "Tom",
 "age": 40,
 "gender": "male",
 "state": "ca"
 }
 }
]
}

#two parts
curl -X GET "http://localhost:9000/graph/edges/{source_vertex_type}/{sourc

#three parts
curl -X GET "http://localhost:9000/graph/edges/{source_vertex_type}/{sourc

curl -X GET "http://localhost:9000/graph/social/edges/person/Tom/friendshi

Select Edges

Linux Shell

Linux Shell

5/13/25, 9:11 PM 3.3

190

For more built-in REST endpoints, you can refer to the Built-in Endpoints page.

#result
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "friendship",
 "directed": false,
 "from_id": "Tom",
 "from_type": "person",
 "to_id": "Dan",
 "to_type": "person",
 "attributes": {
 "connect_day": "2017-06-03 00:00:00"
 }
 },
 {
 "e_type": "friendship",
 "directed": false,
 "from_id": "Tom",
 "from_type": "person",
 "to_id": "Jenny",
 "to_type": "person",
 "attributes": {
 "connect_day": "2015-01-01 00:00:00"
 }
 }
]
}

5/13/25, 9:11 PM 3.3

191

Develop Parameterized Queries
Develop, install, and run parameterized GSQL queries

We just saw how easy and quick it is to run simple built-in queries. However you'll

undoubtedly want to create more customized or complex queries. GSQL puts

maximum power in your hands through parameterized vertex set queries.

Parameterized queries let you traverse the graph from one vertex set to an adjacent

set of vertices, again and again, performing computations along the way, with built-

in parallel execution and handy aggregation operations. You can even have one

query call another query. But we'll start simple.

A GSQL parameterized query has three steps.

1. Define your query in GSQL. This query will be added to the GSQL catalog.

2. Install one or more queries in the catalog, generating a REST endpoint for each

query.

3. Run an installed query, supplying appropriate parameters, either as a GSQL

command or by sending an HTTP request to the REST endpoint.

Now, let's write our first GSQL query. We'll display all the direct (1-hop) neighbors of

a person, given as an input parameter.

This query features one SELECT statement. The SELECT statements here are much

more powerful than the ones in built-in queries. Here you can do the following:The

query starts by seeding a vertex set "Start" with the person vertex identified by

USE GRAPH social
CREATE QUERY hello(VERTEX<person> p) {
 Start = {p};
 Result = SELECT tgt
 FROM Start:s-(friendship:e) ->person:tgt;
 PRINT Result;
}

A Simple 1-Hop Query

GSQL command

5/13/25, 9:11 PM 3.3

192

parameter p passed in from the query call. The curly braces tell GSQL to construct a

set containing the enclosed items.

Next, the SELECT statement describes a 1-hop traversal according to the pattern

described in the FROM clause:

Start:s -(friendship:e)-> person:tgt

This is basically the same syntax we used for the built-in select edges query.

Namely, we select all edges beginning from the given source set (Start), which have

the given edge type (friendship) and which end at the given vertex type (person). A

feature we haven't seen before is the use of vertex and edge set aliases defined by

":alias": "s" is the alias for the source vertex set, "e" is the edge set alias, and "tgt"

is the target vertex set alias.

Refer back to the initial clause and the assignment (" Result = SELECT tgt "). Here

we see the target set's alias tgt. This means that the SELECT statement should

return the target vertex set (as filtered and processed by the full set of clauses in

the SELECT query block) and assign that output set to the variable called Result.

Last, we print out the Result vertex set, in JSON format.

Rather than defining our query in interactive mode, we can store the query in a file

and invoke the file from within the GSQL shell, using the @filename syntax. Copy

and paste the above query into a file /home/tigergraph/hello.gsql . Then, enter

the GSQL shell and invoke the file using @hello.qsql (Note that if you are not in the

/home/tigergraph folder when you start gsql, then you can use the absolute path to

invoke a gsql file. e.g., @/home/tigergraph/hello.gsql) Then run the "ls"

command to see that the query is now in the catalog.

Create A Query

GSQL shell

5/13/25, 9:11 PM 3.3

193

However, the query is not installed yet; it is not ready to run. In the GSQL shell, type

the following command to installed the just added query "hello".

GSQL > @hello.gsql
Using graph 'social'
The query hello has been added!
GSQL > ls
---- Graph social
Vertex Types:
 - VERTEX person(PRIMARY_ID name STRING, name STRING, age INT, gender STR
Edge Types:
 - UNDIRECTED EDGE friendship(from person, to person, connect_day DATETIM

Graphs:
 - Graph social(person:v, friendship:e)
Jobs:
 - CREATE LOADING JOB load_social FOR GRAPH social {
 DEFINE FILENAME file2 = "/home/tigergraph/friendship.csv";
 DEFINE FILENAME file1 = "/home/tigergraph/person.csv";

 LOAD file1 TO VERTEX person VALUES($"name", $"name", $"age", $"gende
 LOAD file2 TO EDGE friendship VALUES($0, $1, $2) USING SEPARATOR=","
 }

Queries:
 - hello(vertex<person> p)

INSTALL QUERY hello

GSQL > INSTALL QUERY hello
Start installing queries, about 1 minute ...
hello query: curl -X GET 'http://127.0.0.1:9000/query/social/hello?p=VALUE

[===

Install a Query

GSQL command

GSQL shell

5/13/25, 9:11 PM 3.3

194

It takes about 1 minute for the database to install this new query. Be patient! For

queries on large datasets, this small investment pays off many times over in faster

query execution, particularly if you will run the query many times, with different

parameters. The installation will generate machine instructions and a REST

endpoint. After the progress bar reaches 100%, we are ready to run this query.

To run a query in GSQL, use "RUN QUERY" followed by the query name and a set of

parameter values.

The result is presented in JSON format. Tom has two 1-hop neighbors, namely Dan

and Jenny.

RUN QUERY hello("Tom")

Run a Query in GSQL

GSQL command - run query examples

GSQL shell

5/13/25, 9:11 PM 3.3

195

Under the hood, installing a query will also generate a REST endpoint, so that the

parameterized query can be invoked by an http call. In Linux, the curl command is

the most popular way to submit an http request. In the example below, the portion

that is standard for all queries is shown in bold ; the portion in normal weight

pertains to this particular query and parameter value. The JSON result will be

returned to the Linux shell's standard output. So, our parameterized query becomes

a http service!

GSQL > RUN QUERY hello("Tom")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [
 {
 "v_id": "Dan",
 "attributes": {
 "gender": "male",
 "name": "Dan",
 "state": "ny",
 "age": 34
 },
 "v_type": "person"
 },
 {
 "v_id": "Jenny",
 "attributes": {
 "gender": "female",
 "name": "Jenny",
 "state": "tx",
 "age": 25
 },
 "v_type": "person"
 }
]}]
}

Run a Query as a REST Endpoint

5/13/25, 9:11 PM 3.3

196

Finally, to see the GSQL text of a query in the catalog, you can use

Congratulations! At this point, you have gone through the whole process of defining,

installing, and running a query.

Installing query will give the fastest query speed, but user needs to wait for the

installation overhead.

The Interpreted Mode for GSQL, introduced in TigerGraph 2.4, let us skip the

INSTALL step, and even run a query as soon as we create it, to offer a more

interactive experience. These one-step interpreted queries are unnamed

(anonymous) and parameterless, just like SQL. Please refer to GSQL 102 for this

mode.

Now, let's do a more advanced query. This time, we are going to learn to use the

powerful built-in accumulators, which serves as the runtime attributes (properties)

attachable to each vertex visited during our traversal on the graph. Runtime means

they exist only while the query is running; they are called accumulators because

they are specially designed to gather (accumulate) data during an implicitly parallel

processing of the query.

curl -X GET 'http://localhost:9000/query/social/hello?p=Tom'

#SHOW QUERY query_name. E.g.
SHOW QUERY hello

Running Anonymous Queries Without
Installing

A More Advanced Query

Linux shell

GSQL command - show query example

5/13/25, 9:11 PM 3.3

197

In this query we will find all the persons which are exactly 2 hops away from the

parameterized input person. Just for fun, let's also compute the average age of

those 2-hop neighbors.

In the standard approach for this kind of graph traversal algorithm, you use a

boolean variable to mark the first time that the algorithm "visits" a vertex, so that it

knows not to count it again. To fit this need, we'll define a local accumulator of the

type OrAccum. To declare a local accumulator, we prefix an identifier name with a

single "@" symbol. Each accumulator type has a default initial value; the default

value for boolean accumulators is false. Optionally, you can specify an initial value.

We also want to compute one average, so we will define a global AvgAccum. The

identifier for a global accumulator begins with two "@"s.

After defining the Start set, we then have our first one 1-hop traversal. The SELECT

and FROM clauses are the same as in our first example, but there is an additional

ACCUM clause. The += operator within an ACCUM clause means that for each edge

matching the FROM clause pattern, we accumulate the right-hand-side expression

(true) to the left-hand-accumulator (tgt.@visited as well as s.@visited). Note that a

USE GRAPH social
CREATE QUERY hello2 (VERTEX<person> p) {
 OrAccum @visited = false;
 AvgAccum @@avgAge;
 Start = {p};

 FirstNeighbors = SELECT tgt
 FROM Start:s -(friendship:e)-> person:tgt
 ACCUM tgt.@visited += true, s.@visited += true;

 SecondNeighbors = SELECT tgt
 FROM FirstNeighbors -(:e)-> :tgt
 WHERE tgt.@visited == false
 POST_ACCUM @@avgAge += tgt.age;

 PRINT SecondNeighbors;
 PRINT @@avgAge;
}
INSTALL QUERY hello2
RUN QUERY hello2("Tom")

GSQL command file - hello2.gsql

5/13/25, 9:11 PM 3.3

198

source vertex or target vertex may be visited multiple times. Referring to Figure 1, if

we start at vertex Tom, there are two edges incidents to Tom, so the ACCUM clause

in the first SELECT statement will visit Tom two times. Since the accumulator type is

OrAccum, the cumulative effect of the two traversals is the following:

Tom.@visited <== (initial value: false) OR (true) OR (true)

Note that it does not matter which of the two edges was processed first, so this

operation is suitable for multithreaded parallel processing. The net effect is that as

long as a vertex is visited at least once, it will end up with @visited = true. The result

of this first SELECT statement is assigned to the variable FirstNeighbors.

The second SELECT block will do one hop further, starting from the FirstNeighbors

vertex set variable, and reaching the 2-hop neighbors. Note that this time, we have

omitted the edge type friendship and the target vertex type person from the FROM

clause, but we retained the aliases. If no type is mentioned for an alias, then it is

interpreted as ALL types. Since our graph has only one vertex type and one edge

type, it is logically the same as if we had specified the types. The WHERE clause

filters out the vertices which have been marked as visited before (the 1-hop

neighbors and the starting vertex p). This SELECT statement uses POST_ACCUM

instead of ACCUM. The reason is that POST_ACCUM traverses the vertex sets

instead of the edge sets, guaranteeing that we do not double-count any vertices.

Here, we accumulate the ages of the 2-hop neighbors to get their average.

Finally, the SecondNeighbors of p are printed out.

This time, we put all of the following GSQL commands into one file hello2.gsql:

• USE GRAPH social

• The query definition

• Installing the query

• Running the query

We can execute this full set of commands without entering the GSQL shell. Please

copy and paste the above GSQL commands into a Linux file named

/home/tigergraph/hello2.gsql.

5/13/25, 9:11 PM 3.3

199

In a Linux shell, under /home/tigergraph, type the following:

• Queries are installed in the catalog and can have one or more input parameters,

enabling reuse of queries.

• A GSQL query consists of a series of SELECT query blocks, each generating a

named vertex set.

• Each SELECT query block can start traversing the graph from any of the

previously defined vertex sets (that is, the sequence does not have to form a

linear chain).

• Accumulators are runtime variables with built-in accumulation operations, for

efficient multithreaded computation.

• Query can call another query.

• Output is in JSON format.

gsql hello2.gsql

GSQL Query Summary:

Linux shell

5/13/25, 9:11 PM 3.3

200

Review
You have learned a lot in GSQL 101!

With just the knowledge from GSQL 101 and a little practice, you should be able to

do the following:

• Create a graph schema containing multiple vertex types and edge types.

• Define a loading job that takes one or more CSV files and maps the data directly

to the vertices and edges of your graph.

• Write and run simple parameterized queries which start at one vertex and then

traverse one or more hops to generate a final vertex set. Make a simple additive

computation and return the results.

Want to learn more?

• To learn to do the same types of operations using the GraphStudio Visual SDK

and UI, see the TigerGraph GraphStudio UI Guide.

• Continue learning Accumulators and Pattern Matching.

• To see more GSQL examples, see IS , IC , and BI workloads based on LDBC

 benchmark schema , and GSQL Demo Examples .

• To get answers to common questions, see the TigerGraph Knowledge Base and

FAQs .

• To see the full GSQL specification (whose table of contents with give you and

idea of what is available) see

◦ GSQL Language Reference Part 1 - Defining Graphs and Loading Data

◦ GSQL Language Reference Part 2 - Querying

• To discuss and get help with fellow GSQL users and GSQL developers, join

GSQL community forum .

5/13/25, 9:11 PM 3.3

https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/interactive_short
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/interactive_short
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/interactive_complex
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/interactive_complex
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/business_intelligence
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/business_intelligence
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
https://github.com/tigergraph/ecosys/blob/ldbc/ldbc_benchmark/tigergraph/load_scripts/setup_schema.gsql
https://github.com/tigergraph/ecosys/blob/ldbc/ldbc_benchmark/tigergraph/load_scripts/setup_schema.gsql
https://community.tigergraph.com/
https://community.tigergraph.com/

201

Accumulators Tutorial

GSQL is a Turing complete Graph Database query language. Comparing to other

graph query languages, the biggest advantages is its support of accumulators --

global or vertex local.

In addition to provide the classic pattern match syntax, which is easy to master,

GSQL supports powerful run-time vertex attributes (a.k.a local accumulators) and

global state variables (a.k.a global accumulators).

This short tutorial aims to shorten the learning curve of accumulator. Supposedly,

after reading this article, everyone can master the essence of accumulator by heart,

and start solving real-life graph problems with this handy language feature.

An accumulator is a state variable in GSQL. Its state is mutable throughout the life

cycle of a query. It has an initial value, and users can keep accumulating (using its

"+=" built-in operator) new values into it. Each accumulator variable has a type. The

type decides what semantics the declared accumulator will use to interpret the "+="

operation.

In Figure 1's left box, from line 3 to line 8, six different accumulator variables (those

with prefix @@) are declared, each with a unique type. Below we explain the

semantic and usage of them.

• SumAccum<INT> allows user to keep adding INT values into its internal state

variable. As the line 10 and 11 have shown, we added 1 and 2 to the accumulator,

and end up with the value 3 (shown on line 3 in the right box).

Figure 1. The left box is a GSQL query with different accumulators being accumulated to. The

right box shows the accumulator variables' final results.

Introduction

What is an Accumulator?

5/13/25, 9:11 PM 3.3

202

• MinAccum<INT> keeps the smallest INT number it has seen. As the line 14 and

15 have shown, we accumulated 1 and 2 to the MinAccum accumulator, and end

up with the value 1 (shown on line 6 in the right box).

• MaxAccum<INT> is symmetric to MinAccum. It returns the MAX INT value it has

seen. Lines 18 and 19 show that we send 1 and 2 into it, and end up with the

value 2 (shown on line 9 in the right box).

• OrAccum keeps OR-ing the internal boolean state variable with new boolean

variables that accumulate to it. The initial default value is FALSE. Lines 22 and 23

show that we send TRUE and FALSE into it, and end up with the TRUE value

(shown on line 12 in the right box).

• AndAccum is symmetric to OrAccum. Instead of using OR, it uses the AND

accumulation semantics. Line 26 and 27 show that we accumulate TRUE and

FALSE into it, and end up with the FALSE value (shown on line 15 in the right

box).

• ListAccum<INT> keeps appending new integer(s) into its internal list variable.

Line 30 - 32 show that we append 1, 2, and [3,4] to the accumulator, and end up

with [1,2,3,4] (shown on lines 19-22 in the right box).

At this point, we have seen that accumulators are special typed variable in GSQL

language. We are ready to explain their global and local scopes.

Global accumulator belongs to the entire query. Anywhere in a query, a statement

can update its value. Local accumulator belongs to each vertex. It can only be

updated when its owning vertex is accessible. To differentiate them, we use special

prefixes in the identifier when we declare them.

• @@ prefix is used for declaring global accumulator variable. It is always used

stand-alone. E.g

@@cnt +=1

• @ prefix is used for declaring local accumulator variable. It must be used with a

vertex alias in a query block. E.g. v.@cnt += 1, where v is a vertex alias

specified in a FROM clause of a SELECT-FROM-WHERE query block.

Figure 2. A social graph with 7 person vertices and 7 friendship edges connecting them.

Global vs. Vertex-attached Accumulator

5/13/25, 9:11 PM 3.3

203

Consider a toy social graph modeled by a person vertex type and a person-to-

person friendship edge type shown in Figure 2. Below we write a query, which

accepts a person, and does a 1-hop traversal from the input person to its neighbors.

We use the @@global_edge_cnt accumulator to accumulate the total number of

edges we traverse. And we use @vertex_cnt to write to the input person's each

friend vertex an integer 1.

As Figure 2 shows, Dan has 4 direct friends -- Tom, Kevin, Jenny, and Nancy, each

of which holds a local accumulator @vertex_cnt. And the @@global_edge_cnt has

value 4, reflecting the fact that for each edge, we have accumulated 1 into it.

ACCUM and POST-ACCUM clauses are computed in stages, where-in a SELECT-

FROM-WHERE query block, ACCUM is executed first, followed by the POST-ACCUM

clause.

• ACCUM executes its statement(s) once for each matched edge (or path) of the

FROM clause pattern. Further, ACCUM parallelly executes its statements for all

the matches.

• POST-ACCUM executes its statement(s) once for each involved vertex. Note

that each statement within the POST-ACCUM clause can refer to either source

vertices or target vertices but not both. Its statements can access the

aggregated accumulator result computed in the ACCUM clause.

We have explained the mechanism of accumulators, their types, and the two

different scopes--global and local. We also elaborate the ACCUM and POST-

ACCUM clause semantics. Once you master the basics, the rest is to practice more.

Figure 3. The top box shows a query that given a person, accumulate the edge count into

@@global_edge_cnt. The bottom box shows that for each friend of the input person, we

accumulate 1 into its @vertex_cnt.

ACCUM vs. POST-ACCUM

Conclusion

5/13/25, 9:11 PM 3.3

204

We have made available 46 queries based on the LDBC schema. These 46 queries

are divided into three groups.

• IS:

https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tig

ergraph/queries_pattern_match/interactive_short

• IC:

https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tig

ergraph/queries_pattern_match/interactive_complex

• BI:

https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tig

ergraph/queries_pattern_match/business_intelligence

You can follow GSQL 102 to setup the environment. You can also post your

feedback and questions on the GSQL community forum . Our community members

and developers love to hear any feedback from your graph journey of using GSQL

and are ready to help clarifying any doubts.

5/13/25, 9:11 PM 3.3

http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tigergraph/queries_pattern_match/interactive_short
https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tigergraph/queries_pattern_match/interactive_short
https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tigergraph/queries_pattern_match/interactive_short
https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tigergraph/queries_pattern_match/interactive_complex
https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tigergraph/queries_pattern_match/interactive_complex
https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tigergraph/queries_pattern_match/interactive_complex
https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tigergraph/queries_pattern_match/business_intelligence
https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tigergraph/queries_pattern_match/business_intelligence
https://github.com/tigergraph/ecosys/tree/master/tools/ldbc_benchmark/tigergraph/queries_pattern_match/business_intelligence
https://community.tigergraph.com/
https://community.tigergraph.com/

205

GSQL102 Pattern Matching
A guide to GSQL's multi-hop SELECT statements which make it convenient to

express pattern-matching queries.

Get Set

Load Data

One-hop patterns

Repeating a 1-Hop Pattern

Multiple Hop Patterns and Accumulation

Example - A Recommender

Advanced Features

Summary

5/13/25, 9:11 PM 3.3

206

Get Set

In this tutorial, we will show you how to write and run Pattern Matching queries.

Pattern Matching is available in TigerGraph v2.4+.

We assume you have finished GSQL 101. If not, please complete GSQL 101 first.

This tutorial was updated for TigerGraph 3.0. If you are using an older version, please
change to the documentation for that version.

A graph pattern is a traversal trace on the graph schema. A pattern can contain

repeated steps. A pattern can be a linear trace, or a non-linear trace (tree, circle

etc.). For example, imagine a simple schema consisting of a Person vertex type and

a Friendship edge type. A pattern could be a trace on this simple schema,

or, use *2 to denote the two consecutive Friendship edges,

Pattern matching is the process of finding subgraphs in a data graph that conform to

a given query pattern.

Person - (Friendship) - Person - (Friendship) - Person

Person - (Friendship*2) - Person

Introduction

What is a Graph Pattern?

What is Pattern Matching?

5/13/25, 9:11 PM 3.3

207

We assume you are running your own TigerGraph instance as the sole user with full

privileges. If you are on a multiuser Enterprise Edition, consult with your DB

administrator. You need to have Designer or Admin privilege on an empty graph. At

various points in this tutorial, there are links to download files. Most are small, but

the graph data file is 1GB when uncompressed.

First, let's check that you can access GSQL, and that your version is 3.0 or higher.

1. Open a Linux shell.

2. Type gsql as below. A GSQL shell prompt should appear as below.

3. Type version in GSQL shell. It should show 2.4 or higher as below. If not, please

download and install the latest version from

https://www.tigergraph.com/download/

4. If the GSQL shell does not launch, try resetting the system with "gadmin start

all". This will launch each service if they have not been started yet. If you need

further help, please see the manage TigerGraph with gadmin, and TigerGraph

Knowledge Base and FAQs.

5. You need to start from an empty data catalog. If necessary, run drop all to

clear the catalog first.

The following general use commands were introduced in GSQL 101.

• The % prefix indicates Linux shell commands. You need TigerGraph admin

privilege to run most gadmin commands.

• The GSQL> prefix indicates GSQL shell commands.

$ gsql
GSQL > version
GSQL version: 3.0

Prepare Your TigerGraph Environment

Cheatsheet

Linux Shell

5/13/25, 9:11 PM 3.3

https://www.tigergraph.com/download/
https://www.tigergraph.com/download/

208

Command Description

% gsql Enter the GSQL shell in interactive mode

% gsql '<GSQL command string>' Run one GSQL command

% gadmin status

Check the status of TigerGraph services

(If your graph store is empty, it is normal for

some statuses to be flagged in red.)

% gadmin restart Restart TigerGraph services

GSQL> ls
List the graph schema, loading jobs, and

queries

GSQL> show user Show your user name and roles

GSQL> drop all
Delete the entire schema, all data, all

jobs, and all queries

GSQL> exit Exit GSQL interactive shell

5/13/25, 9:11 PM 3.3

209

Define the Schema

We will use the LDBC Social Network Benchmark (LDBC SNB) data set. This data

set models a typical social forum, where communities of persons can post

messages on a forum to discuss a topic. It comes with a data generator, which

allows you to generate data at different scale factors. Scale factor 1 generates

roughly 1GB of raw data, scale factor 10 generates roughly 10GB of raw data, etc.

Figure 1 shows the schema (from the LDBC SNB specification). It models the

activities and relationships of social forum participants. For example, a forum

Member can publish Posts on a Forum, and other Members of the Forum can make

a Comment on the Post or on someone else's Comment. A Person's home location

Figure 1. LDBC SNB Schema

Data Set

5/13/25, 9:11 PM 3.3

http://ldbcouncil.org/developer/snb
http://ldbcouncil.org/developer/snb
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf

210

is a hierarchy (Continent>Country>City), and a person can be affiliated with a

University or a Company. A Tag can be used to classify a Forum, a Message, or a

Person's interests. Tags can further be classified by TagClass. The relationships

between entities are modeled as directed edges, except person KNOWS person is

modeled as an undirected edge. For example, Person connects to Tag by the

hasInterest edge. Forum connects to Person by two different edges, hasMember

and hasModerator.

LDBC SNB schema uses inheritance to model certain relationships:

• Message is the superclass of Post and Comment.

• Place is the superclass of City, Country, and Continent.

• Organization is the superclass of University and Company.

We do not use the superclasses in our graph model. When there is an edge type
connecting an entity to a superclass, we instead create an edge type from the entity to
each of the subclasses of the superclass. For example, Message has an isLocatedIn
relationship to Country. Since Message has two subclasses, Post and Comment, both
connected with Country by the isLocatedIn relationship, we create an edge type
IS_LOCATED_IN, connecting both vertex type pairs using the compound edge type

available in TigerGraph 3.0.

• CREATE DIRECTED EDGE IS_LOCATED_IN (FROM Comment, TO Country

| FROM Post, TO Country)

This new DDL syntax allows a general edge type to be defined over multiple vertex
pairs. For example, there are many relationships in the LDBC schema all called
isLocatedIn which connect something to a geographical entity. We can model them all
as a single edge type IS_LOCATED_IN. The result is a more succinct graph model and
less GSQL code when expressing pattern matching queries.

• CREATE DIRECTED EDGE IS_LOCATED_IN (FROM Comment, TO Country | FROM

Post, TO Country | FROM Company, TO Country | FROM Person, TO City | FROM

University, TO City) WITH REVERSE_EDGE="IS_LOCATED_IN_REVERSE"

The folowing nameing conventions are followed in the DDL language:

Schema Naming Conventions

5/13/25, 9:11 PM 3.3

211

• Vertex types

◦ For each entity in Figure 1 (the rectangular boxes), we create a vertex type

with the entity's name in UpperCamelCase.

◦ Examples

▪ Person is a person who participates in a forum.

▪ Forum is a place where persons discuss topics.

▪ City, Country, and Continent are geographic locations of other entities.

▪ Company and University are organizations with which a person can be

affiliated.

▪ Comment and Post are the interaction messages created by persons in a

forum.

▪ Tag is a topic or a concept.

▪ TagClass is a class or a category. TagClass can form a hierarchy of tags.

• Edge types

◦ For each relationship type, we create an edge type with the relationship

name (all capitalized and words are separated by an underscore).

◦ When multiple relationships share the same semantics in Figure 1, we merge

them into a single compound edge type. For example:

◦ Examples

▪ CONTAINER_OF: Forum is the container of posts.

▪ HAS_INTERESTS: Person has interest in tag(s).

▪ IS_SUBCLASS_OF: Tag is a subclass of another Tag.

▪ IS_LOCATED_IN: Comment or Post is located in Country, Company is

located in Country, Person is located in City, and University is located in

City.

Two GSQL scripts for defining the LDBC-SNB schema are shown below. Choose the

one that serve your needs. They are not equivalent if you have different

organizations using the same graph database instance.

GSQL Schema DDL

5/13/25, 9:11 PM 3.3

212

In this method, global vertex/edge type containers are created first. Next, graphs

are created to group them. In other words, the global vertex/edge type containers

can be shared across graphs.

Method 1. Bottom-up DDL

#LDBC-SNB schema

5/13/25, 9:11 PM 3.3

213

5/13/25, 9:11 PM 3.3

214

//clear the current catalog.
// It may take a while since it restarts the subsystem services.
DROP ALL

//create vertex types

Post and Comment
CREATE VERTEX Comment (PRIMARY_ID id UINT, creationDate DATETIME, location
 browserUsed STRING, content STRING, length UINT) WITH primary_id_as_at
CREATE VERTEX Post (PRIMARY_ID id UINT, imageFile STRING, creationDate DAT
 locationIP STRING, browserUsed STRING, lang STRING, content STRING,
 length UINT) WITH primary_id_as_attribute="TRUE"
organisation
CREATE VERTEX Company (PRIMARY_ID id UINT, name STRING, url STRING) WITH p
CREATE VERTEX University (PRIMARY_ID id UINT, name STRING, url STRING) WIT
place
CREATE VERTEX City (PRIMARY_ID id UINT, name STRING, url STRING) WITH prim
CREATE VERTEX Country (PRIMARY_ID id UINT, name STRING, url STRING) WITH p
CREATE VERTEX Continent (PRIMARY_ID id UINT, name STRING, url STRING) WITH
etc
CREATE VERTEX Forum (PRIMARY_ID id UINT, title STRING, creationDate DATETI
CREATE VERTEX Person (PRIMARY_ID id UINT, firstName STRING, lastName STRIN
 creationDate DATETIME, locationIP STRING, browserUsed STRING, speaks se
 WITH primary_id_as_attribute="TRUE"
CREATE VERTEX Tag (PRIMARY_ID id UINT, name STRING, url STRING) WITH prima
CREATE VERTEX TagClass (PRIMARY_ID id UINT, name STRING, url STRING) WITH

// create edge types
CREATE DIRECTED EDGE CONTAINER_OF (FROM Forum, TO Post) WITH REVERSE_EDGE=
CREATE DIRECTED EDGE HAS_CREATOR (FROM Comment|Post, TO Person) WITH REVER
CREATE DIRECTED EDGE HAS_INTEREST (FROM Person, TO Tag) WITH REVERSE_EDGE=
CREATE DIRECTED EDGE HAS_MEMBER (FROM Forum, TO Person, joinDate DATETIME)
CREATE DIRECTED EDGE HAS_MODERATOR (FROM Forum, TO Person) WITH REVERSE_ED
CREATE DIRECTED EDGE HAS_TAG (FROM Comment|Post|Forum, TO Tag) WITH REVERS
CREATE DIRECTED EDGE HAS_TYPE (FROM Tag, TO TagClass) WITH REVERSE_EDGE="H
CREATE DIRECTED EDGE IS_LOCATED_IN (FROM Comment, TO Country
 | FROM Post, TO Country
 | FROM Company, TO Country
 | FROM Person, TO City
 | FROM University, TO City) WITH REVERSE
CREATE DIRECTED EDGE IS_PART_OF (FROM City, TO Country
 | FROM Country, TO Continent) WITH REVERSE_
CREATE DIRECTED EDGE IS_SUBCLASS_OF (FROM TagClass, TO TagClass) WITH REVE
CREATE UNDIRECTED EDGE KNOWS (FROM Person, TO Person, creationDate DATETIM
CREATE DIRECTED EDGE LIKES (FROM Person, TO Comment|Post, creationDate DAT
CREATE DIRECTED EDGE REPLY_OF (FROM Comment, TO Comment|Post) WITH REVERSE
CREATE DIRECTED EDGE STUDY_AT (FROM Person, TO University, classYear INT)
CREATE DIRECTED EDGE WORK_AT (FROM Person, TO Company, workFrom INT) WITH

5/13/25, 9:11 PM 3.3

215

In this method, an empty graph is created first. Next, local vertex/edge type

containers are added to the empty graph via a schema change job. The vertex/egde

type containers added this way will be private to the graph, no other graph can see

them.

//create graph type
CREATE GRAPH ldbc_snb (*)

Method 2. Top-down DDL

#LDBC-SNB schema

5/13/25, 9:11 PM 3.3

216

5/13/25, 9:11 PM 3.3

217

//clear the current catalog.
// It may take a while since it restarts the subsystem services.
DROP ALL

1. Create graph
CREATE GRAPH ldbc_snb ()

2. Create schema_change job to include all vertex/edge types
CREATE SCHEMA_CHANGE JOB change_schema_of_ldbc FOR GRAPH ldbc_snb {

 ## Post and Comment
 ADD VERTEX Comment (PRIMARY_ID id UINT, creationDate DATETIME, locationI
 browserUsed STRING, content STRING, length UINT) WITH primary_id_as_at

 ADD VERTEX Post (PRIMARY_ID id UINT, imageFile STRING, creationDate DATE
 locationIP STRING, browserUsed STRING, lang STRING, content STRING,
 length UINT) WITH primary_id_as_attribute="TRUE";
 ## organisation
 ADD VERTEX Company (PRIMARY_ID id UINT, name STRING, url STRING) WITH pr
 ADD VERTEX University (PRIMARY_ID id UINT, name STRING, url STRING) WITH
 ## place
 ADD VERTEX City (PRIMARY_ID id UINT, name STRING, url STRING) WITH prima
 ADD VERTEX Country (PRIMARY_ID id UINT, name STRING, url STRING) WITH pr
 ADD VERTEX Continent (PRIMARY_ID id UINT, name STRING, url STRING) WITH
 ## etc
 ADD VERTEX Forum (PRIMARY_ID id UINT, title STRING, creationDate DATETI
 ADD VERTEX Person (PRIMARY_ID id UINT, firstName STRING, lastName STRIN
 creationDate DATETIME, locationIP STRING, browserUsed STRING, speaks se
 WITH primary_id_as_attribute="TRUE";
 ADD VERTEX Tag (PRIMARY_ID id UINT, name STRING, url STRING) WITH primar
 ADD VERTEX TagClass (PRIMARY_ID id UINT, name STRING, url STRING) WITH p

 // create edge types
 ADD DIRECTED EDGE CONTAINER_OF (FROM Forum, TO Post) WITH REVERSE_EDGE="
 ADD DIRECTED EDGE HAS_CREATOR (FROM Comment|Post, TO Person) WITH REVER
 ADD DIRECTED EDGE HAS_INTEREST (FROM Person, TO Tag) WITH REVERSE_EDGE=
 ADD DIRECTED EDGE HAS_MEMBER (FROM Forum, TO Person, joinDate DATETIME)
 ADD DIRECTED EDGE HAS_MODERATOR (FROM Forum, TO Person) WITH REVERSE_EDG
 ADD DIRECTED EDGE HAS_TAG (FROM Comment|Post|Forum, TO Tag) WITH REVERSE
 ADD DIRECTED EDGE HAS_TYPE (FROM Tag, TO TagClass) WITH REVERSE_EDGE="HA
 ADD DIRECTED EDGE IS_LOCATED_IN (FROM Comment, TO Country
 | FROM Post, TO Country
 | FROM Company, TO Country
 | FROM Person, TO City
 | FROM University, TO City) WITH REVERSE
 ADD DIRECTED EDGE IS_PART_OF (FROM City, TO Country
 | FROM Country, TO Continent) WITH REVERSE_
 ADD DIRECTED EDGE IS_SUBCLASS_OF (FROM TagClass, TO TagClass) WITH REVER

5/13/25, 9:11 PM 3.3

218

 ADD UNDIRECTED EDGE KNOWS (FROM Person, TO Person, creationDate DATETIME
 ADD DIRECTED EDGE LIKES (FROM Person, TO Comment|Post, creationDate DATE
 ADD DIRECTED EDGE REPLY_OF (FROM Comment, TO Comment|Post) WITH REVERSE_
 ADD DIRECTED EDGE STUDY_AT (FROM Person, TO University, classYear INT) W
 ADD DIRECTED EDGE WORK_AT (FROM Person, TO Company, workFrom INT) WITH R
}

3. Run schema_change job
RUN SCHEMA_CHANGE JOB change_schema_of_ldbc

4. Drop schema_change job
DROP JOB change_schema_of_ldbc

5/13/25, 9:11 PM 3.3

219

Load Data

Below, we use the GSQL loading language to define a loading job script, which

encodes all the mappings from the source CSV file (generated by the LDBC SNB

benchmark data generator) to our schema .

The script to load the LDBC-SNB data is below.

Define the Loading Job

GSQL script for loading LDBC-SNB data

5/13/25, 9:11 PM 3.3

https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/3.0/setup_schema.gsql
https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/3.0/setup_schema.gsql

220

5/13/25, 9:11 PM 3.3

221

USE GRAPH ldbc_snb
CREATE LOADING JOB load_ldbc_snb FOR GRAPH ldbc_snb {
 // define vertex
 DEFINE FILENAME v_comment_file;
 DEFINE FILENAME v_post_file;
 DEFINE FILENAME v_organisation_file;
 DEFINE FILENAME v_place_file;
 DEFINE FILENAME v_forum_file;
 DEFINE FILENAME v_person_file;
 DEFINE FILENAME v_tag_file;
 DEFINE FILENAME v_tagclass_file;

 // define edge
 DEFINE FILENAME forum_containerOf_post_file;
 DEFINE FILENAME comment_hasCreator_person_file;
 DEFINE FILENAME post_hasCreator_person_file;
 DEFINE FILENAME person_hasInterest_tag_file;
 DEFINE FILENAME forum_hasMember_person_file;
 DEFINE FILENAME forum_hasModerator_person_file;
 DEFINE FILENAME comment_hasTag_tag_file;
 DEFINE FILENAME post_hasTag_tag_file;
 DEFINE FILENAME forum_hasTag_tag_file;
 DEFINE FILENAME tag_hasType_tagclass_file;
 DEFINE FILENAME organisation_isLocatedIn_place_file;
 DEFINE FILENAME comment_isLocatedIn_place_file;
 DEFINE FILENAME post_isLocatedIn_place_file;
 DEFINE FILENAME person_isLocatedIn_place_file;
 DEFINE FILENAME place_isPartOf_place_file;
 DEFINE FILENAME tagclass_isSubclassOf_tagclass_file;
 DEFINE FILENAME person_knows_person_file;
 DEFINE FILENAME person_likes_comment_file;
 DEFINE FILENAME person_likes_post_file;
 DEFINE FILENAME comment_replyOf_comment_file;
 DEFINE FILENAME comment_replyOf_post_file;
 DEFINE FILENAME person_studyAt_organisation_file;
 DEFINE FILENAME person_workAt_organisation_file;

 // load vertex
 LOAD v_comment_file
 TO VERTEX Comment VALUES ($0, $1, $2, $3, $4, $5) USING header="true",
 LOAD v_post_file
 TO VERTEX Post VALUES ($0, $1, $2, $3, $4, $5, $6, $7) USING header="t
 LOAD v_organisation_file
 TO VERTEX Company VALUES ($0, $2, $3) WHERE $1=="company",
 TO VERTEX University VALUES ($0, $2, $3) WHERE $1=="university" USING
 LOAD v_place_file
 TO VERTEX City VALUES ($0, $1, $2) WHERE $3=="city",
 TO VERTEX Country VALUES ($0, $1, $2) WHERE $3=="country",

5/13/25, 9:11 PM 3.3

222

We have generated a data set with scale factor 1 (approximate 1GB). You can

download it from https://s3-us-west-1.amazonaws.com/tigergraph-benchmark-

dataset/LDBC/SF-1/ldbc_snb_data-sf1.tar.gz

After downloading the raw file, run the tar command below to decompress the

downloaded file.

After decompressing the file, you will see a folder named "ldbc_snb_data". Within it,

you will see two subfolders

• social_network

• substitution_parameters

The raw data is in the social_network folder.

 TO VERTEX Continent VALUES ($0, $1, $2) WHERE $3=="continent" USING he
 LOAD v_forum_file
 TO VERTEX Forum VALUES ($0, $1, $2) USING header="true", separator="|"
 LOAD v_person_file
 TO VERTEX Person VALUES ($0, $1, $2, $3, $4, $5, $6, $7, SPLIT($8,";")
 LOAD v_tag_file
 TO VERTEX Tag VALUES ($0, $1, $2) USING header="true", separator="|";
 LOAD v_tagclass_file
 TO VERTEX TagClass VALUES ($0, $1, $2) USING header="true", separator=

 // load edge
 LOAD forum_containerOf_post_file
 TO EDGE CONTAINER_OF VALUES ($0, $1) USING header="true", separator="|
 LOAD comment_hasCreator_person_file
 TO EDGE HAS_CREATOR VALUES ($0 Comment, $1) USING header="true", separ
 LOAD post_hasCreator_person_file
 TO EDGE HAS_CREATOR VALUES ($0 Post, $1) USING header="true", separato
 LOAD person_hasInterest_tag_file
 TO EDGE HAS_INTEREST VALUES ($0, $1) USING header="true", separator="|
 LOAD forum_hasMember_person_file
 TO EDGE HAS_MEMBER VALUES ($0, $1, $2) USING header="true", separator=
 LOAD forum_hasModerator_person_file
 TO EDGE HAS_MODERATOR VALUES ($0, $1) USING header="true", separator="
 LOAD comment_hasTag_tag_file
 TO EDGE HAS_TAG VALUES ($0 Comment, $1) USING header="true", separator
 LOAD post_hasTag_tag_file
 TO EDGE HAS_TAG VALUES ($0 Post, $1) USING header="true", separator="|
 LOAD forum_hasTag_tag_file
 TO EDGE HAS_TAG VALUES ($0 Forum, $1) USING header="true", separator="
 LOAD tag_hasType_tagclass_file
 TO EDGE HAS_TYPE VALUES ($0, $1) USING header="true", separator="|";
 LOAD organisation_isLocatedIn_place_file
 TO EDGE IS_LOCATED_IN VALUES ($0 Company, $1 Country) WHERE to_int($1)
 TO EDGE IS_LOCATED_IN VALUES ($0 University, $1 City) WHERE to_int($1)
 LOAD comment_isLocatedIn_place_file
 TO EDGE IS_LOCATED_IN VALUES ($0 Comment, $1 Country) USING header="tr
 LOAD post_isLocatedIn_place_file
 TO EDGE IS_LOCATED_IN VALUES ($0 Post, $1 Country) USING header="true"
 LOAD person_isLocatedIn_place_file
 TO EDGE IS_LOCATED_IN VALUES ($0 Person, $1 City) USING header="true",
 LOAD place_isPartOf_place_file
 TO EDGE IS_PART_OF VALUES ($0 Country, $1 Continent) WHERE to_int($0)
 TO EDGE IS_PART_OF VALUES ($0 City, $1 Country) WHERE to_int($0) > 110
 LOAD tagclass_isSubclassOf_tagclass_file
 TO EDGE IS_SUBCLASS_OF VALUES ($0, $1) USING header="true", separator=
 LOAD person_knows_person_file
 TO EDGE KNOWS VALUES ($0, $1, $2) USING header="true", separator="|";
 LOAD person_likes_comment_file

TO EDGE LIKES VALUES ($0, $1 Comment, $2) USING header="true", separat

wget https://s3-us-west-1.amazonaws.com/tigergraph-benchmark-dataset/LDBC/

tar -xzf ldbc_snb_data-sf1.tar.gz

Prepare The Raw Data

Run The Loading Job

Linux Bash

Linux Bash

5/13/25, 9:11 PM 3.3

https://s3-us-west-1.amazonaws.com/tigergraph-benchmark-dataset/LDBC/SF-1/ldbc_snb_data-sf1.tar.gz
https://s3-us-west-1.amazonaws.com/tigergraph-benchmark-dataset/LDBC/SF-1/ldbc_snb_data-sf1.tar.gz
https://s3-us-west-1.amazonaws.com/tigergraph-benchmark-dataset/LDBC/SF-1/ldbc_snb_data-sf1.tar.gz

223

Download setup_schema.gsql which combines the schema script and loading job

script shown before.

Specify the environment variable LDBC_SNB_DATA_DIR to point to your raw file

folder un-tarred in the previous section. In our example below, the raw data is in

/home/tigergraph/ldbc_snb_data/social_network, so we use the export shell

command to specify its location. Then, start your TigerGraph services if needed.

Finally, run the setup_schema.gsql script to create your LDBC Social Network

graph.

Download the loading job script and invoke it on the command line. #

 TO EDGE LIKES VALUES ($0, $1 Comment, $2) USING header true , separat
 LOAD person_likes_post_file
 TO EDGE LIKES VALUES ($0, $1 Post, $2) USING header="true", separator=
 LOAD comment_replyOf_comment_file
 TO EDGE REPLY_OF VALUES ($0, $1 Comment) USING header="true", separato
 LOAD comment_replyOf_post_file
 TO EDGE REPLY_OF VALUES ($0, $1 Post) USING header="true", separator="
 LOAD person_studyAt_organisation_file
 TO EDGE STUDY_AT VALUES ($0, $1, $2) USING header="true", separator="|
 LOAD person_workAt_organisation_file
 TO EDGE WORK_AT VALUES ($0, $1, $2) USING header="true", separator="|"
}

#change the directory to your raw file directory
export LDBC_SNB_DATA_DIR=/home/tigergraph/ldbc_snb_data/social_network/

#start all TigerGraph services
gadmin start all

#setup schema and loading job
gsql setup_schema.gsql

./load_data.sh

Linux Bash

Linux Bash

Sample Loading Progress Output

5/13/25, 9:11 PM 3.3

https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/3.0/setup_schema.gsql
https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/3.0/setup_schema.gsql
https://github.com/tigergraph/ecosys/blob/ldbc/ldbc_benchmark/tigergraph/gsql102/3.0/load_data.sh
https://github.com/tigergraph/ecosys/blob/ldbc/ldbc_benchmark/tigergraph/gsql102/3.0/load_data.sh

224

After loading, you can check the graph's size using built-in REST endpoint calls.

tigergraph/gsql_102$./load_data.sh
[Tip: Use "CTRL + C" to stop displaying the loading status update, then us
[Tip: Manage loading jobs with "ABORT/RESUME LOADING JOB jobid"]
Starting the following job, i.e.
 JobName: load_ldbc_snb, jobid: ldbc_snb.load_ldbc_snb.file.m1.1558053156
 Loading log: '/mnt/data/tigergraph/logs/restpp/restpp_loader_logs/ldbc_s

Job "ldbc_snb.load_ldbc_snb.file.m1.1558053156447" loading status
[FINISHED] m1 (Finished: 31 / Total: 31)
 [LOADED]
 +---
 |
 | /mnt/data/download/ldbc_snb_data/social_network/
 | /mnt/data/download/ldbc_snb_data/social_network/comment_hasCreator
 | /mnt/data/download/ldbc_snb_data/social_network/comment_has
 | /mnt/data/download/ldbc_snb_data/social_network/comment_isLocatedI
 | /mnt/data/download/ldbc_snb_data/social_network/comment_replyOf_
 | /mnt/data/download/ldbc_snb_data/social_network/comment_reply
 | /mnt/data/download/ldbc_snb_data/social_networ
 | /mnt/data/download/ldbc_snb_data/social_network/forum_container
 | /mnt/data/download/ldbc_snb_data/social_network/forum_hasMember
 | /mnt/data/download/ldbc_snb_data/social_network/forum_hasModerator
 | /mnt/data/download/ldbc_snb_data/social_network/forum_has
 | /mnt/data/download/ldbc_snb_data/social_network/organ
 |/mnt/data/download/ldbc_snb_data/social_network/organisation_isLocatedI
 | /mnt/data/download/ldbc_snb_data/social_network
 | /mnt/data/download/ldbc_snb_data/social_network/person_hasInter
 | /mnt/data/download/ldbc_snb_data/social_network/person_isLocatedI
 | /mnt/data/download/ldbc_snb_data/social_network/person_knows
 | /mnt/data/download/ldbc_snb_data/social_network/person_likes_
 | /mnt/data/download/ldbc_snb_data/social_network/person_lik
 | /mnt/data/download/ldbc_snb_data/social_network/person_studyAt_organ
 | /mnt/data/download/ldbc_snb_data/social_network/person_workAt_organ
 | /mnt/data/download/ldbc_snb_data/social_networ
 | /mnt/data/download/ldbc_snb_data/social_network/place_isPartO
 | /mnt/data/download/ldbc_snb_data/social_netwo
 | /mnt/data/download/ldbc_snb_data/social_network/post_hasCreator
 | /mnt/data/download/ldbc_snb_data/social_network/post_has
 | /mnt/data/download/ldbc_snb_data/social_network/post_isLocatedI
 | /mnt/data/download/ldbc_snb_data/social_netw
 | /mnt/data/download/ldbc_snb_data/social_network/tag_hasType_t
 | /mnt/data/download/ldbc_snb_data/social_network/t
 |/mnt/data/download/ldbc_snb_data/social_network/tagclass_isSubclassOf_t
 +---

5/13/25, 9:11 PM 3.3

225

Below we call two functions, stat_vertex_number and stat_edge_number to return

the cardinality of each vertex and edge type.

curl -X POST 'http://localhost:9000/builtins/ldbc_snb' -d '{"function":"s
curl -X POST 'http://localhost:9000/builtins/ldbc_snb' -d '{"function":"s

Linux shell

5/13/25, 9:11 PM 3.3

226

One-hop patterns

 Pattern matching by nature is declarative. It enables users to focus on specifying

what they want from a query without worrying about the underlying query

processing.

A pattern usually appears in the FROM clause, the most fundamental part of the

query structure. The pattern specifies sets of vertex types and how they are

connected by edge types. A pattern can be refined further with conditions in the

WHERE clause. In this tutorial, we'll start with simple one-hop path patterns, and

then extend it multi-hop patterns and finally multiple-path patterns.

Currently, pattern matching may only be used in read-only queries. DML support will
be added in the near future release.

Pattern matching queries support nested queries

The easiest way to understand patterns is to start with a simple 1-Hop pattern. Even

a single hop has several options. After we've tackled single hops, then we'll see how

to add repetition to make variable length patterns and how to connect single hops to

form bigger patterns.

In classic GSQL queries, described in GSQL 101, we used the punctuation -()->

in the FROM clause to indicate a 1-hop query, where the arrow specifies the vertex

flow from left to right, and () encloses the edge types.

Person:p -(LIKES:e)-> Message:m /* Classic GSQL example */

Introduction

1-Hop Pattern

5/13/25, 9:11 PM 3.3

227

In pattern matching, we use the punctuation -()- to denote a 1-hop pattern,

where the edge type(s) is enclosed in the parentheses () and the hyphens -

symbolize connection without specifying direction. Instead, directionality is explicitly

stated for each edge type.

• For an undirected edge E, no added decoration: E

• For a directed edge E from left to right, use a suffix: E>

• For a directed edge E from right to left, use a prefix: <E

 For example, in the LDBC SNB schema, there are two directed relationships between

Person and Message: person LIKES message, and message HAS_CREATOR person.

Despite the fact that these relationships are in opposite directions, we can include

both of them in the same pattern very concisely using an alternation separator | :

The underscore _ is a wildcard meaning any edge type. Arrowheads are still used

to indicate direction, e.g., _> or <_ or _

The empty parentheses () means any edge, directed or undirected.

Prior to TigerGraph 3.0, the source (leftmost) vertex set needed to be defined as an

explicit set, prior to the SELECT statement. A typical approach is shown here.

Beginning in TigerGraph 3.0, SYNTAX V2 treats the source vertex set the same as

the target vertex set. That is, the source or the target vertex set may be:

Person:p -((LIKES>|<HAS_CREATOR):e)- Message:m /* Pattern example

CREATE QUERY seedSet() FOR GRAPH ldbc_snb SYNTAX v1 {
 Source = {Person}; // Seed set
 SELECT t FROM Source:s -(IS_LOCATED_IN:e)- :t;
 PRINT t;
}

Edge Type Wildcards

Vertex Type Wildcards and Path Symmetry

Seed set definition required in classic GSQL

5/13/25, 9:11 PM 3.3

228

• a vertex type

SELECT t FROM Person:s -(IS_LOCATED_IN>:e) - City:t

• an alternation of vertex types

SELECT t FROM (Post|Comment):s -(IS_LOCATED_IN>:e) - Country:t

• omitted, with only an alias, meaning any vertex type

SELECT s FROM :s -(IS_LOCATED_IN>:e) - Country:t

• omitted, without an alias, meaning any vertex type

SELECT t FROM -(IS_LOCATED_IN>:e) - Country:t

Performance may be better when types are explicitly provided.

1. FROM X:x - (E1:e1) - Y:y

• E1 is an undirected edge, x and y bind to the end points of E1, and e1 is the

alias of E1.

2. FROM X:x - (E2>:e2) - Y:y

• Right directed edge x binds to the source of E2; y binds to the target of E2.

3. FROM X:x - (<E3:e3) - Y:y

• Left directed edge; y binds to the source of E3; x binds to the target of E3.

4. FROM X:x - (_:e) - Y:y

• Any undirected edge between a member of X and a member of Y.

5. FROM X:x - (_>:e) - Y:y

• Any right directed edge with source in X and target in Y.

6. FROM X:x - (<_:e) - Y:y

• Any left directed edge with source in Y and target in X.

7. FROM X:x - ((<_|_):e) - Y:y

• Any left directed or any undirected; "|" means OR, and parentheses enclose

the group of edge descriptors; e is the alias for the edge pattern (<_|_).

8. FROM X:x - ((E1|E2>|<E3):e) - Y:y

• Any one of the three edge patterns.

9. FROM X:x - () - Y:y

Examples of 1-Hop Patterns

5/13/25, 9:11 PM 3.3

229

• any edge (directed or undirected)

• Same as (<_|_>|_)

To use pattern matching, you need to either set a session parameter or specify it in

the query. There are currently two syntax versions for queries:

• "v1" is the classic syntax, traversing one hop per SELECT statement. This is the

default mode.

• "v2" enhances the v1 syntax with pattern matching.

You can use the SET command to assign a value to the syntax_version session

parameter: v1 for classic syntax; v2 for pattern matching. If the parameter is never

set, the classic v1 syntax is enabled. Once set, the selection remains valid for the

duration of the GSQL client session, or until it is changed with another SET

command.

You can also select the syntax by using the SYNTAX clause in the CREATE QUERY

statement: v1 for classic syntax (default); v2 for pattern matching. The query-level

SYNTAX option overrides the syntax_version session parameter.

SET syntax_version="v2"

Entering Pattern Match Syntax Mode

syntax_version Session Parameter

Query-Level SYNTAX option

GSQL: Set Syntax Version By A Session Parameter

GSQL: Set Syntax Version By Specifying The Version After Graph Name In The Query

5/13/25, 9:11 PM 3.3

230

In this tutorial, we will use Interpreted Mode for GSQL, introduced in TigerGraph 2.4.

Interpreted mode lets us skip the INSTALL step, and even run a query as soon as we

create it, to offer a more interactive experience. These one-step interpreted queries

are unnamed (anonymous) and parameterless, just like SQL.

To run an anonymous query, replace the keyword CREATE with INTERPRET.

Remember, no parameters:

Recommendation: Increase the query timeout threshold.

Interpreted queries may run slower than installed queries, so we recommend
increasing the query timeout threshold:

Example 1. Find persons who know the person named "Viktor Akhiezer" and return

the top 3 oldest such persons.

CREATE QUERY test10 (string str) FOR GRAPH ldbc_snb SYNTAX v2
{
 ...
}

INTERPRET QUERY () FOR GRAPH graph_name SYNTAX v2 { <query body> }

set query time out to 1 minutes
1 unit is 1 millisecond
SET query_timeout = 60000

Running Anonymous Queries Without
Installing

Examples of 1-Hop Fixed Length Query

GSQL: Set Longer Timeout

Example 1. Left Directed Edge Pattern

5/13/25, 9:11 PM 3.3

231

Syntax Enhancement in TigerGraph 3.0+

• In Example 1, "FOR GRAPH ldbc_snb" is not used after () in the query signature. It's

an optional component in 3.0+ when "USE GRAPH graphName" is used; Or from

the command line, "gsql -g graphName " precedes any query invocation.

• In the FROM clause, we directly use vertex type Person as the starting vertex set.

This syntax enhancement is available in syntax V2 only.

You can copy the above GSQL script to a file named example1.gsql and invoke this

script file in Linux.

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {
 #1-hop pattern.
 friends = SELECT p
 FROM Person:s -(KNOWS:e)- Person:p
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 ORDER BY p.birthday ASC
 LIMIT 3;

 PRINT friends[friends.firstName, friends.lastName, friends.birthday];
}

gsql example1.gsql

Linux Bash

Output of Example 1

5/13/25, 9:11 PM 3.3

232

Example 2. Find the total number of comments and total number of posts liked by

Viktor. A Person can reach Comments or Posts via a directed edge LIKES.

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "developer",
 "api": "v2"
 },
 "results": [{"friends": [
 {
 "v_id": "10995116279461",
 "attributes": {
 "friends.birthday": "1980-05-13 00:00:00",
 "friends.lastName": "Cajes",
 "friends.firstName": "Gregorio"
 },
 "v_type": "Person"
 },
 {
 "v_id": "4398046517846",
 "attributes": {
 "friends.birthday": "1980-04-24 00:00:00",
 "friends.lastName": "Glosca",
 "friends.firstName": "Abdul-Malik"
 },
 "v_type": "Person"
 },
 {
 "v_id": "6597069776731",
 "attributes": {
 "friends.birthday": "1981-02-25 00:00:00",
 "friends.lastName": "Carlsson",
 "friends.firstName": "Sven"
 },
 "v_type": "Person"
 }
]}]
}

Example 2. Right-directed Edge Pattern

5/13/25, 9:11 PM 3.3

233

You can copy the above GSQL script to a file named example2.gsql, and invoke this

script file in Linux.

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {
 SumAccum<int> @commentCnt= 0;
 SumAccum<int> @postCnt= 0;

 #1-hop pattern.
 Result = SELECT s
 FROM Person:s -(LIKES>)- :tgt
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 ACCUM CASE WHEN tgt.type == "Comment" THEN
 s.@commentCnt += 1
 WHEN tgt.type == "Post" THEN
 s.@postCnt += 1
 END;

 PRINT Result[Result.@commentCnt, Result.@postCnt];
}

gsql example2.gsql

Linux Bash

Output of Example 2.

5/13/25, 9:11 PM 3.3

234

Example 3. Solve the same problem as in Example 2, but use a left-directed edge

pattern.

Note below (line 8) that the source vertex set are now Comment and Post, and the

target is Person.

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "28587302323577",
 "attributes": {
 "Result.@commentCnt": 108,
 "Result.@postCnt": 51
 },
 "v_type": "Person"
 }]}]
}

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2{
 SumAccum<int> @commentCnt= 0;
 SumAccum<int> @postCnt= 0;

 Result = SELECT tgt
 FROM Person:tgt -(<LIKES_REVERSE)- (Comment|Post):src
 WHERE tgt.firstName == "Viktor" AND tgt.lastName == "Akhiezer"
 ACCUM CASE WHEN src.type == "Comment" THEN
 tgt.@commentCnt += 1
 WHEN src.type == "Post" THEN
 tgt.@postCnt += 1
 END;

 PRINT Result[Result.@commentCnt, Result.@postCnt];
}

Example 3. Left-directed Edge Pattern

5/13/25, 9:11 PM 3.3

235

You can copy the above GSQL script to a file named example3.gsql, and invoke this

script file in linux command line. The output should be the same as in Example 2.

Example 4. Find Viktor Akhiezer's total number of related comments and total

number of related posts. That is, a comment or post is either created by Viktor or is

liked by Viktor. Note that the HAS_CREATOR edge type starts from Comment|Post,

and the LIKES edge type starts from Person.

You can copy the above GSQL script to a file named example4.gsql, and invoke this

script file in Linux:

USE GRAPH ldbc_snb
set query_timeout=60000

INTERPRET QUERY () SYNTAX v2{
 SumAccum<int> @commentCnt= 0;
 SumAccum<int> @postCnt= 0;

 Result = SELECT tgt
 FROM Person:tgt -(<HAS_CREATOR|LIKES>)- (Comment|Post):src
 WHERE tgt.firstName == "Viktor" AND tgt.lastName == "Akhiezer"
 ACCUM CASE WHEN src.type == "Comment" THEN
 tgt.@commentCnt += 1
 WHEN src.type == "Post" THEN
 tgt.@postCnt += 1
 END;

 PRINT Result[Result.@commentCnt, Result.@postCnt];
}

gsql example4.gsql

Example 4. Disjunctive 1-hop edge pattern.

Linux Bash

Output of Example 4.

5/13/25, 9:11 PM 3.3

236

Example 5. Find the total number of comments or posts related to "Viktor Akhiezer".

This time, we count them together and, we use wildcard "_" to represent the two

types of edges: HAS_CREATOR and LIKES_REVERSE. Both are following the same

direction.

You can copy the above GSQL script to a file named example5.gsql, and invoke this

script file in Linux:

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "28587302323577",
 "attributes": {
 "Result.@commentCnt": 152,
 "Result.@postCnt": 96
 },
 "v_type": "Person"
 }]}]
}

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2{
 SumAccum<int> @@cnt= 0;

 Result = SELECT tgt
 FROM Person:tgt -(<_)- (Comment|Post):src
 WHERE tgt.firstName == "Viktor" AND tgt.lastName == "Akhiezer"
 ACCUM @@cnt += 1;

 PRINT @@cnt;
}

Example 5. Disjunctive 1-hop edge pattern.

Linux Bash

5/13/25, 9:11 PM 3.3

237

gsql example5.gsql

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 248}]
}

Output of Example 5.

5/13/25, 9:11 PM 3.3

238

Repeating a 1-Hop Pattern
A common pattern is the two-step "Friend of a Friend". Or, how many entities might

receive a message if it is passed up to three times? Do you have any known change

of connections to a celebrity?

GSQL pattern matching makes it easy to express such variable-length patterns

which repeat a single-hop. Everything else stays the same as introduced in the

previous section, except we append an asterisk (or Kleene star for you regular

expressionists) and an optional min..max range to an edge pattern.

• (E*) means edge type E repeats any number of times (including zero!)

• (E*1..3) means edge type E occurs one to three times.

Below are more illustrative examples:

• 1-hop star pattern — repetition of an edge pattern 0 or more times

1. FROM X:x - (E*) - Y:y

2. FROM X:x - (F>*) - Y:y

3. FROM X:x - (<G*) - Y:y

4. FROM X:x - (_*) - Y:y

• Any undirected edge can be chosen at each repetition.

5. FROM X:x - (_>*) - Y:y

• Any right-directed edge can be chosen at each repetition.

6. FROM X:x - (<_*) - Y:y

• Any left-directed edge can be chosen at each repetition.

7. FROM X:x - ((E|F>|<G)*) - Y:y

• Either E, F> or <G can be chosen at each repetition.

• 1-hop star pattern with bounds

1. FROM X:x - (E*2..) - Y:y

• Lower bounds only. There is a chain of at least 2 E edges.

2. FROM X:x - (F>*..3) - Y:y

• Upper bounds only. There is a chain of between 0 and 3 F edges.

5/13/25, 9:11 PM 3.3

239

3. FROM X:x - (<G*3..5) - Y:y

• Both Lower and Upper bounds. There is a chain of 3 to 5 G edges.

4. FROM X:x - ((E|F>|<G)*3) - Y:y

• Exact bound. There is a chain of exactly 3 edges, where each edge is

either E, F>, or <G.

• No alias allowed for edge with Kleene star

An edge alias may not be used when a Kleene star is used. The reason is that

when there are a variable number of edges, we cannot associate or bind the

alias to a specific edge in the pattern.

• Shortest path semantics

When an edge is repeated with a Kleene star, only the shortest matching

occurrences are selected. See the example below:

In Figure 2, or Pattern 1 - (E>*) - 4 , any of the following paths reach 4 from 1.

• 1->2->3->4

• 1->2->3->5->6->2->3->4

• any path that goes through the cycle 2->3->5->6->2 two or more times and

jumps out at 3.

The first path is shorter than the rest; it is considered the only match.

Figure 2 Shortest Path Illustration.

Remarks

5/13/25, 9:11 PM 3.3

240

In this tutorial, we will use the Interpreted Mode for GSQL, introduced in TigerGraph

2.4. Interpreted mode lets us skip the INSTALL step, and even run a query as soon

as we create it, to offer a more interactive experience. These one-step interpreted

queries are unnamed (anonymous) and parameterless, just like SQL.

Example 1. Find the direct or indirect superclass (including the self class) of the

TagClass whose name is "TennisPlayer".

You can copy the above GSQL script to a file named example1.gsql, and invoke this

script file in a Linux shell.

Note below that the starting vertex s, whose name is TennisPlayer, is also a match,

using a path with zero hops.

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {

 TagClass1 = SELECT t
 FROM TagClass:s - (IS_SUBCLASS_OF>*) - TagClass:t
 WHERE s.name == "TennisPlayer";

 PRINT TagClass1;
}

gsql example1.gsql

Examples of Variable Hop Queries

Example 1. Directed Edge Pattern Unconstrained Repetition

Linux Bash

Output of Example 1

5/13/25, 9:11 PM 3.3

241

5/13/25, 9:11 PM 3.3

242

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [
 {
 "v_id": "211",
 "attributes": {
 "name": "Person",
 "id": 211,
 "url": "http://dbpedia.org/ontology/Person"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "0",
 "attributes": {
 "name": "Thing",
 "id": 0,
 "url": "http://www.w3.org/2002/07/owl#Thing"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "149",
 "attributes": {
 "name": "Athlete",
 "id": 149,
 "url": "http://dbpedia.org/ontology/Athlete"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "59",
 "attributes": {
 "name": "TennisPlayer",
 "id": 59,
 "url": "http://dbpedia.org/ontology/TennisPlayer"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "239",

5/13/25, 9:11 PM 3.3

243

Example 2. Find the immediate superclass of the TagClass whose name is

"TennisPlayer". (This is equivalent to a 1-hop non-repeating pattern.)

You can copy the above GSQL script to a file named example2.gsql, and invoke this

script file in a Linux shell.

 "attributes": {
 "name": "Agent",
 "id": 239,
 "url": "http://dbpedia.org/ontology/Agent"
 },
 "v_type": "TagClass"
 }
]}]
}

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {

 TagClass1 = SELECT t
 FROM TagClass:s - (IS_SUBCLASS_OF>*1) - TagClass:t
 WHERE s.name == "TennisPlayer";

 PRINT TagClass1;
}

gsql example2.gsql

Exmaple 2. Exactly 1 Repetition of A Directed Edge

Linux Bash

Output of Example 2

5/13/25, 9:11 PM 3.3

244

Example 3. Find the 1 to 2 hops direct and indirect superclasses of the TagClass

whose name is "TennisPlayer".

You can copy the above GSQL script to a file named example3.gsql, and invoke this

script file in a Linux shell.

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [{
 "v_id": "149",
 "attributes": {
 "name": "Athlete",
 "id": 149,
 "url": "http://dbpedia.org/ontology/Athlete"
 },
 "v_type": "TagClass"
 }]}]
}

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {

 TagClass1 = SELECT t
 FROM TagClass:s - (IS_SUBCLASS_OF>*1..2) - TagClass:t
 WHERE s.name == "TennisPlayer";

 PRINT TagClass1;
}

gsql example3.gsql

Example 3. 1 to 2 Repetition Of A Directed Edge.

Linux Bash

Output of Example 3

5/13/25, 9:11 PM 3.3

245

Example 4. Find the superclasses within 2 hops of the TagClass whose name is

"TennisPlayer".

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [
 {
 "v_id": "149",
 "attributes": {
 "name": "Athlete",
 "id": 149,
 "url": "http://dbpedia.org/ontology/Athlete"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "211",
 "attributes": {
 "name": "Person",
 "id": 211,
 "url": "http://dbpedia.org/ontology/Person"
 },
 "v_type": "TagClass"
 }
]}]
}

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {

 TagClass1 = SELECT t
 FROM TagClass:s - (IS_SUBCLASS_OF>*..2) - TagClass:t
 WHERE s.name == "TennisPlayer";

 PRINT TagClass1;
}

Example 4. Up-to 2 Repetition Of A Directed Edge.

5/13/25, 9:11 PM 3.3

246

You can copy the above GSQL script to a file named example4.gsql, and invoke this

script file in a Linux shell.

gsql example4.gsql

Linux Bash

Output of Example 4

5/13/25, 9:11 PM 3.3

247

Example 5. Find the superclasses at least one hop from the TagClass whose name

is "TennisPlayer".

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [
 {
 "v_id": "211",
 "attributes": {
 "name": "Person",
 "id": 211,
 "url": "http://dbpedia.org/ontology/Person"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "149",
 "attributes": {
 "name": "Athlete",
 "id": 149,
 "url": "http://dbpedia.org/ontology/Athlete"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "59",
 "attributes": {
 "name": "TennisPlayer",
 "id": 59,
 "url": "http://dbpedia.org/ontology/TennisPlayer"
 },
 "v_type": "TagClass"
 }
]}]
}

Example 5. At Least 1 Repetition Of A Directed Edge.

5/13/25, 9:11 PM 3.3

248

You can copy the above GSQL script to a file named example5.gsql, and invoke this

script file in a Linux shell.

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {

 TagClass1 = SELECT t
 FROM TagClass:s - (IS_SUBCLASS_OF>*1..) - TagClass:t
 WHERE s.name == "TennisPlayer";

 PRINT TagClass1;
}

gsql example5.gsql

Linux Bash

Output of Example 5

5/13/25, 9:11 PM 3.3

249

5/13/25, 9:11 PM 3.3

250

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [
 {
 "v_id": "211",
 "attributes": {
 "name": "Person",
 "id": 211,
 "url": "http://dbpedia.org/ontology/Person"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "0",
 "attributes": {
 "name": "Thing",
 "id": 0,
 "url": "http://www.w3.org/2002/07/owl#Thing"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "149",
 "attributes": {
 "name": "Athlete",
 "id": 149,
 "url": "http://dbpedia.org/ontology/Athlete"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "239",
 "attributes": {
 "name": "Agent",
 "id": 239,
 "url": "http://dbpedia.org/ontology/Agent"
 },
 "v_type": "TagClass"
 }
]}]
}

5/13/25, 9:11 PM 3.3

251

Example 6. Find the 3 most recent comments that are liked or created by Viktor

Akhiezer, and the total number of comments related to (created or liked by) Viktor

Akhiezer.

You can copy the above GSQL script to a file named example6.gsql, and invoke this

script file in a Linux shell.

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2{
 SumAccum<INT> @@commentCnt = 0;

 # find top 3 latest comments that is liked or created by Viktor Akhiezer
 # and the total number of comments related to Viktor Akhiezer
 Top3Comments = SELECT p
 FROM Person:s - ((<HAS_CREATOR|LIKES>)*1) - Comment:p
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer
 ACCUM @@commentCnt += 1
 ORDER BY p.creationDate DESC
 LIMIT 3;

 PRINT Top3Comments;
 # total number of comments related to Viktor Akhiezer
 PRINT @@commentCnt;
}

gsql example6.gsql

Example 6. Disjunctive 1-Repetition Directed Edge.

Linux Bash

Output of Example 6

5/13/25, 9:11 PM 3.3

252

5/13/25, 9:11 PM 3.3

253

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [
 {"Top3Comments": [
 {
 "v_id": "2061584720640",
 "attributes": {
 "browserUsed": "Chrome",
 "length": 4,
 "locationIP": "194.62.64.117",
 "id": 2061584720640,
 "creationDate": "2012-09-06 06:46:31",
 "content": "fine"
 },
 "v_type": "Comment"
 },
 {
 "v_id": "2061586872389",
 "attributes": {
 "browserUsed": "Chrome",
 "length": 90,
 "locationIP": "31.216.177.175",
 "id": 2061586872389,
 "creationDate": "2012-08-28 14:54:46",
 "content": "About Hector Berlioz, his compositions Symphonie fan
 },
 "v_type": "Comment"
 },
 {
 "v_id": "2061590804929",
 "attributes": {
 "browserUsed": "Chrome",
 "length": 83,
 "locationIP": "194.62.64.117",
 "id": 2061590804929,
 "creationDate": "2012-09-04 16:16:56",
 "content": "About Muttiah Muralitharan, mit by nine degrees, fiv
 },
 "v_type": "Comment"
 }
]},

5/13/25, 9:11 PM 3.3

254

 {"@@commentCnt": 152}
]
}

5/13/25, 9:11 PM 3.3

255

Multiple Hop Patterns
and Accumulation

Repeating the same hop is useful sometimes, but the real power of pattern matching

comes from expressing multi-hop patterns, with specific characteristics for each

hop. For example, the well-known product recommendation phrase "People who

bought this product also bought this other product", is expressed by the following 2-

hop pattern:

As you see, a 2-hop pattern is a simple concatenation and merging of two 1-hop

patterns where the two patterns share a common endpoint. Below, Y:y is the

connecting end point.

Similarly, a 3-hop pattern concatenates three 1-hop patterns in sequence, each pair

of adjacent hops sharing one end point. Below, Y:y and Z:z are the connecting end

points.

FROM This_Product:p -(<Bought:b1)- Customer:c -(Bought>:b2)- Product:p2
WHERE p2 != p

FROM X:x - (E1:e1) - Y:y - (E2>:e2) - Z:z

FROM X:x - (E2>:e2) - Y:y - (<E3:e3) - Z:z - (E4:e4) - U:u

Multiple Hop Pattern Shortest Path
Semantics

2-hop pattern

3-hop pattern

5/13/25, 9:11 PM 3.3

256

In general, we can connect N 1-hop patterns into a N-hop pattern. The database will

search the graph topology to find subgraphs that match this N-hop pattern.

A multi-hop pattern has two endpoint vertex sets and one or more intermediate

vertex sets. If the query does not need to express any conditions for an intermediate

vertex set, then the vertex set can be omitted and the two surrounding edge sets

can be joined with a simple ".". For example, in the 2-hop pattern example above, if

we do not need to specify the type of the intermediate vertex Y, nor need to refer to

it in any of the query's other clauses (such as WHERE or ACCUM), then the pattern

can be reduced as follows:

Note that when we abbreviate that path in this way, we do not support aliases for the
edges or intermediate vertices in the abbreviated section.

If a pattern has a Kleene star to repeat an edge, GSQL pattern matching selects only

the shortest paths which match the pattern. If we did not apply this restriction,

computer science theory tells us that the computation time could be unbounded or

extreme (NP = non-polynomial, to be technical). If we instead matched ALL paths

regardless of length when a Kleene star is used without an upper bound, there could

be an infinite number of matches, if there are loops in the graph. Even without loops

or with an upper bound, the number of paths to check grows exponentially with the

number of hops.

FROM X:x - (E1.E2>) - Z:z

Unnamed Intermediate Vertex Set

Shortest Paths Only for Variable Length Patterns

5/13/25, 9:11 PM 3.3

257

For the pattern 1 - (_*) - 5 in Figure 3 above, you can see the following:

• There are TWO shortest paths: 1-2-3-4-5 and 1-2-6-4-5

◦ These have 4 hops, so we can stop searching after 4 hops. This makes the

task tractable.

• If we search for ALL paths which do not repeat any vertices:

◦ There are THREE non-repeated-vertex paths: 1-2-3-4-5, 1-2-6-4-5, and 1-2-

9-10-11-12-4-5

◦ The actual number of matches is small, but the number of paths is

theoretically very large.

• If we search for ALL paths which do not repeat any edges:

◦ There are FOUR non-repeated-edge paths: 1-2-3-4-5, 1-2-6-4-5, 1-2-9-10-

11-12-4-5, and 1-2-3-7-8-3-4-5

◦ The actual number of matches is small, but number of paths to consider is

NP.

• If we search for ALL paths with no restrictions:

◦ There are an infinite number of matches, because we can go around the 3-7-

8-3 cycle any number of times.

Figure 3. Shortest Path Illustration

5/13/25, 9:11 PM 3.3

258

In the early version of Pattern Matching (TigerGraph v2.4 to v2.6), there were a number
of restrictions on the WHERE, ACCUM and POST-ACCUM clauses In TigerGraph 3.0,
most of these restrictions are lifted.

Each vertex set or edge set in a pattern (except edges with Kleene stars) can have

an alias variable associated with it. When the query runs and finds matches, it

associates, or binds, each alias to the matching vertices or edges in the graph.

The SELECT clause specifies the output vertex set of a SELECT statement. For a

multiple-hop pattern, we can select any vertex alias in the pattern. The example

below shows the 4 possible choices for the given pattern:

#select starting end point x
SELECT x
FROM X:x-(E2>:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u;

#select y
SELECT y
FROM X:x-(E2>:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u;

#select z
SELECT z
FROM X:x-(E2>:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u;

#select ending end point u
SELECT u
FROM X:x-(E2>:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u;

Additional Details about Pattern Matching

SELECT Clause

FROM Clause

SELECT Clause Can Select Any Vertex Alias

5/13/25, 9:11 PM 3.3

259

For a multiple-hop pattern, if you don't need to refer to the intermediate vertex

points, you can just use "." to connect the edge patterns, giving a more succinct

representation. For example, below we remove y and z, and connect E2>, <E3 and

E4 using the period symbol. Note that you cannot have an alias for a multi-hop

sequence like E2>.<E3.E4.

Beginning with TigerGraph v3.0, each predicate (simple true/false condition) can

refer to any of the aliases in the path. As with any database query, more complex

conditions may not be as performant as simpler queries with simpler, more local

predicate conditions. Consider the pattern and query below:

#select starting end point x
SELECT x
FROM X:x-(E2>:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u;

#if we don't need to access y, z, we can write
SELECT u
FROM X:x-(E2>.<E3.E4)-U:u;

FROM X1:x1-(E1:e1)-X2:x2-(E2:e2)-X3:x3-(E3:e3)-X4:x4

(x1, e1, x2) belongs to the 1st-hop
(x2, e2, x3) belongs to the 2nd-hop
(x3, e3, x4) belongs to the last-hop
below x1.age > x2.age is a local predicate
x2.@cnt != x4.@cnt is a cross-hop predicate
(x1.salary + x3.salary) < x4.salary is a cross-hop predicate
SELECT x
FROM X1:x1-(E1:e1)-X2:x2-(E2:e2)-X3:x3-(E3:e3)-X4:x4
WHERE x1.age>x2.age AND x2.@cnt!=x4.@cnt AND (x1.salary+x3.salary)<x4.sala

WHERE Clause

Omitting intermediate vertex y and z.

WHERE Clause Support both Local Predicate and Cross-hop predicates.

5/13/25, 9:11 PM 3.3

260

GSQL's pattern matching syntax provides the essentials for a regular expression

language for paths in graphs. Consider the three basic requirements for a regular

expression language:

1. The empty set --> A path of length zero (no match)

2. Concatenation --> Form a path by adding one on two another. You can write an

N-hop pattern, and M-hop pattern, and then combine them to have a (N+M)-hop

pattern.

3. Alternation (either-or) --> You can use alternation for both vertex sets and edge

sets, e.g.

FROM (Source1 | Source2) -(Edge1> | <Edge 2)- (Target1 | Target2)
Note: This is not the same as

FROM (Source1 -(Edge1>)- Target 1) | (Source2 -(<Edge2)- Target 2)
The latter can be achieved by writing two SELECT query blocks and getting the

UNION of their results.

The point of pattern matching is to identity sets of graph entities that match your

input pattern. Once you've done that, GSQL enables you to do advanced and

efficient computation on that data, from simply counting the matches to advanced

algorithms and analytics. This section compares accumulation in the current Pattern

Matching syntax to earlier versions, but it does not attempt to explain accumulators

in full. You may want to consult the Accumulators Tutorial and and the GSQL

Language Reference's section on the ACCUM and POST-ACCUM clauses.

TigerGraph 3.0 removes the Pattern Matching (SYNTAX v2)-related restrictions on the

Path Patterns as a Regular Expression
Language

Working with Your Pattern Matches

ACCUM Clause

5/13/25, 9:11 PM 3.3

261

ACCUM and POST-ACCUM clause.

Just as in classic GSQL syntax, the ACCUM clause it executed once (in parallel) for

each set of vertices and edges in the graph which match the pattern and constraints

given in the FROM and WHERE clauses. You can think of FROM-WHERE as

producing a virtual table. The columns of this matching table are the alias variables

from the FROM clause pattern, and the rows are each possible set of vertex and

edge aliases (e.g. a path) which fit the pattern.

A simple pattern 1-hop pattern, which could be syntax v1 or v2, like this:

produces a match table with 3 columns: A, B, and C. Each row is a tuple (A,B,C)

where there is a has_lived_in edge B from a Person vertex A to a City vertex C.

We say that the match table provides a binding between the pattern aliases and

graph's vertices and edges. A multi-hop pattern simply has more columns than a 1-

hop pattern.

The ACCUM clause iterates through ALL matches. If you do not have an alias on every
vertex in the pattern, then the number of distinct matches may be less than that
number of matches.

For, example, consider

This asks who are the friends of friends of Andy@www.com. Suppose Andy knows

3 persons (Larry, Moe, and Curly) who know Wendy. The accumulator

C.@patternCount will be incremented 3 times for C = Wendy. This is similar to a SQL

SELECT C, COUNT(*) ... GROUP BY C query. There is no alias for the vertex in the

middle of KNOWS.KNOWS so the identities of Larry, Moe, and Curly cannot be

reported.

FROM Person:A -(IS_LOCATED_IN:B)- City:C

FROM Person:A -(KNOWS.KNOWS)- Person.C
WHERE C.email = "Andy@www.com"
ACCUM C.@patternCount += 1

5/13/25, 9:11 PM 3.3

262

As of TigerGraph 3.0, Pattern Matching (V2) syntax supports multiple POST-ACCUM
clauses.

At the end of the ACCUM clause, all the requested accumulation (+=) operators are

processed in bulk, and the updated values are now visible. You can now use POST-

ACCUM clauses to perform a second, different round of computation on the results

of your pattern matching.

The ACCUM clause executes for each full path that matches the pattern in the

FROM clause. In contrast, the POST-ACCUM clause executes for each vertex in

one vertex set (e.g. one vertex column in the matching table); its statements can

access the aggregated accumulator result computed in the ACCUM clause. New for

v3.0, if you want to perform per-vertex updates for more than one vertex alias, you

should use a separate POST-ACCUM clause for each vertex alias. The multiple

POST-ACCUM clauses are processed in parallel; it doesn't matter in what order you

write them. (For each binding, the statements within a clause are executed in order.)

For example, below we have two POST-ACCUM clauses. The first one iterates

through s, and for each s, we do s.@cnt2 += s.@cnt1 . The second POST-ACCUM

iterations through t.

POST-ACCUM Clause

5/13/25, 9:11 PM 3.3

263

which produces the result

However, the following is not allowed, since it involves two aliases (t and s) in one

POST-ACCUM clause.

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {

 SumAccum<int> @cnt1;
 SumAccum<int> @cnt2;

 R = SELECT s
 FROM Person:s-(LIKES>) -:msg - (HAS_CREATOR>)-Person:t
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 AND t.lastName LIKE "S%" AND year(msg.creationDate) == 2012
 ACCUM s.@cnt1 +=1 //execute this per match of the FROM pattern.
 POST-ACCUM s.@cnt2 += s.@cnt1 //execute once per s.
 POST-ACCUM t.@cnt2 +=1;//execute once per t

 PRINT R [R.firstName, R.lastName, R.@cnt1, R.@cnt2];
}

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [
 {"R": [{
 "v_id": "28587302323577",
 "attributes": {
 "R.firstName": "Viktor",
 "R.@cnt1": 3,
 "R.lastName": "Akhiezer",
 "R.@cnt2": 3
 },
 "v_type": "Person"
 }]},
]
}

5/13/25, 9:11 PM 3.3

264

Also, you may not use more than one alias in a single assignment. The following is

not allowed:

Example 1. Find the 3rd superclass of the Tag class whose name is "TennisPlayer".

You can copy the above GSQL script to a file named example1.gsql, and invoke this

script file in a Linux shell.

 POST-ACCUM t.@cnt1 += 1,
 s.@cnt1 += 1

 POST-ACCUM t.@cnt1 += s.@cnt + 1

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {

 TagClass1 =
 SELECT t
 FROM TagClass:s-(IS_SUBCLASS_OF>.IS_SUBCLASS_OF>.IS_SUBCLASS_OF>)-T
 WHERE s.name == "TennisPlayer";

 PRINT TagClass1;
}

gsql example1.gsql

Examples of Multiple Hop Pattern Match

Example1. Succinct Representation Of Multiple-hop Pattern

Linux Bash

Output of Example 1

5/13/25, 9:11 PM 3.3

265

Example 2. Find in which continents were the 3 most recent messages in Jan 2011

created.

You can copy the above GSQL script to a file named example2.gsql, and invoke this

script file in a Linux shell.

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [{
 "v_id": "239",
 "attributes": {
 "name": "Agent",
 "id": 239,
 "url": "http://dbpedia.org/ontology/Agent"
 },
 "v_type": "TagClass"
 }]}]
}

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2{

 SumAccum<String> @continentName;

 accMsgContinent =
 SELECT s
 FROM (Comment|Post):s-(IS_LOCATED_IN>.IS_PART_OF>)-Contin
 WHERE year(s.creationDate) == 2011 AND month(s.creationDa
 ACCUM s.@continentName = t.name
 ORDER BY s.creationDate DESC
 LIMIT 3;

 PRINT accMsgContinent;
}

Example1. Disjunction In A Succinct Representation Of Multiple-hop Pattern

5/13/25, 9:11 PM 3.3

266

gsql example2.gsql

Linux Bash

Output of Example 2

5/13/25, 9:11 PM 3.3

267

5/13/25, 9:11 PM 3.3

268

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"accMsgContinent": [
 {
 "v_id": "824640012997",
 "attributes": {
 "browserUsed": "Firefox",
 "length": 7,
 "locationIP": "27.112.21.246",
 "@continentName": "Asia",
 "id": 824640012997,
 "creationDate": "2011-01-31 23:54:28",
 "content": "no way!"
 },
 "v_type": "Comment"
 },
 {
 "v_id": "824636727408",
 "attributes": {
 "browserUsed": "Firefox",
 "length": 3,
 "locationIP": "31.2.225.17",
 "@continentName": "Europe",
 "id": 824636727408,
 "creationDate": "2011-01-31 23:57:46",
 "content": "thx"
 },
 "v_type": "Comment"
 },
 {
 "v_id": "824634837528",
 "attributes": {
 "imageFile": "",
 "browserUsed": "Internet Explorer",
 "length": 115,
 "locationIP": "87.251.6.121",
 "@continentName": "Asia",
 "id": 824634837528,
 "creationDate": "2011-01-31 23:58:03",
 "lang": "tk",
 "content": "About Adolf Hitler, iews. His writings and methods wer

5/13/25, 9:11 PM 3.3

269

Example 3. Find Viktor Akhiezer's favorite author of 2012 whose last name begins

with character 'S'. Also find how many LIKES Viktor has given to the author's post or

comment.

You can copy the above GSQL script to a file named example3.gsql, and invoke this

script file in a Linux shell.

 },
 "v_type": "Post"
 }
]}]
}

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2{
 SumAccum<int> @likesCnt;

 FavoriteAuthors =
 SELECT t
 FROM Person:s-(LIKES>) -:msg - (HAS_CREATOR>)-Person:t
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 AND t.lastName LIKE "S%" AND year(msg.creationDate)
 ACCUM t.@likesCnt +=1;

 PRINT FavoriteAuthors[FavoriteAuthors.firstName, FavoriteAuthors.lastNam
}

gsql example3.gsql

Example 3. Multiple-hop Pattern With Accumulator Applied To All Matched Paths

Linux Bash

Output of Example 3

5/13/25, 9:11 PM 3.3

270

We have shown how complex multi-hop patterns, containing even a conjunctive of

patterns, can be expressed in a single FROM clause of a single SELECT query.

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"FavoriteAuthors": [
 {
 "v_id": "8796093025410",
 "attributes": {
 "FavoriteAuthors.firstName": "Priyanka",
 "FavoriteAuthors.lastName": "Singh",
 "FavoriteAuthors.@likesCnt": 1
 },
 "v_type": "Person"
 },
 {
 "v_id": "2199023260091",
 "attributes": {
 "FavoriteAuthors.firstName": "Janne",
 "FavoriteAuthors.lastName": "Seppala",
 "FavoriteAuthors.@likesCnt": 1
 },
 "v_type": "Person"
 },
 {
 "v_id": "15393162796846",
 "attributes": {
 "FavoriteAuthors.firstName": "Mario",
 "FavoriteAuthors.lastName": "Santos",
 "FavoriteAuthors.@likesCnt": 1
 },
 "v_type": "Person"
 }
]}]
}

Multi-Block Queries

5/13/25, 9:11 PM 3.3

271

There are times, however, when it is better or necessary to write query as more than

one SELECT block. This could be because of the need to do computation and

decision matching in stages, to make the query easier to read, or to optimize

performance.

Regardless of the reason, GSQL has always supported writing procedural queries

containing multiple SELECT query blocks. Moreover, each SELECT statement

outputs a vertex set. This vertex set can be used in the FROM clause of an

subsequence SELECT block.

For example, if Set1, Set2, and Set3 were the outputs of three previous SELECT

blocks in this query, then each of these FROM clauses can take place later in the

query:

• FROM Set1:x1 -(mh1)- :x2 -(mh2)- Set3:x3

• FROM :x1 -(mh1)- :x2 -(mh2)- Set3:x3

• FROM Set2:x1 -(mh1)- :x2 -(mh2)- Set2:x3

Example 1. Find Viktor Akhiezer's liked messages' authors, whose last name starts

with letter S. Find these authors alumni count.

5/13/25, 9:11 PM 3.3

272

Example 2. Find Viktor Akhiezer's liked posts' authors A, and his liked comments'

authors B. Count the common universities that both A and B have members studied

at.

USE GRAPH ldbc_snb

a computed vertex set F is used to constrain the second pattern.
INTERPRET QUERY () SYNTAX v2 {

 SumAccum<int> @@cnt;

 F = SELECT t
 FROM :s -(LIKES>:e1)- :msg -(HAS_CREATOR>)- :t
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer" AND t.l

 Alumni = SELECT p
 FROM Person:p -(STUDY_AT>) -:u - (<STUDY_AT)- F:s
 WHERE s != p
 Per (p)
 POST-ACCUM @@cnt+=1;

 PRINT @@cnt;

}

#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 216}]
}

5/13/25, 9:11 PM 3.3

273

Example 3. Find Viktor Akhiezer's liked posts' authors A. See how many pair of

persons in A that one person likes a message authored by another person.

USE GRAPH ldbc_snb

#A and B are used to constraint the third pattern.
INTERPRET QUERY () SYNTAX v2 {

 SumAccum<int> @@cnt;

 A = SELECT t
 FROM :s -(LIKES>:e1)- Post:msg -(HAS_CREATOR>)- :t
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer" ;

 B = SELECT t
 FROM :s -(LIKES>:e1)- Comment:msg -(HAS_CREATOR>)- :t
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer" ;

 Univ = SELECT u
 FROM A:p -(STUDY_AT>) -:u - (<STUDY_AT)- B:s
 WHERE s != p
 Per (u)
 POST-ACCUM @@cnt+=1;

 PRINT @@cnt;

}

#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 4}]
}

5/13/25, 9:11 PM 3.3

274

Example 4. Find how many messages are created and liked by the same person

whose first name begins with letter T.

USE GRAPH ldbc_snb

a computed vertex set A is used twice in the second pattern.
INTERPRET QUERY () SYNTAX v2 {

 SumAccum<int> @@cnt;

 A = SELECT t
 FROM :s -(LIKES>:e1)- Post:msg -(HAS_CREATOR>)- :t
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer" ;

 A = SELECT p
 FROM A:p -(LIKES>) -:msg - (HAS_CREATOR>) - A:p2
 WHERE p2 != p
 Per (p, p2)
 ACCUM @@cnt +=1;

 PRINT @@cnt;

}

#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 14833}]
}

5/13/25, 9:11 PM 3.3

275

5/13/25, 9:11 PM 3.3

276

USE GRAPH ldbc_snb

the same alias is used twice in a pattern
INTERPRET QUERY () SYNTAX v2 {

 SumAccum<int> @@cnt;

 A = SELECT msg
 FROM :s -(LIKES>:e1)- :msg -(HAS_CREATOR>)- :s
 WHERE s.firstName LIKE "T%"
 PER (msg)
 ACCUM @@cnt +=1;

 PRINT @@cnt;

}
#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 207}]
}

#to further verify, we picked one message from the above query result.
#see if there exists a person who like her own message.
INTERPRET QUERY () SYNTAX v2 {

 R = SELECT s
 FROM :msg -(HAS_CREATOR>)- :s
 WHERE msg.id == 1374390714042;

 T = SELECT s
 FROM R:s -(LIKES>)- :msg
 WHERE msg.id == 1374390714042;

 PRINT R;
 PRINT T;

}

#result
{

5/13/25, 9:11 PM 3.3

277

 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [
 {"R": [{
 "v_id": "13194139533433",
 "attributes": {
 "birthday": "1985-11-26 00:00:00",
 "firstName": "Taras",
 "lastName": "Kofler",
 "gender": "female",
 "speaks": [
 "uk",
 "ro",
 "en"
],
 "browserUsed": "Internet Explorer",
 "locationIP": "31.131.28.133",
 "id": 13194139533433,
 "creationDate": "2011-01-29 01:14:27",
 "email": [
 "Taras13194139533433@gmail.com",
 "Taras13194139533433@yahoo.com"
]
 },
 "v_type": "Person"
 }]},
 {"T": [{
 "v_id": "13194139533433",
 "attributes": {
 "birthday": "1985-11-26 00:00:00",
 "firstName": "Taras",
 "lastName": "Kofler",
 "gender": "female",
 "speaks": [
 "uk",
 "ro",
 "en"
],
 "browserUsed": "Internet Explorer",
 "locationIP": "31.131.28.133",
 "id": 13194139533433,
 "creationDate": "2011-01-29 01:14:27",
 "email": [

"Taras13194139533433@gmail.com",

5/13/25, 9:11 PM 3.3

278

Example - A Recommender
We have demonstrated the basic pattern match syntax. You should have mastered

the basics by this point. In this section, we show two end-to-end solutions using the

pattern match syntax.

In this example, we want to recommend some messages (comments or posts) to the

person Viktor Akhiezer.

How do we do this?

One way is to find Others who likes the same messages Viktor likes. And then

recommend the messages that Others like but Viktor have not seen. The pattern is

roughly like below

• Viktor - (Likes>) - Message - (<Likes) - Others

• Others - (Likes>) - NewMessage

• Recommend NewMessage to Viktor

However, this is too fine granularity, and we are overfitting the message level data

with a collaborative filtering algorithm. The intuition is that two persons are similar to

each other when their "liked" messages fall into the same category (tag). This

makes more sense and common than finding two persons that "likes" the same set

of messages. As a result, one way to avoid this overfitting is to go one level above.

That is, instead of finding common messages as a similarity base, we find common

messages' tags as a similarity base. Person A and Person B are similar if they like

messages that belong to the same tag. This scheme fixes the overfitting problem. In

pattern match vocabulary, we have

• Viktor - (Likes>) - Message - (Has>) - Tag - (<Has) - Message - (<Likes) -

Others

• Others - (Likes>) - NewMessage

• Recommend NewMessage to Viktor

 Taras13194139533433@gmail.com ,
 "Taras13194139533433@yahoo.com"
]
 },
 "v_type": "Person"
 }]}
]
}

A Recommendation Application

5/13/25, 9:11 PM 3.3

279

GSQL. RecommendMessage Application.

This time, we create the query first, and interpret the query by calling the query

name with parameters.

If we are satisfied with this query, we can use "install query queryName" to get the

compiled query installed which has the best performance.

use graph ldbc_snb
set query_timeout=60000
DROP QUERY RecommendMessage

CREATE QUERY RecommendMessage (String fn, String ln) SYNTAX v2{

 SumAccum<int> @TagInCommon;
 SumAccum<float> @SimilarityScore;
 SumAccum<float> @Rank;
 OrAccum @Liked = false;

 #1. mark messages liked by Viktor
 #2. calculate log similarity score for each persons share the same
 # interests at Tag level.
 Others =
 SELECT p
 FROM Person:s-(LIKES>)-:msg - (HAS_TAG>.<HAS_TAG.<LIKES)- :p
 WHERE s.firstName == fn AND s.lastName == ln
 ACCUM msg.@Liked = true, p.@TagInCommon +=1
 POST-ACCUM p.@SimilarityScore = log (1 + p.@TagInCommon);

 # recommend new messages to Viktor that have not liked by him.
 RecommendedMessage =
 SELECT msg
 FROM Others:o-(LIKES>) - :msg
 WHERE msg.@Liked == false
 ACCUM msg.@Rank +=o.@SimilarityScore
 ORDER BY msg.@Rank DESC
 LIMIT 2;

 PRINT RecommendedMessage[RecommendedMessage.content, RecommendedMessag
}

INTERPRET QUERY RecommendMessage ("Viktor", "Akhiezer")
#try the second person with just parameter change.
INTERPRET QUERY RecommendMessage ("Adriaan", "Jong")

GSQL Recommendation Algorithm

5/13/25, 9:11 PM 3.3

280

You can copy the above GSQL script to a file named app1.gsql, and invoke this script

file in linux command line.

When you are satisfied with your query in the GSQL interpret mode, you can now

install it as a generic service which has a much faster speed. Since we have been

gsql app1.gsql

Using graph 'ldbc_snb'
The query RecommendMessage is dropped.
The query RecommendMessage has been added!
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"RecommendedMessage": [
 {
 "v_id": "549760294602",
 "attributes": {
 "RecommendedMessage.@Rank": 4855.49219,
 "RecommendedMessage.content": "About Indira Gandhi, Gandhi establi
 },
 "v_type": "Post"
 },
 {
 "v_id": "549760292109",
 "attributes": {
 "RecommendedMessage.@Rank": 4828.7251,
 "RecommendedMessage.content": "About Ho Chi Minh, nam, as an anti-
 },
 "v_type": "Post"
 }
]}]
}

Install the query

Linux Bash

Output of App1

5/13/25, 9:11 PM 3.3

281

using "CREATE QUERY .." syntax, the query is added into the catalog, we can set the

syntax version and install it.

#before install the query, need to set the syntax version
SET syntax_version="v2"
USE GRAPH ldbc_snb

#install query
INSTALL QUERY RecommendMessage

GSQL Prepare Install Query

GSQL Run the Installed Query

5/13/25, 9:11 PM 3.3

282

The above use log-cosine as a similarity measurement. We can also use cosine

similarity by using two persons liked messages.

GSQL > install query RecommendMessage
Start installing queries, about 1 minute ...
RecommendMessage query: curl -X GET 'http://127.0.0.1:9000/query/ldbc_snb/

[===
GSQL > run query RecommendMessage("Viktor", "Akhiezer")
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"RecommendedMessage": [
 {
 "v_id": "549760294602",
 "attributes": {
 "RecommendedMessage.@Rank": 4855.49219,
 "RecommendedMessage.content": "About Indira Gandhi, Gandhi establi
 },
 "v_type": "Post"
 },
 {
 "v_id": "549760292109",
 "attributes": {
 "RecommendedMessage.@Rank": 4828.7251,
 "RecommendedMessage.content": "About Ho Chi Minh, nam, as an anti-
 },
 "v_type": "Post"
 }
]}]
}

#when you are not using the TigerGraph System on your laptop,
to save resource, you can stop it by
gadmin stop
#when you need to start it again, use
gadmin start

Linux Bash: Shutdown The System

5/13/25, 9:11 PM 3.3

283

GSQL Recommendation Algorithm 2

5/13/25, 9:11 PM 3.3

284

5/13/25, 9:11 PM 3.3

285

use graph ldbc_snb
set query_timeout=60000
DROP QUERY RecommendMessage

CREATE QUERY RecommendMessage (String fn, String ln) SYNTAX v2{

 SumAccum<int> @MsgInCommon = 0;
 SumAccum<int> @MsgCnt = 0 ;
 SumAccum<int> @@InputPersonMsgCnt = 0;
 SumAccum<float> @SimilarityScore;
 SumAccum<float> @Rank;
 SumAccum<float> @TagCnt = 0;
 OrAccum @Liked = false;
 float sqrtOfInputPersonMsgCnt;

 #1. mark messages liked by input user
 #2. find common msg between input user and other persons
 Others =
 SELECT p
 FROM Person:s-(LIKES>)-:msg -(<LIKES)-:p
 WHERE s.firstName == fn AND s.lastName == ln
 ACCUM msg.@Liked = true, @@InputPersonMsgCnt += 1,
 p.@MsgInCommon += 1;

 sqrtOfInputPersonMsgCnt = sqrt(@@InputPersonMsgCnt);

 #calculate cosine similarity score.
 #|AxB|/(sqrt(Sum(A_i^2)) * sqrt(Sum(B_i^2)))
 Others =
 SELECT o
 FROM Others:o-(LIKES>)-:msg
 ACCUM o.@MsgCnt += 1
 POST-ACCUM o.@SimilarityScore = o.@MsgInCommon/(sqrtOfInputPersonM

 #recommend new messages to input user that have not liked by him.
 RecommendedMessage =
 SELECT msg
 FROM Others:o-(LIKES>) - :msg
 WHERE msg.@Liked == false
 ACCUM msg.@Rank +=o.@SimilarityScore
 ORDER BY msg.@Rank DESC
 LIMIT 3;

 PRINT RecommendedMessage[RecommendedMessage.content, RecommendedMessag
}

INTERPRET QUERY RecommendMessage ("Viktor", "Akhiezer")
#try the second person with just parameter change.

5/13/25, 9:11 PM 3.3

286

INTERPRET QUERY RecommendMessage ("Adriaan", "Jong")

5/13/25, 9:11 PM 3.3

287

Advanced Features
This section includes some advanced features related to pattern match. It includes

using the PER clause to fine control the ACCUM execution, DML support in pattern

match, and the conjunctive pattern match syntax which allows multiple patterns in

one FROM clause. We dedicate a subsection for each topic.

5/13/25, 9:11 PM 3.3

288

Per Clause (Beta)

Pattern matching produces a virtual match table, and the ACCUM clause acts like a

FOREACH loop, executing the clause's statement once for each row of the match

table.

Patterns are paths in the graphs, and each row in the match table is a distinct path.

However, paths may share some vertices or edges. Some applications do not want

to do aggregations per path. Instead, they want to execute the ACCUM clause per

distinct group of vertex aliases.

For example, consider the following query which counts the number of paths in a

simple 2-hop pattern:

Suppose the query produces the following match table.

By default, the ACCUM clause will execute the @@cnt += 1 statement 4 times, for

each row in the match table. The result will be @@cnt = 4 .

For the same query, what if the user wants to

• count the number of distinct path endings in the match table? For this case, we

would want to iterate on the alias t .

SumAccum<int> @@cnt;

S = SELECT t
 FROM S:s - (E1:edge1) - M:m -(E2:edge2) - T:t
 ACCUM @@cnt += 1;

(s, edge1, m , edge2, t)//match table schema
v1, e1, v3, e2, v2 //match 1
v1, e3, v4, e4, v2 //match 2
v5, e5, v6, e6, v7 //match 3
v8, e7, v9, e8, v7 //match 4

Introduction

5/13/25, 9:11 PM 3.3

289

• count the number of distinct (start, end) pairs in the match table? For that case,

we would want to iterate on distinct pairs of the aliases (s, t) .

To provide users with this added flexibility and finer control over ACCUM iteration,

TigerGraph 3.0 adds the PER clause to pattern matching (V2) syntax.

The PER Clause is an optional clause that comes at the start of the ACCUM clause in

a SELECT statement. As illustrated below, it starts with the keyword PER, and

followed by a pair of parenthesis, in which user can put one or more distinct vertex

aliases found in the FROM pattern.

Examples. Below are multiple examples of the PER Clause using the same FROM

clause.

selectBlock := SELECT alias
 FROM pattern
 [sampleClause]
 [whereClause]
 [[perClause] accumClause]
 [postAccumClause]*
 [havingClause]
 [orderClause]
 [limitClause]

perClause := PER (vertex_alias_1, vertex_alias_2, ...)

Syntax

5/13/25, 9:11 PM 3.3

290

The PER Clause specifies a list of vertex aliases, which are used to group the rows

in the match table, one group per distinct value of the alias or of the alias list. If there

are N distinct groups, we will execute the ACCUM clause N times, once per distinct

vertex aliases' binding. Note that the PER clause has no effect on POST-ACCUM

clauses semantic, except confining the POST-ACCUM vertex alias.

Suppose s, m, and t are vertex aliases in a pattern. Below are some interpretations

of the PER Clause based on the graph element bindings found in the match table.

• PER (s) ACCUM means that per each distinct s vertex, execute the ACCUM

clause once.

• PER (s,t) ACCUM means that per each distinct (s, t) pair, execute the ACCUM

clause once.

S1 = SELECT s
 FROM S:s - (E1:edge1) - M:m - (E2:edge2) - T:t
 PER (s)
 ACCUM @@cnt += 1;

S2 = SELECT t
 FROM S:s - (E1:edge1) - M:m - (E2:edge2) - T:t
 PER (t)
 ACCUM @@cnt += 1;

S3 = SELECT m
 FROM S:s - (E1:edge1) - M:m - (E2:edge2) - T:t
 PER (m)
 ACCUM @@cnt += 1;

S4 = SELECT t
 FROM S:s - (E1:edge1) - M:m - (E2:edge2) - T:t
 PER (s, t)
 ACCUM @@cnt += 1;

S5 = SELECT t
 FROM S:s - (E1:edge1) - M:m - (E2:edge2) - T:t
 PER (s, m, t)
 ACCUM @@cnt += 1;

Semantics

5/13/25, 9:11 PM 3.3

291

• PER (s,m,t) ACCUM means that per each distinct (s, m, t) tuple, execute the

ACCUM clause once.

Examples to show PER clause semantics.

5/13/25, 9:11 PM 3.3

292

If the PER Clause is used in a SELECT query block, then the vertex aliases used in the
SELECT, ACCUM , and POST-ACCUM clauses must be confined to the aliases that

//match table
(s, edge1, m , edge2, t)//schema
v1, e1, v3, e2, v2 //match 1
v1, e3, v4, e4, v2 //match 2
v5, e5, v6, e6, v7 //match 3
v8, e7, v9, e8, v7 //match 4

//since we have v1, v5, and v8 three distinct vertices bind to s,
//we execute ACCUM clause 3 times.
S1 = SELECT s
 FROM S:s - (E1:edge1) - M:m -(E2:edge2) - T:t
 PER (s)
 ACCUM @@cnt += 1;

//since we have v2, v7 two distinct vertices bind to t,
//we execute ACCUM clause twice.
S2 = SELECT t
 FROM S:s - (E1:edge1) - M:m -(E2:edge2) - T:t
 PER (t)
 ACCUM @@cnt += 1;

//since we have v3, v4, v6, v9 four distinct vertices bind to m,
//we execute ACCUM clause 4 times.
S3 = SELECT m
 FROM S:s - (E1:edge1) - M:m -(E2:edge2) - T:t
 PER (m)
 ACCUM @@cnt += 1;

//since we have (v1, v2), (v5, v7) and (v8, v7) three distinct vertex pair
//bind to (s,t), we execute ACCUM clause 3 times.
S4 = SELECT t
 FROM S:s - (E1:edge1) - M:m -(E2:edge2) - T:t
 PER (s, t)
 ACCUM @@cnt += 1;

//since we have (v1, v3, v2), (v1, v4, v2), (v5, v6, v7) and (v8, v9, v7)
//distinct vertex groups bind to (s,m,t), we execute ACCUM clause 4 times.
S5 = SELECT t
 FROM S:s - (E1:edge1) - M:m -(E2:edge2) - T:t
 PER (s, m, t)
 ACCUM @@cnt += 1;

5/13/25, 9:11 PM 3.3

293

appear in the PER clause.

Below are some illegal cases.

Example 1. Count the number of Countries that has a City which has a resident that

likes a post.

//semantic error. SELECT t, but t doesn't appear in PER clause.
S1 = SELECT t
 FROM S:s - (E1:edge1) - M:m -(E2:edge2) - T:t
 PER (s, m)
 ACCUM @@cnt += 1;

//semantic error. ACCUM t.@cnt, but t doesn't appear in PER clause.
S2 = SELECT t
 FROM S:s - (E1:edge1) - M:m -(E2:edge2) - T:t
 PER (s, m)
 ACCUM t.@cnt += 1;

//semantic error. POST-ACCUM t.@cnt, but t doesn't appear in PER clause.
S3 = SELECT s
 FROM S:s - (E1:edge1) - M:m -(E2:edge2) - T:t
 PER (s)
 ACCUM s.@cnt += 1
 POST-ACCUM t.@cnt =1;

PER Clause Examples

5/13/25, 9:11 PM 3.3

294

Example 2. Count the number of posts liked by a person who is located in a city that

belongs to a country. (All cities are in a country, but humor us. We are reusing the

same FROM pattern in several examples.)

//Example 1.
USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {
 SumAccum<int> @@cnt;

 R = SELECT c
 FROM Country:c -(<IS_PART_OF.<IS_LOCATED_IN.LIKES>)- Post:p
 PER (c)
 ACCUM @@cnt +=1;

 PRINT @@cnt;
}

//results
Using graph 'ldbc_snb'
The query AA is dropped.
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 111}]
}

5/13/25, 9:11 PM 3.3

295

Example 3. Find for each country in ("Dominican_Republic","Angola", "Cambodia")

the number of posts that is liked by a person living in that country.

//Example 2.
USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {
 SumAccum<int> @@cnt;

 R = SELECT p
 FROM Country:c -(<IS_PART_OF.<IS_LOCATED_IN.LIKES>)- Post:p
 PER (p)
 ACCUM @@cnt +=1;

 PRINT @@cnt;

//result
Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 70668}]
}

5/13/25, 9:11 PM 3.3

296

Example 4. Find for each country in ("Dominican_Republic","Angola", "Cambodia")

the number of posts that is liked by a person living in that country. Use local

accumulators this time.

//Exmaple 3
USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2{

 MapAccum<string, SumAccum<int>> @@postPerCountry;

 R = SELECT p
 FROM Country:c -(<IS_PART_OF.<IS_LOCATED_IN.LIKES>)- Post:p
 WHERE c.name in ("Dominican_Republic","Angola", "Cambodia")
 PER (c, p)
 ACCUM @@postPerCountry += (c.name -> 1);

 PRINT @@postPerCountry;
}

//results
Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@postPerCountry": {
 "Dominican_Republic": 395,
 "Angola": 12,
 "Cambodia": 4002
 }}]
}

5/13/25, 9:11 PM 3.3

297

5/13/25, 9:11 PM 3.3

298

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2{

 SumAccum<int> @postCnt;

 R = SELECT c
 FROM Country:c -(<IS_PART_OF.<IS_LOCATED_IN.LIKES>)- Post:p
 WHERE c.name in ("Dominican_Republic","Angola", "Cambodia")
 PER (c, p) //per (country, post), add 1 to c.@postCnt
 ACCUM c.@postCnt += 1;

 PRINT R;
}

//results
Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"R": [
 {
 "v_id": "2",
 "attributes": {
 "@postCnt": 12,
 "name": "Angola",
 "id": 2,
 "url": "http://dbpedia.org/resource/Angola"
 },
 "v_type": "Country"
 },
 {
 "v_id": "67",
 "attributes": {
 "@postCnt": 4002,
 "name": "Cambodia",
 "id": 67,
 "url": "http://dbpedia.org/resource/Cambodia"
 },
 "v_type": "Country"
 },
 {
 "v_id": "11",

5/13/25, 9:11 PM 3.3

299

The PER Clause not only helps users to control the semantics of the ACCUM clause,

it also boosts the performance of the pattern match query, as it uses the PER clause

to optimize the query execution.

To get the best performance, we recommend three guidelines for writing efficient

queries.

Per target is in general faster than Per source. In the example below, query q2 is

faster than q1. The only difference between these two queries is q2's FROM pattern

is the flip of q1's FROM pattern.

 "attributes": {
 "@postCnt": 395,
 "name": "Dominican_Republic",
 "id": 11,
 "url": "http://dbpedia.org/resource/Dominican_Republic"
 },
 "v_type": "Country"
 }
]}]
}

Performance and Best Practices

Use PER (target) If Possible

5/13/25, 9:11 PM 3.3

300

The match table is built by traversing the pattern from left to right. Follow the basic

principle of pruning early rather than late by orienting the query the smaller

cardinality set on the left. This practice will result in producing the least number of

candidate matches during the query computation. For example, if there are fewer

distinct tags than persons, then query q4 is faster than q3.

USE GRAPH ldbc_snb

not recommended, since it does per (src).
CREATE QUERY q1 () SYNTAX v2 {

 SumAccum<int> @@cnt ;

 T = SELECT c
 FROM Comment:c - (<LIKES) - Person:ps - (IS_LOCATED_IN>) - City:city
 WHERE year(c.creationDate) >= 2006
 PER (c)
 ACCUM @@cnt += 1;

 PRINT @@cnt;
}

recommended, since it does per (tgt)
CREATE QUERY q2 () SYNTAX v2 {

 SumAccum<int> @@cnt ;

 T = SELECT c
 FROM City:city - (<IS_LOCATED_IN) - Person:ps - (LIKES>) - Comment:c
 WHERE year(c.creationDate) >= 2006
 PER (c)
 ACCUM @@cnt += 1;

 PRINT @@cnt;
}

Write Patterns with Smallest Expected Vertex Set on the
Left

5/13/25, 9:11 PM 3.3

301

Specifying complete type information improves performance. For example, query q6

is faster than q5 even though they are known to be logically identical. Forum is the

CONTAINER_OF Post , so it does not need to be specified in q5, but explicitly saying

Forum in q6 speeds up performance.

USE GRAPH ldbc_snb

not recommended, since the pattern starts from a large cardinality verte
(Person), and ends at a small cardinality vertex type (Tag).
CREATE QUERY q3 () SYNTAX v2 {

 SumAccum<int> @cnt;

 V = SELECT s
 FROM Person:s- (LIKES>)-Post:p - (<CONTAINER_OF)-:f - (HAS_TAG>) - :
 PER (s)
 ACCUM s.@cnt += 1;

 PRINT V.size();
}

recommended, start from small cardinality end (Tag), and use per tgt
CREATE QUERY q4 () SYNTAX v2 {

 SumAccum<int> @cnt;

 V = SELECT s
 FROM Tag:t-(<HAS_TAG)-Forum:f -(CONTAINER_OF>)-Post:p - (<LIKES)- P
 PER (s)
 ACCUM s.@cnt += 1;

 PRINT V.size();
}

Specify Complete Type Information

5/13/25, 9:11 PM 3.3

302

Using the PER clause and linear regular path pattern, we have translated all of the

LDBC-SNB queries. You can find them on github at

https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries

_linear/queries . Most of the queries are installed as functions. You can find sample

parameter(s) of the functions from

https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries

/seeds .

USE GRAPH ldbc_snb

#we do not put Forum befoe :f, even if we know it.
CREATE QUERY q5 () SYNTAX v2 {

 SumAccum<int> @@person_cnt;

 V = SELECT s
 FROM Person:s- (LIKES>)-Post:p - (<CONTAINER_OF)-:f - (HAS_TAG>) - :
 PER (s)
 ACCUM @@person_cnt += 1;

 PRINT @@person_cnt;
}

#recommended: we put Forum as the type info.
CREATE QUERY q6 () SYNTAX v2 {

 SumAccum<int> @@person_cnt;

 V = SELECT s
 FROM Person:s- (LIKES>)-Post:p - (<CONTAINER_OF)-Forum:f - (HAS_TAG>
 PER (s)
 ACCUM @@person_cnt += 1;

 PRINT @@person_cnt;
}

LDBC Benchmark Queries

5/13/25, 9:11 PM 3.3

https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_linear/queries
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_linear/queries
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_linear/queries
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/seeds
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/seeds
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/seeds

303

Data Modification
Pattern Matching GSQL supports Insert, Update, and Delete operations. The syntax

is identical to that in classic GSQL (v1), though the full range of data modification

operations are not yet support.

In general, data modification can be at two levels in GSQL:

1. Top level. The statement does not need to within any other statement.

2. Within a SELECT query statement. The FROM-WHERE clauses define a match

table, and the data modification is performed based on the vertex and edge

information in the match table. The GSQL specifications calls these within-

SELECT statements DML-sub statements.

• Insert, Update, and Delete currently work in compiled mode only (e.g., you must

run INSTALL QUERY before RUN QUERY.) Data Modification in interpreted mode is

not yet available.

• SELECT queries with data modification may only have one POST-ACCUM clause.

Pattern matching Insert is supported at both the top-level and within-SELECT levels,

using the same syntax as in classic GSQL. You can insert vertices and edges.

• For a top-level statement, use INSERT INTO,

• Inside an ACCUM or POST-ACCUM clause, use the DML-sub INSERT statement.

Example 1. Create a Person vertex, whose name is Tiger Woods. Next, find Viktor's

favorite 2012 posts' authors, whose last name is prefixed with S. Finally, insert

KNOWS edges connecting Tiger Woods with Viktor's favorite authors.

Insert vertices and edges

5/13/25, 9:11 PM 3.3

304

5/13/25, 9:11 PM 3.3

305

USE GRAPH ldbc_snb

#find Viktor's 2012 favorite posts' authors, whose lastName prefix with S.
INTERPRET QUERY() SYNTAX V2 {

 R = SELECT t
 FROM Person:s -(LIKES>)- :msg -(HAS_CREATOR>)- Person:t
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 AND t.lastName LIKE "S%" AND year(msg.creationDate) == 2012;

 PRINT R[R.id, R.firstName, R.lastName];
}

#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"R": [
 {
 "v_id": "8796093025410",
 "attributes": {
 "R.id": 8796093025410,
 "R.firstName": "Priyanka",
 "R.lastName": "Singh"
 },
 "v_type": "Person"
 },
 {
 "v_id": "2199023260091",
 "attributes": {
 "R.id": 2199023260091,
 "R.firstName": "Janne",
 "R.lastName": "Seppala"
 },
 "v_type": "Person"
 },
 {
 "v_id": "15393162796846",
 "attributes": {
 "R.id": 15393162796846,
 "R.firstName": "Mario",
 "R.lastName": "Santos"
 },

5/13/25, 9:11 PM 3.3

306

You can verify the result by running a simple built-in REST endpoint.

Check the inserted vertex.

 "v_type": "Person"
 }
]}]
}

create a Person node, whose name is tiger,
and connect this Person with above Victor's favorite authors
CREATE QUERY InsertEdgeAndVertex () SYNTAX v2{

 #add a celebrity person node using INSERT INTO statement.
 INSERT INTO Person VALUES (100000000,"Tiger", "Woods", "m", _, _,_,_,_,_

 R = SELECT t
 FROM Person:s -(LIKES>)- :msg -(HAS_CREATOR>)- Person:t
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 AND t.lastName LIKE "S%" AND year(msg.creationDate) == 2012
 PER (s, t)
 ACCUM
 #add edges connecting "tiger" and t with a 6/1/2020 time stamp
 INSERT INTO KNOWS VALUES(100000000, t, to_datetime("2020-06-01")

 PRINT R [R.id, R.firstName, R.lastName];
}

INSTALL QUERY InsertEdgeAndVertex
RUN QUERY InsertEdgeAndVertex()

Linux Shell

5/13/25, 9:11 PM 3.3

307

Check the inserted edges.

#check the inserted vertex
curl -X GET "http://localhost:9000/graph/ldbc_snb/vertices/Person/10000000

#result
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 1
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_id": "100000000",
 "v_type": "Person",
 "attributes": {
 "id": 100000000,
 "firstName": "Tiger",
 "lastName": "Woods",
 "gender": "m",
 "birthday": "1970-01-01 00:00:00",
 "creationDate": "1970-01-01 00:00:00",
 "locationIP": "",
 "browserUsed": "",
 "speaks": [],
 "email": []
 }
 }
]
}

Linux file

5/13/25, 9:11 PM 3.3

308

5/13/25, 9:11 PM 3.3

309

#check the inserted edges using tiger's id (100,000,000)
curl -X GET "http://localhost:9000/graph/ldbc_snb/edges/Person/100000000/K
#result
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "KNOWS",
 "directed": false,
 "from_id": "100000000",
 "from_type": "Person",
 "to_id": "8796093025410",
 "to_type": "Person",
 "attributes": {
 "creationDate": "2020-06-01 00:00:00"
 }
 },
 {
 "e_type": "KNOWS",
 "directed": false,
 "from_id": "100000000",
 "from_type": "Person",
 "to_id": "2199023260091",
 "to_type": "Person",
 "attributes": {
 "creationDate": "2020-06-01 00:00:00"
 }
 },
 {
 "e_type": "KNOWS",
 "directed": false,
 "from_id": "100000000",
 "from_type": "Person",
 "to_id": "15393162796846",
 "to_type": "Person",
 "attributes": {
 "creationDate": "2020-06-01 00:00:00"
 }
 }
]
}
#note you can use the vertex lookup API to verify the three connected auth

5/13/25, 9:11 PM 3.3

310

To update vertex attributes, use assignment statements in a POST-ACCUM clause. To

update edge attributes, use assignment statements in an ACCUM clause. In addition,

data updates can only be performed if the FROM statement only contains a single-

hop and fix-length pattern.

Query-body level UPDATE statements are not yet supported in syntax v2.

Example 2. For all KNOWS edges that connect Viktor Akhiezer and his friends whose

lastName begins with "S", update the edge creationDate to "2020-10-01". Also,

for the Person vertex (Tiger Woods) update the vertex's creationDate and language

he speaks.

curl -X GET "http://localhost:9000/graph/ldbc_snb/vertices/Person/87960930

Update data

5/13/25, 9:11 PM 3.3

311

To verify the update, we can use REST calls.

Check Tiger Woods' creationDate and language he speaks.

USE GRAPH ldbc_snb

DROP QUERY UpdateKnowsTS

CREATE QUERY UpdateKnowsTS () SYNTAX v2 {

 # update the vertex tiger's attributes
 # creationDate and languages spoken in POST-ACCUM
 R = SELECT p
 FROM Person:p
 WHERE p.firstName == "Tiger" AND p.lastName == "Woods"
 POST-ACCUM
 # update simple base type attribute
 p.creationDate = to_datetime("2020-6-1"),
 # update collection-type attribute
 p.speaks = ("english", "golf");

 #DML-sub level, update KNOWS edge attribute "creationDate" in ACCUM
 R = SELECT t
 FROM Person:s-(KNOWS:e) -:t
 WHERE s.firstName == "Tiger" and s.lastName == "Woods"
 #update the KNOWS edge time stamp
 ACCUM e.creationDate = to_datetime("2020-10-01");
}

INSTALL QUERY UpdateKnowsTS
RUN QUERY UpdateKnowsTS()

Linux Shell

5/13/25, 9:11 PM 3.3

312

Check KNOWS edges whose source is tiger woods.

curl -X GET "http://localhost:9000/graph/ldbc_snb/vertices/Person/10000000
#result
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_id": "100000000",
 "v_type": "Person",
 "attributes": {
 "id": 100000000,
 "firstName": "Tiger",
 "lastName": "Woods",
 "gender": "m",
 "birthday": "1970-01-01 00:00:00",
 "creationDate": "2020-06-01 00:00:00",
 "locationIP": "",
 "browserUsed": "",
 "speaks": [
 "english",
 "golf"
],
 "email": []
 }
 }
]
}

Linux Shell

5/13/25, 9:11 PM 3.3

313

curl -X GET "http://localhost:9000/graph/ldbc_snb/edges/Person/100000000/K

#result
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "KNOWS",
 "directed": false,
 "from_id": "100000000",
 "from_type": "Person",
 "to_id": "8796093025410",
 "to_type": "Person",
 "attributes": {
 "creationDate": "2020-10-01 00:00:00"
 }
 },
 {
 "e_type": "KNOWS",
 "directed": false,
 "from_id": "100000000",
 "from_type": "Person",
 "to_id": "2199023260091",
 "to_type": "Person",
 "attributes": {
 "creationDate": "2020-10-01 00:00:00"
 }
 },
 {
 "e_type": "KNOWS",
 "directed": false,
 "from_id": "100000000",
 "from_type": "Person",
 "to_id": "15393162796846",
 "to_type": "Person",
 "attributes": {
 "creationDate": "2020-10-01 00:00:00"
 }
 }
]
}

5/13/25, 9:11 PM 3.3

314

You can use delete () function to delete edges and vertices in ACCUM and POST-

ACCUM clauses.

• Top-levels DELETE statements are not yet supported in SYNTAX v2.

• Edges can only be deleted in the ACCUM clause.

• For best performance, vertices should be deleted in the POST-ACCUM clause.

• To perform within-SELECT deletes, the FROM pattern can only be a single hop,

fixed length pattern.

Example 3. Delete vertex Tiger Woods and its KNOWS edges.

To verify the result, you can use built-in REST calls.

USE GRAPH ldbc_snb

DROP QUERY DeleteEdgeAndVertex

CREATE QUERY DeleteEdgeAndVertex () SYNTAX v2{

 R = SELECT t
 FROM Person:s -(KNOWS:e)- Person:t
 WHERE s.firstName == "Tiger" AND s.lastName == "Woods"
 ACCUM
 //delete edges
 DELETE(e)
 POST-ACCUM DELETE(s); //delete src vertex

 PRINT R [R.id, R.firstName, R.lastName];
}

INSTALL QUERY DeleteEdgeAndVertex
RUN QUERY DeleteEdgeAndVertex()

Delete vertices and edges

5/13/25, 9:11 PM 3.3

315

curl -X GET "http://localhost:9000/graph/ldbc_snb/vertices/Person/10000000
#vertexresults
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": true,
 "message": "The input vertex id '100000000' is not a valid vertex id for
 "code": "601"
}

curl -X GET "http://localhost:9000/graph/ldbc_snb/edges/Person/100000000/K
#edge results
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": true,
 "message": "The input source_vertex_id '100000000' is not a valid vertex
 "code": "601"
}

5/13/25, 9:11 PM 3.3

316

Conjunctive Pattern Matching (Beta)

So far, we have described pattern matching as one path pattern in a FROM clause.

In this section, we introduce GSQL's capability to match multiple patterns in one

FROM clause. This extension is called Conjunctive Pattern Matching (CPM),

because the query asks for the conjunction (logical AND) of the patterns. To get a

match, all of the patterns must be satisfied, and the patterns can interrelate.

Visually, you can think of patterns formed by a set of intersecting line segments.

This feature, introduced as a Beta feature in TigerGraph 3.0, enables you to express

complex patterns concisely in a single query block.

In general, a CPM query block consists of multiple patterns in the FROM clause. It

has a structure illustrated below.

We elaborate on each of the clause.

The SELECT clause selects only one vertex alias from all the patterns in the FROM

clause.

SelectBlock := SELECT alias
 FROM pattern
 [sampleClause]
 [whereClause]
 [[perClause] accumClause]
 [postAccumClause]*
 ...

pattern := vertexPattern | edgePattern | (pathPattern ["," pathPattern])
vertexPattern and edgePattern are from classic GSQL

What is Conjunctive Pattern Matching?

SELECT Clause

Conjunctive Pattern Matching Syntax

5/13/25, 9:11 PM 3.3

317

This is where the conjunctive matching is expressed. The FROM clause consists of a

list of path patterns, which are separated by commas. Evaluating each pattern

against the underlying graph data produces a match table. If two patterns share a

vertex alias, then we form the natural join of the two match tables.

For example, consider this CPM:

The first pattern's variables are x, e1, y, e2, and z; the second pattern's variables are

z, e3, u, e4, and v. Considering the two patterns independently would yield the

follwing match table schemas:

Natural joining two match tables compares all the shared vertex aliases between the

two tables, and the resulting joined table contains all non-shared variables plus one

copy of each of the shared vertex variables. Here is the match table for the CPM

above:

The match table of the conjunctive pattern match is the natural join of all the

patterns' match tables. By design, a row in the CPM match table must

simultaneously satisfy all the match tables.

FROM X:x - (E1:e1) - Y:y - (E2>:e2) - Z:z,
 Z:z - (E3:e3) - U:u - (E4>:e4) - V:v

#first match table
(x, e1, y, e2, z)
#second match table
(z, e3, u, e4, v)

#natural join result; the shared vertex variable z appears once.
(x, e1, y, e2, z, e3, u, e4, v)

FROM Clause - Conjunctive Matching

Natural Join of Match Tables

Valid Conjunctive Patterns

5/13/25, 9:11 PM 3.3

318

If the match tables of the patterns in a FROM clause can be naturally joined into one

match table, then the FROM clause has a valid CPM input. Otherwise, the FROM

clause has an invalid pattern input list.

For example, below we show two valid CPM inputs and one invalid CPM input.

The predicates in the WHERE clause can use any of the vertex or edge aliases in

any of the patterns, including predicates which combine variables from different

constituent paths. CPM queries do not have any special restrictions on the WHERE

predicate. Distance matters, however, for performance. Conditions that are local,

measured both cross-path and within-path, can be resolved earlier and therefore

are faster.

In the example below, x2.age > x4.age is a cross-pattern predicate, e1.timestamp

< e3.timestamp is a cross-pattern predicate, and x1.gender == x4.gender is a

local predicate of the second pattern.

a valid CPM, since the two patterns natrually join on :tgt
SELECT
FROM Person:p - (KNOWS) - :tgt,
 Post:s -(<LIKES) - :tgt

a valid CPM, since the two patterns naturally join on :f
SELECT
FROM Person:p - (KNOWS) - :f - (LIKES>) - Post:tgt,
 :f - (LIKES>) - Comment:c

an invalid CPM, since the two patterns do not share any vertex variables
they cannot be naturally joined.
One pattern has (p, tgt); the other has (s, t).
SELECT
FROM Person:p - (KNOWS) - :tgt,
 Post:s - (<LIKES) - Person:t

FROM X1:x1-(E1:e1)-X2:x2-(E2:e2)-X3:x3,
 X1:x1-(E3:e3)-X4:x4
WHERE x2.age > x4.age AND e1.timestamp < e3.timestamp AND x1.gender == x4.

WHERE Clause

5/13/25, 9:11 PM 3.3

319

You can ACCUM to any vertex variable in a CPM block.

The ACCUM clause by default will execute as many times as the row (match) count

of the CPM match table; each execution uses one row from the match table.

POST-ACCUM for CPM behaves the same as POST-ACCUM for single path patterns.

That is, each POST-ACCUM clause can refer to one vertex alias, and the clause

executes iteratively over that vertex set (e.g. one vertex column in the matching

table). Its statements can access the aggregated accumulator result computed in

the ACCUM clause. The query can have multiple POST-ACCUM clauses, one for

each vertex alias you wish to work on. The multiple POST-ACCUM clauses are

processed in parallel; it doesn't matter in what order you write them. (For each

binding, the statements within a clause are executed in order.)

For example, below we have three POST-ACCUM clauses. The first one iterates

through x1 , and for each x1, we do @@cnt += x1.@cnt . The second and third

POST-ACCUMs iterate through x2 and x3 respectively, and accumulates their

@cnt accumulator value into @@cnt .

#accum to x1, x2 and x4.
FROM X1:x1-(E1:e1)-X2:x2-(E2:e2)-X3:x3,
 X1:x1-(E3:e3)-X4:x4
ACCUM x1.@cnt +=1, x2.@cnt += x3.quantity, x4.@cnt += x3.quantity

ACCUM Clause

POST-ACCUM Clause

ACCUM To The Three Vertex Variables of A CPM Pattern

POST-ACCUM to a global accumulator @@cnt, using three CPM Vertex Variables

5/13/25, 9:11 PM 3.3

320

Example 1. Find Viktor Akhiezer's liked messages (100+ days after their creation)

whose author's last name begin with letter S. Output the message's forum.

FROM X1:x1-(E1:e1)-X2:x2-(E2:e2)-X3:x3,
 X1:x1-(E3:e3)-X4:x4
ACCUM x1.@cnt +=1, x2.@cnt += x3.quantity, x4.@cnt += x3.quantity
POST-ACCUM @@cnt += x1.@cnt
POST-ACCUM @@cnt += x2.@cnt
POST-ACCUm @@cnt += x3.@cnt;

Examples

5/13/25, 9:11 PM 3.3

321

Example 2. Find any authors who wrote posts that Viktor Akhiezer's liked and

whose last name begins with S. Find the country for each of these authors and

report on the countries.

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {

 SumAccum<int> @@cnt;

 F = SELECT f
 FROM Person:s - (LIKES>:e1) - :msg - (HAS_CREATOR>) - Person:t,
 Forum:f - (CONTAINER_OF>:e2) - :msg
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 AND t.lastName LIKE "S%"
 AND e1.creationDate >DATETIME_ADD(msg.creationDate, INTERVAL

 PRINT F;
}

#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"F": [{
 "v_id": "962072688797",
 "attributes": {
 "id": 962072688797,
 "title": "Album 12 of Mario Santos",
 "creationDate": "2011-04-12 09:36:50"
 },
 "v_type": "Forum"
 }]}]
}

5/13/25, 9:11 PM 3.3

322

Example 3. Given a TagClass and a Country, find all the Forums created in the given

Country, containing at least one Post with Tags belonging directly to the given

TagClass. The location of a Forum is identified by the location of the Forumʼs

moderator.

USE GRAPH ldbc_snb

INTERPRET QUERY () SYNTAX v2 {

 SumAccum<int> @@cnt;

 C = SELECT ctry
 FROM Person:s - (LIKES>:e1) - Post:msg - (HAS_CREATOR>) - Person:t
 :t - (WORK_AT>:e2) - Company:c,
 :c - (IS_LOCATED_IN>) - Country:ctry
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 AND t.lastName LIKE "S%" ;

 PRINT C;
}

#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"C": [{
 "v_id": "93",
 "attributes": {
 "name": "Portugal",
 "id": 93,
 "url": "http://dbpedia.org/resource/Portugal"
 },
 "v_type": "Country"
 }]}]
}

5/13/25, 9:11 PM 3.3

323

USE GRAPH ldbc_snb

DROP QUERY bi_4

CREATE QUERY bi_4(string tcName, string cName) for graph ldbc_snb syntax v
 SetAccum<vertex<Post>> @postSet;
 SumAccum<int> @personId, @postCount;

 ForumSet =
 SELECT f
 FROM Forum:f -(HAS_MODERATOR>)- Person:a -(IS_LOCATED_IN>.IS_PART_OF>)
 :f -(CONTAINER_OF>)- Post:p -(HAS_TAG>.HAS_TYPE>)- TagClass:tc
 WHERE c.name == cName and tc.name == tcName
 ACCUM f.@personId = a.id, f.@postSet += p
 POST-ACCUM f.@postCount = f.@postSet.size(), f.@postSet.clear()
 ORDER BY f.@postCount DESC, f.id ASC
 LIMIT 3;

 PRINT ForumSet[ForumSet.id, ForumSet.title, ForumSet.creationDate,
 ForumSet.@personId, ForumSet.@postCount];
}

5/13/25, 9:11 PM 3.3

324

5/13/25, 9:11 PM 3.3

325

INSTALL QUERY bi_4

RUN QUERY bi_4("MusicalArtist", "Burma")

#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"ForumSet": [
 {
 "v_id": "81903",
 "attributes": {
 "ForumSet.title": "Wall of Donald Steele-Perkins",
 "ForumSet.@personId": 5226,
 "ForumSet.id": 81903,
 "ForumSet.@postCount": 65,
 "ForumSet.creationDate": "2010-02-15 06:48:04"
 },
 "v_type": "Forum"
 },
 {
 "v_id": "137438953686",
 "attributes": {
 "ForumSet.title": "Wall of Eric Law-Yone",
 "ForumSet.@personId": 2199023262994,
 "ForumSet.id": 137438953686,
 "ForumSet.@postCount": 65,
 "ForumSet.creationDate": "2010-04-25 22:10:32"
 },
 "v_type": "Forum"
 },
 {
 "v_id": "687194810508",
 "attributes": {
 "ForumSet.title": "Wall of Hector Hugh Michie",
 "ForumSet.@personId": 10995116283784,
 "ForumSet.id": 687194810508,
 "ForumSet.@postCount": 39,
 "ForumSet.creationDate": "2010-12-19 15:33:30"
 },
 "v_type": "Forum"
 }
]}]

5/13/25, 9:11 PM 3.3

326

Example 4. For a given country, count all the distinct triples of Persons such that:

• a is a friend of b.

• b is a friend of c

• c is a friend of a.

Distinct means that if a certain 3 vertices appear once in the results, it will not be

repeated: it will appear only once. KNOWS is an undirected relationship, so it

doesn't matter in what order we list the 3 vertices.

}

5/13/25, 9:11 PM 3.3

327

More Examples. We translated LDBC-SNB BI and IC queries using CPM, and

shared the translation in github. Please refer to the query translation here . Most of

the queries are installed as functions, you can find sample parameter(s) of the

functions from here .

USE GRAPH ldbc_snb

CREATE QUERY bi_17(string cName) FOR GRAPH ldbc_snb SYNTAX v2 {
 TYPEDEF TUPLE <uint a, uint b, uint c> triplet;
 SetAccum<triplet> @@tripletSet;
 SumAccum<int> @@tripletCount;

 C =
 SELECT c
 FROM Country:c -(<IS_PART_OF.<IS_LOCATED_IN)- Person:p1,
 :c -(<IS_PART_OF.<IS_LOCATED_IN)- Person:p2,
 :c -(<IS_PART_OF.<IS_LOCATED_IN)- Person:p3,
 :p1 -(KNOWS)- :p2 -(KNOWS)- :p3 -(KNOWS)- :p1
 WHERE c.name == cName AND p1.id < p2.id AND p2.id < p3.id
 ACCUM @@tripletSet += triplet(p1.id, p2.id, p3.id);

 @@tripletCount = @@tripletSet.size();
 @@tripletSet.clear();
 PRINT @@tripletCount;
}

INSTALL QUERY bi_17

RUN QUERY bi_17("Spain")

#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@tripletCount": 242}]
}

5/13/25, 9:11 PM 3.3

http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_conjunctive/queries
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_conjunctive/queries
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/seeds
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries/seeds

328

As mentioned when we first described pattern matching, in One-hop patterns, the

source (leftmost) vertex set can be a vertex type, an alternation of types, or even

omitted.

Example 1. Find Viktor Akhiezer's favorite messages' creators whose last name

begins with letter S. Count them.

Example 2. Same query as example 1, but without beginning with vertex types.

GSQL compiler can infer the types of :s.

USE GRAPH ldbc_snb

#start from a vertex type "Person"
INTERPRET QUERY () SYNTAX v2 {

 SumAccum<int> @@cnt;

 F = SELECT t
 FROM Person:s -(LIKES>:e1)- :msg -(HAS_CREATOR>)- Person:t
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 AND t.lastName LIKE "S%"
 POST-ACCUM @@cnt+=1;

 PRINT @@cnt;

}
#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 8}]
}

Source Vertex Set Flexibility

5/13/25, 9:11 PM 3.3

329

Example 3. Count the LIKES edge.

USE GRAPH ldbc_snb

#both end points of the pattern do not have vertex types.
INTERPRET QUERY () SYNTAX v2 {

 SumAccum<int> @@cnt;

 F = SELECT t
 FROM :s -(LIKES>:e1)- :msg -(HAS_CREATOR>)- :t
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer" AND t.l
 POST-ACCUM @@cnt+=1;

 PRINT @@cnt;

}
#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 8}]
}

5/13/25, 9:11 PM 3.3

330

USE GRAPH ldbc_snb

a pattern starts without any information.
INTERPRET QUERY () SYNTAX v2 {

 SumAccum<int> @@cnt;

 F = SELECT msg
 FROM -(LIKES>:e1)- :msg
 ACCUM @@cnt+=1;

 PRINT @@cnt;

}
#result
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 2190095}]
}

5/13/25, 9:11 PM 3.3

331

Summary
We have covered a lot of territory in GSQL 102:

• Showed how to invoke GSQL Pattern Matching syntax

• Explained how Pattern Matching extends the classic FROM clause grammar:

◦ Each hop can be a choice of multiple, individually directed edge types

◦ The Kleene star and a min...max range enable each hop to be repeated.

◦ GSQL automatically finds the shortest paths that satisfy a variable length

path.

◦ A virtual match table has a column for each vertex or edge alias in a multi-

hop path, and a row for each graph path that satisfies the pattern.

◦ The ACCUM clause iterates on each row in the match table.

◦ A POST-ACCUM clause iterates on one vertex alias; a query can have

multiple POST-ACCUM clauses.

• Described the improvements to Pattern Matching in TigerGraph 3.0:

◦ The source (leftmost) vertex set can be specified with the same flexibility as

the other vertex sets: a vertex type, an alteration of types, or omitted. Explicit

seed sets are no longer needed

◦ Restrictions on which vertex aliases may be used in the ACCUM clause have

been lifted.

◦ Described three major advanced options:

▪ The PER <vertex alias> clause enables users to fine tune the ACCUM

iteration.

▪ Data modification (insert, update, delete) are now supported.

▪ Conjunctive Pattern Matching let users express a complex pattern as a

set of path patterns which must all be satisfied.

• Provided best practices for writing queries, especially pattern matching queries:

◦ Put the smaller vertex set on the left end.

◦ Specify all vertex and edge types explicitly.

◦ Use the PER clause to reduce the match table size

• Provided numerous examples and the full set of LDBC Social Network

benchmark queries.

5/13/25, 9:11 PM 3.3

332

With a little practice, you will be writing GSQL pattern matching queries to efficiently

solve real-world problems. You can post your feedback and questions on the GSQL

community forum . Our community members and developers love to hear any

feedback from your graph journey of using GSQL and are ready to help clarifying

any doubts.

5/13/25, 9:11 PM 3.3

https://community.tigergraph.com/
https://community.tigergraph.com/
https://community.tigergraph.com/

333

GSQL Demo Examples

This is our our original Get-Started tutorial for 2017. Today, we'd suggest you start with
GET STARTED Tutorial or one of our video tutorials.

Using the TigerGraph™ platform is as easy as 1-2-3. In this tutorial we will show you

how to use the TigerGraph platform and the GSQL language by developing solutions

for several use cases, using the following three-step method:

1. Create a Graph Model for the use case using the GSQL™ language, TigerGraph's

high-level graph definition and manipulation language.

2. Load Initial Data : load and transform data to TigerGraph's graph engine.

3. Write a Graph-based Solution by writing queries in the GSQL language.

In addition, this guide will also show you how to update your data: load more data,

revise your data, or delete selected data.

Each example involves a data set and simple example of a real-life query or task.

We develop a graph model, a loading job to load the data, and one or more queries

to answer the question at hand. The applications for graph-based queries are

limitless. The goal of these examples is to demonstrate the expressive power of

GSQL queries, as well as how business intelligence is a natural fit for the graph

analytics world.

We assume the user has a working installation of the TigerGraph system. If you have
not installed the system, please refer to the TigerGraph Platform Installation Guide.

This tutorial uses the console-based GSQL Shell. If you prefer to use the browser-
based GraphStudio UI, see the TigerGraph GraphStudio UI Guide first. You can then
return to this document in learn more about the language itself.

To start the GSQL Shell:
type the command gsql to exit, type exit or quit to run a command file from
within the shell, precede the file name with "@":

You can also run GSQL commands directly from Linux:

GSQL> @load_demo.gsql

5/13/25, 9:11 PM 3.3

334

• For single-line commands, type "gsql" followed by the command enclosed in

single-quotation marks:

•

• For command files, just type "gsql" followed by the filename:

•

The loading jobs have been updated to v2.0 syntax. The output examples have been
updated to JSON output API version "v2", which is the default output format for
TigerGraph platform version 1.1 or higher.

Common Graph Schema of Demo Examples

The examples in Part 1 of this tutorial have been designed so that all them can be
loaded together in one global graph, gsql_demo. This has several benefits:

1. You can quickly load several demo examples by running just one script.

2. After they are loaded, you can switch from one example to another with no delay.

3. The format is modular, so additional examples can be added easily.

If you want to learn how to design your own graph data analyses, we recommend
reading and doing Example 1, then Example 2, etc., rather than running the entire batch
of examples at once.

Common Applications

$ gsql 'RUN QUERY topCopLiked("id1", 5)'

$ gsql cf_model.gsql

5/13/25, 9:11 PM 3.3

335

Classic Graph Algorithms

The shortest path problem is to find the path(s) between two given vertices S and T

in a graph such that the path's total edge weight is minimized. If the edge weights

are all the same (e.g., weight=1), then the shortest paths are the ones with the

fewest edges or steps from S to T. The classic solution to this graph problem is to

start the search from one vertex S and walk one step at a time on the graph until it

meets the other input vertex T (unidirectional Breadth-First Search). In addition, we

present a more sophisticated way to solve this problem on the TigerGraph advanced

graph computing platform. Instead of starting the search from one input vertex, our

solution will launch the search agents from both input vertices, walking the graph

concurrently until they meet. This greatly improves the algorithm performance. To

simplify this problem, this article will assume the graph is undirected and

unweighted.

The following examples will use the graph that is presented below. Before we show

the algorithms, their implementation and examples, we present the graph schema

and data used to create the graph. All files in this document are available here:

DemoExamples_2.0.tar.gz

16KB
DemoExamples_2.0.tar.gz

Example 8. Single Pair Shortest Path
(unweighted)

1. Graph Schema and Data

5/13/25, 9:11 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNZhbo7MuAV1KjM3Z_y%2F-LNZhj_r3p5fcZSHopLo%2FDemoExamples_2.0.tar.gz?alt=media&token=0a63604a-d8ec-42e8-b6a1-6e398ef52d42

336

Graph Schema

First, we give the graph schema. This will create the graph with vertices of type

company , persons and skill. It also creates undirected edges that go from person to

company, from person to person, from any type to skill, and from any type to

company.

Data Set

Data source for company vertices.

Figure 1: Example Graph used to demonstrate the Shortest Path algorithms.

DROP ALL
CREATE VERTEX company (PRIMARY_ID companyId string, id string, company_nam
CREATE VERTEX persons (PRIMARY_ID pId string, id string, profileId string
CREATE VERTEX skill (PRIMARY_ID skillId uint, id string)
CREATE UNDIRECTED EDGE person_work_company (FROM persons, TO company, posi
CREATE UNDIRECTED EDGE person_person (FROM persons, TO persons, connect_ti
CREATE UNDIRECTED EDGE all_to_skill (FROM *, TO skill)
CREATE UNDIRECTED EDGE all_to_company (FROM *, TO company)
CREATE GRAPH work_graph(*)

Graph Schema

small_companies

5/13/25, 9:11 PM 3.3

337

Data source for person vertices and skill vertices. The first line,

m1,i1,0,"s2|s3"

means that person m1 has skills s2 and s3.

Data source for person_work_company edges. The first line means that person m1

works for company c1.

Data source for person_person edges.

c1,1,com1,us
c2,0,com2,jp
c3,1,com3,de
c4,0,com4,cn

m1,i1,0,"s2|s3"
m2,i1,1,""
m3,i1,2,"s1|s3"
m4,i1,3,"s2"
m5,i2,4,""
m6,i2,5,""
m7,i2,6,""
m8,i3,7,"s1"

m1,c1,1,1,1
m2,c1,2,1,3
m2,c2,2,1,4
m3,c1,2,1,5
m4,c4,2,2,6
m5,c2,3,2,7
m6,c3,3,2,8
m6,c4,3,2,9
m7,c3,3,2,10
m7,c4,3,2,11
m8,c3,3,3,12

small_persons

small_person_company

small_person_person

5/13/25, 9:11 PM 3.3

338

Data source for all_to_skill edges such as all_to_skill (m1, s2) or all_to_skill (c2, s3).

While the schema supports all_to_company edges, this particular data set does not

use any..

Loading the Data

To load all of this data into the graph, we can use the following GSQL command file

(which also includes the graph schema creation commands).

m1,m4,1
m6,m7,3
m7,m5,4

s,m,m1,s2,0
s,m,m4,s2,0
s,m,m1,s3,0
s,m,m3,s3,0
s,c,c2,s3,0
s,m,m3,s1,1
s,m,m8,s1,1

small_all_to_all

graph_create.gsql

5/13/25, 9:11 PM 3.3

339

5/13/25, 9:11 PM 3.3

340

DROP ALL
CREATE VERTEX company (PRIMARY_ID companyId string, id string, company_nam
CREATE VERTEX persons (PRIMARY_ID pId string, id string, profileId string
CREATE VERTEX skill (PRIMARY_ID skillId uint, id string)
CREATE UNDIRECTED EDGE person_work_company (FROM persons, TO company, posi
CREATE UNDIRECTED EDGE person_person (FROM persons, TO persons, connect_ti
CREATE UNDIRECTED EDGE all_to_skill (FROM *, TO skill)
CREATE UNDIRECTED EDGE all_to_company (FROM *, TO company)
CREATE GRAPH work_graph(*)

USE GRAPH work_graph
SET sys.data_root="./"
CREATE LOADING JOB load_data FOR GRAPH work_graph {
 LOAD "$sys.data_root/small_companies"
 TO VERTEX company VALUES ($0, $0, $2)
 USING HEADER="false", SEPARATOR=",", QUOTE="double";
 LOAD "$sys.data_root/small_persons"
 TO VERTEX persons VALUES ($0, $0, $1, $2)
 WHERE to_int($2) >= 0
 USING HEADER="false", SEPARATOR=",", QUOTE="double";
Example of flattening a multi-valued field
 LOAD "$sys.data_root/small_persons"
 TO temp_table member_skill_table (memberID, skillID)
 VALUES ($0, flatten($3, "|", 1))
 USING HEADER="false", SEPARATOR=",", QUOTE="double";
 LOAD temp_table member_skill_table
 TO VERTEX skill VALUES ($"skillID", $"skillID");

 LOAD "$sys.data_root/small_person_company"
 TO EDGE person_work_company VALUES($0, $1, $2, $3, $4)
 WHERE to_int($4) >= 0
 USING HEADER="false", SEPARATOR=",", QUOTE="double";
 LOAD "$sys.data_root/small_person_person"
 TO EDGE person_person VALUES($0, $1, $2)
 WHERE to_int($2) >= 0
 USING HEADER="false", SEPARATOR=",", QUOTE="double";

Note how $0 and $1 indicate what type of data is in $3 and $2, respectiv
so that the VALUES $2 and $3 can explicitly state the data type.
 LOAD "$sys.data_root/small_all_to_all"
 TO EDGE all_to_skill VALUES ($2 company, $3 skill)
 WHERE $0 == "s" AND $1 == "c",
 TO EDGE all_to_skill VALUES ($2 persons, $3 skill)
 WHERE $0 == "s" AND $1 == "m",
 TO EDGE all_to_skill VALUES ($2 skill, $3 skill)
 WHERE $0 == "s" AND $1 == "s",
 TO EDGE all_to_company VALUES ($2 company, $3 company)
 WHERE $0 == "c" AND $1 == "c",

5/13/25, 9:11 PM 3.3

341

To run a command file, simply enter gsql name_of_file

If the edges are unweighted, then the shortest path can be found using the classic

Breadth-First Search (BFS) algorithm. Below is an implementation in the GSQL

Query Language:

 TO EDGE all_to_company VALUES ($2 persons, $3 company)
 WHERE $0 == "c" AND $1 == "m",
 TO EDGE all_to_company VALUES ($2 skill, $3 company)
 WHERE $0 == "c" AND $1 == "s"
 USING HEADER="false", SEPARATOR=",", QUOTE="double";
}
RUN LOADING JOB load_data

> gsql graph_create.gsql

2. Unidirectional (BFS) Algorithm

Create Graph and Load Data

shortest_path_1D.gsql (v2.0)

5/13/25, 9:11 PM 3.3

342

The algorithm works by expanding the search path through all vertices that were

seen in the previous step. Each step is taken by one iteration of the WHILE loop. In

the first iteration of the WHILE loop, we start at vertex S and travel to all its

/**
 * This query assumes every edge in the graph is undirected.
 * It uses breadth-first-search to find the shortest path between s and t.
 */
// 1 May 2018: v2.0 - ListAccum "+" behavior changed. Need to use FOREACH

CREATE QUERY shortest_path_1D (VERTEX<company> S, VERTEX<company> T, INT m

 OrAccum @@found = false;
 OrAccum @notSeen = true;
 ListAccum<STRING> @pathResult;
 Start (ANY) = {S};
 Start = SELECT v
 FROM Start:v
 //assume each vertex has an id attribute
 ACCUM v.@notSeen = false, v.@pathResult = v.id;

 WHILE NOT @@found LIMIT maxDepth DO
 Start = SELECT v
 FROM Start - (:e) -> :v
 WHERE v.@notSeen
 ACCUM v.@notSeen = false,
 //add partial result paths to target v. v2.0 ListAccum require
 FOREACH path IN Start.@pathResult DO
 v.@pathResult += (path + "-" + v.id)
 END,
 CASE WHEN v == T
 THEN @@found += true
 END;
 END;

 IF @@found THEN
 Result = {T};
 #PRINT Result.@pathResult; #JSON output API version v1
 PRINT Result [Result.@pathResult]; #JSON output API version v2
 ELSE
 PRINT "Can't find shortest path within max steps";
 END;
}
INSTALL QUERY shortest_path_1D

5/13/25, 9:11 PM 3.3

343

neighbors. In each of the following iterations, we travel from previously reached

vertices to their neighbors that have not already been seen by the path.

To install the query, run the following command:

Example of Unidirectional BFS Search

Let us show a running example of this algorithm. We will be trying to find the

shortest path from c1 to c3. First, we have our initial graph, where we have not

traveled along any edges yet.

Figure 2: The starting state for our graph. From here, we go on to the first step of

the algorithm. We start at c1, and go along each of its edges.

> gsql -g work_graph shortest_path_1D.gsql

Install Query

5/13/25, 9:11 PM 3.3

344

Figure 3: This is the graph after one step. We have traveled from c1 to all of its

neighbors, labeling them as visited. For each one that we visit, we update its

@pathResult accumulator value in order to keep track of our path as we traverse the

graph.

Figure 4: This graph shows where we have traveled after two steps. We traveled to

our new vertices s1, s2, s3, c2 and m4 by traveling one edge away from the nodes

that we had visited in step 1. Note that the blue edges also tell us how we can get

from c1 to a vertex. For example, we notice that e21 is not labeled blue. This means

that we did not travel along this edge. That is, we must have gotten to c2 using a

different edge. Indeed, we can see that the path c1-m2-c2 is shorter than c1-m3-s3-

c2. This explains why e9 is blue, but e21 is not.

5/13/25, 9:11 PM 3.3

345

Each time that the query travels from a starting vertex (m1, m2, or m3) to a target

vertex (s1, s2, s3, c3, or m4), the target vertex's @pathResult ListAccum<string> is

updated (Line 22 of the query). A new string is added to the list (the += operator),

which means that there is a path string for each time that the target vertex is

reached. The path string consists of the path string from the source vertex, followed

by this target vertex. That is equivalent to the path from the query's starting vertex

(e.g., c1) to the current target vertex.

Figure 5: At the third step of our algorithm, we have reached the nodes m8, m5 and

c4. We got here by moving one edge away from the vertices that we reached in step

2.

Figure 6: Finally, we have reached the end of our algorithm. Note that when we

travel one edge away from m8, we arrive at our target node of c3. Working

5/13/25, 9:11 PM 3.3

346

backwards, we can reconstruct the shortest path. We reached c3 from m8, m8 from

s1, s1 from m3 and m3 from c1. Thus, we get that the shortest path is indeed c1-m3-

s1-m8-c3.

To run the query with starting vertex c1, ending vertex c3, and a maximum distance

of 10:

This will give the following result.

As we can see, the algorithm tells us that the shortest path from c1 to c3 is going

through m3, followed by s1, then m8, then finally arriving at c3. However, this result

also tells us that this is the unique shortest path. Indeed, if we instead run:

Our results are:

> gsql -g work_graph 'RUN QUERY shortest_path_1D("c1","c3",10)'

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "c3",
 "attributes": {"Result.@pathResult": ["c1-m3-s1-m8-c3"]},
 "v_type": "company"
 }]}]
}

> gsql -g work_graph 'RUN QUERY shortest_path_1D("c3", "c4", 10)'

Query

Results

Multiple Shortest Paths Query

Multiple Shortest Paths Results

5/13/25, 9:11 PM 3.3

347

Note that here we have two paths. The first is from c3 to m6, and then to c4. The

other path is from c3, to m7, to c4. We are presented with both paths because each

of these consists of the least possible weight: exactly two edges. As explained

earlier, this is because we arrive at a vertex at the same time through two different

paths. When we started at c3, we traveled to m6, m7 and m8. At the second step,

both m6 and m7 arrive at c4 at the exact same time. That means that two path

strings will be written to c4.@queryResult, recording two shortest paths.

Bi-Directional search will launch two search agents, each from a given vertex. The

two agents concurrently walk one step at a time, until they meet at an intermediate

vertex. The shortest path length may be odd or even. For example, in Figure 7

below, Case II is an even-length case, and Case III is an odd-length case. Case I is a

special case of an odd-length path.

The core of this solution is that in each step, a set of previously unvisited vertices

will be discovered by the search frontiers of S and T. The newly visited vertices will

become the new frontier of S or T. The algorithm will repeat this process until the

frontiers of the two agents meet.

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "c4",
 "attributes": {"Result.@pathResult": [
 "c3-m6-c4",
 "c3-m7-c4"
]},
 "v_type": "company"
 }]}]
}

3. Bi-Directional Shortest Path Search Algorithm

5/13/25, 9:11 PM 3.3

348

Because this algorithm is more complicated than one directional search, we first

give pseudocode to help explain the algorithm.

Figure 7 : Three cases for terminating a bi-directional path search.

bi-directional shortest path search algorithm

5/13/25, 9:11 PM 3.3

349

5/13/25, 9:11 PM 3.3

350

void find_shortest_path_bi_directional_search(Vertex S, Vertex T) {
bool stop = false;
vertex.pathFromS = "";

vertex.pathFromT = "";
vertex.visitedByS = false;
vertex.visitedByT = false;
final_path = "";

Activate vertex S and T as the starting vertices;
S.visitedByS = true;
T.visitedByT = true;

// VERTEX GROUP, if a vertex V is visited by a vertex originating from
// then V is part of vertex group T. The vertices who have the longes
// from its origin vertex are called the FRONTIER of the vertex group.
// Initially, S is the frontier and only member of vertex group S,
// and T is the frontier and only member of vertex group T.
while (!stop) {

VS = (frontier of Vertex Group S) union (frontier of Vertex Group
for each vertex v in VS {

for each neighbor vertex b of v {
if ((v.visitedByS && b.visitedByT) || (v.visitedByT && b.v

// If the frontiers of S and T are neighbors (Case III
if (v.visitedByS) {

final_path = v.pathFromS + v.ID + b.ID + b.pathFro
}
if (v.visitedByT) {

final_path = v.pathFromT + v.ID + b.ID + b.pathFro
}
stop = true;
break;

} else if ((v.visitedByS && not b.visitedByS) || (v.visite
// If b (the neighbor of v) is not yet part of v's ver
// then add b to the vertex group, and update b's path
if (v.visitedByS) {

b.visitedByS = true;
b.pathFromS = v.pathFromS + v.ID;

}
if (v.visitedByT) {

b.visitedByT = true;
b.pathFromT = v.pathFromT + v.ID;

}
}

}

// if a vertex is visited by S & T in the same iteration (Case
if (v.visitedByT && v.visitedByS) {

5/13/25, 9:11 PM 3.3

351

This algorithm essentially works by running two versions of the algorithm from the

first example at the same time, just with different starting vertices. The algorithm

continues with these two paths until there is an intersection. Once the two paths

cross, we know that the shortest path goes through this intersection, as explained in

the previous section.

Below is an implementation in the GSQL Query Language.

final_path = v.pathFromS + v.ID + v.pathFromT;
stop = true;
break;

}
}

}
print out final_path;

}

shortest_path_2D.gsql (v2.0)

5/13/25, 9:11 PM 3.3

352

5/13/25, 9:11 PM 3.3

353

// 1 May 2018: v2.0 - ListAccum "+" behavior changed. Need to use FOREACH
CREATE QUERY shortest_path_2D (VERTEX<company> S, VERTEX<company> T , INT
{
 OrAccum @@stop = false; // global variable controlling whether to
 OrAccum @seenS = false; // a vertex has been seen by S
 OrAccum @seenT = false; // a vertex has been seen by T
 OrAccum @meet = false; // vertex flag indicating whether it is 'm
 SumAccum<int> @sLength = 0; // vertex runtime attribute: # steps from
 SumAccum<int> @tLength = 0; // vertex runtime attribute: # steps from
 SumAccum<int> @resultLength = 0; // the final length of shortest path
 ListAccum<string> @pathS; //list of paths so far from S
 ListAccum<string> @pathT; //list of paths so far from T
 ListAccum<string> @pathResults; //final set of shortest paths

 Start = {S,T};

 //initialize S, T vertices
 StartSet (ANY) = SELECT v // _ means StartSet can contain any ve
 FROM Start:v
 ACCUM CASE WHEN v==S THEN v.@seenS=true, v.@pathS += ""
 WHEN v==T THEN v.@seenT=true, v.@pathT += ""
 END;
 WHILE @@stop == false LIMIT maxDepth DO
 StartSet = SELECT v
 // Consider each edge from S or T's frontier (u) to outside (v),
 // i.e., each edge that moves "out" from the frontier.
 // Note how StartSet is updated to be v (pushing the frontier forw
 FROM StartSet:u-(:e)->:v
 WHERE ((u.@seenS==true AND v.@seenS!=true) OR // from S frontier t
 (u.@seenT==true AND v.@seenT!=true)) // from T frontier t
 ACCUM
 // If u->v joins the S and T frontiers, an odd-length path is
 CASE WHEN ((u.@seenS == true AND v.@seenT == true) OR
 (u.@seenT == true AND v.@seenS == true))
 THEN @@stop += true,
 // we don't want to print the results twice
 // v.@pathResults stores all shortest paths
 // between S and T where v is in the middle of
 // every such path.
 // only need to print out the result once, see above s
 CASE WHEN (u.@seenS == true AND v.@seenT == true)
 THEN
 STRING joiner = u.id + "-" + v.id + "-",
 FOREACH pathS IN u.@pathS DO
 FOREACH pathT in v.@pathT DO
 v.@pathResults += pathS + joiner + pat
 END
 END,

5/13/25, 9:11 PM 3.3

354

Example of Bidirectional BFS Search

 v.@meet = true,
 v.@resultLength = u.@sLength + v.@tLength + 1
 END
 // Else, since u->v does not complete a path, move the frontie
 // If u is in S's frontier, then extend S's frontier to v. Ass
 WHEN u.@seenS == true
 THEN v.@seenS = true,
 FOREACH uPath IN u.@pathS DO
 v.@pathS += uPath + (u.id + "-")
 END,
 v.@sLength = u.@sLength + 1
 // If u is in T's frontier, then extend T's frontier to v. Ass
 WHEN u.@seenT == true
 THEN v.@seenT =true,
 FOREACH uPath IN u.@pathT DO
 v.@pathT += (u.id + "-") + uPath
 END,
 v.@tLength = u.@tLength + 1
 END
 POST-ACCUM
 // If the two frontiers meet at v, an even-length path is foun
 CASE WHEN (v.@seenS == true AND v.@seenT == true AND @@stop ==
 THEN @@stop += true,
 // Insert v.id between the source paths and the target
 FOREACH pathS in v.@pathS DO
 FOREACH pathT in v.@pathT DO
 v.@pathResults += pathS + v.id + "-" + pathT
 END
 END,
 v.@resultLength = v.@sLength + v.@tLength,
 v.@meet = true
 END;
 END;

 // print out the final result stored at the vertex who marked
 // as meet vertex
 StartSet = SELECT v
 FROM StartSet:v
 WHERE v.@meet == true;

 #PRINT StartSet.@resultLength, StartSet.@pathResults; # JSON O
 PRINT StartSet [StartSet.@resultLength, StartSet.@pathResults]; # JSON O
}
INSTALL QUERY shortest_path_2D

5/13/25, 9:11 PM 3.3

355

The following is a running example to demonstrate the algorithm of finding the

shortest path in a bi-directional way. The graph below (Figure 8) shows vertices c1

and c3, with several other vertices between them. The algorithm will demonstrate

the two search directions by using two different colors and border thicknesses:

• Blue and thin border for c1's search frontier

• Orange and thick border for c3's search frontier

Figure 8: Initialization - prepare to start the search process. The two given vertices

(c1 and c3) are activated and colored as Blue and Orange respectively. The rest of

the graph remains untouched.

5/13/25, 9:11 PM 3.3

356

Figure 9: The graph after the first step. The search process starts simultaneously

from c1 and c3. If a vertex is seen by the agent starting from c1 (c3), we will say it is

seen by c1 (c3).

• From the vertex c1, the algorithm goes to the neighbors of c1 that have not yet

been seen. As a result, the unseen vertices m1, m2 and m3 are discovered and

become the frontier of c1's vertex group.

• From the vertex c3, in a similar fashion, the vertices m5, m7 and m8 are

discovered and become the frontier of c3's vertex group.

Figure 10: As the two groups have not been met yet, the search process continues.

• From c1's search agent, the vertices m4, s2, c2, s3 and s1 are all discovered.

• From c3's search agent, the vertices c4, m5 and s1 are all discovered.

Notice that both search agents have found the vertex s1. Thus, the algorithm should

stop, and return the path going through s1. In this case, this path is c1-m3-s1-m8-c3.

In order to get this result in the TigerGraph Query Language (GSQL), first install the

query, for which the code was given earlier.

> gsql -g work_graph shortest_path_2D.gsql

Install Query

5/13/25, 9:11 PM 3.3

357

Now, run the query using c1 as a starting node, c3 as the ending node, and a

maximum distance of 10:

This will return the following result:

However, in order to demonstrate the odd-length case, assume that s1 does not

exist.

> gsql -g work_graph 'RUN QUERY shortest_path_2D("c1","c3",10)'

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "api": "v2"
 },
 "results": [{"StartSet": [{
 "v_id": "s1",
 "attributes": {
 "StartSet.@pathResults": ["c1-m3-s1-m8-c3-"],
 "StartSet.@resultLength": 4
 },
 "v_type": "skill"
 }]}]
}

Query

Results

5/13/25, 9:11 PM 3.3

358

Figure 11: 2nd Iteration in a modified graph in which s1 does not exist. We got here

by traveling one edge away form the vertices that were visited in the previous step.

However, as we do not yet have a crossing, we must complete one more iteration.

Figure 12: Here, the paths from c1 have finally found a vertex that was previously

found by the paths from c3 (and vice versa). That is, the blue paths traveled from c2

to m5 and from m4 to c4. In Figure 11, m5 and c4 were both orange. In Figure 12, we

change a vertex's color to purple when one frontier meets the other. This tells us

that the shortest path from c1 to c3 either goes through e8 or e3. If we go through

e8, we go along the path c1-m2-c2-m5-m7-c3. Note that if we go through e3, we

are given two paths. This is almost identical to the multiple path example from the

first algorithm. From c4, we can either take e4 or e12 to get to c3. Thus, when going

from c1 to c3 through e3, we are actually given two paths. These paths are c1-m1-

m4-c4-m6-c3 and c1-m1-m4-c4-m7-c3.

The * operator in Lines 41 and 63 handle the case of multiple paths from one

direction merging with multiple paths from the other direction. For example, we

know there are two shortest paths from c4 to c3. Pretend for a moment that there

are 3 shortest paths from c1 to m4. Then, when m4 and c4 meet, there would then

be (3 * 2) = 6 shortest paths from c1 to c3.

Once again, we can implement this alternate graph in GSQL by using the DELETE

keyword. First, we delete the vertex s1 from the graph by doing the following:

Remove "s1"

5/13/25, 9:11 PM 3.3

359

Now, we can run our query once again:

Notice that this time, we are given the three paths that we previously described.

> gsql -g work_graph 'DELETE FROM skill WHERE primary_id=="s1"'

> gsql -g work_graph 'RUN QUERY shortest_path_2D("c1","c3",10)'

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "api": "v2"
 },
 "results": [{"StartSet": [
 {
 "v_id": "m5",
 "attributes": {
 "StartSet.@pathResults": ["c1-m2-c2-m5-m7-c3-"],
 "StartSet.@resultLength": 5
 },
 "v_type": "persons"
 },
 {
 "v_id": "c4",
 "attributes": {
 "StartSet.@pathResults": [
 "c1-m1-m4-c4-m6-c3-",
 "c1-m1-m4-c4-m7-c3-"
],
 "StartSet.@resultLength": 5
 },
 "v_type": "company"
 }
]}]
}

Query

Results

5/13/25, 9:11 PM 3.3

360

Common Applications

Here is an observation about social networks: If a set of persons likes me, and many

of them also like another person Z, it is probably true that person Z and I have some

things in common. The same observation works for products and services: if a set

of customers likes product X, and many of them also like product Z, then product X

and Z probably have something in common. We say X and Z are "co-liked". This

observation can be turned around into a search for recommendations: Given a user

X, find a set of of users Z which are highly co-liked. For social networks, this can be

used as friend recommendation: find a highly co-liked person Z to introduce to X.

For e-commerce, this can be used for purchase recommendation: someone who

bought X may also be interested in buying Z. This technique of finding the top co-

liked individuals is called collaborative filtering.

A graph analytics approach is a natural fit for collaborative filtering because the

original problem is in a graph (social network), and the search criteria can easily be

expressed as a path in the graph. We first find all people Y who like user X, then find

other users Z who are liked by someone in group Y, and rank members of Z

according to how many times they're liked by Y.

Figure 1 below shows a simple graph according to our model. The circles represent

three User vertices with id values id1, id2, and id3. There are two directed edges

labeled "Liked" which show that User id2 likes id1, and id2 also likes id3. (In this

model, friendship is directional because in online social networks, one of the two

persons initiates the friendship.) There are two more directed edges in the opposite

directions labeled "Liked_By". Since id2 likes both id1 and id3, id1 and id3 are co-

liked.

DemoExamples_2.0.tar.gz

16KB
DemoExamples_2.0.tar.gz

Example 1. Collaborative Filtering

5/13/25, 9:11 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LN_Xloqv998NjfcN0iX%2F-LN_YFszaDDc96CHZfZC%2FDemoExamples_2.0.tar.gz?alt=media&token=55b74389-b23a-4250-8183-54d80db55488

361

To just see the basic operation of the TigerGraph system, follow the easy

instructions below . You can then continue to read for the explanation of the

command files so you can learn to design your own examples.

This example uses the graph below and asks the following query: "Who are the top

co-liked persons of id1"?

Step 1: Obtain the data and command files. Create a graph model.

This example uses 4 small files: 3 command files (cf_model.gsql , cf_load.gsql ,

cf_query.gsql) and one data file (cf_data.csv) . Their contents are shown below, so

Figure 1 - Example graph for the collaborative filtering model

Quick Demo

Quick Demo Instructions

5/13/25, 9:11 PM 3.3

362

you can either copy from this document or download the files (look in the "cf"

subfolder of Examples.zip)

Step 2: Load data:

The command below loads our new data.

Step 3: Install and execute the query:

The file cf_query.gsql creates a query called topCoLiked. Then we install the query.

The creation step runs fast, but the installation (compiling) step may take about 1

minute. We then run the query, asking for the top 20 Users who are co-liked with

User id1.

The query results should be the following. Interpretation: id4 has as score (@cnt) =

2, which means there are two persons who like both id1 and id4. Next, id2 and id3

each have 1 co-friend in common with id1.

> gsql 'DROP ALL'
> gsql cf_model.gsql
> gsql 'CREATE GRAPH gsql_demo(*)'

> gsql -g gsql_demo cf_load.gsql

> gsql -g gsql_demo cf_query.gsql
> gsql -g gsql_demo 'INSTALL QUERY topCoLiked'
> gsql -g gsql_demo 'RUN QUERY topCoLiked("id1", 20)'

5/13/25, 9:11 PM 3.3

363

We now begin a tutorial-style explanation of this TigerGraph example and the

workflow in general.

The figure below outlines the steps to progress from an empty graph to a query

solution. Each of the blocks below corresponds to one of the steps in the Quick

Demo above. The tutorial below will give you a deeper understanding of each step,

so you can learn how it works and so you can design your own graph solutions.

{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"L2": [
 {
 "v_id": "id4",
 "attributes": {"@cnt": 2},
 "v_type": "User"
 },
 {
 "v_id": "id3",
 "attributes": {"@cnt": 1},
 "v_type": "User"
 },
 {
 "v_id": "id2",
 "attributes": {"@cnt": 1},
 "v_type": "User"
 }
]}]
}

5/13/25, 9:11 PM 3.3

364

5/13/25, 9:12 PM 3.3

365

The first step is to create a model for your data which describes the types of

vertices and edges you will have.

This example is written to be compatible with older TigerGraph platforms which
support only one graph model at a time (though the user can make the model simple or
complex, to handle multiple needs). To clear an existing model and old data, so you
can install a new one, run the DROP ALL command.

The statements below describe the vertex types and edge types in our Co-Liked

model

The first CREATE statement creates one vertex type called User. The second

statement creates one directed edge type called Liked. The WITH REVERSE_EDGE

clause means that for every two vertices (x,y) connected by a Liked type of edge,

the system will automatically generate a corresponding edge of type Liked_By

pointing from y to x, and both edges will have the same edge attributes.

After defining all your vertex and edge types, execute the following command to

create a graph which binds the vertices and edges into one graph model:

The name of the graph is gsql_demo. Within the parentheses, you can either list the

specific vertex and edge types (User, Liked), or you can use *, which means include

everything. We chose to use * so that the same command can be used for all of our

examples.

The CREATE commands can be stored in one file and executed together.

CREATE VERTEX User (PRIMARY_ID id string)
CREATE DIRECTED EDGE Liked (FROM User, TO User) WITH REVERSE_EDGE = "Liked

CREATE GRAPH gsql_demo(*)

Step 1: Create a graph model.

CREATE GRAPH command

5/13/25, 9:12 PM 3.3

366

The CREATE GRAPH command is commented out for the following reason:

Our examples have been designed to run either as individual graphs or merged
together into one multi-application graph. The CREATE GRAPH command may be run
only once, after all the vertex and edge types have been created. (Each of our demo
examples uses unique vertex and edge names, to avoid conflicts.) In other words, we
run CREATE GRAPH gsql_demo(*) as a separate command after creating all the vertex
and edge types. If you decide you want to modify the schema after running CREATE
GRAPH, you can create and run a SCHEMA_CHANGE JOB.

Newer TigerGraph platforms (i.e., version 1.1 or higher) can support multiple graphs,
but this tutorial has been designed to be compatible with older single-graph platforms.

• To execute these statements (DROP ALL, CREATE VERTEX, etc.), you can type

them individually at the GSQL shell prompt, or you can first save them to a file,

such as cf_model.gsql , and then run the command file. From within the shell,

you would run

@cf_model.gsql
From outside the shell, you would run

> gsql cf_model.gsql

Normally a user would put all their CREATE VERTEX, CREATE EDGE, and the final
CREATE GRAPH statements in one file. In our example files, we have separated out the
CREATE GRAPH statement because we want to merge all our example schemas
together into one common graph.

• The vertex, edge, and graph types become part of the catalog . To see what is

currently in your catalog, type the ls command from within the GSQL shell to

see a report as below:

CREATE VERTEX User (PRIMARY_ID id string)
CREATE DIRECTED EDGE Liked (FROM User, TO User) WITH REVERSE_EDGE = "Liked
#CREATE GRAPH gsql_demo(*)

cf_model.gsql

Catalog contents, as reported by the "ls" command

5/13/25, 9:12 PM 3.3

367

• To remove a definition from the catalog, use some version of the

DROP command. Use the help command to see a summary of available GSQL

commands.

• In our examples, we typically show keywords in ALL UPPERCASE to distinguish

them from user-defined identifiers. Identifiers are case-sensitive but keywords

are not.

In this example, the vertices and edges don't have attributes. In general, a

TigerGraph graph can have attributes on both vertices and edges, and it can also

have different types of edges connecting the same two vertices. Please see GSQL

Language Reference Part 1 - Defining Graphs and Loading Data which provides a

more complete description of the graph schema definition language with additional

examples.

Figure 2 shows a larger graph with five vertices and several edges. To avoid

crowding the figure, only the Liked edges are shown: For every Liked edge, there is

a corresponding Liked_By edge in the reverse direction.

Vertex Types:
 - VERTEX User(PRIMARY_ID id STRING) WITH STATS="OUTDEGREE_BY_EDGETYPE"

Edge Types:
 - directed edge Liked(from User, to User) with reverse_edge="Liked_By"
 - directed edge Liked_By(from User, to User) with reverse_edge="Liked"

Graphs:

Jobs:
Queries:

Json API version: v2

Step 2: Load initial data.

5/13/25, 9:12 PM 3.3

368

The data file below describes the five vertices and seven edges of Figure 2.

The loading job below will read from a data file and create vertex and edge

instances to put into the graph.

Figure 2 - Graph for Collaborative Filtering Calculation

id2,id1
id2,id3
id3,id1
id3,id4
id5,id1
id5,id2
id5,id4

define the loading job
USE GRAPH gsql_demo # added for v1.2
CREATE LOADING JOB load_cf FOR GRAPH gsql_demo {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX User VALUES ($0),
 TO VERTEX User VALUES ($1),
 TO EDGE Liked VALUES ($0, $1);
}

load the data
RUN LOADING JOB load_cf USING f="../cf/data/cf_data.csv"

cf_data.csv

Per Example: Load data into the graph (file: cf_load.gsql)

5/13/25, 9:12 PM 3.3

369

Now that we have defined a graph (in Step 1), GSQL commands or sessions should
specify that you want to use a particular graph. Line 2 (new for v1.2) sets the working
graph to be gsql_demo. Another way to set the working graph is to specify each time
you invoke the gsql command, e.g.,

The CREATE LOADING JOB statement (line 3) defines a job called load_cf. The job

will read each line of the input file, creates one vertex based on the value in the first

column (referenced with column name $0), another vertex based on the value in the

second column ($1), and one Liked edge pointing from the first vertex to the second

vertex. In addition, since the Liked edge type definition includes the WITH

REVERSE_EDGE clause, a Liked_By edge pointing in the opposite direction is also

created.

After the job has been created, we run the job (line 12). the RUN LOADING JOB

command line includes details about the data source: the name of the file is

cf_data.csv, commas are used to separate columns, and \n is used to end each line.

(Data files should not contain any extra spaces before or after the separator

character.)

The TigerGraph loader automatically filters out duplicates. If either of the two

column values has already been seen before, that vertex won't be created. Instead

the existing vertex will be used. For example, if we read the first two data lines in

data file cf_data.csv , the first line will generate two User vertices, one edge type

of Liked , and one edge type of Liked_By . For the second row, however, only

one new vertex will be created since id2 has been seen already. Two edges will

be created for the second row.

1. It is okay to run an LOADING JOB again, or to run a different loading job, to add

more data to a graph store which already has some data. For example, you could

do the following:

gsql -g gsql_demo cf_load.gsql

RUN LOADING JOB load_cf USING f="../cf/cf_data1.csv"
RUN LOADING JOB load_cf USING f="../cf/cf_data2.tsv"

5/13/25, 9:12 PM 3.3

370

2.After loading, you can use the GraphStudio UI to visually inspect your data. Refer
to the TigerGraph GraphStudio UI Guide .

To clear all your data but to keep your graph model, run the "CLEAR GRAPH STORE -
HARD" command. -HARD must be in all capital letters.

Be very careful using CLEAR GRAPH STORE; there is no UNDO command.

For the querying and updating examples in the remainder of this use case, we will

assume that Figure 2 has been loaded.

This loading example is basic. The GSQL language can do complex data extraction

and transformation, such as dealing with JSON input format and key-value list input,

all in high-level syntax. Please see GSQL Language Reference Part 1 - Defining

Graphs and Loading Data for more examples.

The GSQL language includes not only data definition and simple inspection of the

data, but also advanced querying which traverses the graph and which supports

aggregation and iteration.

First , we can run some simple queries to verify that the data were loaded correctly.

Below are some examples of some built-in GSQL queries which can be run in GSQL

shell:

Simple Query for Validation Meaning & Comments

SELECT count(*) FROM User Display the number of User vertices,

SELECT count(*) FROM User-(Liked)-
>User

Display the number of directed Liked edges

from User type to User type

Step 3: Write a graph-based query solution

Built-In Queries

5/13/25, 9:12 PM 3.3

371

SELECT approx_count(*) FROM User

Display the number of User vertices

according to cached statistics. Response

time may be faster than count(*). See note

below.

SELECT approx_count(*) FROM User-
(Liked)->User

Display the number of directed Liked edges

from User type to User Type, according to

cached statistics. Response time may be

faster than count(*). See note below.

SELECT * FROM User LIMIT 3

Display all id, type, and attribute information

for up to 3 User vertices.

A LIMIT or WHERE condition is required, to

prevent the output from being too large.

Note that there is also a system limit of

10240 vertices or edges returned by

SELECT *.

SELECT * FROM User WHERE
primary_id=="id2"

Display all id, type and attribute information

for the User vertex whose primary_id is

"id2".

The WHERE clause can also specify non-ID

attributes.

SELECT * FROM User-(ANY)->ANY WHERE
from_id=="id1"

Display all id,type, and attribute information

about any type of edge which starts from

vertex "id1".

To guard against queries which select too

many edges the WHERE clause is

5/13/25, 9:12 PM 3.3

372

Note on approx_count(*)

The approx_count(*) function relies on statistics which may not account for recent
insertions and deletions. If there has been no recent activity, they will give accurate
results. In contrast, the count(*) function insures that recent data insertions and
deletions are processed, so that it returns an accurate count.

SELECT * displays information in JSON format. Below is an example of query

output.

Now let's solve our original problem: find users who are co-liked with a user X. The

following query demonstrates a 2-step traversal with aggregation.

GSQL > SELECT * FROM User LIMIT 5
[
 {
 "v_id": "id2",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id5",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id3",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id4",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id1",
 "attributes": {},
 "v_type": "User"
 }
]

Create a Query

5/13/25, 9:12 PM 3.3

373

The query below performs the co-liked collaborative filtering search. The concept

behind this query is to describe a "graph path" which represents the relationship

between a person (the starting point) and a person that is co-liked (the ending

point). Figure 1 illustrates this path: id3 is a co-liked user of id1, because id2 likes

both of them. The path from id1 to co-liked users is: (1) traverse a Liked_By edge to

a User, and then (2) traverse a Liked edge to another User. This query also

calculates the magnitude of the relationship between the starting point and each

ending point. The more users there are such as id2 which connect id1 and id3, the

stronger the co-like relationship between id1 and id3. Counting the number of paths

that end at id3 serves to calculate this magnitude.

This query is structured like a procedure with two input parameters: an input vertex

and value of k for the top-K ranking. The query contains three SELECT statements

executed in order. The L0 statement defines our initial list of vertices: a set

containing a single user supplied by the input_user parameter. Suppose the input

user is id1 . Next, the L1 statement starts from every vertex in the set L0, traverses

every connected edge of type Liked_By and returns every target vertex (that is, the

other ends of the connected edges). As a result, L1 is the set of all users who liked

the input user. Referring to the graph in Figure 2, the query travels backwards along

every Liked edge which points to id1 , arriving at id2 , id3 , and id5 . These

three vertices form L1. Next, the L2 statement starts from each user in L1, travels to

every user liked by that starting user (via the Liked type of edges), and increments

CREATE QUERY topCoLiked(vertex<User> input_user, INT topk) FOR GRAPH gsq
{
 SumAccum<int> @cnt = 0;
 # @cnt is a runtime attribute to be associated with each User vertex
 # to record how many times a user is liked.
 L0 = {input_user};
 L1 = SELECT tgt
 FROM L0-(Liked_By)->User:tgt;
 L2 = SELECT tgt
 FROM L1-(Liked)->:tgt
 WHERE tgt != input_user
 ACCUM tgt.@cnt += 1
 ORDER BY tgt.@cnt DESC
 LIMIT topk;
 PRINT L2;
}

cf_query.gsql - Define the collaborative filtering query

5/13/25, 9:12 PM 3.3

374

the count for each User reached. That is, the algorithm counts how many times each

vertex is visited by a query path. The WHERE condition makes sure the original input

user will not be returned in the result.ORDER BY and LIMIT have the same meaning

as in SQL. Below, we show how the L2 step tallies the counts for each vertex

encountered:

1. From id2, Liked edges lead to id1 and id3. id1 is excluded due to the WHERE

clause. The cnt count for id3 is incremented from 0 to 1.

2. From id3, Liked edges lead to id1 and id4. id1 is excluded due to the WHERE

clause. The cnt count for id4 is incremented from 0 to 1.

3. From id5, Liked edges lead to id1, id2, and id4. id1 is excluded to to the WHERE

clause. The cnt count of id2 is incremented from 0 to 1. The cnt count of id4 is

incremented from 1 to 2.

The three co-liked users and their cnt scores: id3 (cnt score = 1), id4 (cnt = 2), and

id2 (cnt = 1). The ORDER BY clause indicates that the sorting should be in

descending order, such that the LIMIT clause trims L2 to the 20 vertices with the

highest (as opposed to lowest) cnt values. For the test graph, there are only 3

vertices which are co-liked, less than the limit of 20. id4 has the strongest co-liked

relationship.

After the query is defined (in the CREATE QUERY block), it needs to be installed.

The INSTALL QUERY command compiles the query.

If you have several queries, you can wait to install them in one command, which

runs faster than installed each one separately. E.g.,

or

INSTALL QUERY topCoLiked

INSTALL QUERY query1, query2

INSTALL QUERY ALL

Install and Run a Query

5/13/25, 9:12 PM 3.3

375

is faster than

After a query has been installed, it can be run as many times has desired. The

command RUN QUERY invokes the query, with the given input arguments.

Using "id1" as the starting point and allowing up to 5 vertices in the output, the RUN

QUERY command and its output on our test graph is shown below:

Instead of using the RUN QUERY command within the GSQL shell, the query can be

invoked from the operating system via a RESTful GET endpoint (which is

automatically created by the INSTALL QUERY command):

INSTALL QUERY query1
INSTALL QUERY query2

GSQL > RUN QUERY topCoLiked("id1", 5)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"L2": [
 {
 "v_id": "id4",
 "attributes": {"@cnt": 2},
 "v_type": "User"
 },
 {
 "v_id": "id3",
 "attributes": {"@cnt": 1},
 "v_type": "User"
 },
 {
 "v_id": "id2",
 "attributes": {"@cnt": 1},
 "v_type": "User"
 }
]}]
}

5/13/25, 9:12 PM 3.3

376

If you followed the standard installation instructions for the TigerGraph system,

hostName for the REST server is localhost and port is 9000 .

As of TigerGraph 1.2, the URL for query REST endpoints includes the graph name after
query/. Prior to 1.2, the URL for the example above was http://hostName:port
/query/topCoLiked

You can update the stored graph at any time, to add new vertices and edges, to

remove some, or to update existing values. The GSQL language includes ADD,

DROP, ALTER, UPSERT, and DELETE operations which are similar to the SQL

operations of the same name. The UPSERT operation is a combined UPDATE-

INSERT operation: If object exists, then UPDATE, else INSERT. Note that this is the

default behavior for The GSQL language's 'smart' loading described above. There

are three basic types of modifications to a graph:

1. Adding or deleting objects

2. Altering the schema of the graph

3. Modifying the attributes of existing objects

We'll give a quick example of each type. To show the effect each modification, we'll

use the following simple built-in queries:

The current results, before making any modifications, are shown below.

curl -X GET "http://hostName:port/query/gsql_demo/topCoLiked?input_user=id

SELECT * FROM User LIMIT 1000
SELECT * FROM User-(Liked)->User WHERE from_id=="id2"

Step 4 (Optional): Update Your Data.

cf_mod_check.gsql

Users vertices and Edges from id2, before any modifications

5/13/25, 9:12 PM 3.3

377

5/13/25, 9:12 PM 3.3

378

GSQL > SELECT * FROM User LIMIT 1000
[
 {
 "v_id": "id2",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id5",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id3",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id4",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id1",
 "attributes": {},
 "v_type": "User"
 }
]
GSQL > SELECT * FROM User-(Liked)->User WHERE from_id=="id2"
[
 {
 "from_type": "User",
 "to_type": "User",
 "directed": true,
 "from_id": "id2",
 "to_id": "id3",
 "attributes": {},
 "e_type": "Liked"
 },
 {
 "from_type": "User",
 "to_type": "User",
 "directed": true,
 "from_id": "id2",
 "to_id": "id1",
 "attributes": {},
 "e_type": "Liked"
 }

5/13/25, 9:12 PM 3.3

379

Graph modification operations are performed by a distributed computing model which
satisfies Sequential Consistency. For these examples, a brief one second pause
between the updating and querying the graph should be sufficient.

Adding is simply running a loading job again with a new data file. More details are in

the GSQL Language Reference Part 1.

Deleting: Suppose we want to delete vertex id3 and all its connections:

]

DELETE FROM User WHERE primary_id=="id3"

Modification Type 1: Adding or deleting

cf_mod1.gsql

Users vertices and Edges from id2, after Modification 1

5/13/25, 9:12 PM 3.3

380

The GSQL DELETE operation is a cascading deletion. If a vertex is deleted, then all of
the edges which connect to it are automatically deleted as well.

Result: one fewer vertex and one fewer edge from id2.

The GSQL language supports four types of schema alterations:

GSQL > SELECT * FROM User LIMIT 1000
[
 {
 "v_id": "id2",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id5",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id4",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id1",
 "attributes": {},
 "v_type": "User"
 }
]
GSQL > SELECT * FROM User-(Liked)->User WHERE from_id=="id2"
[{
 "from_type": "User",
 "to_type": "User",
 "directed": true,
 "from_id": "id2",
 "to_id": "id1",
 "attributes": {},
 "e_type": "Liked"
}]

Modification Type 2: Altering the schema

5/13/25, 9:12 PM 3.3

381

1. Adding a new type of vertex or edge: ADD VERTEX | DIRECTED EDGE |
UNDIRECTED EDGE

2. Removing a type of vertex or edge: DROP VERTEX | DIRECTED EDGE |
UNDIRECTED EDGE

3. Adding attributes to a vertex or edge type: ALTER VERTEX vertex_type | EDGE
edge_type ADD ATTRIBUTE (name type)

4. Removing attributes of a vertex or edge type: ALTER VERTEX vertex_type |
EDGE edge_type DROP ATTRIBUTE (name)

To make schema changes, create a SCHEMA_CHANGE job. Running the

SCHEMA_CHANGE JOB will automatically stop all services, update the graph store,

and restart the service. For example, suppose we wish to add a name for Users and

a weight to Liked edges to indicatehow much User A likes User B.

As of v1.2, the schema_change job here needs to be GLOBAL because the User vertex
and Liked edge are global types (they were defined before an active graph was set.)

Changing the schema may necessitate changing queries and other tasks, such as
REST endpoints. In this example, the collaborative filtering query will still run with the
the new weight attribute, but it will ignore the weight in its calculations.

CREATE GLOBAL SCHEMA_CHANGE JOB cf_mod2 {
ALTER VERTEX User ADD ATTRIBUTE (name string);

 ALTER EDGE Liked ADD ATTRIBUTE (weight float DEFAULT 1);
}
RUN JOB cf_mod2

cf_mod2.gsql

Users vertices and Edges from id2, after Modification 2

5/13/25, 9:12 PM 3.3

382

Now that we have added a weight attribute, we probably want to assign some

weight values to the graph. The following example updates the weight values of two

edges. For edge upserts, the first two arguments in the VALUES list specify the

FROM vertex id and the TO vertex_id, respectively. Similarly, for vertex upserts, the

first argument in the VALUES list specifies the PRIMARY_ID id. Since id values may

not be updated, the GSQL shell implicitly applies a conditional test: "If the specified

GSQL > SELECT * FROM User LIMIT 1000
[
 {
 "v_id": "id2",
 "attributes": {"name": ""},
 "v_type": "User"
 },
 {
 "v_id": "id5",
 "attributes": {"name": ""},
 "v_type": "User"
 },
 {
 "v_id": "id4",
 "attributes": {"name": ""},
 "v_type": "User"
 },
 {
 "v_id": "id1",
 "attributes": {"name": ""},
 "v_type": "User"
 }
]
GSQL > SELECT * FROM User-(Liked)->User WHERE from_id=="id2"
[{
 "from_type": "User",
 "to_type": "User",
 "directed": true,
 "from_id": "id2",
 "to_id": "id1",
 "attributes": {"weight": 1},
 "e_type": "Liked"
}]

Modification Type 3: Modifying the attributes of existing objects

5/13/25, 9:12 PM 3.3

383

id value(s) exist, than update the non-id attributes in the VALUES list; otherwise,

insert a new data record using these values."

UPSERT User VALUES ("id1", "Aaron")
UPSERT User VALUES ("id2", "Bobbie")
UPSERT User-(Liked)->User VALUES ("id2","id1",2.5)

GSQL > SELECT * FROM User LIMIT 1000
[
 {
 "v_id": "id2",
 "attributes": {"name": "Bobbie"},
 "v_type": "User"
 },
 {
 "v_id": "id5",
 "attributes": {"name": ""},
 "v_type": "User"
 },
 {
 "v_id": "id4",
 "attributes": {"name": ""},
 "v_type": "User"
 },
 {
 "v_id": "id1",
 "attributes": {"name": "Aaron"},
 "v_type": "User"
 }
]
GSQL > SELECT * FROM User-(Liked)->User WHERE from_id=="id2"
[{
 "from_type": "User",
 "to_type": "User",
 "directed": true,
 "from_id": "id2",
 "to_id": "id1",
 "attributes": {"weight": 2.5},
 "e_type": "Liked"
}]

cf_mod3.gsql

Users vertices and Edges from id2, after Modification 3

5/13/25, 9:12 PM 3.3

384

In addition to making graph updates within the GSQL Shell, there are two other

ways: sending a query string directly to the Standard Data Manipulation REST API,

or writing a custom REST endpoint. For details about the first method, see the GET,

POST, and DELETE /graphendpoints in the RESTPP API User Guide . The

functionality in GSQL and in the Standard Query API is the same; GSQL commands

are translated into REST GET, POST, and DELETE requests and submitted to the

Standard Query API.

The REST API equivalent of the GSQL Modification 3 upsert example above is as

follows:

where serverIP is the IP address of your REST server (default = localhost) and

data/cf_mod3_input.json is a text file containing the following JSON-encoded data:

curl -X POST --data-binary @ data/cf_mod3_input.json http://hostName:9000/

Other Modes for Graph Updates

cf_upsert.json

5/13/25, 9:12 PM 3.3

385

This example shows the use of WHILE loop iteration, global variables , and the built-

in outdegree attribute.

It is recommended that you do the Collaborative Filtering Use Case first, because it

contains additional tips on running the TigerGraph system.

{
 "vertices": {
 "User":{
 "id1":{
 "name":{
 "value":"Aaron"
 }
 }
 },
 "User":{
 "id2":{
 "name":{
 "value":"Bobbie"
 }
 }
 }
 },
 "edges": {
 "User":{
 "id2":{
 "Liked":{
 "User":{
 "id1":{
 "weight" : {
 "value":2.5
 }
 }
 }
 }
 }
 }
 }
}

Example 2. Page Rank

5/13/25, 9:12 PM 3.3

386

Remember that if you have a text file containing GSQL commands (e.g.,

commands.gsql), you can run it one of two ways:

• From Linux: gsql commands.gsql

• From inside the GSQL shell: @commands.gsql

To run a single command (such as DROP ALL):

• From Linux: gsql 'DROP ALL'

• From inside the GSQL shell: DROP ALL

Setting the working graph

If a graph has been defined, then all subsequent gsql commands need to specify which
graph is being used. If your command file does not contain a "USE GRAPH" statement,
then you can specify the graph when invoking gsql:gsql -g graph_name
commands.gsql

If you are always using the same graph, you can define a Linux alias to automatically
include your graph name:

You can add this line to the .bashrc in your home directory so that the alias is defined
each time you open a bash shell.

In this example, there is only one type of vertex and one type of edge, and edges

are directed.

gsql -g graph_name commands.gsql

alias gsql='gsql -g graph_name'

CREATE VERTEX Page (PRIMARY_ID pid string, page_id string)
CREATE DIRECTED EDGE Linkto (FROM Page, TO Page)
#CREATE GRAPH gsql_demo(*)

Step 1: Create a graph model.

pagerank_model.gsql

5/13/25, 9:12 PM 3.3

387

Note how the Page vertex type has both a PRIMARY_ID and a page_id attribute. As

will be seen in step 2, the same data will be loaded into both fields. While this

seems redundant, this is a useful technique in TigerGraph graph stores. The

PRIMARY_ID is not treated as an ordinary attribute. In exchange for high-

performance storage, the PRIMARY_ID lacks some of the filtering and querying

features available to regular attributes. The Linkto edge does not have any

attributes. In general, a TigerGraph graph can have attributes on both vertices and

edges, and it can also have different types of edges connecting the same two

vertices.

The CREATE GRAPH command is commented out for the following reason:

Our examples have been designed to run either as individual graphs or merged
together into one multi-application graph. The CREATE GRAPH command should be
run only once, after all the vertex and edge types for all the examples have been
created. (Naturally, every model uses unique vertex and edge names, to avoid
conflicts.) In other words, run ' CREATE GRAPH gsql_demo(*) ' as a separate command
after you have created all your vertex and edge types.

Please see the GSQL Language Reference which provides a more complete

description of the graph schema definition language with additional examples .

A similar graph to what was used for the Collaborative Filtering user-user network

example can be used for an example here. That is, each row has two values which

are node IDs, meaning that there is a connection from the first node to the second

node. However, we will introduce a difference to demonstrate the flexibility of the

TigerGraph loading system. We will modify the data file to use the tab character as a

field separator instead of the comma.

1 2
1 3
2 3
3 4
4 1
4 2

Step 2: Load initial data

pagerank_data.tsv

5/13/25, 9:12 PM 3.3

388

Create your loading job and load the data.

The above loading job will read each line of the input file (pagerank_data.tsv), create

one vertex based on the value in the first column (referenced as $0), another vertex

based on the value in the second column ($1), and one edge pointing from the first

vertex to the second vertex. If either of the two column values has already been

seen before, that vertex won't be created. Instead the existing vertex will be used.

For example, the first row of pagerank_data.tsv, will create two vertices, with ids 1

and 2, and one edge (1, 2). The second row, however, will create only one new

vertex, id 3, and one edge (1, 3), because id 1 already exists.

Note how the LOAD statement specifies the SEPARATOR character is the tab

character.

GSQL includes not only data definition and simple inspection of the data, but also

advanced querying which traverses the graph and which supports aggregation and

iteration. This example uses iterations, repeating the computation block until the

maximum score change at any vertex is no more than a user-provided threshold, or

until it reaches a user-specified maximum number of allowed iterations. Note the

arrow -> in the FROM clause used to represent the direction of a directed edge.

define the loading job
CREATE LOADING JOB load_pagerank FOR GRAPH gsql_demo {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX Page VALUES ($0, $0),
 TO VERTEX Page VALUES ($1, $1),
 TO EDGE Linkto VALUES ($0, $1)
 USING SEPARATOR="\t";
}

load the data
RUN LOADING JOB load_pagerank USING f="../pagerank/pagerank_data.tsv"

Loading job:

Step 3: Write a Graph-based query solution

Per Example: Load data into the graph (file: pagerank_load.gsql)

5/13/25, 9:12 PM 3.3

389

For JSON output API v2, the PRINT syntax for a vertex set variable is different than the
v1 syntax.

After executing the CREATE QUERY command, remember to install the query, either

by itself or together with other queries:

Run the query:

CREATE QUERY pageRank (float maxChange, int maxIteration, float dampingFac
FOR GRAPH gsql_demo
{
 # In each iteration, compute a score for each vertex:
 # score = dampingFactor + (1-dampingFactor)* sum(received scores from
 # The pageRank algorithm stops when either of the following is true:
 # a) it reaches maxIterations iterations;
 # b) max score difference of any vertex compared to the last iteration
 # @@ prefix means a global accumulator;
 # @ prefix means an individual accumulator associated with each vertex

 MaxAccum<float> @@maxDifference = 9999; # max score change in an iterati
 SumAccum<float> @received_score = 0; # sum of scores each vertex receive
 SumAccum<float> @score = 1; # initial score for every vertex is 1.

 AllV = {Page.*}; # Start with all vertices of type Page
 WHILE @@maxDifference > maxChange LIMIT maxIteration DO
 @@maxDifference = 0;
 S = SELECT s
 FROM AllV:s-(Linkto)->:t
 ACCUM t.@received_score += s.@score/s.outdegree()
 POST-ACCUM s.@score = dampingFactor + (1-dampingFactor) * s.@rece
 s.@received_score = 0,
 @@maxDifference += abs(s.@score - s.@score');
 PRINT @@maxDifference; # print to default json result
 END; # end while loop
 #PRINT AllV.page_id, AllV.@score; # print the results, JSON output
 PRINT AllV[AllV.page_id, AllV.@score]; # print the results, JSON output
} # end query

INSTALL QUERY pageRank

pagerank_query.gsql

Install the query

5/13/25, 9:12 PM 3.3

390

We will use the typical dampingFactor of 0.15, iterate until the pagerank values

change by less than 0.001, up to a maximum of 100 iterations. For these conditions,

the PageRank values for the 4 vertices (1,2,3,4) are (0.65551, 0.93379, 1.22156,

1.18914), respectively.

5/13/25, 9:12 PM 3.3

391

5/13/25, 9:12 PM 3.3

392

RUN QUERY pageRank(0.001, 100, 0.15)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@maxDifference": 0.425},
 {"@@maxDifference": 0.36125},
 {"@@maxDifference": 0.15353},
 {"@@maxDifference": 0.19575},
 {"@@maxDifference": 0.16639},
 {"@@maxDifference": 0.09429},
 {"@@maxDifference": 0.08014},
 {"@@maxDifference": 0.05961},
 {"@@maxDifference": 0.04705},
 {"@@maxDifference": 0.03999},
 {"@@maxDifference": 0.017},
 {"@@maxDifference": 0.02},
 {"@@maxDifference": 0.017},
 {"@@maxDifference": 0.00953},
 {"@@maxDifference": 0.0081},
 {"@@maxDifference": 0.00616},
 {"@@maxDifference": 0.00479},
 {"@@maxDifference": 0.00407},
 {"@@maxDifference": 0.00178},
 {"@@maxDifference": 0.00205},
 {"@@maxDifference": 0.00174},
 {"@@maxDifference": 9.6E-4},
 {"AllV": [
 {
 "v_id": "2",
 "attributes": {
 "AllV.page_id": "2",
 "AllV.@score": 0.93379
 },
 "v_type": "Page"
 },
 {
 "v_id": "4",
 "attributes": {
 "AllV.page_id": "4",
 "AllV.@score": 1.18914
 },
 "v_type": "Page"

5/13/25, 9:12 PM 3.3

393

Details about updating were discussed in Use Case 1 (Collaborative Filtering). We

will go right to the graph modification examples for the PageRank case.

To show the effect of each modification, we use two built-in queries. The first one

lists all the Page vertices. The second one lists all the edges which start at Page 4.

These are the results of the diagnostic queries, before any graph modifications.

There are 4 vertices total and 2 edges which start at page 4.

 },
 {
 "v_id": "1",
 "attributes": {
 "AllV.page_id": "1",
 "AllV.@score": 0.65551
 },
 "v_type": "Page"
 },
 {
 "v_id": "3",
 "attributes": {
 "AllV.page_id": "3",
 "AllV.@score": 1.22156
 },
 "v_type": "Page"
 }
]}
]
}

SELECT * FROM Page LIMIT 1000
SELECT * FROM Page-(Linkto)->Page WHERE from_id=="4"

Step 4 (Optional): Update Your Data.

pagerank_mod_check.gsql

Page vertices and Linkto edges from Page 4, before modifications

5/13/25, 9:12 PM 3.3

394

SELECT * FROM Page LIMIT 1000
[
 {
 "v_id": "2",
 "attributes": {"page_id": "2"},
 "v_type": "Page"
 },
 {
 "v_id": "4",
 "attributes": {"page_id": "4"},
 "v_type": "Page"
 },
 {
 "v_id": "1",
 "attributes": {"page_id": "1"},
 "v_type": "Page"
 },
 {
 "v_id": "3",
 "attributes": {"page_id": "3"},
 "v_type": "Page"
 }
]
SELECT * FROM Page-(Linkto)->Page WHERE from_id=="4"
[
 {
 "from_type": "Page",
 "to_type": "Page",
 "directed": true,
 "from_id": "4",
 "to_id": "2",
 "attributes": {},
 "e_type": "Linkto"
 },
 {
 "from_type": "Page",
 "to_type": "Page",
 "directed": true,
 "from_id": "4",
 "to_id": "1",
 "attributes": {},
 "e_type": "Linkto"
 }
]

Modification 1: Adding or deleting

5/13/25, 9:12 PM 3.3

395

Adding is simply running a loading job again with a new data file.

Deleting: Suppose we want to delete vertex url4 and all its connections:

The GSQL DELETE operation is a cascading deletion. If a vertex is deleted, then all of
the edges which connect to it are automatically deleted as well.

Result: one fewer vertex and one fewer edge from Page 4.

DELETE FROM Page WHERE page_id=="1"

SELECT * FROM Page LIMIT 1000
[
 {
 "v_id": "2",
 "attributes": {"page_id": "2"},
 "v_type": "Page"
 },
 {
 "v_id": "4",
 "attributes": {"page_id": "4"},
 "v_type": "Page"
 },
 {
 "v_id": "3",
 "attributes": {"page_id": "3"},
 "v_type": "Page"
 }
]
SELECT * FROM Page-(Linkto)->Page WHERE from_id=="4"
[{
 "from_type": "Page",
 "to_type": "Page",
 "directed": true,
 "from_id": "4",
 "to_id": "2",
 "attributes": {},
 "e_type": "Linkto"
}]

pagerank_mod1.gsql

Page vertices and Linkto edges from Page 4, after Modification 1

5/13/25, 9:12 PM 3.3

396

For example, suppose we wish to add an attribute to the Page vertices to classify

what type of Page it is and also a date to the edges.

Changing the schema may necessitate revising and reinstalling loading jobs and
queries. In this case, adding the pageType attribute does not harm the pageRank
query.

This schema_change job is GLOBAL because the Page vertex and Linkto edge types
are global (defined before setting an active graph).

CREATE GLOBAL SCHEMA_CHANGE JOB pagerank_mod2 {
 ALTER VERTEX Page ADD ATTRIBUTE (pageType string DEFAULT "");
 ALTER EDGE Linkto ADD ATTRIBUTE (dateLinked string DEFAULT "");
}
RUN JOB pagerank_mod2

Modification Type 2: Altering the schema

pagerank_mod2.gsql

Page vertices and Linkto edges from Page 4, after Modification 2

5/13/25, 9:12 PM 3.3

397

The following example updates the type values of two vertices and one edge.

SELECT * FROM Page LIMIT 1000
[
 {
 "v_id": "2",
 "attributes": {
 "page_id": "2",
 "pageType": ""
 },
 "v_type": "Page"
 },
 {
 "v_id": "4",
 "attributes": {
 "page_id": "4",
 "pageType": ""
 },
 "v_type": "Page"
 },
 {
 "v_id": "3",
 "attributes": {
 "page_id": "3",
 "pageType": ""
 },
 "v_type": "Page"
 }
]
SELECT * FROM Page-(Linkto)->Page WHERE from_id=="4"
[{
 "from_type": "Page",
 "to_type": "Page",
 "directed": true,
 "from_id": "4",
 "to_id": "2",
 "attributes": {"dateLinked": ""},
 "e_type": "Linkto"
}]

Modification Type 3: Modifying the attributes of existing objects

5/13/25, 9:12 PM 3.3

398

UPSERT Page VALUES (2,2,"info")
UPSERT Page VALUES (3,3,"commerce")
UPSERT Page-(Linkto)->Page VALUES (4,2,"2016-08-31")

SELECT * FROM Page LIMIT 1000
[
 {
 "v_id": "2",
 "attributes": {
 "page_id": "2",
 "pageType": "info"
 },
 "v_type": "Page"
 },
 {
 "v_id": "4",
 "attributes": {
 "page_id": "4",
 "pageType": ""
 },
 "v_type": "Page"
 },
 {
 "v_id": "3",
 "attributes": {
 "page_id": "3",
 "pageType": "commerce"
 },
 "v_type": "Page"
 }
]
SELECT * FROM Page-(Linkto)->Page WHERE from_id=="4"
[[{
 "from_type": "Page",
 "to_type": "Page",
 "directed": true,
 "from_id": "4",
 "to_id": "2",
 "attributes": {"dateLinked": "2016-08-31"},
 "e_type": "Linkto"
}]

Other Modes for Graph Updates

Page vertices and Linkto edges from Page 4, after Modification 3

5/13/25, 9:12 PM 3.3

399

In addition to making graph updates within the GSQL Shell, there are two other

ways: sending a query string directly to the Standard Data Manipulation REST API,

or writing a custom REST endpoint. For details about the first method, see the

Standard Data Manipulation REST API User Guide . The functionality in GSQL and in

the Standard Query API is essentially the same; GSQL commands are translated into

REST GET, POST, and DELETE requests and submitted to the Standard Query API.

The REST API equivalent of the GSQL Modification 3 upsert example above is as

follows:

where hostName is the IP address of your REST server, and data

/pagerank_mod3_input.json is a text file containing the following JSON-encoded

data:

curl -X POST --data-binary @data/pagerank_mod3_input.json http://hostName:

5/13/25, 9:12 PM 3.3

400

This example introduces the technique of flattening – splitting a data field which

contains a set of elements into individual vertices and edges, one for each element.

Input Data: A list of products. Each Product has a 64-bit image hash value and a list

of words describing the product.

Query Task : Find the products which are most similar to a given product. Formally,

{
 "vertices": {
 "Page":{
 "2":{
 "pageType" : {
 "value":"info"
 }
 }
 },
 "Page":{
 "3":{
 "pageType" : {
 "value":"commerce"
 }
 }
 }
 },
 "edges": {
 "Page":{
 "4":{
 "Linkto":{
 "Page":{
 "2":{
 "dateLinked" : {
 "value":"2016-08-31"
 }
 }
 }
 }
 }
 }
 }
}

Example 3. Simple Product Recommendation

5/13/25, 9:12 PM 3.3

401

given a product id P and an integer K,return the top K products similar to the product

P. The similarity between a product P and another product Q is based on the

number of words found in the product descriptions for both product P and product

Q.

Step 1: Create a graph model for the use case, using the data definition language

(DDL) aspect of the GSQL language.

Then run

The above statements create two types of vertices, Product and DescWord, and one

type of edge connecting the two vertex types. The edge is undirected so that you

can just as easily traverse from a Product to its descriptive words or from a

descriptive word to Products which are described by it.

The generated graph schema for this case is shown below. The GSQL Language

Reference manual provides a more complete description of the language with more

examples .

CREATE VERTEX Product (PRIMARY_ID pid string, image_hash uint)
CREATE VERTEX DescWord (PRIMARY_ID id string)
CREATE UNDIRECTED EDGE Has_desc (FROM Product, TO DescWord)

CREATE GRAPH gsql_demo(*)

simprod_model.gsql

5/13/25, 9:12 PM 3.3

402

Step 2: Load Input Data.

In this example, the input data are all stored in a single file having a 3-column format

with a header column. Below are the test data:

Column 1 is the product id; column 2 is the image hash code, and column 3 is a list

of words describing the product. Note how double quotation marks are used to

enclose the list of words. Each row from the input file may lead to the creation of

one Product vertex, multiple DescWord vertices, and multiple edges, one edge

connecting the Product to each DescWord vertex.

id,hash,words
62abcax334,15243242,"word1,word2,word3"
dell laptop,1837845,"word2,word4,word5"
mac book, 128474373,"word4"
surface pro,8439828,"word1,word3,word6"
hp book,29398439828,"word2,word3,word1"
linux abc,298439234,"word4,word2,word1"
linux def,295839234,"word4,word2,word6,word7"

simprod_data.csv

5/13/25, 9:12 PM 3.3

403

The loading job below makes use of several features of the loading language to

intelligently transform this data file into the appropriate vertices and edges.

1. The HEADER="true" option tells the loader that the data file's first line contains

column headings instead of data. It will read the column headings and permit

these heading names to be used instead of index numbers $1, $2, etc.

2. DEFINE HEADER and USER_DEFINED_HEADER allow the loading job to define its

own names for the columns ("id", "hash", "words"), instead of the index

numbers ($0, $1, $2) and overriding the file's own headings.

3. QUOTE="double" informs the loader that double quotation marks enclose

strings. This allows the separator character (e.g., comma) to appear in the

string, without triggering the end of the token. QUOTE="single" is also available.

4. The special TEMP_TABLE and flatten() function are used to split the list of tokens

into separate items and to store them temporarily. The temporary items are then

used to assemble the final edge objects.

In general, the GSQL language can map and transform multiple input files to multiple

vertex and edge types. More advanced data transformation and filtering features

are also available. See the GSQL Language Reference manual for more information.

An example of the resulting data graph is shown below. Products (P1, P2, etc.)

connect to various DescWords (Word1, Word2, etc.). Each Product connects to

many DescWords, and each DescWord is used in multiple Products.

define the loading job
CREATE LOADING JOB load_simprod FOR GRAPH gsql_demo {
 DEFINE HEADER head1 = "id","hash","words";
 DEFINE FILENAME f1;
 LOAD f1
 TO VERTEX Product values ($"id", $"hash"),
 TO TEMP_TABLE t (pid, description) VALUES ($"id", flatten($"words", ",
 USING QUOTE="double", HEADER="true", USER_DEFINED_HEADER="head1";
 LOAD TEMP_TABLE t
 TO VERTEX DescWord VALUES ($"description"),
 TO EDGE Has_desc VALUES ($"pid", $"description");
}

load the data
RUN LOADING JOB load_simprod USING f1="../simprod/data/simprod_data.csv"

simprod_load.gsql

5/13/25, 9:12 PM 3.3

404

Step 3: Write a graph-based solution using TigerGraph's high-level GSQL query

language, to solve the use case and auto-generate the REST GET/POST endpoints

for real-time accesses to TigerGraph's system.

simprod_query.gsql

5/13/25, 9:12 PM 3.3

405

Query Result:

For product id= 62abcax334, find the top 3 similar products, which have more than 1

descriptive word in common with product 62abcax334.

CREATE QUERY productSuggestion (vertex<Product> seed, int threshold_cnt, i
FOR GRAPH gsql_demo
{
 # an accumulator variable attachable to any vertex
 SumAccum<int> @cnt = 0;

 # T0 is the set of products from which we want to start traversal in t
 T0={seed};

 /**
 * Compute the collection of words describing the input
 * product. tgt is the alias of vertex type DescWord.
 * In other words, for every edge of the given type (Has_desc)
 * that has one vertex in the set T0 and the other vertex being of
 * the DescWord type, add its DescWord vertex to the output set.
 */
 ProductWords = SELECT tgt
 FROM T0-(Has_desc)-DescWord:tgt;

 /**
 * The output set of the previous query (ProductWords) becomes the in
 * of this query. From each word in ProductWords, activate all other
 * which contain the word in their description, and accumulate a coun
 * each activated product to record how many words it has in common w
 * input product. Then rank each related product using the count of
 * words; the count must exceed the query parameter threshold_cnt.
 */
 Results = SELECT tgt
 FROM ProductWords-(Has_desc)->Product:tgt
 WHERE tgt != seed
 ACCUM tgt.@cnt += 1
 HAVING tgt.@cnt > threshold_cnt
 ORDER BY tgt.@cnt DESC
 LIMIT k;

 PRINT Results; # default print output is the REST call response in JSO
}

5/13/25, 9:12 PM 3.3

406

When installing the above GSQL query, a REST GET endpoint for this query will

automatically be generated. Instead of running the query as a GSQL command,

clients can also invoke the query by formatting the query as a HTTP request query

string and sending a GET request, e.g.,

//INSTALL QUERY productSuggestion
RUN QUERY productSuggestion("62abcax334", 1, 3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Results": [
 {
 "v_id": "hp book",
 "attributes": {
 "@cnt": 3,
 "image_hash": 29398439828
 },
 "v_type": "Product"
 },
 {
 "v_id": "surface pro",
 "attributes": {
 "@cnt": 2,
 "image_hash": 8439828
 },
 "v_type": "Product"
 },
 {
 "v_id": "linux abc",
 "attributes": {
 "@cnt": 2,
 "image_hash": 298439234
 },
 "v_type": "Product"
 }
]}]
}

5/13/25, 9:12 PM 3.3

407

This example introduces the CASE...WHEN...THEN structure, which can also be

used as an if...then block.

Input Data: A social network, where each person has a first and last name and may

also display a picture of themselves.

Query Task : Find the users who are most "similar" to a user X. Specifically, a user

X searches for other users whose first or last name matches user X's name. The

query returns the list of users (Y1,Y2,...Yk) within two steps (two steps means

friend-of-friend), who have matching names, and who offer a picture. The list is

sorted and ranked by the relevance score between X and another user Yi, where the

score is a linear function of four factors:

For the standard TigerGraph configuration, hostName:port is localhost:9000

1. depth : how far X is from Yi (the shortest distance)

2. count : the number of shortest paths between X and Yi

3. match : whether Yi matches the input first name (match=1), the input last name

(match=2), or both input names (match=3)

4. profile : whether Yi has a profile picture

curl -X GET "http://hostName:port/query/gsql_demo/productSuggestion?seed=6

Example 4. Same Name Search

5/13/25, 9:12 PM 3.3

408

Using the graph above as an example, suppose we want to compute relevance

scores for the social network of the Tom Smith on the left.

• match=1 for Tom Lee (first names are the same)

• match=2 for May Smith (last names are the same)

• match=3 for Tom Smith on the right (both names are the same).

There is no direct connection to the other Tom Smith, but there are several paths:

• Paths with a depth = 2:

◦ Tom Smith → Ming Wu → Tom Smith

◦ Tom Smith → Ron Glass → Tom Smith

◦ Tom Smith → Tom Lee → Tom Smith

◦ Tom Smith → May Smith → Tom Smith

There are also some longer paths (e.g., Tom Smith → Ron Glass → Tom Lee → Tom

Smith), but since they are longer, they are not of interest. Therefore, for the

relationship (Tom Smith, Tom Smith), depth = 2 and count = 4.

The four factors (depth, count, match, hasPicture) are combined to compute an

overall relevance score:

5/13/25, 9:12 PM 3.3

409

The clause hasPicture? 200 : 0 uses the ternary conditional operator. If

hasPicture is TRUE, evaluate to 200. Otherwise, evaluate to 0.

To design the graph schema, consider what attributes are needed for each vertex

and attribute. The User vertices need to have a first name, a last name, and a profile

picture. We assume that the social network is stored in two data files, one for

vertices and one for edges.

Vertex file format: id, firstname, lastname, img_url

Edge file format: user1, user2

The following code creates the schema and loads the data:

Test data files

score = match * 100 + (4-depth) * 50 + count + hasPicture? 200 : 0

CREATE VERTEX NameUser (PRIMARY_ID id string, firstname string, lastname s
CREATE UNDIRECTED EDGE NameConn (FROM NameUser, TO NameUser)

CREATE GRAPH gsql_demo(*)

define the loading job
CREATE LOADING JOB load_nameV FOR GRAPH gsql_demo {
 DEFINE FILENAME f1;
 LOAD f1 TO VERTEX NameUser VALUES ($0, $1, $2, $3);
}
CREATE LOADING JOB load_nameE FOR GRAPH gsql_demo {
 DEFINE FILENAME f2;
 LOAD f2 TO EDGE NameConn VALUES ($0, $1);
}

load the data
RUN lOADING JOB load_nameV USING f1="../name/data/name_search_vertex.csv"
RUN LOADING JOB load_nameE USING f2="../name/data/name_search_edge.csv"

name_model.gsql

name_load.gsql

5/13/25, 9:12 PM 3.3

410

The query algorithm is a bit long but straightforward:

1. Select all the depth=1 neighbors. For each neighbor:

a. Use a CASE structure to check for matching first and last names and assign

a match value.

b. Check for an image.

0,michael,jackson,
1,michael,franklin,abc.com
2,michael,lili,def.com
3,franklin,lili,
4,lucia,franklin,lucia.org
5,michael,jackson,
6,michael,jackson,abc.com
7,lucia,jackson,
8,hahah,jackson,haha.net

0,1
0,3
0,4
1,5
1,3
1,2
2,6
2,7
2,1
2,0
3,0
3,1
3,5
3,7
4,5
5,6
5,7
6,7
6,1
6,2
6,0
6,4
7,5
8,5

name_search_vertex.csv

name_search_edge.csv

5/13/25, 9:12 PM 3.3

411

c. We know depth=1 and count=1, so compute the relevance score.

2. Starting from the depth=1 neighbors, move to the depth=2 neighbors. For each

such neighbor:

a. Use a CASE structure to check for matching first and last names and assign

a match value.

b. Use ACCUM to count up the paths.

c. Check for an image.

d. Depth=2. Compute the relevance score.

The complete query is shown below:

name_query.gsql

5/13/25, 9:12 PM 3.3

412

5/13/25, 9:12 PM 3.3

413

CREATE QUERY namesSimilar (vertex<NameUser> seed, string firstName, string
FOR GRAPH gsql_demo
{
 # define a tuple to store neighbor score
 typedef tuple<vertex<NameUser> uid, float score> neighbor;
 # runtime variables used to compute neighbor score
 SumAccum<int> @count = 0;
 SumAccum<int> @depth = 0;
 SumAccum<int> @match= 0;
 SumAccum<float> @score = 0.0;
 SumAccum<int> @hasImgURL = 0;

 # global heap variable used to store final top k users, sorted by score
 # in the neighbor tuple
 HeapAccum<neighbor>(k, score DESC) @@finalTopKUsers;

 # starting user
 StartP = {seed};

 # flag first level neighbor with @depth = 1
 # count number of incoming connections
 # flag match category
 # flag img_url count greater than 0
 # finally, push the user and their score into global top-k heap.
 FirstLevelConnection = SELECT u

FROM StartP -(NameConn)-> :u
ACCUM u.@depth = 1, u.@count += 1,

CASE WHEN u.firstname == firstName AND u.lastname == lastName
THEN u.@match = 3

WHEN u.firstname != firstName AND u.lastname == lastName
 THEN u.@match = 2
 WHEN u.firstname == firstName AND u.lastname != lastName
 THEN u.@match = 1

END,
CASE WHEN u.imag_url != ""

THEN u.@hasImgURL = 1
END

 POST-ACCUM @@finalTopKUsers += neighbor(u, u.@match * 100 + (4-u.@

 # similarly, do the topk heap update using second level neighbor
 SecondLevelConnection = SELECT u2

FROM FirstLevelConnection -(NameConn)-> :u2
WHERE u2 != seed AND u2.@depth != 1
ACCUM u2.@depth = 2, u2.@count +=1,

CASE WHEN u2.firstname == firstName AND u2.lastname == lastNam
THEN u2.@match = 3

WHEN u2.firstname != firstName AND u2.lastname == lastName
THEN u2.@match = 2

5/13/25, 9:12 PM 3.3

414

Query result

Starting from user 0, who is named "Michael Jackson", find the top 100 most similar

persons, according to the scoring function described above.

WHEN u2.firstname == firstName AND u2.lastname != lastName
THEN u2.@match = 1

END,
CASE WHEN u2.imag_url !=""

THEN u2.@hasImgURL = 1
END

POST-ACCUM @@finalTopKUsers += neighbor(u2, u2.@match*100 + (4-u2.

 # print the result
 PRINT @@finalTopKUsers;
}

5/13/25, 9:12 PM 3.3

415

//INSTALL QUERY namesSimilar
RUN QUERY namesSimilar (0,"michael","jackson",100)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@finalTopKUsers": [
 {
 "uid": "6",
 "score": 651
 },
 {
 "uid": "2",
 "score": 451
 },
 {
 "uid": "1",
 "score": 451
 },
 {
 "uid": "5",
 "score": 404
 },
 {
 "uid": "4",
 "score": 351
 },
 {
 "uid": "7",
 "score": 303
 },
 {
 "uid": "3",
 "score": 151
 }
]}]
}

Example 5. Content-Based Filtering
Recommendation of Videos

5/13/25, 9:12 PM 3.3

416

This example demonstrates conditional loading to be selective about which data

records to load into which vertices or edges.

Input Data: A network of video programs, a set of tags which describe each video,

and a set of users who have watched and rated videos.

Query Task: Recommend video programs that a given user might like.

Step 1: Create Graph Schema

The principle behind content-based recommendation is that people are often

interested in products which have attributes similar to the ones which they have

selected in the past. Suppose we have a video store. If the store tracks what videos

each customer has selected in the past, and also records attributes about its videos,

it can use this data to recommend more videos to the customer. Formally, for an

input user (seed), first find which videos the user has watched. Then, from all the

watched videos, find the top k attributes. From the top k attributes, find the top n

videos that the seed user has not watched.

This suggests that we should have a graph with three types of vertices: user, video,

and attributes (of a video). The schema is shown below.

Then run

Step 2: Load Input Data

In this example, there is one data file which contains data for all three type of

vertices – VidUser, Video, and AttributeTag. The first field of each line indicates the

vertex type. Similarly, there is one edge data file for two types of edges –

CREATE VERTEX VidUser (PRIMARY_ID user_id uint, content string, date_time
CREATE VERTEX Video (PRIMARY_ID content_id uint, content string, date_time
CREATE VERTEX AttributeTag (PRIMARY_ID tag_id string, content string, att_
CREATE UNDIRECTED EDGE Video_AttributeTag (FROM Video, TO AttributeTag, we
CREATE UNDIRECTED EDGE User_Video (FROM VidUser, TO Video, rating float DE

CREATE GRAPH gsql_demo(*)

video_model.gsql

5/13/25, 9:12 PM 3.3

417

User_Video and Video_AttributeTag. The WHERE clause is used to conditionally load

only certain data into each type of vertex or edge. Further, these data files do not

contain information for every attribute. When "_" is used in the VALUES list of a

LOAD statement, it means not to load data from the input. The default value will be

written (or it will remain as it is, if there is already a vertex or edge with that ID).

Test data files

type,id,content
User,0,
User,1,
User,2,
User,3,
Video,0,v0
Video,1,v1
Video,2,v2
Video,3,v3
Video,4,v4
Tag,action,
Tag,comedy,
Tag,mystery,
Tag,technical,

type,from,to,rating
UV,0,0,6.8
UV,0,2,5.2
UV,0,3,10.0
UV,1,1,1.2
UV,2,0,7.4
UV,3,0,6.6
UV,3,4,8.4
VA,0,action,
VA,0,comedy,
VA,1,mystery,
VA,2,technical,
VA,2,mystery,
VA,2,action,
VA,3,comedy,
VA,4,technical,
VA,4,action,

video_recommendation_v.csv

video_recommendation_e.csv

5/13/25, 9:12 PM 3.3

418

Loading jobs

Step 3: Query the data

The query has the three stages characteristic of content-based recommendation:

1. Find products (videos) previously selected

2. Find the top attributes of those products

3. Find the products which have the most attributes in common with the seed

products

define the loading job
CREATE LOADING JOB load_videoV FOR GRAPH gsql_demo {
 DEFINE FILENAME f1;
 LOAD f1
 TO VERTEX VidUser VALUES ($1,_,_) WHERE $0 == "User",
 TO VERTEX Video VALUES ($1,$2,_) WHERE $0 == "Video",
 TO VERTEX AttributeTag VALUES ($1,_,_) WHERE $0 == "Tag";
}
CREATE LOADING JOB load_videoE FOR GRAPH gsql_demo {
 DEFINE FILENAME f2;
 LOAD f2
 TO EDGE User_Video VALUES ($1,$2,$3, _) WHERE $0 == "UV",
 TO EDGE Video_AttributeTag VALUES ($1,$2,_, _) WHERE $0 == "VA";
}

load the data
RUN LOADING JOB load_videoV USING f1="../video/data/video_recommendation_v
RUN LOADING JOB load_videoE USING f2="../video/data/video_recommendation_e

video_load.gsql

video_query.gsql

5/13/25, 9:12 PM 3.3

419

Query result

Recommend up to 10 videos to user 0, using the top 10 attributes from the client's

favorite videos.

CREATE QUERY videoRecommendation (vertex<VidUser> seed, int k, int n) FOR
{
 OrAccum @viewedBySeed;
 SumAccum<float> @score;

 Start = {seed};

 # get viewed videos
 Viewed = SELECT v
 FROM Start -(User_Video:e)-> Video:v
 ACCUM v.@viewedBySeed += true,
 v.@score += e.rating;

 # get attribute
 Attribute = SELECT att
 FROM Viewed:v -(Video_AttributeTag)-> AttributeTag:att
 ACCUM att.@score += v.@score
 ORDER BY att.@score
 LIMIT k;

 # get recommended videos
 Recommend = SELECT v
 FROM Attribute:att -(Video_AttributeTag)-> Video:v
 WHERE v.@viewedBySeed != true
 ACCUM v.@score += att.@score
 ORDER BY v.@score DESC
 LIMIT n;

 PRINT Recommend;
}

5/13/25, 9:12 PM 3.3

420

This example shows a technique for passing intermediate results from one stage to

another.

Input Data : A social network with weighted connections.

//INSTALL QUERY videoRecommendation
RUN QUERY videoRecommendation (0, 10, 10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Recommend": [
 {
 "v_id": "4",
 "attributes": {
 "date_time": 0,
 "@score": 17.2,
 "@viewedBySeed": false,
 "content": "v4"
 },
 "v_type": "Video"
 },
 {
 "v_id": "1",
 "attributes": {
 "date_time": 0,
 "@score": 5.2,
 "@viewedBySeed": false,
 "content": "v1"
 },
 "v_type": "Video"
 }
]}]
}

Example 6. People You May Know

5/13/25, 9:12 PM 3.3

421

Query Task: Recommend the Top K people you may know but who are not yet in

your set of connections. Scoring is based on a variation of cosine similarity of two

users:

This is a way to "transport" a value as the query travels through the graph .

The graph schema and loading jobs:

This example shows that the computation of a moderately complex formula is simple

in the GSQL language. It also demonstrates a technique of copying an attribute from

an edge or a source vertex to the (temporary) accumulator of the edge's target

vertex:

Then

 tgt.@edge_strength = e.strength

CREATE VERTEX Person (PRIMARY_ID id uint)
CREATE UNDIRECTED EDGE PersonConn (FROM Person, TO Person, strength float)

score(A,B) =

 ∑
degree(A) ⋅ degree(B)

connectionStrength(A → x) ⋅ connectionStrength(x → B)

CREATE GRAPH gsql_demo(*)

Step 1

Step 2

people_model.gsql

people_load.gsql

5/13/25, 9:12 PM 3.3

422

Test data:

If you have worked through the previous examples, you perhaps can now see that

we need a two-stage query: from A to A's neighbors, and then from A's neighbors to

their neighbors. Also, you may realize that we will use the ACCUM clause to

define the loading jobs
CREATE LOADING JOB load_peopleV FOR GRAPH gsql_demo {
 DEFINE FILENAME f1;
 LOAD f1 TO VERTEX Person VALUES ($0);
}
CREATE LOADING JOB load_peopleE FOR GRAPH gsql_demo {
 DEFINE FILENAME f2;
 LOAD f2 TO EDGE PersonConn VALUES ($0,$1,$2);
}

load the data
RUN LOADING JOB load_peopleV USING f1="../people/data/people_user.dat"
RUN LOADING JOB load_peopleE USING f2="../people/data/people_conn.dat"

1
2
3
4
5
6
7
8

1,2,0.6
2,3,0.5
2,6,0.5
3,6,0.3
3,5,0.2
3,4,0.8
5,8,0.8
6,8,0.2

Step 3

people_user.dat

people_conn.dat

5/13/25, 9:12 PM 3.3

423

perform summation in the second stage. But, how will we know during the second

stage what was the strength of the first stage edge? By storing a copy of the edge's

weight in an accumulator attached to the edge's target vertex, which becomes a

source vertex in the second stage.

In JSON output API v2, the PRINT syntax for a vertex set variable is different than the
v1 syntax.

Query result:

Recommend up to 10 persons whom Person 1 might like to get to know.

CREATE QUERY peopleYouMayKnow(vertex<Person> startP, int TopK) FOR GRAPH g
{
 SumAccum<float> @edge_strength = 0;
 SumAccum<int> @depth = 0;
 SumAccum<float> @sum = 0;
 SumAccum<float> @score = 0;
 SumAccum<int> @@startPdegree = 0;

 Start = {startP};
 L1 = SELECT tgt
 FROM Start:src-(PersonConn:e)->Person:tgt
 ACCUM tgt.@edge_strength = e.strength, tgt.@depth=1, # copy edge s
 @@startPdegree += src.outdegree(); # save seed outdegre

 # second level connections
 L2 = SELECT tgt2
 FROM L1:u-(PersonConn:e)->Person:tgt2
 WHERE tgt2 != startP AND tgt2.@depth != 1
 ACCUM tgt2.@sum += u.@edge_strength*e.strength
 POST-ACCUM tgt2.@score += tgt2.@sum/(@@startPdegree * tgt2.outdegr
 ORDER BY tgt2.@score DESC
 LIMIT TopK;
 #PRINT L2.@score; # JSON output API version v1
 PRINT L2 [L2.@score]; # JSON output API version v2
}

people_query.gsql

5/13/25, 9:12 PM 3.3

424

Input Data: A social network in which each user has two attributes (besides their

name): the time that they joined the network, and a boolean flag which says whether

they are active or not.

Query Tasks: We show several query examples, making use the the time attribute

and directed links between users.

Then

INSTALL QUERY peopleYouMayKnow
RUN QUERY peopleYouMayKnow (1, 10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"L2": [
 {
 "v_id": "6",
 "attributes": {"L2.@score": 0.1},
 "v_type": "Person"
 },
 {
 "v_id": "3",
 "attributes": {"L2.@score": 0.075},
 "v_type": "Person"
 }
]}]
}

CREATE VERTEX SocialUser (PRIMARY_ID uid string, name string, isActive boo
CREATE DIRECTED EDGE SocialConn (FROM SocialUser, TO SocialUser) WITH REVE

Example 7. More Social Network Queries

Part 1: Create Graph

social_model.gsql

5/13/25, 9:12 PM 3.3

425

Test data:

We have two data files. For variety, we will create two loading jobs, one for each file.

Moreover, we will define the specific file locations in the loading jobs themselves.

CREATE GRAPH gsql_demo(*)

id,name,active,timestamp
0,luke,1,1400000000
1,john,1,1410000000
2,matthew,0,1420000000
3,mark,1,143000000
4,paul,1,144000000
5,steven,0,145000000
6,peter,1,146000000
7,james,1,147000000
8,joseph,1,148000000
9,thomas,1,149000000

0,1
0,2
0,3
0,4
0,5
1,3
1,4
1,5
1,6
0,7
7,0
7,3
7,4
7,5
0,8
8,3
8,4
0,9
9,3

Part 2: Load Data

social_users.csv

social_connections.csv

5/13/25, 9:12 PM 3.3

426

Then, it is not necessary to provide the filepaths in the RUN LOADING JOB

statements. Also, the file social_users.csv has a header, so we can use the

column headings to refer to the columns.

This case study presents four queries and their results, one at a time, so there are four
separate "INSTALL QUERY" commands. Alternately, all four can be installed at once,
which will execute faster than separate install commands:
INSTALL QUERY socialFromUser, socialToUser, socialMutualConnections,
socialOneWay

or

INSTALL QUERY ALL

Q1 (socialFromUser): find users who have a direct connection from a given input

user, with some filtering conditions on the candidate users' attributes

define the loading job
CREATE LOADING JOB load_social1 FOR GRAPH gsql_demo {
 LOAD "../social/data/social_users.csv"
 TO VERTEX SocialUser VALUES ($"id",$"name",$"active",$"timestamp")
 USING HEADER="true", QUOTE="double";
}
CREATE LOADING JOB load_social2 FOR GRAPH gsql_demo {
 LOAD "../social/data/social_connection.csv"
 TO EDGE SocialConn VALUES ($0, $1);
}

load the data
RUN LOADING JOB load_social1
RUN LOADING JOB load_social2

Part 3 : Create, install, and run queries.

social_load.gsql

socialFromUser from social_query.gsql

5/13/25, 9:12 PM 3.3

427

Test query and result:

CREATE QUERY socialFromUser(vertex<SocialUser> uid, bool is_active, int re
int reg_time_max, int k) FOR GRAPH gsql_demo
{
 L0={uid};
 RESULT = SELECT tgt
 FROM L0:u-(SocialConn)->SocialUser:tgt
 WHERE tgt.registration_timestamp >= reg_time_min AND
 tgt.registration_timestamp <= reg_time_max AND
 tgt.isActive == is_active
 LIMIT k;
 PRINT RESULT;
}

5/13/25, 9:12 PM 3.3

428

Q2 (socialToUser): similar to Q1, but return users who have a connection pointing

to the input user.

#INSTALL QUERY socialFromUser
RUN QUERY socialFromUser("0", "true", 0, 147000000, 10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"RESULT": [
 {
 "v_id": "7",
 "attributes": {
 "registration_timestamp": 147000000,
 "name": "james",
 "isActive": true
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "4",
 "attributes": {
 "registration_timestamp": 144000000,
 "name": "paul",
 "isActive": true
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "3",
 "attributes": {
 "registration_timestamp": 143000000,
 "name": "mark",
 "isActive": true
 },
 "v_type": "SocialUser"
 }
]}]
}

socialToUser from social_query.gsql

5/13/25, 9:12 PM 3.3

429

Test query and result:

CREATE QUERY socialToUser(vertex<SocialUser> uid, bool is_active, int reg_
int reg_time_max, int K) FOR GRAPH gsql_demo
{
 L0={uid};
 Result = SELECT tgt
 FROM L0:u-(reverse_conn)->SocialUser:tgt
 WHERE tgt.registration_timestamp >= reg_time_min AND
 tgt.registration_timestamp <= reg_time_max AND
 tgt.isActive == is_active
 LIMIT K;
 PRINT Result;
}

#INSTALL QUERY socialToUser
RUN QUERY socialToUser("4", "true", 0, 150000000, 10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [
 {
 "v_id": "8",
 "attributes": {
 "registration_timestamp": 148000000,
 "name": "joseph",
 "isActive": true
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "7",
 "attributes": {
 "registration_timestamp": 147000000,
 "name": "james",
 "isActive": true
 },
 "v_type": "SocialUser"
 }
]}]
}

5/13/25, 9:12 PM 3.3

430

Q3 (socialMutualConnections): return the set of users who have connections from

both input user A and input user B.

Test query and result:

CREATE QUERY socialMutualConnections(vertex<SocialUser> uid1, vertex<Socia
int reg_time_min, int reg_time_max, int k) FOR GRAPH gsql_demo
{
 SumAccum<int> @cnt =0;

 Start = {uid1,uid2};
 Result = SELECT tgt
 FROM Start-(SocialConn)->SocialUser:tgt
 WHERE tgt.registration_timestamp >= reg_time_min AND
 tgt.registration_timestamp <= reg_time_max AND
 tgt.isActive == is_active
 ACCUM tgt.@cnt +=1
 HAVING tgt.@cnt == 2
 LIMIT k;
PRINT Result;
}

#INSTALL QUERY socialMutualConnections
RUN QUERY socialMutualConnections("1", "7", "false", 0, 2000000000, 10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "5",
 "attributes": {
 "registration_timestamp": 145000000,
 "@cnt": 2,
 "name": "steven",
 "isActive": false
 },
 "v_type": "SocialUser"
 }]}]
}

socialMutualConnection from social_query.gsql

5/13/25, 9:12 PM 3.3

431

Q4 (socialOneWay): find all A->B user relationships such that there is an edge from

A to B but there is no edge from B to A, and also requires that A and B connect to at

least some number of common friends.

Test query and result: There are three such pairs

1. From vertex 0 to 1. Vertices 0 and 1 have 3 neighbors in common.

2. From vertex 0 to 8. Vertices 0 and 8 have 2 neighbors in common.

3. From vertex 0 to 9. Vertices 0 and 9 have 1 neighbor in common.

CREATE QUERY socialOneWay(int mutual_contacts_min = 5, int mutual_contacts
FOR GRAPH gsql_demo
{
 typedef tuple<vertex<SocialUser> id, string name, int cnt> recTuple;
 # SumAccum<list<recTuple>> @recList; # v0.1 to v0.1.2
 ListAccum<recTuple> @recList; # v0.2

 Start = {SocialUser.*};

 Result = SELECT B
 FROM Start:A-(SocialConn)->SocialUser:B
 # B.neighbors() is a built-in function which returns the list o
 # B.neighbors('edgeType1') returns only the neighbors connected
 WHERE B NOT IN A.neighbors("reverse_conn") AND
 COUNT(A.neighbors("SocialConn") INTERSECT B.neighbors("SocialC
 COUNT(A.neighbors("SocialConn") INTERSECT B.neighbors("SocialC
 ACCUM B.@recList += recTuple(A, A.name, COUNT(A.neighbors("Social
 PRINT Result; # the result includes B's static attributes and B.@fromN
}

socialOneWay from social_query.gsql

5/13/25, 9:12 PM 3.3

432

5/13/25, 9:12 PM 3.3

433

//INSTALL QUERY socialOneWay
RUN QUERY socialOneWay(1,10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [
 {
 "v_id": "8",
 "attributes": {
 "registration_timestamp": 148000000,
 "name": "joseph",
 "isActive": true,
 "@recList": [{
 "name": "luke",
 "cnt": 2,
 "id": "0"
 }]
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "9",
 "attributes": {
 "registration_timestamp": 149000000,
 "name": "thomas",
 "isActive": true,
 "@recList": [{
 "name": "luke",
 "cnt": 1,
 "id": "0"
 }]
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "1",
 "attributes": {
 "registration_timestamp": 1410000000,
 "name": "john",
 "isActive": true,
 "@recList": [{
 "name": "luke",
 "cnt": 3,

5/13/25, 9:12 PM 3.3

434

• socialTwoWay: Find all A↔B relationships such that there are connected edges

both from A to B and from B to A, and A and B have some common neighbors.

Test query and result:

There is one such pair (0, 7), but the query reports it twice: first as (7, 0) and then as

(0, 7). Vertices 7 and 0 have 3 neighbors in common.

 "id": "0"
 }]
 },
 "v_type": "SocialUser"
 }
]}]
}

Suggested variant query:

5/13/25, 9:12 PM 3.3

435

RUN QUERY socialTwoWay(1,10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [
 {
 "v_id": "1",
 "attributes": {
 "registration_timestamp": 1400000000,
 "name": "luke",
 "isActive": true,
 "@recList": [{
 "name": "james",
 "cnt": 3,
 "id": "7"
 }]
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "7",
 "attributes": {
 "registration_timestamp": 147000000,
 "name": "james",
 "isActive": true,
 "@recList": [{
 "name": "luke",
 "cnt": 3,
 "id": "0"
 }]
 },
 "v_type": "SocialUser"
 }
]}]
}

Example 8.

5/13/25, 9:12 PM 3.3

436

TigerGraph Graph
Data Science Library

5/13/25, 9:12 PM 3.3

437

Overview
TigerGraph In-Database Graph Data Science Library is a collection of expertly

written GSQL queries, each of which implements a standard graph algorithm. Each

algorithm is ready to be installed and used, either as a stand-alone query or as a

building block of a larger analytics application.

We renamed our library (formerly known as GSQL Graph Algorithm Library) to

emphasize our focus on graph data science. As the worldʼs only scalable graph

analytics platform, TigerGraph is committed to providing the best graph analytics

framework for data scientists.

GSQL running on the TigerGraph platform is particularly well-suited for graph

algorithms for several reasons:

• Turing-complete with full support for imperative and procedural programming,

ideal for algorithmic computation.

• Parallel and Distributed Processing, enabling computations on larger graphs.

• User-Extensible. Because the algorithms are written in standard GSQL and

compiled by the user, they are easy to modify and customize.

• Open-Source. Users can study the GSQL implementations to learn by example,

and they can develop and submit additions to the library.

You can download the library from Github:

https://github.com/tigergraph/gsql-graph-algorithm

The library contains two folders: algorithms and graphs .

The algorithms folder contains the GSQL implementation of all the graph

algorithms offered by the library. Within the algorithms folder are six subfolders that

Library Structure

algorithms

5/13/25, 9:12 PM 3.3

https://github.com/tigergraph/gsql-graph-algorithms
https://github.com/tigergraph/gsql-graph-algorithms

438

group the algorithms into six classes:

• Centrality

• Classification

• Community

• Node Embeddings

• Path

• Similarity

The graphs folder contains small sample graphs that you can use to experiment

with the algorithms. In this document, we use the test graphs to show you the

expected result for each algorithm. The graphs are small enough that you can

manually calculate and sometimes intuitively see what the answers should be.

Starting with TigerGraph product version 2.6, the Library has release branches:

• Product version branches (2.6, 3.0, etc.) are snapshots created shortly after a

product version is released. They contain the best version of the graph algorithm

library at the time of that product version's initial release. They will not be

updated, except to fix bugs.

• Master branch: the newest released version. This should be at least as new as

the newest. It may contain new or improved algorithms.

• Other branches are development branches.

It is possible to run newer algorithms on an older product version, as long as the

algorithm does not rely on features available only in newer product versions.

graphs

Release Branches

Run an algorithm

5/13/25, 9:12 PM 3.3

439

All GSQL graph algorithms are schema-free, which means they are ready to use with

any graph, regardless of the graph's data model or schema. The algorithms have

run-time input parameters for the vertex type(s), edge type(s), and attributes which

the user wishes to use.

To use an algorithm, the algorithm (GSQL query) must first be installed. If your

database is on a distributed cluster, you should use the DISTRIBUTED option when

installing the query to install it in Distributed Query Mode.

Running an algorithm is the same as running a GSQL query. For example, if you

selected the JSON option for pageRank , you could run it from GSQL as below:

Installing a query also creates a REST endpoint. The same query could be run thus:

GSQL lets you run queries from within other queries. This means you can use a

library algorithm as a building block for more complex analytics.

GSQL > RUN QUERY tg_pageRank("Page","Links_to",_,30,_,50,_,_,_)

curl -X GET 'http://127.0.0.1:9000/query/alg_graph/pageRank?v_type=Page&e_

5/13/25, 9:12 PM 3.3

440

Centrality Algorithms

5/13/25, 9:12 PM 3.3

441

PageRank
The PageRank algorithm measures the influence of each vertex on every other

vertex. PageRank influence is defined recursively: a vertex's influence is based on

the influence of the vertices which refer to it. A vertex's influence tends to increase

if (1) it has more referring vertices or if (2) its referring vertices have higher

influence. The analogy to social influence is clear.

A common way of interpreting PageRank value is through the Random Network

Surfer model. A vertex's PageRank score is proportional to the probability that a

random network surfer will be at that vertex at any given time. A vertex with a

high PageRank score is a vertex that is frequently visited, assuming that vertices

are visited according to the following Random Surfer scheme:

• Assume a person travels or surfs across a network's structure, moving from

vertex to vertex in a long series of rounds.

• The surfer can start anywhere. This start-anywhere property is part of the magic

of PageRank, meaning the score is a truly fundamental property of the graph

structure itself.

• Each round, the surfer randomly picks one of the outward connections from the

surfer's current location. The surfer repeats this random walk for a long time.

• But wait. The surfer doesn't always follow the network's connection structure.

There is a probability (1-damping, to be precise), that the surfer will ignore the

structure and will magically teleport to a random vertex.

For more information, see the Google paper on PageRank .

tg_pageRank (STRING v_type, STRING e_type, FLOAT max_change=0.001, INT ma

Characteristic Value

Result
Computes a PageRank value (FLOAT type)

for each vertex.

Specifications

5/13/25, 9:12 PM 3.3

http://infolab.stanford.edu/~backrub/google.html
http://infolab.stanford.edu/~backrub/google.html

442

Input Parameters

• STRING v_type : Names of vertex type

to use

• STRING e_type : Names of edge type to

use

• FLOAT max_change : PageRank will stop

iterating when the largest difference

between any vertex's current score and

its previous score ≤ max_change. That

is, the scores have become very stable

and are changing by less than

max_change from one iteration to the

next.

• INT max_iter : Maximum number of

iterations.

• FLOAT damping : Fraction of score that

is due to the score of neighbors. The

balance (1 - damping) is a minimum

baseline score that every vertex

receives.

• INT top_k : Sort the scores highest

first and output only this many scores

• BOOL print_accum : If True, output

JSON to standard output

• STRING result_attr : If not empty,

store PageRank values (FLOAT) to this

attribute

• STRING file_path : If not empty, write

output to this file.

• BOOL display_edges : If true, include

the graph's edges in the JSON output,

so that the full graph can be displayed.

Result Size V = number of vertices

Time Complexity

O(E*k), E = number of edges, k = number of

iterations.

The number of iterations is data-dependent,

but the user can set a maximum. Parallel

processing reduces the time needed for

computation.

Graph Types Directed edges

5/13/25, 9:12 PM 3.3

443

We ran pageRank on our test10 graph (using Friend edges) with the following

parameter values: damping=0.85, max_change=0.001, and max_iter=25. We see that

Ivy (center bottom) has the highest pageRank score (1.12). This makes sense since

there are 3 neighboring persons who point to Ivy, more than for any other person.

Eddie and Justin have scores of exactly 1 because they do not have any out-edges.

This is an artifact of our particular version pageRank. Likewise, Alex has a score of

0.15, which is (1-damping), because Alex has no in-edges.

 # Use _ for default values RUN QUERY tg_pageRank("Person", "Friend", 0.00

Example

5/13/25, 9:12 PM 3.3

444

Visualized results of example query on social10 graph, with Friend edges

5/13/25, 9:12 PM 3.3

445

Article Rank
ArticleRank is an algorithm that has been derived from the PageRank algorithm to

measure the influence of journal articles.

Page Rank assumes that relationships originating from low-degree nodes have a

higher influence than relationships from high-degree nodes. Article Rank modifies

the formula in such a way that it retains the basic PageRank methodology but lowers

the influence of low-degree nodes.

The Article Rank of a node v at iteration i is defined as:

Within the formula:

• Nin(v) are the incoming neighbors and Nout(v) are the outgoing neighbors of

node v.

• d is a damping factor in [0, 1], usually set to 0.85.

• Nout is the average out-degree

For more information, see ArticleRank: a PageRank-based alternative to numbers of

citations for analysing citation network .

CREATE QUERY tg_article_rank (STRING v_type, STRING e_type,
 FLOAT max_change=0.001, INT max_iter=25, FLOAT damping=0.85, INT top_k =
 BOOL print_accum = TRUE, STRING result_attr = "", STRING file_path = "")

Specifications

5/13/25, 9:12 PM 3.3

https://www.emeraldinsight.com/doi/abs/10.1108/00012530911005544
https://www.emeraldinsight.com/doi/abs/10.1108/00012530911005544
https://www.emeraldinsight.com/doi/abs/10.1108/00012530911005544

446

The article rank score for each vertex.

Name Description Data type

v_type A vertex type. STRING

e_type An edge type. STRING

max_change

Article Rank will stop

iterating when the largest

difference between any

vertex's current score and

its previous score ≤

max_change. That is, the

scores have become very

stable and are changing by

less than max_change from

one iteration to the next.

FLOAT

max_iter
Maximum number of

iterations.
INT

damping
The damping factor. Usually

set to 0.85.
FLOAT

top_k
The number of results with

the highest scores to return.
INT

print_accum If true, print JSON output. BOOL

result_attr
If true, store the article rank

score of each vertex in this

attribute.

STRING

file_path
If true, output CSV to this

file.
STRING

Parameters

Return value

5/13/25, 9:12 PM 3.3

447

Suppose we have the following graph:

By running Article Rank on the graph, we will see that the vertex with the highest

score is Dan:

Query

RUN QUERY tg_article_rank ("person", "friendship", _, _, _, _, _)

Result

Example

5/13/25, 9:12 PM 3.3

448

{
 "error": false,
 "message": "",
 "version": {
 "schema": 2,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@topScores": [
 {
 "score": 2348294.75,
 "Vertex_ID": "Dan"
 },
 {
 "score": 1863160.625,
 "Vertex_ID": "Jenny"
 },
 {
 "score": 1442890.5,
 "Vertex_ID": "Tom"
 },
 {
 "score": 1053484.625,
 "Vertex_ID": "Nancy"
 },
 {
 "score": 739327.9375,
 "Vertex_ID": "Kevin"
 },
 {
 "score": 703562.75,
 "Vertex_ID": "Amily"
 },
 {
 "score": 498013.25,
 "Vertex_ID": "Jack"
 }
]}]
}

5/13/25, 9:12 PM 3.3

449

Weighted PageRank
The only difference between weighted PageRank and standard PageRank is that

edges have weights, and the influence that a vertex receives from an in-neighbor is

multiplied by the weight of the in-edge.

tg_pageRank_wt (SET<STRING> v_type, SET<STRING> e_type, STRING wt_attr,
 FLOAT max_change=0.001, INT max_iter=25, FLOAT damping=0.85, INT top_k=1
 BOOL print_accum = TRUE, STRING result_attr = "", STRING file_path = "
 BOOL display_edges = FALSE)

Characteristic Value

Result
Computes a weighted PageRank value

(FLOAT type) for each vertex.

Input Parameters

• STRING v_type : Names of vertex type

to use

• STRING e_type : Names of edge type to

use

• STRING wt_attr : Name of edge weight

attribute

• FLOAT max_change : PageRank will stop

iterating when the largest difference

between any vertex's current score and

its previous score ≤ max_change . That

is, the scores have become very stable

and are changing by less than

max_change from one iteration to the

next.

• INT max_iter : Maximum number of

iterations.

• FLOAT damping : Fraction of score that

is due to the score of neighbors. The

balance (1 - damping) is a minimum

Specifications

5/13/25, 9:12 PM 3.3

450

baseline score that every vertex

receives.

• INT top_k : Sort the scores highest

first and output only this many scores

• BOOL print_accum : If True, output

JSON to standard output

• STRING result_attr : If not empty,

store PageRank values (FLOAT) to this

attribute

• STRING file_path : If not empty, write

output to this file.

• BOOL display_edges : If true, include

the graph's edges in the JSON output,

so that the full graph can be displayed.
Result Size V = number of vertices

Time Complexity

O(E*k), E = number of edges, k = number of

iterations.

The number of iterations is data-dependent,

but the user can set a maximum. Parallel

processing reduces the time needed for

computation.

Graph Types Directed edges

5/13/25, 9:12 PM 3.3

451

Personalized PageRank
In the original PageRank, the damping factor is the probability of the surfer

continues browsing at each step. The surfer may also stop browsing and start again

from a random vertex. In personalized PageRank, the surfer can only start browsing

from a given set of source vertices both at the beginning and after stopping.

tg_pageRank_pers(SET<VERTEX> source, STRING e_type,
FLOAT max_change=0.001, INT max_iter=25, FLOAT damping = 0.85, INT top_k =
BOOL print_accum = TRUE, STRING result_attr = "", STRING file_path = "")

Characteristic Value

Result
Computes a personalized PageRank value

(FLOAT type) for each vertex.

Input Parameters

• SET<VERTEX> source : Set of seed

vertices

• STRING e_type : Names of edge type to

use

• FLOAT max_change : PageRank will stop

iterating when the largest difference

between any vertex's current score and

its previous score ≤ max_change . That

is, the scores have become very stable

and are changing by less than

max_change from one iteration to the

next.

• INT max_iter : Maximum number of

iterations.

• FLOAT damping : Fraction of score that

is due to the score of neighbors. The

balance (1 - damping) is a minimum

baseline score that every vertex

receives.

Specifications

5/13/25, 9:12 PM 3.3

452

We ran Personalized PageRank on the graph social10 using Friend edges with the

following parameter values:

In this case, the random walker can only start or restart walking from Fiona. In the

figure below, we see that Fiona has the highest PageRank score in the result. Ivy

and George have the next highest scores because they are direct out-neighbors of

Ivy and there are looping paths that lead back to them again. Half of the vertices

have a score of 0 since they can not be reached from Fiona.

• INT top_k : Sort the scores highest

first and output only this many scores

• BOOL print_accum : If True, output

JSON to standard output

• STRING result_attr : If not empty,

store PageRank values (FLOAT) to this

attribute

• STRING file_path : If not empty, write

output to this file.Result Size V = number of vertices

Time Complexity

O(E*k), E = number of edges, k = number of

iterations.

The number of iterations is data-dependent,

but the user can set a maximum. Parallel

processing reduces the time needed for

computation.

Graph Types Directed edges

Using "_" to use default values
RUN QUERY tg_pageRank_pers([("Fiona","Person")], "Friend", _, _, _, _, _,
_)

Example

5/13/25, 9:12 PM 3.3

453

Visualized results of example query on social10 graph, with Friend edges

5/13/25, 9:12 PM 3.3

454

Betweenness Centrality
The Betweenness Centrality of a vertex is defined as the number of shortest paths

that pass through this vertex, divided by the total number of shortest paths. That is

where is called the pair dependency, is the total number of shortest paths

from node s to node t and is the number of those paths that pass

through v .

The TigerGraph implementation is based on A Faster Algorithm for Betweenness

Centrality by Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177,

(2001). For every vertex s in the graph, the pair dependency starting from vertex

s to all other vertices t via all other vertices v is computed first,

.

Then betweenness centrality is computed as

.

According to Brandes, the accumulated pair dependency can be calculated as

where , the set of predecessors of vertex w on shortest paths from s , is

defined as

For every vertex, the algorithm works in two phases. The first phase calculates the

number of shortest paths passing through each vertex. Then starting from the

vertex on the most outside layer in a non-incremental order with pair dependency

initial value of 0, traverse back to the starting vertex

BC(v) = PD (v) =∑s=v=t st SP (v)/SP ,∑s=v=t st st

PD SP st

SP (v)st

PD (v) =s∗ PD (v)∑t:s∈V st

BC(v) = PD (v)/2∑s:s∈V s∗

PD (v) =s∗ SP (v)/SP ⋅∑w:v∈P (w)s
sv sw (1 + PD (w)),s∗

P (w)s

P (w) =s {u ∈ V : {u,w} ∈ E, dist(s,w) = dist(s,u) + dist(u,w)}.

5/13/25, 9:12 PM 3.3

455

This algorithm query employs a subquery called bc_subquery. Both queries are
needed to run the algorithm.

CREATE QUERY tg_betweenness_cent(SET<STRING> v_type, SET<STRING> e_type,
STRING re_type,INT max_hops=10, INT top_k=100, BOOL print_accum = True,
STRING result_attr = "", STRING file_path = "", BOOL display_edges = FALSE

Characteristic Value

Result
Computes a Betweenness Centrality value

(FLOAT type) for each vertex.

Specifications

Parameters

5/13/25, 9:12 PM 3.3

456

In the example below, Claire is in the very center of the graph and has the highest

betweenness centrality. Six shortest paths pass through Sam (i.e. paths from Victor

to all other 6 people except for Sam and Victor), so the score of Sam is 6. David also

has a score of 6, since Brian has 6 paths to other people that pass through David.

Required Input Parameters

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• SET<STRING> re_type: Names of

reverse edge types to use

• INT max_hops : If >=0, look only this far

from each vertex

• INT top_k : Sort the scores highest

first and output only this many scores

Use _ for default values
RUN QUERY tg_betweenness_cent(["Person"], ["Friend"], _, _, _, _, _, _)

Example

5/13/25, 9:12 PM 3.3

457

In the following example, both Charles and David have 9 shortest paths passing

through them. Ellen is in a similar position as Charles, but her centrality is weakened

Visualized results of example query on a social graph with undirected edges Friend

[
 {
 "@@BC": {
 "Alice": 0,
 "Frank": 0,
 "Claire": 17,
 "Sam": 6,
 "Brian": 0,
 "David": 6,
 "Richard": 0,
 "Victor": 0
 }
 }
]

5/13/25, 9:12 PM 3.3

458

due to the path between Frank and Jack.

Visualized results of example query on a social graph with undirected edges Friend

[
 {
 "@@BC": {
 "Alice": 0,
 "Frank": 0,
 "Charles": 9,
 "Ellen": 8,
 "Brian": 0,
 "David": 9,
 "Jack": 0
 }
 }
]

5/13/25, 9:12 PM 3.3

459

Eigenvector Centrality
Eigenvector centrality (also called eigencentrality or prestige score) is a measure

of the influence of a vertex in a network. Relative scores are assigned to all vertices

in the network based on the concept that connections to high-scoring vertices

contribute more to the score of the vertex in question than equal connections to

low-scoring vertices. A high eigenvector score means that a vertex is connected to

many vertices who themselves have high scores.

For more information, see Eigenvector centrality .

CREATE QUERY tg_eigenvector_cent(SET<STRING> v_type, SET<STRING> e_type,
 INT maxIter = 100, FLOAT convLimit = 0.000001, INT top_k = 100,
 BOOL print_accum = True, STRING result_attr = "", STRING file_path = ""
)

Name Description Data type

v_type
Vertex types to assign

scores to.
SET<STRING>

e_type Edge types to traverse. SET<STRING>

maxIter
Maximum number of

iteration.
INT

convLimit The convergence limit. FLOAT

top_k
The number of vertices

with the highest scores to

return.

INT

print_accum
If true, print results to JSON

output.
BOOL

Specification

Parameters

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Eigenvector_centrality
https://en.wikipedia.org/wiki/Eigenvector_centrality

460

The vertices with the highest Eigenvector centrality scores along with their score.

Suppose we have the following graph:

result_attr
If not empty, save the score

of each vertex to this

attribute.

STRING

file_path
If not empty, print results in

CSV to this file.
STRING

Return value

Example

5/13/25, 9:12 PM 3.3

461

Running the algorithm on the graph will show that Dan has the highest centrality

score.

Query

RUN QUERY tg_eigenvector_cent(["person"], ["friendship"])

Result

5/13/25, 9:12 PM 3.3

462

{
 "error": false,
 "message": "",
 "version": {
 "schema": 2,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"top_scores": [
 {
 "score": 0.59598,
 "Vertex_ID": "Dan"
 },
 {
 "score": 0.50223,
 "Vertex_ID": "Jenny"
 },
 {
 "score": 0.44381,
 "Vertex_ID": "Tom"
 },
 {
 "score": 0.28786,
 "Vertex_ID": "Nancy"
 },
 {
 "score": 0.24085,
 "Vertex_ID": "Kevin"
 },
 {
 "score": 0.20296,
 "Vertex_ID": "Amily"
 },
 {
 "score": 0.11633,
 "Vertex_ID": "Jack"
 }
]}]
}

5/13/25, 9:12 PM 3.3

463

Degree Centrality
Degree centrality is defined as the number of edges incident upon a node (i.e., the

number of ties that a node has). The degree can be interpreted in terms of the

immediate risk of a node for catching whatever is flowing through the network (such

as a virus, or some information).

CREATE QUERY tg_degree_cent(SET<STRING> v_type, SET<STRING> e_type,
 SET<STRING> re_type, BOOL in_degree = TRUE, BOOL out_degree = TRUE,
 INT top_k=100, BOOL print_accum = True, STRING result_attr = "",
 STRING file_path = "")

Name Description Data type

v_type A set of vertex types. SET<STRING>

e_type A set of edge types. SET<STRING>

re_type

A set of reverse edge types.

If an edge is undirected, put

the edge name in the set as

well.

` SET<STRING>

in_degree

Boolean value that indicates

whether to count the

incoming edges as part of a

vertex's degree centrality.

BOOL

out_degree

Boolean value that indicates

whether to count the

outgoing edges as part of a

vertex's degree centrality.

BOOL

Specification

Parameters

5/13/25, 9:12 PM 3.3

464

The vertices with the highest degree centrality scores along with their scores.

Suppose we have the following graph:

top_k
The number of vertices with

the highest scores to return.
INT

print_accum
If true, print results to JSON

output.
BOOL

result_attr
If not empty, save the

degree centrality score of

each vertex to this attribute.

STRING

Return value

Example

5/13/25, 9:12 PM 3.3

465

Running the query on the graph will show that Dan has the highest degree centrality

Query

RUN QUERY tg_degree_cent(["person"], ["friendship"],["friendship"])

Result

5/13/25, 9:12 PM 3.3

466

{
 "error": false,
 "message": "",
 "version": {
 "schema": 2,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"top_scores": [
 {
 "score": 8,
 "Vertex_ID": "Dan"
 },
 {
 "score": 6,
 "Vertex_ID": "Jenny"
 },
 {
 "score": 4,
 "Vertex_ID": "Nancy"
 },
 {
 "score": 2,
 "Vertex_ID": "Kevin"
 },
 {
 "score": 2,
 "Vertex_ID": "Amily"
 },
 {
 "score": 2,
 "Vertex_ID": "Jack"
 }
]}]
}

5/13/25, 9:12 PM 3.3

467

Closeness Centrality
We all have an intuitive understanding when we say a home, an office, or a store is

"centrally located." Closeness Centrality provides a precise measure of how

"centrally located" a vertex is. The steps below show the steps for one vertex v :

TigerGraph's closeness centrality algorithm uses multi-source breadth-first search

(MS-BFS) to traverse the graph and calculate the sum of a vertex's distance to

every other vertex in the graph, which vastly improves the performance of the

algorithm. The algorithm's implementation of MS-BFS is based on the paper The

More the Merrier: Efficient Multi-source Graph Traversal by Then et al .

This algorithm query employs a subquery called cc_subquery . Both queries are
needed to run the algorithm.

Step Mathematical Formula

1. Compute the average distance from

vertex v to every other vertex:
d (v) =avg dist(v,u)/(n −∑u=v 1)

2. Invert the average distance, so we have

average closeness of v:
CC(v) = 1/d (v)avg

tg_closeness_cent (SET<STRING> v_type, SET<STRING> e_type, INT max_hops=10
 INT top_k=100, BOOL wf = TRUE, BOOL print_accum = True, STRING result_at
 STRING file_path = "", BOOL display_edges = FALSE)

Characteristic Value

Specifications

Parameters

5/13/25, 9:12 PM 3.3

https://db.in.tum.de/~kaufmann/papers/msbfs.pdf
https://db.in.tum.de/~kaufmann/papers/msbfs.pdf
https://db.in.tum.de/~kaufmann/papers/msbfs.pdf

468

Closeness centrality can be measured for either directed edges (from v to others)

or for undirected edges. Directed graphs may seem less intuitive, however, because

Result
Computes a Closeness Centrality value

(FLOAT type) for each vertex.

Required Input Parameters

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• SET<STRING> re_type : Names of

reverse edge types to use

• INT max_hops : If >=0, look only this far

from each vertex

• INT top_k : Sort the scores highest

first and output only this many scores

• BOOL wf : If True, use Wasserman-

Faust normalization for multi-

component graphs

• BOOL print_accum : If true, output

JSON to standard output

• STRING result_attr : If not empty,

store centrality values (FLOAT) to this

attribute

• STRING file_path : If not empty, write

output to this file in CSV.

• BOOL display_edges : If true, include

the graph's edges in the JSON output,

so that the full graph can be displayed.

Result Size V = number of vertices

Time Complexity

O(E), E = number of edges.

Parallel processing reduces the time needed

for computation.

Example

5/13/25, 9:12 PM 3.3

469

if the distance from Alex to Bob is 1, it does not mean the distance from Bob to Alex

is also 1.

For our example, we wanted to use the topology of the Likes graph, but to have

undirected edges. We emulated an undirected graph by using both Friend and

Also_Friend (reverse-direction) edges.

Use _ for default values
RUN QUERY tg_closeness_cent(["Person"], ["Friend", "Also_Friend"], _, _,
_, _, _, _, _)

Visualized results of example query on social10 graph, with Friend and Also_Friend edges

5/13/25, 9:12 PM 3.3

470

Approximate Closeness Centrality
In the Closeness Centrality algorithm, to obtain the closeness centrality score for a

vertex, we measure the distance from the source vertex to every single vertex in the

graph. In large graphs, running this calculation for every vertex can be highly time-

consuming.

The Approximate Closeness Centrality algorithm (based on Cohen et al. 2014)

calculates the approximate closeness centrality score for each vertex by combining

two estimation approaches - sampling and pivoting. This hybrid estimation approach

offers near-linear time processing and linear space overhead within a small relative

error. It runs on graphs with unweighted edges (directed or undirected).

This query uses another subquery closeness_cent_approx_sub , which needs to be
installed before closeness_approx can be installed.

tg_closeness_approx (
 SET<STRING> v_type,
 SET<STRING> e_type,
 INT k = 100, # sample num
 INT max_hops = 10, # max BFS explore steps
 DOUBLE epsilon = 0.1, # error parameter
 BOOL print_accum = true, # output to console
 STRING file_path = "", # output file
 INT debug = 0, # debug flag -- 0: No LOG;1: LOG without the sampl
 INT sample_index = 0, # random sample group
 INT maxsize = 1000, # max size of connected components using exac
 BOOL wf = True # Wasserman and Faust formula
)

Name Description

Specifications

Parameters

5/13/25, 9:12 PM 3.3

https://arxiv.org/pdf/1409.0035.pdf
https://arxiv.org/pdf/1409.0035.pdf
https://github.com/tigergraph/gsql-graph-algorithms/blob/master/algorithms/schema-free/closeness_cent_approx_sub.gsql
https://github.com/tigergraph/gsql-graph-algorithms/blob/master/algorithms/schema-free/closeness_cent_approx_sub.gsql

471

v_type
Vertex types to calculate approximate

closeness centrality for.

e_type Edge types to traverse.

k Size of the sample.

max_hops
Upper limit of how many jumps the

algorithm will perform from each vertex.

epsilon
The maximum relative error, between 0 and

1. Setting a lower value produces a more

accurate estimate but increases run time.

print_accum
Boolean value that indicates whether or not

to output to console in JSON format.

file_path
If provided, the algorithm will output to this

file path in CSV format

debug

There are many conditional logging

statements inside the query. If the input is 0,

nothing will be logged. If the input is 1,

everything else but the breadth-first-search

process from the sample-node. If the input

is 2, everything will be logged.

sample_index

The algorithm will partition the graph based

on the sample size. This index indicates

which partition to use when estimating

closeness centrality.

maxsize

If the number of vertices in the graph is

lower than maxsize , the exact closeness

centrality is calculated instead and nothing

will be approximated.

wf

Boolean value that indicates whether to use

the Wasserman and Faust formula to

calculate closeness centrality rather than

the classic formula.

Result

5/13/25, 9:12 PM 3.3

https://books.google.com/books/about/Social_Network_Analysis.html?id=CAm2DpIqRUIC
https://books.google.com/books/about/Social_Network_Analysis.html?id=CAm2DpIqRUIC

472

The result is a list of all vertices in the graph with their approximate closeness

centrality score. It is available both in JSON and CSV format.

Below is an example of running the algorithm on the social10 test graph and an

excerpt of the response.

RUN QUERY tg_closeness_aprox(["Person"], ["Friend", "Coworker"], 6, 3 \
0.1, true, "", 0, 0, 100, false)

[
 {
 "Start": [
 {
 "attributes": {
 "Start.@closeness": 0.58333
 },
 "v_id": "Fiona",
 "v_type": "Person"
 },
 {
 "attributes": {
 "Start.@closeness": 0.44444
 },
 "v_id": "Justin",
 "v_type": "Person"
 },
 {
 "attributes": {
 "Start.@closeness": 0.53333
 },
 "v_id": "Bob",
 "v_type": "Person"
 }
]

Example

5/13/25, 9:12 PM 3.3

473

Harmonic Centrality
The Harmonic Centrality algorithm calculates the harmonic centrality of each vertex

in the graph. Harmonic Centrality is a variant of Closeness Centrality. In a (not

necessarily connected) graph, the harmonic centrality reverses the sum and

reciprocal operations in the definition of closeness centrality:

If your graph has many unconnected clusters, the harmonic centrality could be a

better indicator of centrality than closeness centrality.

For more information, see Harmonic Centrality .

H(x) =

y=x

∑
d(x, y)

1

CREATE QUERY harmonic_cent(SET<STRING> v_type, SET<STRING> e_type,
SET<STRING> re_type,INT max_hops=10, INT top_k=100, BOOL wf = TRUE,
BOOL print_accum = True, STRING result_attr = "", STRING file_path = "",
BOOL display_edges = FALSE)

Name Description Data type

v_type
Vertex types to calculate

harmonic centrality for
SET<STRING>

e_type Edge types to traverse SET<STRING>

re_type

Reverse edge types. For

undirected edges, fill in the

edge type name in this SET<STRING>

Specifications

Parameters

5/13/25, 9:12 PM 3.3

https://arxiv.org/pdf/cond-mat/0008357.pdf
https://arxiv.org/pdf/cond-mat/0008357.pdf

474

If we have the following graph, we can see that Ivy is the most central of the five

vertices. Running the algorithm on the graph shows that Ivy has the highest

centrality score:

parameter as well as the

e_type parameter.

max_hops

The maximum number of

hops the algorithm would

consider for each vertex. If

set to a non-positive value,

the limit is ignored.

INT

top_k
Sort the scores high to low

and output the highest k
scores

INT

wf

If true , use the

Wasserman-Faust

normalization for multi-

component graphs

BOOL

print_accum
If true , output JSON to

standard output
BOOL

result_attr
If not empty, store centrality

values (FLOAT) to this

attribute

STRING

file_path
If not empty, write output to

this file in CSV.
STRING

display_edges

If true , include the

graph's edges in the JSON

output, so that the full graph

can be displayed.

BOOL

Example

5/13/25, 9:12 PM 3.3

475

GSQL Command

RUN QUERY harmonic_cent(["Person"], ["Coworker"], ["Coworker"], 4, 5,
true, true, _, _, _)

Results

5/13/25, 9:12 PM 3.3

476

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"top_scores": [
 {
 "score": 0.04167,
 "Vertex_ID": "Ivy"
 },
 {
 "score": 0.03571,
 "Vertex_ID": "Damon"
 },
 {
 "score": 0.03571,
 "Vertex_ID": "George"
 },
 {
 "score": 0.025,
 "Vertex_ID": "Steven"
 },
 {
 "score": 0.025,
 "Vertex_ID": "Glinda"
 }
]}]
}

Visualized results

5/13/25, 9:12 PM 3.3

477

5/13/25, 9:12 PM 3.3

478

Influence Maximization
Influence maximization is the problem of finding a small subset of vertices in a

social network that could maximize the spread of influence.

There are two versions of the Influence Maximization algorithm. Both versions find

k vertices that maximize the expected spread of influence in the network. The

CELF version improves upon the efficiency of the greedy version and should be

preferred in analyzing large networks.

The two versions of the algorithm are implemented on the following papers:

• CELF: Cost-effective Outbreak Detection in Networks

• Greedy: Maximizing the Spread of Influence through a Social Network

CELF

CREATE QUERY tg_influence_maximization_CELF(STRING v_type,STRING e_typ
 STRING weight, INT top_k, BOOL print_accum = True, STRING file_path

Greedy

CREATE QUERY tg_influence_maximization_greedy(STRING v_type,
 STRING e_type,STRING weight,INT top_k,
 BOOL print_accum = True, STRING file_path = "")

Specifications

Parameters

5/13/25, 9:12 PM 3.3

https://www.cs.cmu.edu/~jure/pubs/detect-kdd07.pdf
https://www.cs.cmu.edu/~jure/pubs/detect-kdd07.pdf
https://www.cs.cornell.edu/home/kleinber/kdd03-inf.pdf
https://www.cs.cornell.edu/home/kleinber/kdd03-inf.pdf

479

The CELF version and the greedy version of the algorithms share the same set of

parameters.

The ID of the vertices with the highest influence scores along with their scores.

Name Description Data type

v_type A vertex type STRING

e_type An edge type STRING

weight
The name of the weight

attribute on the edge type
STRING

top_k
The number of vertices with

the highest influence score

to return

INT

print_accum
If true, print results to JSON

output.
BOOL

file_path
If not empty, save results in

CSV to this file.
STRING

Return value

5/13/25, 9:12 PM 3.3

480

Classification Algorithms

5/13/25, 9:12 PM 3.3

481

Greedy Graph Coloring
This algorithm assigns a unique integer value known as its color to the vertices of a

graph such that no neighboring vertices share the same color. The reason why this

is called color is that this task is equivalent to assigning a color to each nation on a

map so that no neighboring nations share the same color.

Given a set of k vertices, the algorithm first colors all vertices with the same color -

the first color. It then starts from all the vertices and has each vertex send its own

colors to its neighbors. If there are two neighboring vertices with the same color, the

algorithm will reassign colors where there is a conflict. The same process is

repeated until all conflicts are resolved.

The algorithm has a worst-case time complexity of O(V^2 + E), where V is the

number of vertices and E is the number of edges.

CREATE QUERY tg_greedy_graph_coloring(SET<STRING> v_type,SET<STRING> e_typ

Name Description

v_type A set of all vertex types to color.

e_type A set of all edge types to traverse.

max_colors
The Maximum number of colors that can be

used. Use a large number like 999999

unless there is a strict limit.

print_color_count
If set to true, the total number of colors used

will be displayed

Specifications

Parameters

5/13/25, 9:12 PM 3.3

482

On the social10 graph, say we want to color the Person vertices in such a way

that any two vertices that are either connected by a Friend edge or a Coworker

edge do not have the same color. By running the greedy_graph_color algorithm,

we get the following result:

display
If set to true, the output will display all

vertices and their associated color

If a file path is provided, the output will be

Example

5/13/25, 9:12 PM 3.3

https://github.com/tigergraph/gsql-graph-algorithms/blob/master/tests/social/data/social10.csv
https://github.com/tigergraph/gsql-graph-algorithms/blob/master/tests/social/data/social10.csv

483

5/13/25, 9:12 PM 3.3

484

GSQL > RUN QUERY greedy_graph_coloring(["Person"], ["Friend", "Coworker"],
 999999, true, true, "")

 [
 {
 // Total number of colors used
 "color_count": 4
 },
 {
 "start": [
 {
 "attributes": {
 "start.@colorvertex": 4
 },
 "v_id": "Fiona",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@colorvertex": 3
 },
 "v_id": "Justin",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@colorvertex": 2
 },
 "v_id": "Bob",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@colorvertex": 3
 },
 "v_id": "Chase",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@colorvertex": 2
 },
 "v_id": "Damon",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@colorvertex": 1

5/13/25, 9:12 PM 3.3

485

 },
 "v_id": "Alex",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@colorvertex": 3
 },
 "v_id": "George",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@colorvertex": 1
 },
 "v_id": "Eddie",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@colorvertex": 2
 },
 "v_id": "Ivy",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@colorvertex": 1
 },
 "v_id": "Howard",
 "v_type": "Person"
 }
]
 }
]

5/13/25, 9:12 PM 3.3

486

Visualized result - no neighboring vertices share the same color

5/13/25, 9:12 PM 3.3

487

k-Nearest Neighbors
The k-Nearest Neighbors (kNN) algorithm is one of the simplest classification

algorithms. It assumes that some or all the vertices in the graph have already been

classified. The classification is stored as an attribute called the label. The goal is to

predict the label of a given vertex, by seeing what are the labels of the nearest

vertices.

Given a source vertex in the dataset and a positive integer k, the algorithm

calculates the distance between this vertex and all other vertices and selects the k

vertices that are nearest. The prediction of the label of this node is the majority label

among its k-nearest neighbors.

The distance can be physical distance as well as the reciprocal of similarity score, in

which case "nearest" means "most similar". In our algorithm, the distance is the

reciprocal of cosine neighbor similarity. The similarity calculation used here is the

same as the calculation in Cosine Similarity of Neighborhoods, Single Source .

Note that in this algorithm, vertices with zero similarity to the source node are not

considered in prediction. For example, if there are 5 vertices with non-zero similarity

to the source vertex, and 5 vertices with zero similarity, when we pick the top 7

neighbors, only the label of the 5 vertices with non-zero similarity score will be used

in prediction.

tg_knn_cosine_ss (VERTEX source, SET<STRING> v_type, SET<STRING> e_type, S
 re_type, STRING weight, STRING label, INT top_k,
 BOOL print_accum = TRUE, STRING file_path = "", STRING attr = "")
 RETURNS (STRING)

Characteristic Value

Result

The predicted label for the source vertex.

The result is available in three forms:

• streamed out in JSON format

Specifications

5/13/25, 9:12 PM 3.3

https://app.gitbook.com/@tigergraph/s/document/~/edit/drafts/-LhrD9J_UpLvgqsxbKx9/v/2.4/graph-algorithm-library#cosine-similarity-of-neighborhoods-single-source
https://app.gitbook.com/@tigergraph/s/document/~/edit/drafts/-LhrD9J_UpLvgqsxbKx9/v/2.4/graph-algorithm-library#cosine-similarity-of-neighborhoods-single-source

488

The algorithm will not output more than K vertex pairs, so the algorithm may

arbitrarily choose to output one vertex pair over another if there are tied similarity

scores.

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• VERTEX source : The vertex which you

want to predict the label

• SET<STRING> v_type : Vertex types to

calculate distance to source vertex for

• SET<STRING> e_type : Edge types to

traverse

• SET<STRING> re_type : Reverse edge

types to traverse

• STRING weight : Edge attribute to use

as the weight of the edge

• STRING label : Vertex attribute to

recognize as the label of the vertex

• INT top_k : number of nearest

neighbors to consider

• BOOL print_accum : If true, the

algorithm will output the result to the

console in JSON format.

• STRING filepath : If provided, the

algorithm will output to this file path in

CSV format

• STRING attr : Vertex attribute to save

the predicted label as.

Result Size V = number of vertices

Time Complexity O(D^2), D = outdegree of vertex v

Graph Types
Undirected or directed edges, weighted

edges

Example

5/13/25, 9:12 PM 3.3

489

For the movie graph, we add the following labels to the Person vertices.

When we install the algorithm, answer the questions like:

Movie graph with labels

5/13/25, 9:12 PM 3.3

490

We then run kNN, using Neil as the source person and k=3. This is the JSON output

:

If we run cosine_nbor_ss, using Neil as the source person and k=3, we can see the

persons with the top 3 similarity score:

Vertex types: Person
Edge types: Likes
Second Hop Edge type: Reverse_Likes
Edge attribute that stores FLOAT weight, leave blank if no such attribute:
Vertex attribute that stores STRING label:known_label

[
 {
 "predicted_label": "a"
 }
]

5/13/25, 9:12 PM 3.3

491

Kat has a label "b", Kevin has a label "a", and Jing does not have a label. Since "a"

and "b" are tied, the prediction for Neil is just one of the labels.

If Jing had label "b", then there would be 2 "b"s, so "b" would be the prediction.

If Jing had label "a", then there would be 2 "a"s, so "a" would be the prediction.

[
 {
 "neighbours": [
 {
 "v_id": "Kat",
 "v_type": "Person",
 "attributes": {
 "neighbours.@similarity": 0.67509
 }
 },
 {
 "v_id": "Jing",
 "v_type": "Person",
 "attributes": {
 "neighbours.@similarity": 0.46377
 }
 },
 {
 "v_id": "Kevin",
 "v_type": "Person",
 "attributes": {
 "neighbours.@similarity": 0.42436
 }
 }
]
 }
]

5/13/25, 9:12 PM 3.3

492

k-Nearest Neighbors (Batch Version)

This algorithm is a batch version of the k-Nearest Neighbors, Cosine Neighbor

Similarity, single vertex . It makes a prediction for every vertex whose label is not

known (i.e., the attribute for the known label is empty), based on its k nearest

neighbors' labels.

tg_knn_cosine_all(SET<STRING> v_type, SET<STRING> e_type, SET<STRING> re_t
 STRING weight, STRING label, INT top_k, BOOL print_accum = TRUE,
 STRING file_path = "", STRING attr = "")

Characteristic Value

Result

The predicted label for the vertices whose

label attribute is empty.

The result is available in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• SET<STRING> v_type : Vertex types to

calculate distance to source vertex for

• SET<STRING> e_type : Edge types to

traverse

• SET<STRING> re_type : Reverse edge

types to traverse

• STRING weight : Edge attribute to use

as the weight of the edge

• STRING label : Vertex attribute to

recognize as the label of the vertex

• INT top_k : number of nearest

neighbors to consider

• BOOL print_accum : Boolean value that

indicates whether to output to console

Specifications

5/13/25, 9:12 PM 3.3

https://app.gitbook.com/@tigergraph/s/document/~/edit/drafts/-Ll49vrTnAN15ff3rsHW/v/2.5/graph-algorithm-library#k-nearest-neighbors-cosine-neighbor-similarity-single-vertex
https://app.gitbook.com/@tigergraph/s/document/~/edit/drafts/-Ll49vrTnAN15ff3rsHW/v/2.5/graph-algorithm-library#k-nearest-neighbors-cosine-neighbor-similarity-single-vertex
https://app.gitbook.com/@tigergraph/s/document/~/edit/drafts/-Ll49vrTnAN15ff3rsHW/v/2.5/graph-algorithm-library#k-nearest-neighbors-cosine-neighbor-similarity-single-vertex

493

For the movie graph shown in the single vertex version, run knn_cosine_all, using

topK=3. Then you get the following result:

in JSON

• STRING filepath : If provided, the

algorithm will output to this file path in

CSV format

• STRING attr : Vertex attribute to save

the predicted label as.

Result Size V = number of vertices

Time Complexity
O(E^2 / V), V = number of vertices, E =

number of edges

Graph Types
Undirected or directed edges, weighted

edges

Example

5/13/25, 9:12 PM 3.3

494

 {
 "Source": [
 {
 "v_id": "Jing",
 "v_type": "Person",
 "attributes": {
 "name": "Jing",
 "known_label": "",
 "predicted_label": "",
 "@predicted_label": "a"
 }
 },
 {
 "v_id": "Neil",
 "v_type": "Person",
 "attributes": {
 "name": "Neil",
 "known_label": "",
 "predicted_label": "",
 "@predicted_label": "b"
 }
 },
 {
 "v_id": "Elena",
 "v_type": "Person",
 "attributes": {
 "name": "Elena",
 "known_label": "",
 "predicted_label": "",
 "@predicted_label": ""
 }
 }
]
 }
]

5/13/25, 9:12 PM 3.3

495

k-Nearest Neighbors
(Cross-Validation Version)

k-Nearest Neighbors (kNN) is often used for machine learning. You can choose the

value for topK based on your experience, or using cross-validation to optimize the

hyperparameters. In our library, Leave-one-out cross-validation for selecting

optimal k is provided. Given a k value, we run the algorithm repeatedly using every

vertex with a known label as the source vertex and predict its label. We assess the

accuracy of the predictions for each value of k, and then repeat for different values

of k in the given range. The goal is to find the value of k with highest predicting

accuracy in the given range, for that dataset.

tg_knn_cosine_cv(SET<STRING> v_type, SET<STRING> e_type, SET<STRING> re_ty
STRING weight, STRING label, INT min_k, INT max_k) RETURNS (INT)

Characteristic Value

Result

A list of prediction accuracy for every k

value in the given range, and

the value of k with the highest predicting

accuracy in the given range.

The result is available in JSON format

Input Parameters

• SET<STRING> v_type : Vertex types to

calculate distance to source vertex for

• SET<STRING> e_type : Edge types to

traverse

• SET<STRING> re_type : Reverse edge

types to traverse

• STRING weight : Edge attribute to use

as the weight of the edge

• STRING label : Vertex attribute to

recognize as the label of the vertex

Specifications

5/13/25, 9:12 PM 3.3

496

Run knn_cosine_cv with min_k=2, max_k = 5. The JOSN result:

• INT min_k : lower bound of k

(inclusive)

• INT max_k : upper bound of k

(inclusive)
Result Size max_k-min_k+1

Time Complexity
O(max_k*E^2 / V), V = number of vertices, E

= number of edges

Graph Types
Undirected or directed edges, weighted

edges

[
 {
 "@@correct_rate_list": [
 0.33333,
 0.33333,
 0.33333,
 0.33333
]
 },
 {
 "best_k": 2
 }
]

Example

5/13/25, 9:12 PM 3.3

497

Community Algorithms

5/13/25, 9:12 PM 3.3

498

Weakly Connected Components
A component is the maximal set of vertices, plus their connecting edges, which are

interconnected. That is, you can reach each vertex from each other vertex. In the

example figure below, there are three components.

This particular algorithm deals with undirected edges. If the same definition (each

vertex can reach each other vertex) is applied to directed edges, then the

components are called Strongly Connected Components. If you have directed edges

but ignore the direction (permitting traversal in either direction), then the algorithm

finds Weakly Connected Components.

tg_conn_comp (SET<STRING> v_type, SET<STRING> e_type, INT output_limit = 1
 BOOL print_accum = TRUE, STRING result_attr = "", STRING file_path = "")

Characteristic Value

Result

Assigns a component id (INT) to each

vertex, such that members of the same

component have the same id value.

Input Parameters

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• INT output_limit : If >=0, max

number of vertices to output to JSON.

• BOOL print_accum : If True, output

JSON to standard output

• STRING result_attr : If not empty,

store community ID values (INT) to this

attribute

• STRING file_path : If not empty, write

output to this file.

Specifications

5/13/25, 9:12 PM 3.3

499

It is easy to see in this small graph that the algorithm correctly groups the vertices:

• Alex, Bob, and Justin all have Community ID = 2097152

• Chase, Damon, and Eddie all have Community ID = 5242880

• Fiona, George, Howard, and Ivy all have Community ID = 0

Our algorithm uses the TigerGraph engine's internal vertex ID numbers; they cannot

be predicted.

Result Size V = number of vertices

Time Complexity
O(E*d), E = number of edges, d =

max(diameter of components)

RUN QUERY tg_conn_comp(["Person"], ["Coworker"], _, _, _, _)

Example

5/13/25, 9:12 PM 3.3

500

Visualized results of example query on social10 graph with Coworker edges

5/13/25, 9:12 PM 3.3

501

Small-World Optimized Version
In addition to the regular weakly connected component algorithm, we also provide a

version that is optimized for small-world graphs. A small world graph means the

graph has a hub community, where the vast majority of the vertices in the graph are

weakly connected.

This version improves upon the performance of the original algorithm when dealing

with small-world graphs by combining several different methods used to find

connected components in a multi-step process proposed by Slota et al. in BFS and

Coloring-based Parallel Algorithms for Strongly Connected Components and Related

Problems.

The algorithm starts by selecting an initial pivot vertex v with a high product of

indegree and outdegree. From the initial pivot vertex , the algorithm uses Breadth-

First Search to determine the massive weakly connected component. The vertices

that are not included in this SCC are passed off to the next step.

After identifying the first WCC, the algorithm uses the coloring method to idenify the

WCCs in the remaining vertices.

For more details, see Slota et al., BFS and Coloring-based Parallel Algorithms for

Strongly Connected Components and Related Problems.

CREATE QUERY tg_wcc_small_world(STRING v_type, STRING e_type,
UINT threshold = 100000, BOOL to_show_cc_count=FALSE)

Name Description Data type

Specifications

Parameters

5/13/25, 9:12 PM 3.3

https://www.osti.gov/servlets/purl/1115145
https://www.osti.gov/servlets/purl/1115145
https://www.osti.gov/servlets/purl/1115145

502

If to_show_cc_count is set to true, the algorithm will return the number of vertices

in each weakly connected component.

Suppose we have the following graph. We can see that there are three connected

components. The first one has 5 vertices, while the two others have 3 vertices.

v_type
The vertex type to count as

part of a connected

component

STRING

e_type The edge type to traverse STRING

threshold

The threshold used to

choose initial pivot vertices.

Only vertices whose

product of indegree and

outdegree exceed this

threshold will be considered

candidates for the pivot

vertex. This is an attempt to

increase the chances that

the initial pivot is contained

within the largest WCC.

The default value for this

parameter is 100000. It is

suggested that you keep

this default value when

running the algorithm.

UINT

to show cc count

If true, the algorithm will

return the number of

ti i h t d
BOOL

Result

Example

5/13/25, 9:12 PM 3.3

503

Running the algorithm on the graph will show that there are three weakly connected

components, and have 5, 3, and 3 vertices respectively.

GSQL Command

RUN QUERY tg_wcc_small_world("Person", "Coworker", _, true)

Result

5/13/25, 9:12 PM 3.3

504

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@CC_count": {
 "1048576": 5,
 "1048577": 3,
 "4194306": 3
 }}]
}

5/13/25, 9:12 PM 3.3

505

K-Core Decomposition
A k-core of a graph is a maximal connected subgraph in which every vertex is

connected to at least k vertices in the subgraph. To obtain the k-core of a graph, the

algorithm first deletes the vertices whose outdegree is less than k. It then updates

the outdegree of the neighbors of the deleted vertices, and if that causes a vertex's

outdegree to fall below k, it will also delete that vertex. The algorithm repeats this

operation until every vertex left in the subgraph has an outdegree of at least k.

Our algorithm takes a range of values for k and returns the set of the vertices that

constitute the k-core with the highest possible value of k within the range. It is an

implementation of Algorithm 2 in Scalable K-Core Decomposition for Static Graphs

Using a Dynamic Graph Data Structure, Tripathy et al., IEEE Big Data 2018 .

O(E), where E is the number of edges in the graph.

tg_kcore(STRING v_type, STRING e_type, INT k_min = 0, INT k_max = -1,
BOOL print_accum = TRUE, STRING attr = "", STRING file_path = "",
BOOL show_membership = FALSE, BOOL show_shells=FALSE)

Parameter Description

v_type Vertex type to include in the k-core

e_type Edge type to count for k-core connections

k_min
Minimum value of k. If the actual maximum

core is below k_min , the algorithm will

Time complexity

Specifications

Parameters

5/13/25, 9:12 PM 3.3

https://ieeexplore.ieee.org/document/8622056
https://ieeexplore.ieee.org/document/8622056
https://ieeexplore.ieee.org/document/8622056

506

In the example below based on the social graph from GSQL 101, we can see that

Dan, Tom, and Jenny make up a 2-core, which is the max-core of the graph:

return an empty set.

k_max

Maximum value of k. If k_max is smaller

than k_min , the algorithm will ignore this

parameter and keep looking for k-cores until

it reaches a value of k where a k-core

cannot be found.

show_membership

If show_membership is true , the algorithm

will return the k-cores found for every value

of k within the range provided. For each k-

core, the results will include its member

vertices.

show_shells

The k-shell is the set of vertices that are

part of the k-core but not part of the (k+1)-

core. If show_shells is true , the

algorithm will return the k-shells found for

every value of k. within the range provided.

For each k-shell, the results will include its

member vertices.

print_accum
Boolean value that decides whether the

algorithm will return output in JSON

attr

Optional. An attribute of the vertex to save

the core level of the vertex to. If attr is

provided, the core level of the vertex will be

saved to this attribute of the vertex.

file_path
Optional. If file_path is provided, the

algorithm will output results to a file

specified by the file path in CSV format.

Example

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/start/gsql-101/get-set#GSQL101-DataSet
https://docs.tigergraph.com/start/gsql-101/get-set#GSQL101-DataSet

507

If we run the kcore algorithm on this small graph like so:

Here is the returned JSON response, which includes a 2-core that is comprised of

Dan, Jenny, and Tom:

RUN QUERY tg_kcore("person", "friendship", 0, -1, TRUE, "", "", FALSE, FAL

5/13/25, 9:12 PM 3.3

508

[
 {
 "core_size": 3,
 "k": 2, // the k-core with the highest possible k is retur
 "max_core": [
 {
 "attributes": {
 "@core": 2,
 "@deg": 0,
 "age": 40,
 "gender": "male",
 "name": "Tom",
 "state": "ca"
 },
 "v_id": "Tom",
 "v_type": "person"
 },
 {
 "attributes": {
 "@core": 2,
 "@deg": 0,
 "age": 34,
 "gender": "male",
 "name": "Dan",
 "state": "ny"
 },
 "v_id": "Dan",
 "v_type": "person"
 },
 {
 "attributes": {
 "@core": 2,
 "@deg": 0,
 "age": 25,
 "gender": "female",
 "name": "Jenny",
 "state": "tx"
 },
 "v_id": "Jenny",
 "v_type": "person"
 }
]
 }
]

5/13/25, 9:12 PM 3.3

509

Strongly Connected Components
A strongly connected component (SCC) is a subgraph such that there is a path from

any vertex to every other vertex. A graph can contain more than one separate SCC.

An SCC algorithm finds the maximal SCCs within a graph. Our implementation is

based on the Divide-and-Conquer Strong Components (DCSC) algorithm[1]. In each

iteration, pick a pivot vertex v randomly, and find its descendant and predecessor

sets, where descendant set D_v is the vertex reachable from v , and predecessor

set P_v is the vertices which can reach v (stated another way, reachable from v

through reverse edges). The intersection of these two sets is a strongly connected

component SCC_v . The graph can be partitioned into 4 sets: SCC_v , descendants

D_v excluding SCC_v , predecessors P_v excluding SCC , and the remainders

R_v . It is proved that any SCC is a subset of one of the 4 sets [1]. Thus, we can

divide the graph into different subsets and detect the SCCs independently and

iteratively.

The problem of this algorithm is unbalanced load and slow convergence when there

are a lot of small SCCs, which is often the case in real-world use cases [3]. We

added two trimming stages to improve the performance: size-1 SCC trimming[2] and

weakly connected components[3].

The implementation of this algorithm requires reverse edges for all directed edges

considered in the graph.

[1] Fleischer, Lisa K., Bruce Hendrickson, and Ali Pınar. "On identifying strongly

connected components in parallel." International Parallel and Distributed Processing

Symposium. Springer, Berlin, Heidelberg, 2000.

[2] Mclendon Iii, William, et al. "Finding strongly connected components in

distributed graphs." Journal of Parallel and Distributed Computing 65.8 (2005): 901-

910.

[3] Hong, Sungpack, Nicole C. Rodia, and Kunle Olukotun. "On fast parallel detection

of strongly connected components (SCC) in small-world graphs." Proceedings of

the International Conference on High Performance Computing, Networking, Storage

and Analysis. ACM, 2013.

5/13/25, 9:12 PM 3.3

510

tg_scc (SET<STRING> v_type, SET<STRING> e_type, SET<STRING> rev_e_type,
 INT top_k_dist, INT output_limit, INT max_iter = 500, INT iter_wcc = 5,
 BOOL print_accum = TRUE, STRING attr= "", STRING file_path="")

Characteristic Value

Result

Assigns a component id (INT) to each

vertex, such that members of the same

component have the same id value.

Input Parameters

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• SET<STRING> rev_e_type : Names of

reverse direction edge types to use

• INT top_k_dist : top k result in SCC

distribution

• INT output_limit : If >=0, max

number of vertices to output to JSON.

• INT max_iter : number of maximum

iteration of the algorithm

• INT iter_wcc : find weakly connected

components for the active vertices in

this iteration, since the largest SCCs are

already found after several iterations;

usually a small number(3 to 10)

• BOOL print_accum : If True, output

JSON to standard output

• STRING result_attr : If not empty,

store community ID values (INT) to this

attribute

• STRING file_path : If not empty, write

output to this file.

Result Size V = number of vertices

Specifications

5/13/25, 9:12 PM 3.3

511

We ran scc on the social26 graph. A portion of the JSON result is shown below.

The first element "i"=1 means the whole graph is processed in just one iteration.

The 5 "trim_set.size()" elements mean there were 5 rounds of size-1 SCC

Time Complexity O(iter*d), d = max(diameter of components)

Graph Types
Directed edges with reverse direction edges

[
 {
 "i": 1
 },
 {
 "trim_set.size()": 8
 },
 {
 "trim_set.size()": 5
 },
 {
 "trim_set.size()": 2
 },
 {
 "trim_set.size()": 2
 },
 {
 "trim_set.size()": 0
 },
 {
 "@@cluster_dist_heap": [
 {
 "csize": 9,
 "num": 1
 },
 {
 "csize": 1,
 "num": 17
 }
]
 },

Example

5/13/25, 9:12 PM 3.3

512

trimming. The final "@@.cluster_dist_heap" object" reports on the size

distribution of SCCs.There is one SCC with 9 vertices, and 17 SCCs with only 1

vertex in the graph.

5/13/25, 9:12 PM 3.3

513

Small-World Optimized Version
In addition to the regular strongly connected component algorithm, we also provide

a version that is optimized for small-world graphs. A small world graph in this

context means the graph has a hub community, where a vast majority of the

vertices of the graph are weakly connected.

This version improves upon the performance of the original algorithm when dealing

with small-world graphs by combining several different methods used to find

connected components in a multi-step process proposed by Slota et al. in BFS and

Coloring-based Parallel Algorithms for Strongly Connected Components and Related

Problems.

The algorithm starts by trimming the graph, which removes all vertices whose

indegree or outdegree is 0. Then in the second phase, the algorithm selects an initial

pivot vertex v with a high product of indegree and outdegree. From the initial pivot

vertex , the algorithm uses one iteration of the Forward-Backward method to identify

all vertices reachable by v (descendants) and all vertices that can reach v

(predecessors). The intersection of the descendants and the predecessors form a

strongly connected component (SCC). The vertices that are not included in this SCC

are passed off to the next step.

After identifying the first SCC, the algorithm uses the coloring method and Tarjan's

serial algorithm to identify the SCCs in the remaining vertices.

For more details, see Slota et al., BFS and Coloring-based Parallel Algorithms for

Strongly Connected Components and Related Problems.

CREATE QUERY tg_scc_small_world(STRING v_type, STRING e_type, STRING re_ty
 UINT threshold = 100000, BOOL to_show_cc_count=FALSE)

Specifications

Time complexity

5/13/25, 9:12 PM 3.3

https://www.osti.gov/servlets/purl/1115145
https://www.osti.gov/servlets/purl/1115145
https://www.osti.gov/servlets/purl/1115145

514

The algorithm has a time complexity of O(V + E), where V is the number of vertices

and E is the number of edges in the graph.

Name Description Data type

v_type
The vertex type to count as

part of a strongly connected

component

STRING

e_type The edge type to traverse STRING

re_type

The reverse edge type to

traverse. If the graph is

undirected, fill in the name

of the undirected edge here

as well as for e_type.

STRING

threshold

The threshold used to

choose initial pivot vertices.

Only vertices whose

product of indegree and

outdegree exceed this

threshold will be considered

candidates for the pivot

vertex. This is an attempt to

increase the chances that

the initial pivot is contained

within the largest SCC.

The default value for this

parameter is 100000. It is

suggested that you keep

this default value when

running the algorithm.

UINT

to_show_cc_count

If set to TRUE , the

algorithm will return the

number of vertices in each

strongly connected

component.

BOOL

Parameters

5/13/25, 9:12 PM 3.3

515

When to_show_cc_count is set to true, the algorithm will return the number of

strongly connected components in the graph.

Suppose we have the following graph. We can see there are 7 strongly connected

components. With two of them containing more than 1 vertices. The five vertices on

the left are each a strongly connected component individually.

Running the algorithm on the graph will return a result of 7:

Graph with 7 SCCs

GSQL Command

Result

Example

5/13/25, 9:12 PM 3.3

516

RUN QUERY tg_scc_small_world("Person", "Friend", "Friend", _, TRUE)

Result

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@CC_count.size()": 7}]
}

5/13/25, 9:12 PM 3.3

517

Label Propogation
Label Propagation is a heuristic method for determining communities. The idea is

simple: If the plurality of your neighbors all bear the label X, then you should label

yourself as also a member of X. The algorithm begins with each vertex having its

own unique label. Then we iteratively update labels based on the neighbor influence

described above. It is important that the order for updating the vertices be random.

The algorithm is favored for its efficiency and simplicity, but it is not guaranteed to

produce the same results every time.

In a variant version, some vertices could initially be known to belong to the same

community. If they are well-connected to one another, they are likely to preserve

their common membership and influence their neighbors,

tg_label_prop (SET<STRING> v_type, SET<STRING> e_type, INT max_iter, INT o
BOOL print_accum = TRUE, STRING file_path = "", STRING attr = "")

Characteristic Value

Result

Assigns a component id (INT) to each

vertex, such that members of the same

component have the same id value.

Input Parameters

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• INT max_iter : Number of maximum

iteration of the algorithm

• INT output_limit : If >=0, max

number of vertices to output to JSON.

• BOOL print_accum : If True, output

JSON to standard output

• STRING attr : If not empty, store

community id values (INT) to this

Specifications

5/13/25, 9:12 PM 3.3

518

This is the same graph that was used in the Connected Component example. The

results are different, though. The quartet of Fiona, George, Howard, and Ivy have

been split into 2 groups:

• (George & Ivy) each connect to (Fiona & Howard) and to one another.

• (Fiona & Howard) each connect to (George & Ivy) but not to one another.

Label Propagation tries to find natural clusters and separations within connected

components. That is, it looks at the quality and pattern of connections. The

Component Component algorithm simply asks the Yes or No question: Are these

two vertices connected?

We set max_iter to 10, but the algorithm reaches a steady state after 3 iterations:

attribute

• STRING file_path : If not empty, write

output to this file.

Result Size V = number of vertices

Time Complexity
O(E*k), E = number of edges, k = number of

iterations.

Graph Types Undirected edges

Use _ for default/empty values
RUN QUERY tg_label_prop(["Person"], ["Coworker"], 10, -1, _, _, _)

Example

5/13/25, 9:12 PM 3.3

519

Visualized results of example query on social10 graph with Coworker edges

5/13/25, 9:12 PM 3.3

520

Local Clustering Coefficient
The Local Clustering Coefficient algorithm computes the local clustering coefficient

of every vertex in a graph. The local clustering coefficient of a vertex (node) in a

graph quantifies how close its neighbors are to being a complete graph, where

every two distinct vertices are connected by an edge. It is obtained by dividing the

number edges between a vertex's neighbors by the number of edges that could

possibly exist.

The algorithm does not report the local clustering coefficient for vertices that have

only one neighbor.

O(n) , where n is the number of vertices in the graph.

tg_lcc(STRING v_type, STRING e_type,INT top_k=100,
 BOOL print_accum = True, STRING result_attr = "",
 STRING file_path = "", BOOL display_edges = FALSE)

Parameter Description Data type

v_type
Vertex type to calculate

local clustering coefficient

for

STRING

e_type

Edge type to traverse. Only

vertices that are connected

by edges of this type are STRING

Time complexity

Specifications

Parameters

5/13/25, 9:12 PM 3.3

521

Using the social graph below as an example, Jenny has three neighbors - Tom,

Dan and Amily, but only Tom and Dan are connected. Between the three neighbors,

the maximum number of edges that could exist is 3. Therefore, the local clustering

coefficient for Jenny is 1/3.

On the other hand, Tom has two neighbors that are connected by one edge. Since

the maximum number of edges that could exist between two vertices is 1, Tom has a

local clustering coefficient of 1/1 = 1.

treated as connected in this

algorithm.

top_k
Number of the highest local

clustering coefficients to

report.

INT

print_accum
If true , output JSON to

standard output.
BOOL

result_attr

If provided, the local

clustering coefficient of a

vertex will be saved to this

attribute.

STRING

file_path
If provided, write output to

this file in CSV.
STRING

display_edges

If display_edges is set to

true, the algorithm will also

return edges, which help

produce better visualized

results in GraphStudio.

BOOL

Example

5/13/25, 9:12 PM 3.3

522

By running the algorithm in GSQL, we can confirm that Tom has the highest local

clustering coefficient with a score of 1 and Jenny has a score of 1/3.

RUN QUERY tg_lcc("person", "friendship", _, _, _, _, _)

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"top_scores": [
 {
 "score": 1,
 "Vertex_ID": "Tom"
 },
 {
 "score": 0.33333,
 "Vertex_ID": "Jenny"
 },
 {
 "score": 0.16667,
 "Vertex_ID": "Dan"
 },
 {
 "score": 0,
 "Vertex_ID": "Nancy"
 }
]}]
}

5/13/25, 9:12 PM 3.3

523

Louvain Method with
Parallelism and Refinement
The Louvain Method for community detection [1] partitions the vertices in a graph

by approximately maximizing the graph's modularity score. The modularity score for

a partitioned graph assesses the difference in density of links within a partition vs.

the density of links crossing from one partition to another. The assumption is that if

a partitioning is good (that is, dividing up the graph into communities or clusters),

then the within-density should be high and the inter-density should be low.

The most efficient and empirically effective method for calculating modularity was

published by a team of researchers at the University of Louvain. The Louvain

method uses agglomeration and hierarchical optimization:

1. Optimize modularity for small local communities.

2. Treat each optimized local group as one unit, and repeat the modularity

operation for groups of these condensed units.

The original Louvain Method contains two phases. The first phase incrementally

calculates the modularity change of moving a vertex into every other community

and moves the vertex to the community with the highest modularity change. The

second phase coarsens the graph by aggregating the vertices which are assigned in

the same community into one vertex. The first phase and second phase make up a

pass. The Louvain Method performs the passes iteratively. In other words, the

algorithm assigns an initial community label to every vertex, then performs the first

phase, during which the community labels are changed until there is no modularity

gain. Then it aggregates the vertices with the same labels into one vertex and

calculates the aggregated edge weights between new vertices. For the coarsened

graph, the algorithm conducts the first phase again to move the vertices into new

communities. The algorithm continues until the modularity is not increasing, or runs

to the preset iteration limits.

However, phase one is sequential, and thus slow for large graphs. An improved

Parallel Louvain Method Louvain Method (PLM) calculates the best community to

move to for each vertex in parallel [2]. In Parallel Louvain Method(PLM), the positive

modularity gain is not guaranteed, and it may also swap two vertices to each otherʼs

5/13/25, 9:12 PM 3.3

524

community. After finishing the passes, there is an additional refinement phase,

which is running the first phase again on each vertex to do some small adjustments

for the resulting communities. [3].

[1] Blondel, Vincent D., et al. "Fast unfolding of communities in large networks."

Journal of statistical mechanics: theory and experiment 2008.10 (2008): P10008.

[2] Staudt, Christian L., and Henning Meyerhenke. "Engineering parallel algorithms

for community detection in massive networks." IEEE Transactions on Parallel and

Distributed Systems 27.1 (2016): 171-184.

[3] Lu, Hao, Mahantesh Halappanavar, and Ananth Kalyanaraman. "Parallel

heuristics for scalable community detection." Parallel Computing 47 (2015): 19-37.

tg_louvain_parallel (SET<STRING> v_type, SET<STRING> e_type, STRING wt_att
 INT iter1=10, INT iter2=10, INT iter3=10, INT split=10, BOOL print_accum
 STRING result_attr = "", STRING file_path = "", BOOL comm_by_size = TRUE

Characteristic Value

Result

Assigns a component id (INT) to each

vertex, such that members of the same

component have the same id value. The

JSON output lists every vertex with its

community ID value. It also lists community

id values, sorted by community size.

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• STRING wt_attr : Name of edge weight

attribute (must be FLOAT)

• INT iter1 : Max number of iterations

for the first phase. Default value is 10

Specifications

5/13/25, 9:12 PM 3.3

525

If we use louvain_parallel for social10 graph, it will give the same result as the

connected components algorithm. The social26 graph is a densely connected

graph. The connected components algorithm groups all the vertices into the same

community and label propagation does not consider the edge weight. On the

contrary, louvain_parallel detects 7 communities in total, and the cluster

distribution is shown below (csize is cluster size):

Input Parameters

• INT iter2 : Max number of iterations

for the second phase. Default value is

10

• INT iter3 : Max number of iterations

for the refinement phase. Default value

is 10

• INT split : Number of splits in phase

1. Increase the number to save memory,

at the expense of having a longer

running time. Default value is 10.

• BOOL print_accum : If True, output

JSON to standard output

• STRING result_attr : If not empty,

store community id values (INT) to this

attribute

• STRING file_path : If not empty, write

output to this file.

• BOOL comm_by_size : If True, and if

print_accum is True, output the

membership of each community, with

communities arranged by size.Result Size V = number of vertices

Time Complexity
O(V^2*L), V = number of vertices, L = (iter1

* iter2 + iter3) = total number of iterations

Graph Types
Undirected, weighted edges

An edge weight attribute is required.

Example

5/13/25, 9:12 PM 3.3

526

{
 "@@clusterDist": [
 {
 "csize": 2,
 "number": 1
 },
 {
 "csize": 3,
 "number": 2
 },
 {
 "csize": 4,
 "number": 2
 },
 {
 "csize": 5,
 "number": 2
 }
]

5/13/25, 9:12 PM 3.3

527

Speaker-listener Label Propagation
The Speaker-listener Label Propagation Algorithm (SLPA) is a variation of the Label

Propagation algorithm that is able to detect overlapping communities. The main

difference between LPA and SLPA is that each node can only hold a single label in

LPA while it is allowed to possess multiple labels in SLPA.

The algorithm begins with each vertex having its own unique label. It then iteratively

records labels in a local accumulator based on specific speaking and listening rules.

Then the post-processing of the record labels is applied. Finally, the algorithm

removes the nested communities and outputs all the communities. Note that it is not

guaranteed to produce the same results every time.

For more information, see SLPA: Uncovering Overlapping Communities in Social

Networks via A Speaker-listener Interaction Dynamic Process .

CREATE QUERY tg_slpa (SET<STRING> v_type, SET<STRING> e_type, FLOAT thresh
BOOL print_accum = TRUE, STRING file_path = "")

Characteristic Value

Result

Assigns a list of component id (INT) to each

vertex, such that members of the same

component have the same id value.

Required Input Parameters

• v_type : vertex types to traverse

• e_type : edge types to traverse

• threshold : threshold to drop a label

• max_iter : number of iterations

• print_accum : print JSON output

• file_path : file to write CSV output to

• output_limit : max #vertices to output

(-1 = all)

Specifications

5/13/25, 9:12 PM 3.3

https://arxiv.org/pdf/1109.5720.pdf
https://arxiv.org/pdf/1109.5720.pdf
https://arxiv.org/pdf/1109.5720.pdf

528

In the example below, we run the tg_slpa algorithm on the social10 graph. We set

max_iter = 10 and threshold = 0.1.

Result Size V = number of vertices

Time Complexity
O(E*k), E = number of edges, k = number of

iterations.

Graph Types Undirected edges

Query

Use _ for default values
RUN QUERY (["Person"], ["Coworker"], _, _, _, _, _

Result

[
 {
 "@@COM": {
 "Fiona": [294649859],
 "Alex": [270532609],
 "Damon": [279969793],
 "Justin": [270532609],
 "Eddie": [279969793],
 "Chase": [279969793],
 "Howard": [294649859],
 "George": [294649859],
 "Bob":[270532609],
 "Ivy":[294649859]
 }
 }
]

Example

5/13/25, 9:12 PM 3.3

529

Visualized query result

5/13/25, 9:12 PM 3.3

530

Triangle Counting
Why triangles? Think of it in terms of a social network:

• If A knows B, and A also knows C, then we complete the triangle if B knows C. If

this situation is common, it indicates a community with a lot of interaction.

• The triangle is in fact the smallest multi-edge "complete subgraph," where every

vertex connects to every other vertex.

Triangle count (or density) is a measure of community and connectedness. In

particular, it addresses the question of transitive relationships: If A--> B and B-->C,

then what is the likelihood of A--> C?

Note that it is computing a single number: How many triangles are in this graph? It is

not finding communities within a graph.

It is not common to count triangles in directed graphs, though it is certainly possible.

If you choose to do so, you need to be very specific about the direction of interest:

In a directed graph, If A--> B and B--> C, then

• if A-->C, we have a "shortcut".

• if C-->A, then we have a feedback loop.

This algorithm can only be run on TigerGraph V3.1 or higher.

We present two different algorithms for counting triangles. The first, tri_count(), is

the classic edge-iterator algorithm. For each edge and its two endpoint vertices S

and T, count the overlap between S's neighbors and T's neighbors.

One side effect of the simple edge-iterator algorithm is that it ends up considering

each of the three sides of a triangle. The count needs to be divided by 3, meaning

tg_tri_count(STRING v_type, STRING e_type)

Specifications

5/13/25, 9:12 PM 3.3

531

we did 3 times more work than a smaller algorithm would have.

tri_count_fast() is a smarter algorithm which does two passes over the edges. In the

first pass we mark which of the two endpoint vertices has fewer neighbors. In the

second pass, we count the overlap only between marked vertices. The result is that

we eliminate 1/3 of the neighborhood matching, the slowest 1/3, but at the cost of

some additional memory.

In the social10 graph with Coworker edges, there are clearly 4 triangles.

tg_tri_count_fast(STRING v_type, STRING e_type)

Characteristic Value

Result
Returns the number of triangles in the

graph.

Input Parameters
v_type : Vertex type to count

e_type : Edge type to traverse

Result Size 1 integer

Time Complexity
O(V * E), V = number of vertices, E =

number of edges

Graph Types Undirected edges

Example

5/13/25, 9:12 PM 3.3

532

{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"num_triangles": 4}
]
}

5/13/25, 9:12 PM 3.3

533

Node Embeddings

5/13/25, 9:12 PM 3.3

534

Node2Vec
Node2Vec is a node embedding algorithm that uses random walks in the graph to

create a vector representation of a node.

A random walk starts with a node, and the algorithm iteratively selects neighboring

nodes to visit, and each neighboring node has an assigned probability. This

transforms graph structure into a collection of linear sequences of nodes. For each

node we will be left with a list of other nodes from their local or extended

neighborhoods.

Once the above step is complete, the algorithm uses a variation of the word2vec

model from the language modeling community to turn each node into a vector of

probabilities. The probabilities represent the likelihood of visiting a given node in a

random walk from each starting node.

Installing this query requires installing a UDF, which can be found in the Github

repository of the query . If you are running the query on a cluster, you need to

manually install the UDF on every node of the cluster.

tg_random_walk(INT step = 8, INT path_size = 4,
 STRING filepath = "/home/tigergraph/path.csv", SET<STRING> edge_types,
 INT sample_num)

tg_node2vec_query(STRING filepath = "/home/tigergraph/path.csv",
 STRING output_file = "/home/tigergraph/embedding.csv",
 INT dimension)

Parameter Description Data type

Specification

Parameters

5/13/25, 9:12 PM 3.3

https://github.com/tigergraph/gsql-graph-algorithms/tree/master/algorithms/examples/Graph%2BML
https://github.com/tigergraph/gsql-graph-algorithms/tree/master/algorithms/examples/Graph%2BML
https://github.com/tigergraph/gsql-graph-algorithms/tree/master/algorithms/examples/Graph%2BML

535

step
Number of random walks

per node
INT

path_size Number of hops per walk INT

filepath File path to output results to STRING

edge_types Edge types to traverse SET<STRING>

5/13/25, 9:12 PM 3.3

536

Fast Random Projection (FastRP)

Fast Random Projection (FastRP) is a scalable and performant node-embedding

algorithm. It generates node embeddings (vectors) of low dimensionality through

random projections from the graph's adjacency matrix (a high-dimensional matrix)

to a low-dimensional matrix, significantly reducing the computing power required to

process the data. The algorithm is theoretically backed by the Johnsson-

Lindenstrauss lemma , which states that a set of points in a high-dimensional

space can be embedded into a space of much lower dimension in such a way that

distances between the points are nearly preserved .

This allows us to aggressively reduce the dimensionality of a dataset while

preserving the distance information. By running the algorithm on a graph, we can

preserve the similarity between nodes and their neighbors. Nodes that have similar

neighborhoods are mapped to similar embedding vectors, while nodes that are not

similar are mapped to dissimilar vectors.

The algorithm starts by assigning random vectors using very sparse random

projection. The algorithm continues to average the random vectors, and then

iteratively average the neighboring vectors from the previous iteration to construct

intermediate embeddings. In each iteration, the algorithm also normalizes the

intermediate embedding using a standard Euclidean norm.

In the end, the embedding for each node is a weighted sum of the intermediate

embeddings, where the weights are provided as a parameter of the algorithm.

This algorithm is especially useful in the following situations:

• Your data is in such high dimension that it is too expensive to perform

calculations.

• The dimensionality is very high and the number of samples is too sparse to

calculate covariances.

• You don't have access to the entire dataset, such as when working with real-

time data.

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
https://en.wikipedia.org/wiki/Stretch_factor
https://en.wikipedia.org/wiki/Stretch_factor

537

This algorithm requires an index attribute on the schema. Before running the

algorithm, create an attribute on all vertex types to hold the index. You can use our

provided schema change job script in the algorithm library.

After the attribute has been created, run the tg_fastRP_preprocessing.gsql query

to index all vertices on the graph.

CREATE QUERY tg_fastRP_query(
INT num_edges, INT num_nodes, INT k, INT sampling_constant,
INT reduced_dimension, DOUBLE normalization_strength, STRING input_weights
STRING index_attr)

Parameter Description Data type

num_edges
The total number of edges

in the graph.
INT

num_nodes
The total number of vertices

in the graph.
INT

sampling_constant

The sampling constant. A

high sampling_constant
increases the speed of the

algorithm.

INT

reduced_dimension

The length of the produced

vectors. A greater

dimension offers greater

precision, but is more costly

to operate over.

INT

k
The number of iterations for

the algorithm to construct

intermediate embeddings.

INT

Specifications

Parameters

5/13/25, 9:12 PM 3.3

https://github.com/tigergraph/gsql-graph-algorithms/blob/master/algorithms/GraphML/Embeddings/FastRP/tg_fastRP_preprocessing.gsql
https://github.com/tigergraph/gsql-graph-algorithms/blob/master/algorithms/GraphML/Embeddings/FastRP/tg_fastRP_preprocessing.gsql

538

The optimal values for the following parameters are dependent on your dataset. In

order to obtain the best quality embeddings for your graph, it is a good idea to tune

these parameters.

The reduced dimension (reduced_dimension) is the length of the produced vectors.

A greater dimension offers greater precision, but is more costly to operate over.

The algorithm interactively constructs intermediate embeddings by averaging either

neighboring intermediate embeddings from the previous iteration, or the generated

random vectors during the first iteration. The final embeddings are weighted sums

of the intermediate embeddings from each iteration.

normalization_strength

The normalization strength

determines how node

degrees influence the

embedding. Using a

negative value will

downplay the importance of

high degree neighbors,

while a positive value will

instead increase their

importance.

DOUBLE

input_weights

A list of floats that

determines the weight of

the intermediate

embeddings constructed in

each iteration.

STRING

index_attr
The name of the index

attribute created during STRING

Parameter tuning

reduced_dimension

input_weights and k

5/13/25, 9:12 PM 3.3

539

k is the number of iterations and the input_weights parameter determine how

much each set of intermediate embeddings from each iteration weighs. You should

make sure that you supply a value of k that is in accordance with the number of

weights you provide.

With each iteration, the algorithm will consider neighbors that are one step farther

away.

The normalization strength determines how node degrees influence the embedding.

Using a negative value will downplay the importance of high degree neighbors,

while a positive value will instead increase their importance.

FastRP uses very sparse random projection to reduce the dimensionality of the data

from an nm matrix to an n*d matrix where d <= m by multiplying the original matrix

with an m*d matrix. The m*d matrix is made up of independently and identically

distributed data sampled from:

Where s is the sampling constant (sampling_constant). The higher the constant,

the higher the number of zeros in the resulting matrix, making it more sparse, but

also speeds up the algorithm.

img

normalization_strength

sampling_constant

5/13/25, 9:12 PM 3.3

540

Pathfinding Algorithms

5/13/25, 9:12 PM 3.3

541

A*

A* (pronounced "A-star") is a graph traversal and path search algorithm, which

achieves better performance by using heuristics to guide its search.

The algorithm starts from a source node, and at each iteration of its main loop, it

selects the path that minimizes where n is the next node on

the path, g(n) is the cost of the path from the source node to n, and h(n) is a

heuristic function that estimates the cost of the cheapest path from n to the target

node.

The algorithm terminates when the path it chooses to extend is a path from start to

goal or if there are no paths eligible to be extended. The heuristic function is

problem-specific. If the heuristic function is admissible, meaning that it never

overestimates the actual cost to get to the target, the algorithm is guaranteed to

return a least-cost path from source to target.

f(n) = g(n) + h(n)

CREATE QUERY tg_astar(VERTEX source_vertex, VERTEX target_vertex, SET<STRI
STRING wt_attr, BOOL display = False)

Characteristic Value

Result

Computes a shortest distance (INT) and

shortest path (STRING) from vertex source

to target vertex.

Required Input Parameters

• source_vertex: start vertex

• target_vertex: target vertex

• e_type: edge types to traverse

• wt_type: weight data type

(INT,FLOAT,DOUBLE)

• wt_attr: attribute for edge weights

• display: output edges for visualization

Specifications

5/13/25, 9:12 PM 3.3

542

In the example below, we run the tg_astar algorithm to find the shortest path

between the source vertex "Kings Cross" and the target vertex "Kentish Town" on a

graph which is a transport network of stations. Each station has its geometric

attibutes(i.e.latitude and longitude) and the edge weight represents the distance

between stations in kilometers. The heuristic function used to guide the search is

the Haversine Formula , which computes the distance between two points on a

sphere given their longitudes and latitudes

Below is the visualized result of the query:

Result Size 1

Time Complexity O(V^2), V = number of vertices.

Graph Types
Directed or Undirected edges, Weighted

edges

Use _ for default values
RUN QUERY astar(("Kings Cross","Station"), ("Kentish Town","Station"),["CO

Example

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula

543

Breadth-First Search
Breadth-first Search (BFS) is an algorithm used to explore the vertexes of a graph

layer by layer. It starts at the given vertex and explores all vertices at the present

depth prior to moving on to the vertices at the next depth level.

CREATE QUERY tg_bfs(SET<STRING> v_type, SET<STRING> e_type,INT max_hops=10
 VERTEX v_start, BOOL print_accum = True, STRING result_attr = "",
 STRING file_path = "", BOOL display_edges = True)

Characteristic Value

Result
Returns all the nodes that are accessible

from the source vertex

Required Input Parameters

• v_type : vertex types to traverse

• e_type : edge types to traverse

• max_hops : look only this far from each

vertex

• v_start : source vertex for traverse

• print_accum : print JSON output

• result_attr : INT attr to store results

to

• file_path : file to write CSV output to

• display_edges :output edges for

visualization

Result Size V = number of vertices

Time Complexity

O(E+V), E = number of edges, V = number

of vertices.since every vertex and every

edge will be explored in the worst case.

Graph Types
Directed or Undirected edges, Weighted or

Unweighted edges

Specifications

5/13/25, 9:12 PM 3.3

544

In the example below, we run tg_bfs algorithm from the source vertex alex on

the social10 graph.

Below is the visualized result of the query:

Use _ for default values
RUN QUERY tg_bfs(["Person"], ["Friend"], _, ("Alex","Person"), _, _, _, _)

Example

5/13/25, 9:12 PM 3.3

545

Single-source Shortest
Path (Unweighted)

If a graph has unweighted edges, then finding the shortest path from one vertex to

another is the same as finding the path with the fewest hops. Think of Six Degrees

of Separation and Friend of a Friend. Unweighted Shortest Path answers the

question "How are you two related?" The two entities do not have to be persons.

Shortest Path is useful in a host of applications, from estimating influences or

knowledge transfer, to criminal investigation.

When the graph is unweighted, we can use a "greedy" approach to find the shortest

path. In computer science, a greedy algorithm makes intermediate choices based on

the data being considered at the moment, and then does not revisit those choices

later on. In this case, once the algorithm finds any path to a vertex T, it is certain that

that is a shortest path.

This algorithm finds an unweighted shortest path from one source vertex to each
possible destination vertex in the graph. That is, it finds n paths.

If your graph has weighted edges, see the next algorithm. With weighted edges, it is
necessary to search the whole graph, whether you want the path for just one
destination or for all destinations.

CREATE QUERY tg_shortest_ss_no_wt (VERTEX source, SET<STRING> v_type,
 SET<STRING> e_type, INT output_limit = -1, BOOL print_accum =TRUE,
 STRING result_attr ="", STRING file_path ="", BOOL display_edges =FALSE)

Characteristic Value

Result

Computes a shortest distance (INT) and

shortest path (STRING) from vertex source

to each other vertex.

• VERTEX source : ID of the source vertex

Specifications

5/13/25, 9:12 PM 3.3

546

In the below graph, we do not consider the weight on edges. Using vertex A as the

source vertex, the algorithm discovers that the shortest path from A to B is A-B, and

the shortest path from A to C is A-D-C, etc.

Input Parameters

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• INT output_limit : If >=0, max

number of vertices to output to JSON.

• BOOL print_accum : If True, output

JSON to standard output

• STRING result_attr : If not empty,

store distance values (INT) to this

attribute

• STRING file_path : If not empty, write

output to this file.

• BOOL display_edges : If true, include

the graph's edges in the JSON output,

so that the full graph can be displayed.

Result Size V = number of vertices

Time Complexity O(E), E = number of edges

Graph Types
Directed or Undirected edges, Unweighted

edges

Example

5/13/25, 9:12 PM 3.3

547

Generic graph with unweighted edges

5/13/25, 9:12 PM 3.3

548

5/13/25, 9:12 PM 3.3

549

[
 {
 "ResultSet": [
 {
 "v_id": "B",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 1,
 "ResultSet.@path": [
 "A",
 "B"
]
 }
 },
 {
 "v_id": "A",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 0,
 "ResultSet.@path": [
 "A"
]
 }
 },
 {
 "v_id": "C",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 2,
 "ResultSet.@path": [
 "A",
 "D",
 "C"
]
 }
 },
 {
 "v_id": "E",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 2,
 "ResultSet.@path": [
 "A",
 "D",
 "E"
]
 }
 },

5/13/25, 9:12 PM 3.3

550

 {
 "v_id": "D",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 1,
 "ResultSet.@path": [
 "A",
 "D"
]
 }
 }
]
 }
]

5/13/25, 9:12 PM 3.3

551

Single-source Shortest
Path (Weighted)

Finding shortest paths in a graph with weighted edges is algorithmically harder than

in an unweighted graph because even after you find a path to a vertex T, you cannot

be certain that it is a shortest path. If edge weights are always positive, then you

must keep trying until you have considered every in-edge to T. If edge weights can

be negative, then it's even harder. You must consider all possible paths.

A classic application for weighted shortest path is finding the shortest travel route to

get from A to B. (Think of route planning "GPS" apps.) In general, any application

where you are looking for the cheapest route is a possible fit.

The shortest path algorithm can be optimized if we know all the weights are

nonnegative. If there can be negative weights, then sometimes a longer path will

have a lower cumulative weight. Therefore, we have two versions of this algorithm

tg_shortest_ss_pos_wt (VERTEX source, SET<STRING> v_type, SET<STRING> e_ty
 STRING wt_attr, STRING wt_type, INT output_limit = -1, BOOL print_accum =
 STRING result_attr = "", STRING file_path = "", BOOL display_edges = FALS

tg_shortest_ss_any_wt (VERTEX source, SET<STRING> v_type, SET<STRING> e_ty
 STRING wt_attr, STRING wt_type, INT output_limit = -1, BOOL print_accum =
 STRING result_attr = "", STRING file_path = "", BOOL display_edges = FALS

Characteristic Value

Result

Computes a shortest distance (INT) and

shortest path (STRING) from vertex source

to each other vertex.

• VERTEX source : Id of the source vertex

• SET<STRING> v_type : Names of vertex

types to use

Specifications

5/13/25, 9:12 PM 3.3

552

The shortest_path_any_wt query is an implementation of the Bellman-Ford algorithm. If
there is more than one path with the same total weight, the algorithm returns one of
them.

Currently, shortest_path_pos_wt also uses Bellman-Ford. The well-known Dijsktra's
algorithm is designed for serial computation and cannot work with GSQL's parallel
processing.

The graph below has only positive edge weights. Using vertex A as the source

vertex, the algorithm discovers that the shortest weighted path from A to B is A-D-B,

Input Parameters

• SET<STRING> e_type : Names of edge

types to use

• STRING wt_attr : Name of edge weight

attribute

• STRING wt_type : Data type of edge

weight attribute: "INT", "FLOAT", or

"DOUBLE"

• INT output_limit : If >=0, max

number of vertices to output to JSON.

• BOOL print_accum : If True, output

JSON to standard output

• STRING result_attr : If not empty,

store distance values (INT) to this

attribute

• STRING file_path : If not empty, write

output to this file.

• BOOL display_edges : If true, include

the graph's edges in the JSON output,

so that the full graph can be displayed.

Result Size V = number of vertices

Time Complexity
O(V*E), V = number of vertices, E = number

of edges

Graph Types
Directed or Undirected edges, Weighted

edges

Example

5/13/25, 9:12 PM 3.3

553

with distance 8. The shortest weighted path from A to C is A-D-B-C with distance 9.

Generic graph with only positive weights

5/13/25, 9:12 PM 3.3

554

5/13/25, 9:12 PM 3.3

555

[
 {
 "ResultSet": [
 {
 "v_id": "B",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 8,
 "ResultSet.@path": [
 "D",
 "B"
]
 }
 },
 {
 "v_id": "A",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 0,
 "ResultSet.@path": []
 }
 },
 {
 "v_id": "C",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 9,
 "ResultSet.@path": [
 "D",
 "B",
 "C"
]
 }
 },
 {
 "v_id": "E",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 7,
 "ResultSet.@path": [
 "D",
 "E"
]
 }
 },
 {
 "v_id": "D",
 "v_type": "Node",

5/13/25, 9:12 PM 3.3

556

The graph below has both positive and negative edge weights. Using vertex A as

the source vertex, the algorithm discovers that the shortest weighted path from A to

E is A-D-C-B-E, with a cumulative score of 7 - 3 - 2 - 4 = -2.

 "attributes": {
 "ResultSet.@dis": 5,
 "ResultSet.@path": [
 "D"
]
 }
 }
]
 }
]

Example results on a graph with negative weights on edges

5/13/25, 9:12 PM 3.3

557

Single-Pair Shortest Path
The Single-Pair Shortest Path task seeks the shortest path between a source vertex

S and a target vertex T. If the edges are unweighted, then use the query in our

tutorial document GSQL Demo Examples.

If the edges are weighted, then use the Single-Source Shortest Path algorithm. In

the worst case, it takes the same computational effort to find the shortest path for

one pair as to find the shortest paths for all pairs from the same source S. The

reason is that you cannot know whether you have found the shortest (least weight)

path until you have explored the full graph. If the weights are always positive,

however, then a more efficient algorithm is possible. You can stop searching when

you have found paths that use each of the in-edges to T.

5/13/25, 9:12 PM 3.3

558

All-Pairs Shortest Path

The All-Pairs Shortest Path algorithm is costly for large graphs because the
computation time is O(V^3) and the output size is O(V^2). Be cautious about running
this on very large graphs.

The All-Pairs Shortest Path (APSP) task seeks to find the shortest paths between

every pair of vertices in the entire graph. In principle, this task can be handled by

running the Single-Source Shortest Path (SSSP) algorithm for each input vertex,

e.g.,

This example highlights one of the strengths of GSQL: treating queries as stored

procedures that can be called from within other queries. We only show the

result_attr and file_path options, because subqueries cannot send their JSON

output.

For large graphs (with millions of vertices or more), however, this is an enormous

task. While the massively parallel processing of the TigerGraph platform can speed

up the computation by 10x or 100x, consider what it takes just to store or report the

results. If there are 1 million vertices, then there are nearly 1 trillion output values.

There are more efficient methods than calling the single-source shortest path

algorithm n times, such as the Floyd-Warshall algorithm, which computes APSP in

O(V^3) time.

Our recommendation:

CREATE QUERY tg_all_pairs_shortest(SET<STRING> v_type, SET<STRING> e_type,
 STRING wt_attr, STRING wt_type, STRING result_attr = "", STRING file_path
{
 Start = {v_type};
 Result = SELECT s FROM Start:s
 POST-ACCUM
 shortest_ss_any_wt(s, v_type, e_type, wt_attr, wt_type,
 result_attr, file_path+s);
}

5/13/25, 9:12 PM 3.3

559

• If you have a smaller graph (perhaps thousands or tens of thousands of

vertices), the APSP task may be tractable.

• If you have a large graph, avoid using APSP.

5/13/25, 9:12 PM 3.3

560

Random Walk
Random Walk is an algorithm that generate random paths in a graph. A random walk

starts at every vertex that has an outgoing edge, and moves to another vertex at

random. The random walk algorithm will print all possible paths of the specified size

from the walks that were performed onto a file in the CSV format.

CREATE QUERY tg_random_walk(
INT step = 8, INT path_size = 4, STRING filepath = "/home/tigergraph/path.
SET<STRING> edge_types, INT sample_num)

Name Description Data type

step
The number of hops

performed in each random

walk.

INT

path_size

The length of the paths to

output. The length refers to

the number of vertices in a

path.

For example, if a walk has

two steps: A -> B -> C, then

there are paths of both

lengths 2 and lengths 3 that

can be output from this

walk. If a path size of 2 is

supplied, then the algorithm

outputs two paths: A -> B

and B -> C. If the path size

is 3, then there is one path:

A -> B -> C.

INT

Specifications

Parameters

5/13/25, 9:12 PM 3.3

561

Suppose we have the following social graph:

If we run the random walk algorithm on the graph and supply a path size of 3 and a

step of 2, and a sample number of 1. Then from each vertex there is a two-step

random walk, and a total of 6 three-vertex paths:

filepath
The filepath to output the

paths to.
STRING

edge_types
The edge types that the

random walk will traverse.
SET<STRING>

sample_num
At each possible step, the

number of sample walks to INT

Example social graph

Example

5/13/25, 9:12 PM 3.3

562

We can also perform a 3 step walk and still ask for three-vertex paths, in which case

the number of paths would double, because in each 3 step walk, there are two

possible three-vertex paths:

Howard Yelena Noah
Noah Owen Noah
George Owen Noah
Eddie Noah Yelena
Yelena Howard Yelena
Owen George Owen

Howard Yelena Noah
Owen Yelena Noah
Noah Owen Noah
George Owen Noah
Yelena Owen Noah
Eddie Noah Owen
Howard Yelena Noah
Noah Owen Noah
George Owen Noah
Eddie Noah Howard
Yelena Noah Howard
Owen Noah Howard

path.csv

path.csv

5/13/25, 9:12 PM 3.3

563

Minimum Spanning Tree
Given an undirected and connected graph, a minimum spanning tree is a set of

edges that can connect all the vertices in the graph with the minimal sum of edge

weights. The library implements a parallel version of Prim's algorithm :

1. Start with a set A = { a single vertex seed }

2. For all vertices in A, select a vertex y such that

a. y is not in A, and

b. There is an edge from y to a vertex x in A, and

c. The weight of the edge e(x,y) is the smallest among all eligible pairs (x,y).

3. Add y to A, and add the edge (x,y) to MST.

4. Repeat steps 2 and 3 until A has all vertices in the graph.

If the user specifies a source vertex, this will be used as the seed. Otherwise, the

algorithm will select a random seed vertex.

If the graph contains multiple components (i.e., some vertices are disconnected from
the rest of the graph, then the algorithm will span only the component of the seed
vertex.

If you do not have a preferred vertex, and the graph might have more than one
component, then you should use the Minimum Spanning Forest (MDF) algorithm
instead.

tg_mst (VERTEX opt_source, SET<STRING> v_type, SET<STRING> e_type,
 STRIN wt_attr, STRING wt_type, INT max_iter = -1,
 BOOL print_accum = TRUE, STRING result_attr = "", STRING file_path = "")

Characteristic Value

Computes a minimum spanning tree. If the

JSON or file output selected, the output is

Specifications

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Prim%27s_algorithm

564

In the graph social10 , we consider only the undirected Coworker edges.

Result the set of edges that form the MST. If the

result_attr option is selected, the edges

which are part of the MST are tagged True;

other edges are tagged False.

Input Parameters

• VERTEX opt_source : ID of a source

vertex (optional)

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• STRING wt_attr : Name of edge weight

attribute

• STRING wt_type : Data type of edge

weight attribute: "INT", "FLOAT", or

"DOUBLE"

• INT max_iter : Maximum of edges to

include. If less than (V-1), then the result

is not a true spanning tree.

• BOOL print_accum : If True, output

JSON to standard output

• STRING result_attr : If not empty,

store result values (BOOL) to this

attribute

• STRING file_path : If not empty, write

output to this file.

Result Size V - 1 = number of vertices - 1

Time Complexity O(V^2)

Graph Types Undirected edges and connected

Example

5/13/25, 9:12 PM 3.3

565

This graph has 3 components. Minimum Spanning Tree finds a tree for one

component, so which component it will work on depends on what vertex we give as

the starting point. If we select Fiona, George, Howard, or Ivy as the start vertex, then

it works on the 4-vertex component on the left. You can start from any vertex in the

component and get the same or an equivalent MST result.

The figure below shows the result of

Note that the value for the one vertex is ("Ivy", "Person") . In GSQL, this 2-tuple

format which explicitly gives the vertex type is used when the query is written to

accept a vertex of any type.

Visualized results of example graph social10 graph with Coworker edges

Use _ for default values
RUN QUERY mst(("Ivy", "Person"), ["Person"], ["Coworker"] "weight", "INT",
_, _, _, _)

5/13/25, 9:12 PM 3.3

566

File output:

The attribute version requires a boolean attribute on the edge, and it will assign the

attribute to "true" if that edge is selected in the MST:

Visualized results of example query on social10 graph

From,To,Weight
Ivy,Fiona,6
Ivy,Howard,4
Ivy,George,4

5/13/25, 9:12 PM 3.3

567

Visualized results of example query on social10 graph, with Coworker edges & edge attribute

"flag"

5/13/25, 9:12 PM 3.3

568

Minimum Spanning Forest
Given an undirected graph with one or more connected components, a minimum

spanning forest is a set of minimum spanning trees, one for each component. The

library implements the algorithm in section 6.2 of Qin et al. 2014: http://www-

std1.se.cuhk.edu.hk/~hcheng/paper/SIGMOD2014qin.pdf .

tg_msf (SET<STRING> v_type, SET<STRING> e_type, STRING wt_attr, STRING wt_
BOOL print_accum = TRUE, STRING result_attr = "", STRING file_path = "")

Characteristic Value

Result

Computes a minimum spanning forest. If the

JSON or file output selected, the output is

the set of edges that form the MSF. If the

result_attr option is selected, the edges

which are part of the MSF are tagged True;

other edges are tagged False.

Input Parameters

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• STRING wt_attr : Name of edge weight

attribute

• STRING wt_type : Data type of edge

weight attribute: "INT", "FLOAT", or

"DOUBLE"

• BOOL print_accum : If True, output

JSON to standard output

• STRING result_attr : If not empty,

store result values (BOOL) to this

attribute

• STRING file_path : If not empty, write

output to this file.

Specifications

5/13/25, 9:12 PM 3.3

http://www-std1.se.cuhk.edu.hk/~hcheng/paper/SIGMOD2014qin.pdf
http://www-std1.se.cuhk.edu.hk/~hcheng/paper/SIGMOD2014qin.pdf
http://www-std1.se.cuhk.edu.hk/~hcheng/paper/SIGMOD2014qin.pdf

569

Refer to the example for the MST algorithm. This graph has 3 components. MSF will

find an MST for each of the three components.

Result Size

V - c,

V = number of vertices, c = number of

components

Time Complexity O((V+E) * logV)

Example

5/13/25, 9:12 PM 3.3

570

Maximal Independent Set
An independent set of vertices does not contain any pair of vertices that are

neighbors, i.e., ones which have an edge between them. A maximal independent

set is the largest independent set that contains those vertices; you cannot improve

upon it unless you start over with a different independent set. However, the search

for the largest possible independent set (the maximum independent set, as

opposed to the maximal independent set) is an NP-hard problem: there is no known

algorithm that can find that answer in polynomial time. So we settle for the maximal

independent set.

This algorithm finds use in applications wanting to find the most efficient

configuration which "covers" all the necessary cases. For example, it has been used

to optimize delivery or transit routes, where each vertex is one transit segment and

each edge connects two segments that can NOT be covered by the same vehicle.

tg_maximal_indep_set(STRING v_type, STRING e_type,
INT max_iter = 100, BOOL print_accum = TRUE, STRING file_path = "")

Characteristic Value

Result
A set of vertices that form a maximal

independent set.

Input Parameters

• STRING v_type : Name of vertex type to

use

• STRING e_type : Name of edge type to

use

• INT max_iter : maximum number of

iterations for the search

• BOOL print_accum : If True, output

JSON to standard output

• STRING file_path : If not empty, write

output to this file.

Specifications

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Maximal_independent_set
https://en.wikipedia.org/wiki/Maximal_independent_set
https://en.wikipedia.org/wiki/Maximal_independent_set

571

Consider our social10 graph, with three components.

It is clear that for each of the two triangles -- (Alex, Bob, Justin) and (Chase,

Damon, Eddie) -- we can select one vertex from each triangle to be part of the MIS.

For the 4-vertex component (Fiona, George, Howard, Ivy), it is less clear what will

happen. If the algorithm selects either George or Ivy, then no other independent

Result Size

Size of the MIS: unknown. Worst case: If the

graph is a set of N unconnected vertices,

then the MIS is all N vertices.

Time Complexity O(E), E = number of edges

Graph Types Undirected edges

Example

5/13/25, 9:12 PM 3.3

572

vertices remain in the component. However, the algorithm could select both Fiona

and Howard; they are independent of one another.

This demonstrates the uncertainty of the Maximal Independent Set algorithm and

how it differs from Maximum Independent Set. A maximum independent set

algorithm would always select Fiona and Howard, plus 2 others, for a total of 4

vertices. The maximal independent set algorithm relies on chance. It could return

either 3 or 4 vertices.

5/13/25, 9:12 PM 3.3

573

Cycle Detection
The Cycle Detection problem seeks to find all the cycles (loops) in a graph. We

apply the usual restriction that the cycles must be "simple cycles", that is, they are

paths that start and end at the same vertex but otherwise never visit any vertex

twice.

There are two versions of the task: for directed graphs and undirected graphs. The

GSQL algorithm library currently supports only directed cycle detection. The Rocha–

Thatte algorithm is an efficient distributed algorithm, which detects all the cycles

in a directed graph. The algorithm will self-terminate, but it is also possible to stop at

k iterations, which finds all the cycles having lengths up to k edges.

The basic idea of the algorithm is to (potentially) traverse every edge in parallel,

again and again, forming all possible paths. At each step, if a path forms a cycle, it

records it and stops extending it. More specifically:

Initialization

For each vertex, record one path consisting of its own id. Mark the vertex as Active.

Iteration steps:

For each Active vertex v:

1. Send its list of paths to each of its out-neighbors.

2. Inspect each path P in the list of the paths received:

• If the first id in P is also id(v), a cycle has been found:

◦ Remove P from its list.

◦ If id(v) is the least id of any id in P, then add P to the Cycle List. (The

purpose is to count each cycle only once.)

• Else, if id(v) is somewhere else in the path, then remove P from the path list

(because this cycle must have been counted already).

• Else, append id(v) to the end of each of the remaining paths in its list.

Specifications

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Rocha%E2%80%93Thatte_cycle_detection_algorithm
https://en.wikipedia.org/wiki/Rocha%E2%80%93Thatte_cycle_detection_algorithm
https://en.wikipedia.org/wiki/Rocha%E2%80%93Thatte_cycle_detection_algorithm

574

In the social10 graph, there are 5 cycles, all with the Fiona-George-Howard-Ivy

cluster.

tg_cycle_detection (SET<STRING> v_type, SET<STRING> e_type, INT depth,
 BOOL print_accum = TRUE, STRING file_path = "")

Characteristic Value

Result

Computes a list of vertex id lists, each of

which is a cycle. The result is available in 2

forms:

• streamed out in JSON format

• written to a file in tabular format

Input Parameters

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• INT depth : Maximum cycle length to

search for = maximum number of

iterations

• BOOL print_accum : If True, output

JSON to standard output

• STRING file_path : If not empty, write

output to this file.

Result Size

Number of cycles * average cycle length

Both of these measures are not known in

advance.

Time Complexity
O(E *k), E = number of edges.

k = min(max. cycle length, depth parameter)

Graph Types Directed

Example

5/13/25, 9:12 PM 3.3

575

Visualized results of cycle_detection("Person", "Friend", 10) on social10 graph

5/13/25, 9:12 PM 3.3

576

[
 {
 "@@cycles": [
 [
 "Fiona",
 "Ivy"
],
 [
 "George",
 "Ivy"
],
 [
 "Fiona",
 "George",
 "Ivy"
],
 [
 "George",
 "Howard",
 "Ivy"
],
 [
 "Fiona",
 "George",
 "Howard",
 "Ivy"
]
]
 }
]

5/13/25, 9:12 PM 3.3

577

Estimated Diameter
The diameter of a graph is the worst-case length of a shortest path between any

pair of vertices in a graph. It is the farthest distance to travel, to get from one vertex

to another, if you always take the shortest path. Finding the diameter requires

calculating (the lengths of) all shortest paths, which can be quite slow.

This algorithm uses a simple heuristic to estimate the diameter. rather than

calculating the distance from each vertex to every other vertex, it selects K vertices

randomly, where K is a user-provided parameter. It calculates the distances from

each of these K vertices to all other vertices. So, instead of calculating V*(V-1)

distances, this algorithm only calculates K*(V-1) distances. The higher the value of

K, the greater the likelihood of hitting the actual longest shortest path.

The current version only computes unweighted distances.

This algorithm query employs a subquery called max_BFS_depth. Both queries are
needed to run the algorithm.

tg_estimate_diameter (SET<STRING> v_type, SET<STRING> e_type, INT seed_set
 BOOL print_accum = TRUE, STRING file_path = "", BOOL display = FALSE)

Characteristic Value

Result
Returns the estimated value for the diameter

of the graph

Input Parameters

• SET<STRING> v_type : Names of vertex

types to use

• SET<STRING> e_type : Names of edge

types to use

• INT seed_set_length : The number (K)

of random seed vertices to use

• BOOL print_accum : If True, output

JSON to standard output

Specifications

5/13/25, 9:12 PM 3.3

578

• STRING file_path : If not empty, write

output to this file.

Result Size one integer

Time Complexity
O(k*E), E = number of edges, k = number of

seed vertices

Graph Types Directed

5/13/25, 9:12 PM 3.3

579

Similarity Algorithms

5/13/25, 9:12 PM 3.3

580

Euclidean Distance
Euclidean distance measures the straight line distance between two points in n-

dimensional space. The algorithm takes two vectors denoted by ListAccum and

return the Euclidean distance between them.

This algorithm is implemented as a user-defined function. You need to follow the steps
in Add a User-Defined Function to add the function to GSQL. After adding the function,
you can call it in any GSQL query in the same way as a built-in GSQL function.

The Euclidean distance between the two vectors.

tg_euclidean_distance_accum(A, B)

Name Description Data type

A
An n-dimensional vector

denoted by a ListAccum of

length n

ListAccum<INT/UINT/FLOAT
/DOUBLE>

B
An n-dimensional vector

denoted by a ListAccum of

length n

ListAccum<INT/UINT/FLOAT
/DOUBLE>

Specifications

Parameters

Return value

Example

5/13/25, 9:12 PM 3.3

581

Query

CREATE QUERY euclidean_example() FOR GRAPH social {
 ListAccum<INT> @@a = [1, 2, 3];
 ListAccum<INT> @@b = [4, 5, 6];
 double distance = tg_euclidean_distance_accum(@@a, @@b);
 PRINT distance;
}

Result

 {
 "distance": 5.19615
 }

5/13/25, 9:12 PM 3.3

582

Overlap Similarity
The overlap coefficient, or Szymkiewicz–Simpson coefficient, is a similarity

measure that measures the overlap between two finite sets.

The algorithm takes two vectors denoted by ListAccum and returns the overlap

coefficient between them.

This algorithm is implemented as a user-defined function. You need to follow the steps
in Add a User-Defined Function to add the function to GSQL. After adding the function,
you can call it in any GSQL query in the same way as a built-in GSQL function.

overlap(X,Y) =

min(∣X∣, ∣Y ∣)
∣X ∩ Y ∣

tg_overlap_similarity_accum(A, B)

Name Description Data type

A
An n-dimensional vector

denoted by a ListAccum of

length n

ListAccum<INT/UINT/FLOAT
/DOUBLE>

B
An n-dimensional vector

denoted by a ListAccum of

length n

ListAccum<INT/UINT/FLOAT
/DOUBLE>

Specification

Parameters

Return value

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Similarity_measure
https://en.wikipedia.org/wiki/Similarity_measure
https://en.wikipedia.org/wiki/Similarity_measure

583

The overlap coefficient between the two vectors.

Query

CREATE QUERY overlap_example(/* Parameters here */) FOR GRAPH social {
 ListAccum<INT> @@a = [1, 2, 3];
 ListAccum<INT> @@b = [2, 2, 3];
 double overlap_similarity = tg_overlap_similarity_accum(@@a, @@b);
 PRINT overlap_similarity;
}

Result

[
 {
 "overlap_similarity": 0.66667
 }
]

Example

5/13/25, 9:12 PM 3.3

584

Pearson Similarity
The Pearson correlation coefficient is a measure of linear correlation between

two sets of data. It is the ratio between the covariance of two variables and the

product of their standard deviations .

The formula for calculating the Pearson correlation coefficient is as follows:

This algorithm is implemented as a user-defined function. You need to follow the steps
in Add a User-Defined Function to add the function to GSQL. After adding the function,
you can call it in any GSQL query in the same way as a built-in GSQL function.

ρ =X,Y

σ σ X Y

cov(X,Y)

tg_pearson_similarity_accum(A, B)

Name Description Data type

A
An n-dimensional vector

denoted by a ListAccum of

length n

ListAccum<INT/UINT/FLOAT
/DOUBLE>

B
An n-dimensional vector

denoted by a ListAccum of

length n

ListAccum<INT/UINT/FLOAT
/DOUBLE>

Specifications

Parameters

Return value

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Linear
https://en.wikipedia.org/wiki/Linear
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Correlation_and_dependence
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Standard_deviation

585

The Pearson correlation coefficient between the two vectors.

Query

CREATE QUERY pearson_example() FOR GRAPH social {
 ListAccum<INT> @@a = [1, 2, 3];
 ListAccum<INT> @@b = [2, 2, 3];
 double pearson_similarity = tg_pearson_similarity_accum(@@a, @@b);
 PRINT pearson_similarity;
}

Result

 {
 "pearson_similarity": 0.86603
 }

Example

5/13/25, 9:12 PM 3.3

586

Cosine Similarity of
Neighborhoods (Single-Source)

To compare two vertices by cosine similarity , the selected properties of each

vertex are first represented as a vector. For example, a property vector for a Person

vertex could have the elements age, height, and weight. Then the cosine function is

applied to the two vectors.

The cosine similarity of two vectors A and B is defined as follows:

If A and B are identical, then cos(A, B) = 1. As expected for a cosine function, the

value can also be negative or zero. In fact, cosine similarity is closely related to the

Pearson correlation coefficient.

For this library function, the feature vector is the set of edge weights between the

two vertices and their neighbors.

In the movie graph shown in the figure below, there are Person vertices and Movie

vertices. Every person may give a rating to some of the movies. The rating score is

stored on the Likes edge using the weight attribute. For example, in the graph below,

Alex gives a rating of 10 to the movie "Free Solo".

cos(A,B) = =
∣∣A∣∣ ⋅ ∣∣B∣∣
A ⋅ B

 A ∑i i
2

 B ∑i i
2

 A B ∑i i i

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity

587

movie graph

tg_cosine_nbor_ss (VERTEX source, SET<STRING> e_type, SET<STRING> re_type,
 STRING weight, INT top_k, INT output_limit, BOOL print_accum = TRUE,
 STRING file_path = "", STRING similarity_edge = "")
RETURNS (MapAccum<VERTEX, FLOAT>)

Specifications

5/13/25, 9:12 PM 3.3

588

The output size is always K (if K <= N), so the algorithm may arbitrarily choose to

output one vertex over another if there are tied similarity scores.

Characteristic Value

Result

The top K vertices in the graph that have the

highest similarity scores, along with their

scores.

The result is available in three forms:

• streamed out in JSON format

• written to a file in tabular format

• stored as a vertex attribute value

Input Parameters

• VERTEX source : Source vertex

• SET<STRING> e_type : Edge type to

traverse

• SET<STRING> re_type : Reverse edge

type to traverse

• STRING weight: The edge attribute to

use as the weight of the edge

• INT top_k : Number of vertices

• INT output_limit:

• BOOL print_accum : If true , output

JSON to standard output.

• STRING filepath : If provided, the

output will be written to this file path in

CSV format.

• STRING similarity_edge : If provided,

the similarity score will be saved to this

edge.

Result Size top_k

Time Complexity O(D^2), D = outdegree of vertex v

Graph Types
Undirected or directed edges, weighted

edges

5/13/25, 9:12 PM 3.3

589

Given one person's name, this algorithm calculates the cosine similarity between

this person and each other person where there is at one movie they have both rated.

In the previous example, if the source vertex is Alex, and top_k is set to 5, then we

calculate the cosine similarity between him and two other persons, Jing and Kevin.

The JSON output shows the top 5 similar vertices and their similarity score in

descending order. The output limit is 5 persons, but we have only 2 qualified

persons:

The FILE version output is not necessarily in descending order. It looks like the

following:

The ATTR version inserts an edge into the graph with the similarity score as an edge

attribute whenever the score is larger than zero. The result looks like this:

[
 {
 "@@result_topk": [
 {
 "vertex1": "Alex",
 "vertex2": "Jing",
 "score": 0.42173
 },
 {
 "vertex1": "Alex",
 "vertex2": "Kevin",
 "score": 0.14248
 }
]
 }
]

Vertex1,Vertex2,Similarity
Alex,Kevin,0.142484
Alex,Jing,0.421731

Example

5/13/25, 9:12 PM 3.3

590

5/13/25, 9:12 PM 3.3

591

Cosine Similarity of
Neighborhoods (Batch)

This algorithm computes the same similarity scores as the Cosine similarity of

neighborhoods, all pairs algorithm, except that it starts from all of the vertices as the

source vertex and computes its similarity scores with its neighbors for all the

vertices in parallel. Since this is a memory-intensive operation, it is split into batches

to reduce peak memory usage. The user can specify how many batches it is to be

split into. Compared with the Cosine similarity of neighborhoods, all pairs algorithm,

this algorithm allows you to split the workload into multiple batches and reduces the

burden on memory.

This algorithm has a time complexity of O(E), where E is the number of edges, and

runs on graphs with weighted edges (directed or undirected).

tg_cosine_batch(STRING vertex_type, STRING edge_type, STRING edge_attribut
INT topK, BOOL print_accum = true, STRING file_path,
STRING similarity_edge, INT num_of_batches=1)

Name Description

v_type Vertex type to calculate similarity for

e_type Directed edge type to traverse

edge_attribute
Name of the attribute on the edge type to

use as the weight

topK
Number of top scores to report for each

vertex

print_accum If true , output JSON to standard output.

Specifications

Parameters

5/13/25, 9:12 PM 3.3

592

The result of this algorithm is the top k cosine similarity scores and their

corresponding pair for each vertex. The score is only included if it is greater than 0.

The result can be output in JSON format, in CSV to a file, or saved as a similarity

edge in the graph itself.

Using the social10 graph, we can calculate the cosine similarity of every person to

every other person connected by the Friend edge, and print out the top k most

similar pairs for each vertex.

similarity_edge
If provided, the similarity score will be saved

to this edge.

file_path If not empty, write output to this file in CSV.

num_of_batches Number of batches to divide the query into

Result

Example

5/13/25, 9:12 PM 3.3

593

5/13/25, 9:12 PM 3.3

594

GSQL > RUN QUERY tg_cosine_batch("Person", "Friend", "weight", 5, true, ""

// Every vertex and their most similar pairs ranked by their Cosine
// Similarity score.
[
 {
 "start": [
 {
 "attributes": {
 "start.@heap": [
 {
 "val": 0.49903,
 "ver": "Howard"
 },
 {
 "val": 0.43938,
 "ver": "George"
 },
 {
 "val": 0.05918,
 "ver": "Alex"
 },
 {
 "val": 0.05579,
 "ver": "Ivy"
 }
]
 },
 "v_id": "Fiona",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@heap": []
 },
 "v_id": "Justin",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@heap": []
 },
 "v_id": "Bob",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@heap": [

5/13/25, 9:12 PM 3.3

595

 {
 "val": 0.22361,
 "ver": "Bob"
 },
 {
 "val": 0.21213,
 "ver": "Alex"
 }
]
 },
 "v_id": "Chase",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@heap": [
 {
 "val": 0.57143,
 "ver": "Bob"
 },
 {
 "val": 0.12778,
 "ver": "Chase"
 }
]
 },
 "v_id": "Damon",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@heap": []
 },
 "v_id": "Alex",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@heap": [
 {
 "val": 0.64253,
 "ver": "Alex"
 },
 {
 "val": 0.63607,
 "ver": "Ivy"
 },
 {

"val": 0.27091,

5/13/25, 9:12 PM 3.3

596

Cosine Similarity of
Neighborhoods (All Pairs)

This algorithm computes the same similarity scores as the cosine similarity of

neighborhoods, single-source algorithm (cosine_nbor_ss), except that it considers

ALL pairs of vertices in the graph (for the vertex and edge types selected by the

user). Naturally, this algorithm will take longer to run. For very large and very dense

graphs, this may not be a practical choice.

 val : 0.27091,
 "ver": "Howard"
 },
 {
 "val": 0.14364,
 "ver": "Fiona"
 }
]
 },
 "v_id": "George",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@heap": []
 },
 "v_id": "Eddie",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@heap": [
 {
 "val": 0.94848,
 "ver": "Fiona"
 },
 {
 "val": 0.6364,
 "ver": "Alex"
 },
 {
 "val": 0.31046,
 "ver": "George"
 },
 {
 "val": 0.1118,
 "ver": "Howard"
 }
]
 },
 "v_id": "Ivy",
 "v_type": "Person"
 },
 {
 "attributes": {
 "start.@heap": [
 {
 "val": 1.09162,
 "ver": "Fiona"

tg_cosine_nbor_ap (SET<STRING> v_type, SET<STRING> e_type, SET<STRING> re_
 STRING weight, INT top_k, INT output_limit, BOOL print_accum = TRUE,
 STRING similarity_edge = "", STRING file_path = "")

Characteristic Value

Result

The top k vertex pairs in the graph which

have the highest similarity scores, along

with their scores.

The result is available in three forms:

• streamed out in JSON format

Specifications

5/13/25, 9:12 PM 3.3

597

Using the movie graph, calculate the cosine similarity between all pairs and show

the top 5 pairs. This is the JSON result:

 },
 {
 "val": 0.78262,
 "ver": "Ivy"
 },
 {
 "val": 0.11852,
 "ver": "George"
 }
]
 },
 "v_id": "Howard",
 "v_type": "Person"
 }
]
 }
]

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• SET<STRING> v_type : Vertex types to

calculate cosine similarity score for

• SET<STRING> e_type : Edge types to

traverse

• SET<STRING> re_type : Reverse edge

types to traverse

• STRING weight : Edge attribute to use

as weight

• INT top_k : the number of vertex pairs

with the highest similarity scores to

return

• INT output_limit : If >=0, max

number of vertices to output to JSON.

• BOOL print_accum : If true, output
JSON to standard output.

• STRING similarity_edge : If provided,

the similarity score will be saved to this

edge

• filepath (for file output only): the path

to the output file

Result Size top_k

Time Complexity O(E), E = number of edges

Graph Types
Undirected or directed edges, weighted

edges

Example

5/13/25, 9:12 PM 3.3

598

The FILE output is similar to the output of cosine_nbor_file.

The ATTR version will create k edges:

[
 {
 "@@total_result": [
 {
 "vertex1": "Kat",
 "vertex2": "Neil",
 "score": 0.67509
 },
 {
 "vertex1": "Jing",
 "vertex2": "Neil",
 "score": 0.46377
 },
 {
 "vertex1": "Kevin",
 "vertex2": "Neil",
 "score": 0.42436
 },
 {
 "vertex1": "Jing",
 "vertex2": "Alex",
 "score": 0.42173
 },
 {
 "vertex1": "Kat",
 "vertex2": "Kevin",
 "score": 0.3526
 }
]
 }
]

5/13/25, 9:12 PM 3.3

599

5/13/25, 9:12 PM 3.3

600

Jaccard Similarity of
Neighborhoods (Single Source)

The Jaccard index measures the relative overlap between two sets. To compare two

vertices by Jaccard similarity, first select a set of values for each vertex. For

example, a set of values for a Person could be the cities the Person has lived in.

Then the Jaccard index is computed for the two vectors.

The Jaccard index of two sets A and B is defined as follows:

The value ranges from 0 to 1. If A and B are identical, then Jaccard(A, B) = 1. If both

A and B are empty, we define the value to be 0.

In the current

Jaccard(A,B) =

∣A ∪ B∣
∣A ∩ B∣

tg_jaccard_nbor_ss (VERTEX source, STRING e_type, STRING rev_e_type, INT
 BOOL print_accum = TRUE, STRING similarity_edge_type = "",STRING file_pa

Characteristic Value

Result

The top k vertices in the graph that have the

highest similarity scores, along with their

scores.

The result is available in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Specifications

5/13/25, 9:12 PM 3.3

601

The algorithm will not output more than K vertices, so the algorithm may arbitrarily

choose to output one vertex over another if there are tied similarity scores.

Using the movie graph, we run jaccard_nbor_ss("Neil", 5) :

Input Parameters

• SET<STRING> v_type : Vertex type to

calculate similarity score for

• SET<STRING> e_type : Edge type to

traverse

• SET<STRING> re_type : Reverse edge

type to traverse

• INT top_k : the number of vertex pairs

with the highest similarity scores to

return

• BOOL print_accum : Boolean value that

decides whether to output to console

• STRING similarity_edge : If provided,

the similarity score will be saved to this

edge

• STRING filepath: If provided, the

algorithm will output to the file path in

CSV format

Result Size top_k

Time Complexity O(D^2), D = outdegree of vertex v

Example

5/13/25, 9:12 PM 3.3

602

If the source vertex (person) doesn't have any common neighbors (movies) with any

other vertex (person), such as Elena in our example, the result will be an empty list:

[
 {
 "@@result_topK": [
 {
 "vertex1": "Neil",
 "vertex2": "Kat",
 "score": 0.5
 },
 {
 "vertex1": "Neil",
 "vertex2": "Kevin",
 "score": 0.4
 },
 {
 "vertex1": "Neil",
 "vertex2": "Jing",
 "score": 0.2
 }
]
 }
]

[
 {
 "@@result_topK": []
 }
]

5/13/25, 9:12 PM 3.3

603

Jaccard Similarity of
Neighborhoods (Batch)

This algorithm computes the same similarity scores as the Jaccard similarity of

neighborhoods, all pairs, except that it starts from all of the vertices as the source

vertex and computes its similarity scores with its neighbors for all the vertices in

parallel. Since this is a memory-intensive operation, it is split into batches to reduce

peak memory usage. The user can specify how many batches it is to be split into.

Compared with the Jaccard similarity of neighborhoods, all pairs, this algorithm

allows you to split the workload into multiple batches and reduces the burden on

memory.

This algorithm has a time complexity of O(E), where E is the number of edges, and

runs on graphs with unweighted edges (directed or undirected).

tg_jaccard_batch (STRING v_type, STRING e_type, STRING re_type, INT topK,
BOOL print_accum = true, STRING similarity_edge, STRING file_path,
INT num_of_batches = 1)

Name Description

v_type Vertex type to calculate similarity for

e_type Directed edge type to traverse

re_type Reverse edge type to traverse

topK
Number of top scores to report for each

vertex

print_accum If true , output JSON to standard output.

Specifications

Parameters

5/13/25, 9:12 PM 3.3

604

The result contains the top k Jaccard similarity scores for each vertex and its

corresponding pair. A pair is only included if its similarity is greater than 0, meaning

there is at least one common neighbor between the pair. The result is available in

JSON format, or can be output to a file in CSV, or it can be saved as an edge on the

graph itself. A JSON formatted result could look like this:

similarity_edge
If provided, the similarity scores will be

saved to this edge type.

file_path
If a file path is provided, the algorithm will

output to a file specified by the file path in

CSV format

Result

5/13/25, 9:12 PM 3.3

605

5/13/25, 9:12 PM 3.3

606

// Run jaccard_batch on social10 graph traversing through Friend edges
[
 {
 "Start": [
 {
 "attributes": {
 "Start.@heap": [
 {
 "val": 0.33333,
 "ver": "Howard"
 },
 {
 "val": 0.25,
 "ver": "Ivy"
 },
 {
 "val": 0.25,
 "ver": "George"
 }
]
 },
 "v_id": "Fiona",
 "v_type": "Person"
 },
 {
 "attributes": {
 "Start.@heap": []
 },
 "v_id": "Justin",
 "v_type": "Person"
 },
 {
 "attributes": {
 "Start.@heap": []
 },
 "v_id": "Bob",
 "v_type": "Person"
 },
 {
 "attributes": {
 "Start.@heap": [
 {
 "val": 0.5,
 "ver": "Damon"
 }
]
 },
 "v_id": "Chase",

5/13/25, 9:12 PM 3.3

607

Jaccard Similarity of
Neighborhoods (All Pairs)

This algorithm computes the same similarity scores as the Jaccard similarity of

neighborhoods, single-source algorithm, except that it considers ALL pairs of

vertices in the graph (for the vertex and edge types selected by the user). Naturally,

this algorithm will take longer to run. For very large and very dense graphs, this

algorithm may not be a practical choice.

 "v_type": "Person"
 },
 {
 "attributes": {
 "Start.@heap": [
 {
 "val": 0.5,
 "ver": "Chase"
 }
]
 },
 "v_id": "Damon",
 "v_type": "Person"
 },
 {
 "attributes": {
 "Start.@heap": [
 {
 "val": 0.33333,
 "ver": "Ivy"
 }
]
 },
 "v_id": "Alex",
 "v_type": "Person"
 },
 {
 "attributes": {
 "Start.@heap": [
 {
 "val": 0.5,
 "ver": "Howard"
 },
 {
 "val": 0.25,
 "ver": "Fiona"
 }
]
 },
 "v_id": "George",
 "v_type": "Person"
 },
 {
 "attributes": {
 "Start.@heap": []
 },
 "v_id": "Eddie",
 "v_type": "Person"

},

5/13/25, 9:12 PM 3.3

608

 },
 {
 "attributes": {
 "Start.@heap": [
 {
 "val": 0.33333,
 "ver": "Alex"
 },
 {
 "val": 0.25,
 "ver": "Fiona"
 }
]
 },
 "v_id": "Ivy",
 "v_type": "Person"
 },
 {
 "attributes": {
 "Start.@heap": [
 {
 "val": 0.5,
 "ver": "George"
 },
 {
 "val": 0.33333,
 "ver": "Fiona"
 }
]
 },
 "v_id": "Howard",
 "v_type": "Person"
 }
]
 }
]

tg_jaccard_nbor_ap(STRING v_type, STRING e_type, STRING re_type, INT top_k
 BOOL print_accum = TRUE, STRING similarity_edge = "", STRING file_path =

Characteristic Value

Result

The top k vertex pairs in the graph that have

the highest similarity scores, along with their

scores.

The result is available in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• SET<STRING> v_type : Vertex types to

calculate similarity score for

• SET<STRING> e_type : Edge types to

traverse

• SET<STRING> re_type : Reverse edge

types to traverse

• INT top_k : the number of vertex pairs

with the highest similarity scores to

return

• BOOL print_accum : Boolean value that

decides whether to output to console

• STRING similarity_edge : If provided,

the similarity score will be saved to this

edge

• STRING file_path : If provided, the

algorithm will output to the file path in

CSV format

Result Size top_k

Time Complexity
O(E^2 / V), V = number of vertices, E =

number of edges

Specifications

5/13/25, 9:12 PM 3.3

609

The algorithm will not output more than K vertex pairs, so the algorithm may

arbitrarily chose to output one vertex pair over another, if there are tied similarity

scores.

For the movie graph, calculate the Jaccard similarity between all pairs and show the

5 most similar pairs: jaccard_nbor_ap(5). This is the JSON output :

Undirected or directed edges unweighted

[
 {
 "@@total_result": [
 {
 "vertex1": "Kat",
 "vertex2": "Neil",
 "score": 0.5
 },
 {
 "vertex1": "Kevin",
 "vertex2": "Neil",
 "score": 0.4
 },
 {
 "vertex1": "Jing",
 "vertex2": "Alex",
 "score": 0.25
 },
 {
 "vertex1": "Kat",
 "vertex2": "Kevin",
 "score": 0.25
 },
 {
 "vertex1": "Jing",
 "vertex2": "Neil",
 "score": 0.2
 }
]
 }
]

Example

5/13/25, 9:12 PM 3.3

610

Topological Link Prediction

5/13/25, 9:12 PM 3.3

611

Adamic Adar
The Adamic/Adar index is a measure introduced in 2003 by Lada Adamic and Eytan

Adar to predict links in a social network, according to the number of shared links

between two nodes. It is defined as the sum of the inverse logarithmic degree

centrality of the neighbors shared by the two nodes.

Where 𝑁(𝑢) is the set of nodes adjacent to u.

The Adamic Adar index between two vertices. If the two vertices do not have

common neighbors, the algorithm will return a division by 0 error.

A(x, y) =

u∈N(x)∩N(y)

∑
log ∣N(u)∣

1

CREATE QUERY tg_adamic_adair(VERTEX a, VERTEX b, SET<STRING> e_type)

Name Description Data type

a A vertex. VERTEX

b A vertex. VERTEX

e_type Edge types to traverse. SET<STRING>

Specification

Parameters

Return value

Example

5/13/25, 9:12 PM 3.3

612

Suppose we have the graph below:

Running the algorithm between Jenny and Dan will give us a result of

1/log(2)=3.321931.

Query

RUN QUERY tg_adamic_adar (("Jenny", "person"), ("Dan", "person"), ["fr

Result

5/13/25, 9:12 PM 3.3

613

{
 "error": false,
 "message": "",
 "version": {
 "schema": 1,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@closeness": 3.32193}]
}

5/13/25, 9:12 PM 3.3

614

Common Neighbors
The Common Neighbors algorithm calculates the number of common neighbors

between two vertices.

The number of common neighbors between two vertices.

Suppose to have the following graph:

CREATE QUERY tg_common_neighbors(VERTEX a, VERTEX b, SET<STRING> e_type)

Name Description Data type

a A vertex. VERTEX

b A vertex. VERTEX

e_type Edge types to traverse. SET<STRING>

Specification

Parameters

Return value

Example

5/13/25, 9:12 PM 3.3

615

Running the algorithm between Dan and Jenny will show that they have 1 common

neighbor:

Query

RUN QUERY common_neighbors (("Jenny", "person"), ("Dan", "person"),
 ["friendship"])

Result

5/13/25, 9:12 PM 3.3

616

{
 "error": false,
 "message": "",
 "version": {
 "schema": 1,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"closeness": 1}]
}

5/13/25, 9:12 PM 3.3

617

Preferential Attachment
Preferential Attachment is a measure to compute the closeness of vertices, based

on the number of their neighbors. The algorithm returns the product two vertices'

number of neighbors.

For more information, see Preferential Attachment .

The product of the number of neighbors of the two vertices.

Suppose we have the following graph:

CREATE QUERY tg_preferential_attachment(VERTEX a, VERTEX b,
 SET<STRING> e_type)

Name Description Data type

a A vertex. VERTEX

b A vertex. VERTEX

e_type Edge types to traverse. SET<STRING>

Specification

Parameters

Return value

Example

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Preferential_attachment
https://en.wikipedia.org/wiki/Preferential_attachment

618

Since Dan has four neighbors, while Jenny has three, the return value of the

algorithm is 3∗4=12:

Query

RUN QUERY preferential_attachment (("Jenny", "person"), ("Dan", "perso
 ["friendship"])

Result

5/13/25, 9:12 PM 3.3

619

{
 "error": false,
 "message": "",
 "version": {
 "schema": 1,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"closeness": 12}]
}

5/13/25, 9:12 PM 3.3

620

Resource Allocation
Resource Allocation is used to compute the closeness of nodes based on their

shared neighbors. It is computed by the following formula:

Where 𝑁(𝑢) is the set of nodes adjacent to u.

Suppose we have the following graph:

RA(x, y) =

u∈N(x)∩N(y)

∑
∣N(u)∣

1

CREATE QUERY tg_resource_allocation(VERTEX a, VERTEX b, SET<STRING> e_type

Name Description Data type

a A vertex. VERTEX

b A vertex. VERTEX

e_type Edge types to traverse. SET<STRING>

Specification

Parameters

Example

5/13/25, 9:12 PM 3.3

621

Since Dan and Jenny has one shared neighbor Tom , who has two neighbors,

running the algorithm between Dan and Jenny with friendship edges would give us

a result of 0.5.

Query

RUN QUERY resource_allocation (("Jenny", "person"), ("Dan", "person"),
 ["friendship"])

Result

5/13/25, 9:12 PM 3.3

622

{
 "error": false,
 "message": "",
 "version": {
 "schema": 1,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{
 "@@closeness": 0.5
 }]
}

5/13/25, 9:12 PM 3.3

623

Same Community
This algorithm takes two vertices, and returns 1 if they two vertices are in the same

community, and returns 0 if they are not in the same community.

The algorithm assumes that community detection has already completed and that a
community ID is stored in an integer attribute on each vertex.

• Returns 1 if the two vertices are in the same community.

• Returns 0 if the two vertices are not in the same community.

Suppose we have the following vertices:

CREATE QUERY tg_same_community(VERTEX a, VERTEX b, STRING
 communityAttribute)

Name Description Data type

a A vertex. VERTEX

b A vertex. VERTEX

communityAttribute
The community attribute

used to store a vertexʼs

community ID.

STRING

Specifications

Parameters

Return value

Example

5/13/25, 9:12 PM 3.3

624

Their community IDs were generated by running the weakly connected component

algorithm on the graph. If we run the algorithm between Kevin and Jenny, we get 1

because the two vertices are in the same community as indicated by their

community attribute:

Query

RUN QUERY tg_same_community (("Jenny", "person"), ("Kevin", "person"),
 "community")

Result

5/13/25, 9:12 PM 3.3

625

{
 "error": false,
 "message": "",
 "version": {
 "schema": 2,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"1": 1}]
}

5/13/25, 9:12 PM 3.3

626

Total Neighbors
The algorithm calculates the total number of neighbors of two vertices.

The total number of neighbors of two vertices.

Suppose we have the following graph.

CREATE QUERY tg_total_neighbors(VERTEX a, VERTEX b,
 SET<STRING> e_type)

Name Description Data type

a A vertex. VERTEX

b A vertex. VERTEX

e_type Edge types to traverse. SET<STRING>

Specifications

Parameters

Return value

Example

5/13/25, 9:12 PM 3.3

627

Dan and Jenny together have 6 neighbors in total. Running the algorithm between

Dan and Jenny would give us a result of 6. Note that since Jenny and Dan are

neighbors themselves, the union of their neighbors includes both Jenny and Dan:

Query

RUN QUERY tg_total_neighbors (("Jenny", "person"), ("Dan", "person"),
 ["friendship"])

Result

5/13/25, 9:12 PM 3.3

628

{
 "error": false,
 "message": "",
 "version": {
 "schema": 2,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"closeness": 6}]
}

5/13/25, 9:12 PM 3.3

629

Release Notes, FAQs
and Troubleshooting

5/13/25, 9:12 PM 3.3

630

Release Notes
Release Date: Nov 1st, 2021

Below is a list of new features in TigerGraph 3.3:

• Added gadmin config reset command to reset a configuration parameter to its

default value.

• Added the --auto-restart option to gadmin start that automatically restarts

any service that goes down

• Improve loader/license violation error messaging

• Added new parameter update_vertex_only to POST /graph/{graph_name} to

allow update-only requests.

• Aggregation in Visual Query Builder is renamed to Attachment

• Added the ability to export a graph exploration as a .png file or as .csv files.

• Added the ability to view the results of GSQL queries in a tabular format.

• Added a new widget "Within" in Visual Query Builder to replicate a vertex pattern

to be used in another pattern.

New features

Manageability

Observability

Data loading

Developer efficiency - GraphStudio

5/13/25, 9:12 PM 3.3

631

• Added support for nested expressions for aggregation functions in Visual Query

Builder.

• Added support for single-value attachment in Visual Query Builder.

• Added the ability to save a query draft under a different name than the name

used to create the query.

• Added the ability to save a visual pattern under a different name than the name

used to create the pattern in Visual Query Builder.

• Added the ability to define and assign user-defined roles to users in Admin

Portal.

• Added the ability to update certain GSQL configuration parameters from Admin

Portal.

• Added the ability to download GSQL output files.

• GraphStudio

◦ Known Issues for GraphStudio

◦ The No-Code Data Migration feature is in Alpha release. Your feedback

would be appreciated.

◦ The No-Code Visual Query Builder is in Beta release. Your feedback would

be appreciated.

• AdminPortal

◦ Known Issues for AdminPortal

Admin Portal System Management

Known issues

Applications

GSQL

5/13/25, 9:12 PM 3.3

632

• Multiple (Conjunctive) Path Patterns:

◦ There are no known functional problems, but the performance has not been

optimized. Your feedback would be appreciated.

• DML type check error in V2 Syntax:

◦ GSQL will report a wrong type check error for Query block with multiple

POST-ACCUM clauses and Delete/Update attribute operation.

• Turn on GSQL HA manually when upgrading from 3.0.x

◦ Users who are upgrading from 3.0.X need to manually start GSQL HA

service. Please reach out to support for help with the process documented

in: https://tigergraph.freshdesk.com/a/solutions/articles/5000865072

• Stale data visible after Deletes using index

◦ Queries that use secondary index may still see the vertices being deleted

until after the snapshots are fully rebuilt.

The following changes were made to the built-in roles in TigerGraph's Role-based

Access Control

• The built-in role queryreader can no longer run queries that include updates to

the database.

◦ To emulate the old queryreader role, create a role with all queryreader
privileges, and also grant the WRITE_DATA privilege to the new role to allow

users with the role to run queries that update the graph.

• The built-in role admin can no longer create users

◦ To emulate the old admin role, create a global role with all admin
privileges, and also grant the WRITE_USER privilege to the new role to allow

users with the role to create users.

Major revisions (e.g., from TigerGraph 2 to TigerGraph 3) are the opportunity to

deliver significant improvements. While we make every effort to maintain backward

Compatibility with TigerGraph 3.1

Compatibility with TigerGraph 2

5/13/25, 9:12 PM 3.3

https://tigergraph.freshdesk.com/a/solutions/articles/5000865072
https://tigergraph.freshdesk.com/a/solutions/articles/5000865072

633

compatibility, in selected cases APIs have changed or deprecated features have

been dropped, in order to advance the overall product.

Data migration: A tool is available to migrate the data in TigerGraph 2.6 to

TigerGraph 3.0. Please contact TigerGraph Support for assistance.

Query and API compatibility:

• Some gadmin syntax has changed. Notably. gadmin set config is now gadmin
config set . Please see Managing with gadmin.

• Some features which were previously deprecated have been dropped. Please

see V3.0 Removal of Previously Deprecated Features for a detailed list.

• Release Notes - TigerGraph 3.2

• Release Notes - TigerGraph 3.1

• Release Notes - TigerGraph 3.0

• Release Notes - TigerGraph 2.6

• Release Notes - TigerGraph 2.5

• Release Notes - TigerGraph 2.4

• Release Notes - TigerGraph 2.3

• Release Notes - TigerGraph 2.2

• For v2.1 and older, contact TigerGraph Support

For the running log of bug fixes, see the Change Log.

Release notes for previous versions

5/13/25, 9:12 PM 3.3

https://docs-legacy.tigergraph.com/v/3.2/faqs/release-notes-tigergraph-3.2
https://docs-legacy.tigergraph.com/v/3.2/faqs/release-notes-tigergraph-3.2
https://docs-legacy.tigergraph.com/v/3.1/faqs/release-notes-tigergraph-3.1
https://docs-legacy.tigergraph.com/v/3.1/faqs/release-notes-tigergraph-3.1
https://docs-legacy.tigergraph.com/v/3.0/faqs/release-notes-tigergraph-3.0
https://docs-legacy.tigergraph.com/v/3.0/faqs/release-notes-tigergraph-3.0
https://docs-legacy.tigergraph.com/v/2.6/release-notes-change-log/release-notes-tigergraph-2.6
https://docs-legacy.tigergraph.com/v/2.6/release-notes-change-log/release-notes-tigergraph-2.6
https://docs-legacy.tigergraph.com/v/2.5/release-notes-change-log/release-notes-tigergraph-2.5
https://docs-legacy.tigergraph.com/v/2.5/release-notes-change-log/release-notes-tigergraph-2.5
https://docs.tigergraph.com/v/2.4/release-notes-change-log/release-notes-tigergraph-2.4
https://docs.tigergraph.com/v/2.4/release-notes-change-log/release-notes-tigergraph-2.4
https://docs.tigergraph.com/v/2.3/release-notes-change-log/release-notes-tigergraph-2.3
https://docs.tigergraph.com/v/2.3/release-notes-change-log/release-notes-tigergraph-2.3
https://docs.tigergraph.com/v/2.2/release-notes-change-log/release-notes-for-tigergraph-2.2
https://docs.tigergraph.com/v/2.2/release-notes-change-log/release-notes-for-tigergraph-2.2

634

Change Log
This page will document all the changes to TigerGraph product including New

Features and Bug Fixes.

Distributed Graph support and certain other enterprise-level features are available in
the Enterprise Edition only. They do not pertain to the Developer Edition.

Release date: 2021-11-01

See release notes.

• Added the gadmin config reset command to reset a configuration parameter

• Added the --auto-restart option to gadmin start to automatically restart a

service if it goes down

• Added the ability to save a query as another query

• Added support for single-value attachment in Visual Query Builder

• Added the ability to export selected vertices and edges in .csv format

• Added the ability to view query results in tabular format

• Added the Within widget in Visual Query Builder(VQB)

TigerGraph 3.3

Features

Changes

Database server

GraphStudio

5/13/25, 9:12 PM 3.3

635

• Added the ability to save a graph pattern in VQB as another pattern

• Added support for nested expressions for aggregation functions

• Added support for managing user-defined roles

• Added the ability to preview and download GSQL output files

• Added the ability to change GSQL configurations

• Added parameter update_vertex_only to POST /graph/{graph_name} enable

update-only requests

• Improved query performance by updating SmartContainer

• Improved the performance of accumulators

• Added support for function setAttr in Interpret Mode

• Improved query editor UI

• Improved edge visualization in geospatial layout

• Improved vertex visualization in geospatial layout

• Increased limit on number of columns when loading data

• Improved the accuracy of error messages

• Improved cluster service monitor UI

Admin portal

Enhancements

Database server

GraphStudio

Admin Portal

Fixed

5/13/25, 9:12 PM 3.3

636

• Increased size limit for graph catalog

• Improved log messages when RESTPP requests time out

• Fixed an issue that causes Kafka loading to fail

• Fixed an issue during upgrade related to initiating Kafka

• Fixed an issue that slowed queries that write to files in 3.2

• Fixed an issue that in rare cases caused errors when running grun commands

• Fixed an issue that caused errors in queries and loading jobs when filename is

too long

• Fixed an issue that in rare cases caused incorrect output when query uses a

kleene star

• Fixed an issue that in rare cases caused local variables to be overridden

• Fixed an issue that in rare cases caused errors when running queries with

default values

• Fixed an issue that in rare cases caused errors when a query calls a subquery

• Fixed an issue that in rare cases caused cluster outage if user terminates

process during cluster shrinking

• Fixed an issue that caused GSQL leader to switch unexpectedly when GSQL

restarts

• Fixed an issue that caused the semantic checker to miss a specific semantic

error

• Fixed an issue that in rare cases caused a query draft to become uneditable

• Fixed an issue that caused data mapping to take long than expected when user

uploads 0-byte files

• Fixed an issue that caused errors when writing query on an empty graph

• Fixed an issue that caused errors when saving a VQB pattern as a query

• Fixed an issue that caused updating run query configurations in GraphStudio to

fail

Database server

GraphStudio

5/13/25, 9:12 PM 3.3

637

• Added support to manage user-defined roles

Release Date: 2021-09-30

Check release notes: 3.2.0 Release notes

• ADD Edge Pair commands as part of Schema Change operations are now

allowed.

• Query-calling-query limitation: Distributed main query cannot call a distributed

sub-query.

• Default logging level for GSQL logs has been changed from DEBUG to INFO

• Core: Improve Abort transaction if the transaction is too long

• Core: GPE hung under high number of concurrent queries

• Core: Turn on transaction for RestPP Post for atomicity

• Core: Workload management: Specify replica for a query to run in a distributed

cluster

Admin Portal

TigerGraph 3.2

Features

Changes:

GSQL:

Enhancements

Database Server:

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/v/3.2/faqs/release-notes-tigergraph-3.2
https://docs.tigergraph.com/v/3.2/faqs/release-notes-tigergraph-3.2

638

• Core: Standardize the correct http response code for query requests

• GSQL: Query Installation Performance Improvements

◦ Support longer reload time for Query installation on 1000ʼs of queries

◦ Don't drop parent queries when subquery is installed

• GSQL: Support for new built-in functions:

◦ Math-related functions: round(), reverse(), repeat(), insert(), cot(), degrees(),

radians, square, truncate, log2

◦ String-related functions instr(), length(), substr(), PI(), rand(), lpad(), rpad(),

replace(), ascii(), chr(), soundex(), difference(), translate(), space(), ltrim(),

rtrim(), find_in_set(), left(), right();

• GSQL: Support FROM/TO vertex type change for edge type metadata

• GSQL: Support VLAC tags in Import and Export operations

• GSQL: Allow variable declaration anywhere in query body

• GSQL: Support initialization from an expression;

• GSQL: Support revoking superuser role from default user

• GSQL: Improve the error message displayed when connecting to LDAP server

• Platform: Upgrade to Java 11

• Platform: Add support for ubuntu20

• Platform: Show executor status and updated status of other services

• Platform: Run upgrade locally without ssh if user is local with only a single node

• Platform: Start/stop local executor will no longer need ssh,

• Platform: Increase Backup/Restore S3 upload Partition Size

• Platform: Make Backup/Restore Heartbeat timeout configurable to allow media

with slower speeds.

• WCAG compliance changes

• Support overwriting exploration result

• Support duplicate file-edge mappings and fix setSelection error;

• Add graph information and variable names to auto-complete list;

GraphStudio:

5/13/25, 9:12 PM 3.3

639

• WCAG changes

• Support Privilege based management

• Improve unauthorized access warning popup message

• Display secrets table for each graph

• Core: Kafka loader should exit gracefully

• Core: GPE crash if the request specifies an invalid replica

• Core: Health check for 1 mins in RESTPP startup

• Core: Fixed file loading failed due to OOM

• Core: Fixed no error message when edge does not exist

• Core: Fixed issue with deleted_vertex_check API after dropping vertex type;

• GSQL: LDAP user privilege parsing missed authorization checks

• GSQL: Fixed rhs check issue for direct interpret query;

• GSQL: Fixed print Vset issue with vertex accum declaration order;

• GSQL: Added semantic checker for rhs with the same name;

• GSQL: Export fails due to mismatching token of an unexpected graph

• GSQL: Fixed wrong name when looking up variable from global

• GSQL: Fix datetime_format function not working for v2 syntax

• GSQL: The result of printing string differs in interpret mode and installed mode

• GSQL: Fixed issue with Order by for interpret query

• GSQL: Fix to handle abort while adding queries if a concurrent delete fails

• Platform: Service status for KAFKA is down when one zookeeper server offline

• Platform: Fix for Admin log rotation time issue

Admin Portal:

Fixed

Database Server:

5/13/25, 9:12 PM 3.3

640

• Addressed Schema change logic for reversed edge

• Fix for privilege based access control issue

• Fix for loading job information migration failure

• Remove loading job log on export;

• Remove graphName from loading job information interface;

• Use authorization token in header instead of logging in;

• Send heartbeat to keep client connection alive

Release Date: 2021-08-09

• Configuration for light or dark mode in GraphStudio/Admin Portal

• Multiple maps from a single file to an edge are indistinguishable

• GraphStudio: Implement responsive design for all sizes of screens

• GraphStudio: Rearrange elements to avoid overlay in small screen

• GraphStudio: Support toolbar button announcement for screen readers

• GraphStudio: Support keyboard shortcut for focusing elements within working

panels

Release Date: 2021-07-23

GraphStudio:

TigerGraph 3.1.6

Fixed

Application

TigerGraph 3.1.5

5/13/25, 9:12 PM 3.3

641

• Core: GPE on DR cluster stuck in warm up state after failover due to invalid

requests

• GSQL: Prevent QueryReader role to run any graph updates query

• GSQL: Validation script to check schema consistency issue

• Platform: Increase in proxy request buffer size for NGINX

• Platform: Change in GRPC maximum message size for GBAR backup of catalog

data

• GraphStudio: Reuse controller connections to avoid running out of used ports

• GraphStudio: Remove "change layout" button in toolbar in Visual Editor

Release Date: 2021-07-01

• GSQL: \requesttoken API can be used to create authorization tokens using

User name/password in addition to secret.

• GSQL: Secrets created without alias will be assigned a system-generated alias

so that they can be dropped

• Platform: Nginx upgrade from 1.18.0 to 1.21.0

• Platform: Backup/Restore configuration improvements to allow use of slower

HDD media for storage

• GraphStudio: UI enhancements to support WCAG compliance

Fixed

Database Server

Application

TigerGraph 3.1.4

Enhancements

5/13/25, 9:12 PM 3.3

642

• Core: GPE need to verify catalog updates after new schema changes are applied

• Core: Running Louvain algorithm as a distributed query crashed GPE due to

unnecessary vertex activation

• Core: Backup failed with WaitForDeltaToBeProcessed timeout

• Core: Updated log messages to reference /deleted_vertex_check endpoint in

RESTPP correctly

• GSQL: Fix schema consistency issues due to duplicate Vertex/Edge type names

• GSQL: Fix for schema consistency issue due to GPE referencing a dropped

Vertex

• GSQL: Additional semantic check for local schema change job to prevent

schema inconsistency

• GSQL: Error when making schema changes using UI/ Install all queries fails

• GSQL: Inconsistency between GSQL and GPE catalog data after ‘Drop graphʼ

fails

• GSQL: ‘Fromʼ clause missing from delete loading jobs when Export Graph

command is run

• GSQL: Query installation will fail due to wrong order of arguments in PRINT

statement

• GSQL: “Incompatible argument types for function/tuple evaluate" error when

using evaluate without second argument on v2 syntax

• GSQL: Designer Role unable to run a query in Interpret Mode

• Platform: Updates to Nginx templates for security updates

• Platform: Change in default value for UI request timeout to 3600

• GraphStudio: Vertex and Edge statistics generation optimization to avoid Cluster

CPU usage spike

• GraphStudio: Unexpected error when dropping edge with reversed edge

Fixed

Database Server

Application

5/13/25, 9:12 PM 3.3

643

• GraphStudio: Fix for failure to migrate loading job info from 3.0.x to 3.1.2+

Release Date: 2021-06-05

• Theme color adjustment to meet Web Content Accessibility Guidelines(WCAG).

• Support responsive page layout for "Home" page, "Load Data" page and "Write

Queries" page.

• Add information transcripts for visualization areas in each page.

• Add keyboard navigation in graph charts.

• Improve tabbing capability and tabbing order.

• Improve element status announcement.

• Add headings for the entire application.

• Add aria-labels for the entire application to meet WCAG compliance.

• Add captions for all table elements.

• Theme color adjustment to meet WCAG compliance.

Release Date: 2021-05-20

TigerGraph 3.1.3

Enhancements

GraphStudio

AdminPortal

TigerGraph 3.1.2

Features

5/13/25, 9:12 PM 3.3

644

• SQL to GSQL translation for Enterprise BI tools like Tableau and Power BI

◦ This enriches data visualization tools with graph-enabled dashboards

• Core: Increase the maximum allowed size of Vertex/Edge delta files to allow

larger number of updates for write-heavy applications.

• GSQL: Support for more than 10K elements in a Set<> of a query parameter

• GSQL: Support VertexAccessControl Tags in DBImportExport

Database Server

• Core: Pick the latest version of GPE data for backup

• GSQL: datetime attribute type in a schema-level user-defined tuple translated as

int32_t

• GSQL: NullPointerException when handle VSet variable in nested if statement

• GSQL: NullPointerException when using multiple POST-ACCUM clauses

• GSQL: INSERT statement with non-existent edge does not report error in V1

syntax

• GSQL: GSQL does not produce type error when inserting non-existent edge with

vertices from query parameters

• GSQL: NoSuchElementException when using a non-existent edge on INSERT

statement

• GSQL: Lexical error when a newline is followed by an exclamation mark (!) in a

string

• GSQL: Printing string with newline fails compilation

• GSQL: Refresh RESTPP Token: output and default lifetime is not correct

• GSQL: Multiplicity propagation ACCUM clauses should reset only if the block is

within a loop

• GSQL: Create user don't allow an empty password

• GSQL: Pattern match - propagation accumulator values not cleared

Enhancements

Fixed

5/13/25, 9:12 PM 3.3

645

• GSQL: Push-down error reported for non-alias expressions

• GSQL: Support TAGS in DBImportExport

• GSQL: Fix TokenBank compilation slowdown

• Platform: Graceful handling of port used by Executor component

• Platform: Got failed to authenticate with GSQL server error when login with SSO

on tg3.1.1

• Platform: Remove gsql password printing

• The loading data status is incorrect while import a solution

• Imported solution with no modification, should not ask user to publish Data

mapping.

• Failed to overwrite datafile in Map Data to Graph

AdminPortal

• Display of secrets on AdminPortal - User management should be paginated.

Release Date: 2021-04-02

• Change BY(OR|OVERWRITE) syntax to BY OR|OVERWRITE for explicit tag

creation

• Changed name of 'dbsanitycheck' endpoint to 'deleted_vertex_check'

GraphStudio

TigerGraph 3.1.1

Changes:

Enhancements

Database Server

5/13/25, 9:12 PM 3.3

646

• Core: Improved throttling mechanism for Updates when memory usage has hit

critical threshold

• Core: Improved reliability of transferring in-memory data to on-disk within GSE

• Core: Logging improvements to support both time-based and size-based

configuration for all the component logs

• Fixes/Enhancements for Vertex Level Access Control feature

◦ GSQL: Performance improvement for tag creation only operations

◦ GSQL: Make tag description optional

◦ GSQL: Block altering taggable value of global vertex if being used in tag

based graph

◦ GSQL: Show tag expression of tag graphs in base graph “ls” command

◦ GSQL: Allow vertex taggable property to be updated even if it is currently

being used in a tag-based graph

• GSQL: Support for accumulators in table-style SELECT clause expression lists

• GSQL Query syntax extensions for table support

• GADMIN: Allow script to be used to configure LDAP TrustStore Path

• Platform: Security enhancement to allow HTTPS traffic only access securely

through dedicated interfaces when SSLis enabled.

• Platform: Upgrade grpc to 1.33.0

• Add a * in the label of a data source if the loading job is changed

• Return detailed error messages when install queries failed

• Enable only one column header to be editable at the same time

• Enable closing popup with Escape

• Add a max validator for timeout field for configuration

• Query name conflict check uses all available type names from GSQL

GraphStudio

Fixed

Database Server

5/13/25, 9:12 PM 3.3

647

• Core: Retry logic for adding data to GSE in the DR cluster

• Core: Fix for GPE crash due to potential race condition between queries and

updates.

• Core: Partial result output in extreme cases before a running query has finished

• Core: restpp crashed when missing parameter name

• Core: Fixed file loading job failures due to OOM

• GSQL: Fix for catalog access issue due to concurrent schema change requests

• GSQL: GPE crash due to incorrect catalog update issued by GSQL

• GSQL: LDAP password visible in GSQL logs

• GSQL: Exit code from GSQL CLI needs to return non-zero code if there is an

error

• GSQL: Unable to run global schema change on global vertex if local vertex with

same name exists

• GSQL: Query created through GSQL shell, but returns error through GraphStudio

• GSQL: Add check for GPE readiness for create/drop vertex/edge operations for

global schema changes

• GSQL: GSQL v2 syntax - vertex-attached containers cannot be read in

WHERE/ACCUM clauses

• GSQL: Enhance Export/Import by pre-creating necessary directories

• GSQL: Fix calling subquery without RETURNS clause

• GSQL: Code generation error for multiple dynamic expressions with the same

parameter

• GSQL: Wrong result for the output of datetime_format function

• GSQL: SET<VERTEX> Not Working in Query Parameter

• GSQL: GLE error message uses incorrect terminology: 'batch mode' should say

'distributed query mode'

• GSQL: Printing vertex set variable with parentheses causes wrong printing for

attributes

• GSQL: GSQL pattern match - incorrect WHERE condition parsing

• GSQL: GSQL query doesn't work on HA cluster when RESTPP#1 is down

• GSQL: Fix for Catalog backup file cleaning failure

• GSQL: Empty gsql password should not be allowed.

5/13/25, 9:12 PM 3.3

648

• GSQL: NullPointerException on creating a query with a body-level DML delete

statement

• GSQL: Query cannot be dropped after its caller queries have been dropped

• Platform: Remove user authentication information after installation

• Platform: GSQL user defined functions are not backed up

• Platform: Residual GPE/GSE processes are not terminated before restore

• Platform: GBAR gracefully exit after ctrl-c

• Platform: guninstall does not take into account the password login

• Platform: gbar restore failed with message: Failed to import key-value store

• Platform: Single node 3.1 installation in in VMware private cloud environment in

VMWare Private Cloud Environment

• Platform: Restore failure from S3 didnʼt update the replicas correctly

• Platform: Check to prevent migration tool running twice

• Platform: GBAR restore fails with invalid checksums

• Platform: User didnʼt receive correct feedback when incorrect password entered

during 3.1 upgrade

• Query goes back to a previous version after schema change in query editor

• Remove the use of regex for GSQL CLI and rely on exit code instead

• Progress bar hangs if query installation fails

• datetime's default value field does not support rfc3339 nor iso8601 format

• Export solution is only available for superuser

• Unexpected error when changing the schema (Fix from GSQL side)

• Update global schema after a local schema is dropped

• Uploading progress bar hangs after choosing unsupported file type

• Query editor does not display full text if line cannot break

• Undo button should clear the expand list

• JSON result of "write query" is not updated in error mode

• Not possible to unset/cancel custom radius in Graph Exploration

GraphStudio

5/13/25, 9:12 PM 3.3

649

• Syntax highlighting is incomplete

• Link to License page from GST is wrong

• Long messages in Design Schema overlap vertex properties editor's ✓ button

• The loading progress bar is stuck if import fails

• The data mapping will disappear after change the global vertex's attribute

• Address Export/Import solution migration issues

• Validate input on config management

• Ignore blank spaces in log search

Release Date: 2020-12-02

New features are described in 3.1.0 Release notes .

• GSQL: STRING COMPRESS data type will no longer be allowed for new data

objects. However, existing objects with STRING COMPRESS data type will

continue to work.

• GSQL: Changes to ADD/DROP Edge Pair commands

◦ ADD edge pair in schema change will not be allowed

◦ Drop vertex will be disallowed if it is currently being used in edge pair.

• Platform: tigergraph user id included with default installation will be allowed to

be dropped

• Platform: Root user will now be disallowed to do an upgrade using installer -U

option

Admin Portal

TigerGraph 3.1.0

Features

Changes:

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/v/3.1/faqs/release-notes-tigergraph-3.1
https://docs.tigergraph.com/v/3.1/faqs/release-notes-tigergraph-3.1

650

• Engine: License enforcement check improvements

• Engine: Restpp memory footprint reduction by recycling memory periodically

• GSQL: Support JSON Payload Method for Calling GSQL Built-In Dynamic

Endpoints

• GSQL: Support Async query execution with query status/result functionality

• GSQL: Enhanced Interpreted Query support:

◦ Support graph update for interpreted query

◦ Support Where filter in PRINT statement for interpreted query

• GSQL: Logging for /requesttoken API endpoint

• GSQL: Reset function for vertex attached accumulators

• GSQL: Make token expiration maximum limit configurable

• Platform: Enterprise Free Package improvement to make pre-installed license

work in both interactive and non-interactive modes

• Platform: Allow users to set hard coded timeout for Backup jobs

• Platform: Allow configurable minimum and maximum memory limits for Kafka,

Kafka Connect and Kafka Stream

• Platform: Software upgrades for the following packages:

◦ etcd, Kafka plugins, Jsoncpp library

• Add new application server framework to offer continuous availability in

GraphStudio and Admin Portal

• Update APIs for the new application server

• Support solution export/import without graph metadata

• Integrate GraphStudio with the new application server

• Increase unit test timeout

Enhancements

Database Server

GraphStudio

5/13/25, 9:12 PM 3.3

651

Admin Portal

• Add log management for viewing, searching and downloading

• Add configuration management settings

• Add Restpp setting: Default query timeout

• Add Nginx setting: SSL setting and whitelist IP setting

• Add application server setting: Query return size

• Add security management settings: LDAP, SSO

• Integrate Admin Portal with the new application server

• Change SSO authorization request URL

• Handle SAML ACS for SSO

• Disable authorization check for SSO metadata

• Engine: Correct HTTP response code will be returned when query times out

• Engine: GPE status reporting is delayed due to backlog of large number of Kafka

messages in the queue.

• Engine: GPE crash in Sub-query print statement

• Engine: Infinite loop in refresh index when some attributes are disabled

• Engine: RESTPP memory consumption increase caused by timed out queries

• Engine: Query using index will not fully utilize compute resources.

• Engine: When query times out, JSON may not be well formed

• Engine: Failed to post data when id is int and primary_id_as_attribute is true

• Engine: Avoid converting string compress index hint in remote topology edge

action

• Engine: GPE not responding to SIGTERM

• GSQL: Refactor memory usage in query installation to reduce the memory

footprint when there is a large number of queries

Fixed

Database Server:

5/13/25, 9:12 PM 3.3

652

• GSQL: When creating the edge pairs, allow use of new vertex types that will be

added from the current schema change job

• Platform: Backup/Restore fails to backup GUI related data

• Platform: Installer will print progress message during package install to avoid ssh

timeout

Release Date: 2020-11-11

Database Server

• Audit Logging Enhancements

◦ User information for all requests.

◦ Request Status (request succeeded or failed) for all requests irrespective of

access mode

• Remove Hard timeout limit for Backup/Restore operations

Database Server

• Platform: Resolve the issues where Kafka start-up will hang in certain OS and

shell environment.

• Platform: Backup/Restore hangs if there are too many files

• Platform: Backup/Restore list error when backup files on S3 are corrupted

• Engine: Builtin query running background blocks schema change

• GSQL: Fix for SSL certificate exception

TigerGraph 3.0.6

Enhancements

Fixed

5/13/25, 9:12 PM 3.3

653

Release Date: 2020-09-05

New features and described in 3.0.5 Release notes .

Database Server

• Longer timeout for retrieving enum maps when using STRING COMPRESS

• Socket timeout adjustment to improve RESTPP stability

• Implement SetAccum<vertex> as bitset

• Semantic check for println of File object for compiled query

• Installer improvements

•
◦ Enhancement to change the user and group separately.

◦ Check permission of parent dir of App/Temp/Data/Log Roots

• TigerGraph 2.x to 3.x Migration tool enhancements

◦ Support for copying UDFs and other functions during migration

• Enhanced license support for Cloud deployments

• Enhanced upgrade version checking

• Zookeeper client connection retry mechanism to avoid Zookeeper operation

failures

Installer Configuration JSON format

TigerGraph 3.0.5

Features

Enhancements

Changes

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/faqs/release-notes-tigergraph-3.0#features-in-3-0-5-version
https://docs.tigergraph.com/faqs/release-notes-tigergraph-3.0#features-in-3-0-5-version

654

• Install Configuration is separated into basic configuration and advanced

configuration sections

• Support for allowing replication factor to be set during installation as opposed to

limited HA on/off setting previously

Database Server

• Core: GPE down during Backup for large number of files

• Core: GPE will crash if the data comes from a machine without relevant

metadata.

• Core: Query failure due to string overflow

• Core: Query with large UDF job didn't stop for configured time out setting

• Platform: Kafka loading bug when number of loaders exceeds 10

• Platform: Backup hangs when there are very large number of files in Graph Store

• Platform: Backup reports successful operation even if it's actually incomplete

• Platform: gadmin reset does not reset all files

• GSQL: V2 syntax removes edge type that is excluded by Accum clause.

• GSQL: Force query install should regenerate the endpoints

• GSQL: Loading Job failed with SSL enabled

• GSQL: Query installation performance issue for V2 syntax

• GSQL: ArrayAccum value is not accessible in the ACCUM block when query is

installed in distributed mode.

• GSQL: Dictionary Fails when Tokens are too many

• GSQL: Query installation fails due to schema change

• GSQL: gsql_client strips out newlines when writing gsql queries by pasting into

gsql shell

GraphStudio

• Apply previous visualization result should handle empty saved schema

• Displaying attribute for raw type in visualization should not use JSON stringify

Fixed

5/13/25, 9:12 PM 3.3

655

• Remove clear text user password in error log for migration from RDBMS to Graph

Release Date: 2020-06-30

New and modified features and described in the TigerGraph 3.0 Release Notes .

• Support for reload libudf command

• Schema validation before apply settings

• Relax Developer Edition restrictions

• YAML parsing support for edge pairs

• Support SPLIT for UDT loading, Load From/To Type from File

• Data generator 2.0

• Change log level by SIGUSER1, avoid unnecessary error log

• Restpp self-report status

• Allow users to remove data for reinstallation

• Upgrade kafka to 2.3.0

• Path pattern optimization with pattern flipping and PER clause

• Combine service status and processState into one log event

• Support validation of entry value during gadmin config set command

• Add strong check for symlinks

• Support to_datetime builtin function in expressions

• Support string set filter for edge and target vertex

TigerGraph 3.0

Features

Enhancements

Database Server

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/release-notes-change-log/release-notes-tigergraph-3.0
https://docs.tigergraph.com/release-notes-change-log/release-notes-tigergraph-3.0

656

• Support local vertex and edge with same name in multiple graphs

• Index hint for interpret mode

• Support string compress attributes in built-in Query filters

• Enable jemalloc profiling

• Utility function to get disk free percentage

• Allow concurrent user query access during Query Installation

•

• Support multiple-pair edge type

• Schema change job for add/drop attribute index

• Improved clear graph warning

• New layout for logo and multiple graphs

• Allow user edit header for sample data

• Support multiple files upload

• Cancel autofit for adding vertex and double click actions

• Cancel auto login if user has logged out

• Save JSON format of query result to local storage

• Create Edge Type from Multiple Vertex Types to Multiple Vertex Types

• Add on-demand heap profiling for jemalloc

• Delete legacy ids data

• Periodically force Jemalloc release memory to OS / on demand profiling

• Change debug log in convertids into verbose

• Print warning but no assert in ZMQ

• Wrong JSON format for tempTables

GraphStudio:

Fixed

Database Server

5/13/25, 9:12 PM 3.3

657

• Fix wrong check for loading job completion

• Allow interpret query to recognize html encoded string constant

• Handle logical type in json converter

• Corrected URL decode for whitespace character

• Add time before delete edges command to ensure rebuild has enough time to

complete

• Fix remove session bug for the aborted handler after 'ctrl + c'

• Synchronize concurrent install queries

• Change logic to check service status for cluster mode

• Support the ‘=‘ operator SumAccum;

• Drop vertex/edge/graph when there are local and global vertex/edge have the

same name;

• Support removing a SetAccum from another SetAccum;

• Remove the reversed edge too when removing an edge;

• Cannot create query due to the overflow of the size of the HeapAccum;

• Query referred as subquery from interpreted mode query can not be dropped;

• Index out of bound when ignoring the parameter checking for interpret query

• Output error message for invalid job id

• Fix codegen to insert a vertex/edge without attributes

• Support file regexp in checking header of filename

• Support the true value of key word header and transaction in the loading data

job to be case-insensitive

• Dedupe proxy user's own roles from groups

• Make schema change metadata modification a transaction

• Fix builtin k_step expansion query bug

• Check disk space before exporting each vertex/edge type

• Allowed non-English string constants in interpreted queries

• Edge variable prints attribute by default

• Print developer information only in gadmin status

• Restrict symlinks and check their existence

5/13/25, 9:12 PM 3.3

658

• Fix error message for new secret creation

• Refactor keywords

• Do not emit explorer config if saved exploration doesn't have it

• Check for Valid date time

• Extend wait time for progress bar finish

• Add right border for side navigation

• Upgrade color-picker

• Fix check accumulator format

• Fix percentage of performing schema change

• Run interpreted query through websocket

GraphStudio:

5/13/25, 9:12 PM 3.3

659

V3.0 Removal of Previously
Deprecated Features
TigerGraph 2.x contained some features which were labeled as deprecated. These

features are no longer necessary because they have been superseded already by

improved approaches for using the TigerGraph platform. The new approaches were

developed because they use more consistent grammar, are more extensible, or

offer higher performance. Therefore, TigerGraph 3.0 has streamlined the product by

removing support for some of these deprecated features, listed below:

See Data Types in GSQL Language Reference

Deprecated Type Alternate Approach

REAL Use FLOAT or DOUBLE

INT_SET Use SET<INT>

INT_LIST Use LIST<INT>

STRING_SET_COMPRESS Use SET<STRING COMPRESS>

STRING_LIST_CONPRESS Use LIST<STRING COMPRESS>

UINT_SET Use SET<INT>

UINT32_UINT32_KV_LIST Use MAP<UINT, UINT>

INT32_INT32_KV_LIST Use MAP<INT, INT>

UINT32_UDT_KV_LIST
Use MAP<UINT, UDT_type>, where

UDT_type is a user-defined tuple type

INT32_UDT_KV_LIST
Use MAP<INT, UDT_type>, where UDT_type

is a user-defined tuple type

Data Types

Syntax for Control Flow Statements

5/13/25, 9:12 PM 3.3

660

See Control Flow Statements in GSQL Language Reference

See Vertex Set Variable Declaration and Assignment

If a vertex type is specified, the vertex type must be within parentheses.

These are documented in several places throughout the GSQL Language Reference:

• CREATE QUERY Statement

• Creating a Loading Job and Running a Loading Job

Deprecated Statement Alternate Statement

FOREACH ... DO ... DONE FOREACH... DO... END

FOREACH (condition) {

body

}

FOREACH condition DO

body

END

IF (condition) {

body1

} else {

body2

}

IF condition THEN

body1

ELSE

body2

END

WHILE (condition) {

body

}

WHILE condition DO

body

END

Deprecated Statement Alternate Statement

MySet Person = ... MySet (Person) = ...

Vertex Set Variable Declaration

Query, Job, and Token Management

5/13/25, 9:12 PM 3.3

661

• RUN SCHEMA_CHANGE JOB, and RUN GLOBAL SCHEMA_CHANGE JOB

• CREATE / SHOW / DROP / REFRESH Token

• offline2online in 'Creating a Loading Job'

See PRINT Statement in 'Output Statements and File Objects'

See Run Built-in Queries in 'GSQL 101'

Deprecated Operation Alternate Operation

CREATE JOB [loading job definition]
CREATE LOADING JOB [loading job

definition]

RUN JOB [for loading and schema change

jobs]

Specify the job type:

RUN LOADING JOB

RUN SCHEMA_CHANGE JOB

RUN GLOBAL SCHEMA_CHANGE JOB

CREATE / SHOW/ REFRESH TOKEN
To create a token, use the REST endpoint

GET /requesttoken

offline2online

The offline loading job mode was

discontinued in v2.0. Do not write loading

jobs using this syntax.

Deprecated Syntax Alternate Syntax

JSON API v1

v2 has been the default JSON format since

TigerGraph 1.1. No alternate JSON version

will be available.

PRINT ... TO_CSV [filepath]
Define a file object, then

PRINT ... TO_CSV [file_object]

Output

Built-in Queries

5/13/25, 9:12 PM 3.3

662

Deprecated Statement Alternate Statement

SELECT count() FROM ...

// count may be out of date

SELECT approx_count(*) FROM ...

// same behavior as count(); may not include

all the latest data updates

SELECT count(*) FROM ...

// exact, but slower than approx_count(*)

5/13/25, 9:12 PM 3.3

663

Knowledge Base and FAQs
If you have a problem with the procedure described in the TigerGraph Platform

Installation Guide, please contact support@tigergraph.com and summarize your

issue in the email subject.

Use the following command:

$ gsql --version

To see the version numbers of individual components of the platform:

$ gadmin version

Each release comes with documentation addressing how to perform an upgrade.

Upgrade instructions are documented in Installation guide. Please contact

support@tigergraph.com for help in your specific situation.

If you correctly installed the system and are now logged in as the TigerGraph

system user, you should be able to enter the GSQL shell by typing the gsql

command from an operating system prompt. If this command has never worked,

Getting Started and Basics

I need help installing the system.

What version of the TigerGraph platform am I running?

How do I upgrade from an earlier version?

I'm not sure how to run the TigerGraph system.

5/13/25, 9:12 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com

664

then probably the installation was not successful. If it works but you are not sure

what to do next, please see the GSQL Demo Examples guide.

If you believe you have installed the system correctly (e.g., you followed the

TigerGraph Platform Installation Guide and received no errors, and the gsql and

gadmin commands are now recognized), then please contact

support@tigergraph.com and summarize your issue in the email subject.

Different servers are needed for different purposes, but the TigerGraph should

automatically turn services on and off as needed. Please be sure that the Dictionary

(dict) server is on when using the TigerGraph system:

To check the status of servers:

$ gadmin status

Yes. For the GSQL shell and language, first enter the shell (type gsql from an

operating system prompt). Then type the help command, e.g.,

HELP

This gives you a short list of commands. Note that "help" itself is one of the listed

commands; there are help options to get more details about BASIC , QUERY

commands. For example,

HELP QUERY

The system does not seem to be running correctly.

Do I need to start the TigerGraph servers (e.g., GPE,
GSE) to run the system?

Does the TigerGraph system have in-tool help?

5/13/25, 9:12 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com

665

lists the command syntax for queries. See the "System Basics" section of the GSQL

Language Reference, Part 1: Defining Graphs and Loading Data. The gadmin

administration tool also has a help menu and a manual page:

$ gadmin help

User-defined identifiers are case-sensitive. For example, the names User and

user are different. The GSQL language keywords (e.g., CREATE, LOAD, VERTEX)

are not case-sensitive, but in our documentation examples, we generally show

keywords in ALL CAPS to make them easy to distinguish.

An identifier consists of letters, digits, and the underscore. Identifiers may not begin

with a digit. Identifiers are case sensitive. Special naming rules apply to

accumulators (see the Query section).

The general rule is that string literals within the GSQL language are enclosed in

double quotation marks. For data that is to be imported (not yet in the GSQL data

store), the GSQL loading language lets the user specify how data fields are delimited

within your input files. The loading language has an option to specify whether single

quotes or double quotes are used to mark strings. For more help on loading, see the

"Loading Data" section of this document or of the GSQL Language Reference, Part

1: Defining Graphs and Loading Data .

Is the GSQL language case sensitive?

What are the rules for naming identifiers?

When are quotation marks required? Single or double
quotes?

Can I run GSQL Shell commands in batch command?

5/13/25, 9:12 PM 3.3

666

Yes. You can create a text file containing a sequence of GSQL commands and then

execute that file. To execute from outside the shell:

To execute the command file from within the shell:

See also the "Language Basics" and "System Basics" sections of the GSQL

Language Reference, Part 1: Defining Graphs and Loading Data document.

Yes. Normally, an end-of-line character triggers execution of a line. You can use the

BEGIN and END keywords to mark off a multi-line block of text that should not be

executed until END is encountered.

This is an example of a loading statement split into multiple lines using BEGIN and

END:

When a license limit has been reached, your system will be placed in a read-only

mode - incapable of loading anymore data. You will still be able to delete data and

view the graph.

$ gsql filename

@filename

BEGIN
CREATE ONLINE_POST JOB load1 FOR GRAPH LaborForce {
 LOAD
 TO VERTEX user VALUES ($0, _, _, _),
 TO VERTEX occupation VALUES ($0, _),
 TO EDGE user_occupation VALUES ($0, $1);
}
END

I have a long command line. Can I split it into multiple
lines?

What is Limited Capacity Mode?

5/13/25, 9:12 PM 3.3

667

A TigerGraph graph schema consists of (A) one or more vertex types, (B) one or

more edge types, and (C) a graph type. Each edge type is defined to be either

DIRECTED or UNDIRECTED. The graph type is simply the list of vertex types and

edges types which may exist in the graph. For more: See the section "Defining a

Graph Schema" in the GSQL Language Reference, Part 1: Defining Graphs and

Loading Data . Below is an example of a graph schema containing two vertex types,

one edge type, and one graph type:

Alternately, a generic CREATE GRAPH statement can be used:

Property graphs can model data fields ("properties") as either a property of a vertex

or edge or as a vertex linked to other vertices. If your property relates to an edge, it

should be an attribute of that edge (for example, a Date attribute of a

CustomerBoughtProduct edge). If your property relates to a vertex, you have a

choice. The optimal choice depends on how you will typically use this attribute in

your application. If you will frequently search or filter based on that data, we

suggest your treat it as a separate vertex type. Otherwise, we recommend modeling

this data as an attribute of the principal vertex.

CREATE VERTEX user (PRIMARY_ID user_id UINT, age UINT, gender STRING, post
CREATE VERTEX occupation (PRIMARY_ID occ_id STRING, occ_name STRING)
CREATE UNDIRECTED EDGE user_occupation (FROM user, TO occupation)
CREATE GRAPH LaborForce (user, occupation, user_occupation)

CREATE GRAPH LaborForce (*)

Defining a Graph Schema

What are the components of a graph schema?

Should I model this data field as an attribute or as a
vertex type?

5/13/25, 9:12 PM 3.3

668

Each attribute of a vertex or edge has an assigned data type. v0.8 of the TigerGraph

adds support for many more attribute types.: DATETIME, UDT, and container types

LIST, SET, and MAP. The following is an abbreviated list. For a complete list and

description, see the section "Attribute Data Types" of the GSQL Language

Reference, Part 1: Defining Graphs and Loading Data .

Discontinued Feature

The UINT_SET and STRING_SET COMPRESS types have been discontinued since there
is now equivalent functionality from the more general SET and SET types.

The TigerGraph MultiGraph service, an add-on option, supports logical partitions of

one unified global graph. Each partition is treated as an independent local graph,

with its own set of user privileges. Local graphs can overlap, to create a shared data

space.

Primitive Types Advanced Types Complex Types

INT

UINT

FLOAT

DOUBLE

BOOL

STRING

STRING COMPRESS

DATETIME

User-Defined Tuple (UDT)

LIST

SET

MAP

What data types do you support for vertex and edge
attributes?

Can I define and load multiple graph schemas?

How many vertex and edge types can I include in a
graph?

5/13/25, 9:12 PM 3.3

669

For performance reasons, we recommend to keep the number of different vertex

and edge types under 5,000. The upper limit for the number of different vertex and

edge types is approximately 10,000, depending on the complexity of the types.

From within the GSQL Shell, the ls command lists the catalog : the vertex type,

edge type, and graph type definitions, job definitions, query definitions, and some

system configuration settings. If you have not set your active graph, then ls will

show only item which have global scope. To see graph-specific items (including

loading jobs and queries), you must define an active graph.

The GSQL language includes ADD, ALTER, and DROP commands. See the section

"Update Your Data" in the GSQL Demo Examples or the section "Modifying a Graph

Schema" in the GSQL Language Reference, Part 1: Defining Graphs and Loading

Data for details. Note that altering the graph schema will invalidate your old data

loading and query jobs. You should create and install new loading and query jobs.

To delete your entire catalog, containing not just your vertex, edge, and graph type

definitions, but also your loading job and query definitions, use the following

command:

GSQL> DROP ALL

To delete just your graph schema, use the DROP GRAPH command:

GSQL> DROP GRAPH g1

UPDATE Deleting the graph schema also erases the contents of the graph store. To

erase the graph store without deleting the graph schema, use the following

command:

GSQL> CLEAR GRAPH STORE

How do I check the definition of the current schema?

How do I modify my graph schema?

How do I delete my entire graph schema?

5/13/25, 9:12 PM 3.3

670

See also " How do I erase all data? "

To load structured data stored in files, you write a loading job and then execute it.

See GSQL 101 and the GSQL Demo Examples for introductory examples. Loading

jobs can include instructions for parsing and processing the data, in order to

perform many ETL tasks. See Creating a Loading Job for the complete

specifications. To load streaming data or data coming from other data stores, see

Data Loader User Guides.

In v2.0, the TigerGraph introduced a more powerful and comprehensive syntax

which has several advantages:

• The TigerGraph platform can handle concurrent loading jobs, which can greatly

increase throughput.

• The data file locations can be specified at compile time or at run time. Run-time

settings override compile-time settings.

• A loading job definition can include several input files. When running the job, the

user can choose to run only part of the job by specifying only some of the input

files.

• Loading jobs can be monitored, aborted, and restarted.

The GSQL data loader reads text files organized in tabular or JSON format . Each

field may represent numeric, boolean, string, or binary data. Each data field may

contain a single value or a list of values (see How do I split a data field containing a

list of values into separate vertices and edges?).

Additional data formats are continually being added. See Data Loader User Guides

and the TigerGraph Ecosystem Github Repository's etl folder

Loading Data

How do I load data?

What types of data can be read?

5/13/25, 9:12 PM 3.3

671

https://github.com/tigergraph/ecosys/tree/master/tools/etl

Each tabular input data file should be structured as a table, in which each line

represents a row, and each row is a sequence of data fields, or columns. A data field

can contain string or numeric data. To represent boolean values, 0 or 1 is expected.

A header line may be included, to associate a name with each column. A designated

character separates columns. For example, if the designated separator character is

the comma, this format is commonly called CSV, for Comma-Separated Values.

Below is an example of a CSV file with a header. The uid column is int type,

name is string type, avg_score is float type, and is_member is boolean type. See

simple examples in Real-Life Data Loading and Querying Examples and a complete

specification in the section "Creating a Loading Job" in GSQL Language Reference,

Part 1: Defining Graphs and Loading Data .

The loader does not filter out extra white space (spaces or tabs). The user should
filter out extra white space from the files before loading into the TigerGraph system.

The data field (or token) separator can be any single ASCII character, including one

of the non-printing characters. The separator is specified with the SEPARATOR

phrase in the USING clause. For example, to specify the semicolon as the

separator:

USING SEPARATOR=";"

To specify the tab character, use \t . To specify any ASCII character, use \nn

where nn is the character's ASCII code, in decimal. For example, to specify ASCII

uid,name,avg_score,is_member
100,"Lee, Tom",48.5,1
101,"Wu, Ming",33.9,0
102,"Gables, Anne", 72.2,1

What is the format of a tabular input data file?

How should data fields be separated?

5/13/25, 9:12 PM 3.3

https://github.com/tigergraph/ecosys/tree/master/tools/etl
https://github.com/tigergraph/ecosys/tree/master/tools/etl

672

30, the Record Separator (RS):

USING SEPARATOR="\30"

TigerGraph does not require fields to be enclosed in quotation marks, but is it

recommended for string fields. If the QUOTE option is enabled, and if the loader

finds a pair of quotation marks, then the loader treats the text within the quotation

marks as one value, regardless of any separation characters that may occur in the

value. The user must specify whether strings are marked by single quotation marks

or double quotation marks.

USING QUOTE="single"

or

USING QUOTE="double"

For example, if SEPARATOR="," and QUOTE="double" are set, then when the

following data are read,

"Lee, Tom" will be read as a single field. The comma between Lee and Tom will not

separate the field.

No. You must specify either QUOTE="single" or QUOTE="double" .

uid,name,avg_score,is_member
100,"Lee, Tom",48.5,1
101,"Wu, Ming",33.9,0
102,"Gables, Anne,"72.2,1

Should fields be enclosed in quotation marks?

Does the GSQL Loader automatically interpret quotation
marks as enclosing strings?

What are the parameters (in the USING clause) for a
loading job?

5/13/25, 9:12 PM 3.3

673

The following three parameters should be considered for every loading job from a

tabular input file:

The next two parameters, FILENAME and EOL are required if the job is an

ONLINE_POST job:

Parameter Meaning of value Allowed values Comments

SEPARATOR

specifies the

special character

that separates

tokens (columns) in

the data file

any single ASCII

character

Required.

"\t" for tab

"\nn" for ASCII

decimal code nn

HEADER

whether the data

file's first line is a

header line which

assigns names to

the columns.

In offline loading,

the Loader reads

the header line to

obtain mnemonic

names for the

columns. In online

loading, the Loader

just skips the

header line.

"true", "false" Default = "false"

QUOTE

specifies whether

strings are enclosed

in

single quotation

marks: 'a string'
or double quotation

marks: "a string"

"single",
"double"

Optional; no default

value.

Parameter Meaning of value Allowed values Comments

FILENAME
name of input data

file

any valid path to a

data file

Required for online

loading.

Not allowed for

offloading loading

5/13/25, 9:12 PM 3.3

674

All of the these five parameters are combined into one USING clause with a list of

parameter/value pairs. The parameters may appear in any order.

The location of the USING clause depends on whether the job is an offline loading

job or an online loading job. For offline loading, the USING clause appears at the end

of the LOAD statement. For example:

For online loading, the USING clause appears at the end of the RUN statement

You can define a header line (a sequence of column names) within a loading job

using a DEFINE HEADER statement, such as the following:

This statement must appear before the LOAD statement that wishes to use the

header definition. Then, the LOAD statement must set the USER_DEFINED_HEADER

parameter in the USING clause. A brief example is shown below:

EOL
the end-of-line

character
any ASCII sequence

Default = "\n"
(system-defined

newline character or

character

sequence)

USING parameter1="value1", parameter2="value2",... , parameterN="valueN"

CREATE LOADING JOB load1 FOR GRAPH LaborForce{
 LOAD "jobs.csv" TO VERTEX occupation VALUES ($0, $1) USING HEADER="true"
}

CREATE ONLINE_POST JOB load2 FOR GRAPH LaborForce{
 LOAD TO VERTEX occupation VALUES ($0, $1);
}
RUN JOB load2 USING FILENAME="./jobs.csv", HEADER="true", SEPARATOR="|", Q

DEFINE HEADER head1 = "jobId", "jobName";

My data file doesn't have a header but I still want to
name the columns.

5/13/25, 9:12 PM 3.3

675

Input data fields can always be referenced by position. They can also be referenced

by name, if a header has been defined.

•
◦ Position-based reference: The leftmost field is $0 , the next one is $1 , and

so on.

◦ Name-based reference: $"name" , where name is one of the header

column names.

For example, if the header is

abc,def,ghi

then the third field can be referred to as either $2 or $"ghi" .

First, to clarify the task, consider a graph schema with two vertex types, Book and

Genre, and one edge type, book_genre:

CREATE ONLINE_POST JOB load2 FOR GRAPH LaborForce{
 DEFINE HEADER head1 = "jobId", "jobName";
 LOAD TO VERTEX occupation VALUES ($"jobId", $"jobName") USING USER_DEFIN
}

create_book_schema.gsql

CREATE VERTEX Book (PRIMARY_ID bookcode STRING, title STRING)
CREATE VERTEX Genre (PRIMARY_ID genre_id STRING, genre_name STRING)
CREATE UNDIRECTED EDGE book_genre (FROM Book, TO Genre)
CREATE GRAPH book_rating (Book, Genre, book_genre)

How do I identify and refer to the input data fields?

How do I split (flatten) a data field containing a list of
values into separate vertices and edges?

5/13/25, 9:12 PM 3.3

676

Further, each row of the input data file contains three fields: bookcode , title , and

genres , where genres is a list of strings associated with the book. For example, the

first few lines of the data file could be the following:

The data line for bookcode 101 should generate one Book instance ("Harry Potter

and the Philosopher's Stone"), four Genre instances ("fiction", "adventure",

"fantasy", "young adult"), and four Book_Genre instances, connecting the Book

instance to each of the Genre instances. This process of creating multiple instances

from a list field (e.g., the genres field) is called flattening .

To flatten the data, we use a two-step load. The first LOAD statement uses the

flatten() function to split the multi-value field and stores the results in a

TEMP_TABLE. The second LOAD statement takes the TEMP_TABLE contents and

writes them to the final edge type.

The flatten function has three arguments: (field_to_split, separator,

number_of_parts_in_one_field). In this example, we want to split $2 (genres), the

separator is the comma, and each field has only 1 part. So, the flatten function is

book.dat

bookcode|title|genres
101|"Harry Potter and the Philosopher's Stone"|fiction,fantasy,young a
102|"The Three-Body Problem"|fiction,science fiction,Chinese

load_books.gsql

CREATE ONLINE_POST JOB load_books FOR GRAPH book_rating {
 LOAD
 TO VERTEX Book VALUES ($0, $1),
 TO TEMP_TABLE t1(bookcode,genre) VALUES ($0, flatten($2,",",1));

 LOAD TEMP_TABLE t1
 TO VERTEX Genre VALUES($"genre", $"genre"),
 TO EDGE book_genre VALUES($"bookcode", $"genre");
}
RUN JOB load_books USING FILENAME="book.dat", SEPARATOR="|", HEADER="t

5/13/25, 9:12 PM 3.3

677

called with the following arguments: flatten($2, ",",1) . Using the example of

data file , TEMP_TABLE t1 will then contain the following:

The second LOAD statement uses the TEMP_TABLE t1 to generates Genre vertex

instances and book_genre_instances. While there are 7 rows shown in the sample

TEMP_TABLE, only 6 Genre vertices will be generated, because there are only 6

unique values; "Fiction" appears twice. Seven book_genre edges will be

generated, one for each row in the TEMP_TABLE.

There is another version of the flatten function which has four arguments and which

supports a two-level grouping. That is, the field contains a list of groups, each

group composed of N subfields. The arguments are (field_to_split, group_separator,

sub_field_separator, number_of_parts_in_one_group). For example, suppose the data

line were organized this way instead:

Then the following loading statements would be appropriate:

bookcode genre

101 fiction

101 adventure

101 fantasy

101 young adult

102 fiction

102 science fiction

102 Chinese

book2.dat

bookcode|title|genres
101|"Harry Potter and the Philosopher's Stone"|FIC:fiction,ADV:adventu
102|"The Three-Body Problem"|FIC:fiction,SF:science fiction,CHN:Chines

load_books2.gsql

5/13/25, 9:12 PM 3.3

678

Yes. Two approaches are to use our Kafka Loader or to periodically read from one

or more files. A loading job lets you define a general loading process without naming

the data source. Every time you call an online loading job, you name the source file.

It can be a different file each time, or it can be the same file, if the contents of the

file are changing over time. Also, if it happens that the loader re-reads a data line

that it has encountered before, it will just reload the data (except for container

attributes, e.g., a LIST attribute, using a reduce() loading function. In that case, there

is an accumulative effect for re-reading a data line).

The GSQL Loading includes some built-in token functions (a token is one column or

field of a data input line.) A user can also define custom token functions. Please see

the section "Built-In Loader Token Functions" in the GSQL Language Reference,

Part 1: Defining Graphs and Loading Data .

CREATE ONLINE_POST JOB load_books2 FOR GRAPH book_rating {
 LOAD
 TO VERTEX Book VALUES ($0, $1),
 TO TEMP_TABLE t1(bookcode,genre_id,genre_name) VALUES ($0, flatt

 LOAD TEMP_TABLE t1
 TO VERTEX Genre VALUES($"genre_id", $"genre_name"),
 TO EDGE book_genre VALUES($"bookcode", $"genre_id");
}
RUN JOB load_books2 USING FILENAME="book2.dat", SEPARATOR="|", EOL="\n

Can the TigerGraph system load data from a streaming
source?

I want to compute an attribute value. What built-in
functions are available?

Do I need a one-to-one correspondence between input
files and vertex types and edge types?

5/13/25, 9:12 PM 3.3

679

No. One of the advantages of the TigerGraph loading system is the flexible

relationship between input files and resulting vertex and edge instances. In general,

there is a many-to-many relationship: one input file can generate many vertex and

edge types.

From the LOAD statement perspective for a online loading job:

• Each LOAD statement refers to one input file.

• Each LOAD statement can have one or more resulting vertex types and one or

more resulting edge types.

• Hence, one LOAD statement can potentially describe the one-to-many mapping

from one input file to many resulting vertex and edge types.

• It is not necessary for every input line to always generate the same set of vertex

types and edge types. The WHERE clause in each TO VERTEX | TO EDGE clause

can be used to selectively choose and filter which input lines generate which

resulting types.

This not an error. There can only be one instance of a certain edge type between

any given pair of vertices, so the most recently loaded edge data will be the edge

that you will see in the graph.

LOAD
 TO VERTEX vertex_type VALUES (attr_expr...) [WHERE conditions],
 ...,
 TO VERTEX vertex_typeN VALUES (attr_expr...) [WHERE conditions],
 TO EDGE edge_type VALUES (attr_expr...) [WHERE conditions] [OPTION (opt
 ...,
 TO EDGE edge_typeN VALUES (attr_expr...) [WHERE conditions] [OPTION (opt
 [Parsing_Conditions];

My input data includes multiple edge instances between
a pair of vertices. Why is there only one in the graph?

Updating and Modifying Data

5/13/25, 9:12 PM 3.3

680

If there is already data in the graph store and you wish to insert more data, you have

a few options. First, if you have bulk data stored in a file (local disk, remote or

distributed storage), you can us e Online Loading .

Second, if you have a few specific insertions, you can use the Upsert da ta

command in the RESTPP API User Guide . For Upsert, the data must be formatted in

JSON format.

Third, you can write a query containing INSERT statements. The syntax is similar to

SQL INSERT. (See GSQL Language Reference Part 2 - Querying .) The advantage

of query-based INSERT is that the details (id values and attribute values) can be

determined at run time and even can be based on an exploration and analysis of the

existing graph. The disadvantage is that the query-insert job must be compiled first

and data values must either be hardcoded or supposed as input parameters.

You can modify the schema in several ways:

• Add new vertex or edge types

• Drop existing vertex or edge types

• Add or drop attributes from an existing vertex or edge type

Any schema change can invalidate existing loading jobs and queries.

See the section "Modifying a Graph Schema" in GSQL Language Reference Part 1 -

Defining Graphs and Loading Data .

How can I insert / load more data?

How can I modify the graph schema?

How do I modify data?

5/13/25, 9:12 PM 3.3

681

To make a known modification of a known vertex or edge:

Option 1) Make a RESTPP endpoint request, to the POST /graph or DELETE /graph

endpoint. See the RESTPP API User Guide .

Option 2) The Loading language includes an upsert command. The UPSERT

statement performs a combined modify-or-add operation, depending on whether

the indicated vertex or edge already exists. Examples of UPSERT are described in

the GSQL Demo Examples document. The GSQL Language Reference Part 1 -

Defining Graphs and Loading Data provides a full specification .

Option 3) The query language now includes an UPDATE statement which enables

sophisticated selection of which vertices and edges to update and how to update

them. Likewise, there is an INSERT statement in the query language. See the GSQL

Language Reference Part 2 - Querying .

You can write a query which selects vertices or edges to be deleted. See the

DELETE subsections of the "Data Modification Statements" section in GSQL

Language Reference Part 2 - Querying .

If you wish to completely clear all the data in the graph store, use the CLEAR GRAPH

STORE -HARD command. Be very careful using this command; deleted data cannot

be restored (except from a Backup). Note that clearing the data does not erase the

catalog definitions of vertex, edge, and graph types. See also " How do I delete my

entire graph schema? "

-HARD must be in all capital letters.

How do I selectively delete data?

How do I erase all the data?

Querying

5/13/25, 9:12 PM 3.3

682

Yes. The GSQL Query Language is a full-featured graph query-and-data-

computation language. In addition, there is a small lightweight set of built-in query

commands that can inspect the set of stored vertices and edges, but these built-in

commands do not support graph traversal (moving from one vertex to another via

edges). We refer to this as the Standard Data Manipulation API or the Built-in Query

Language (described in RESTPP API User Guide and the GSQL Demo Examples)

For a first-time user: See the documents GSQL Demo Examples and then GSQL

Language Reference Part 2 - Querying .

For users with some experience, a reference card is now available: GSQL Query

Language Reference Card.

The GSQL Query Language supports powerful graph querying, but it is also

designed to perform powerful computations. GSQL is Turing-complete, so it can be

considered a programming language. It can be used for simple SQL-like queries, but

it also features control flow (IF, WHILE, FOREACH), procedural calls, local and global

variables, complex data types, and accumulators to enable much more

sophisticated use.

Three new types were introduced in v0.8: GroupByAccum, BitwiseAndAccum, and

BitwiseOrAccum. Version 0.8.1. added ArrayAccum. This is a quick summary. For a

more detailed explanation, see the "Accumulator Types" section of GSQL Language

Reference Part 2 - Querying .

Is there more than one TigerGraph query language?

What is the basic syntax for the TigerGraph query
language?

Is GSQL a query language or a programming language?

What types of accumulators are available?

5/13/25, 9:12 PM 3.3

683

In the following table, baseType means any of the following: INT, UINT, FLOAT,

DOUBLE, STRING, BOOL, VERTEX, EDGE, JSONARRAY, JSONOBJECT, DATETIME

See the section "Accumulators" in the GSQL Language Reference Part 2 - Querying

document.

Accumulators data types

SumAccum INT, UINT, FLOAT, DOUBLE, STRING

MaxAccum, MinAccum INT, UINT, FLOAT, DOUBLE, VERTEX

AvgAccum
INT, UINT, FLOAT, DOUBLE (output is

DOUBLE)

AndAccum, OrAccum BOOL

BitwiseAndAccum, BitwiseOrAccum INT (acting as a sequence of bits)

ListAccum, SetAccum, BagAccum baseType, TUPLE, STRING COMPRESS

ArrayAccum
accumulator, other than MapAccum,

HeapAccum, or GroupByAccum

MapAccum

key: baseType, TUPLE, STRING COMPRESS

value: baseType, TUPLE, STRING

COMPRESS, ListAccum, SetAccum,

BagAccum, MapAccum, HeapAccum

HeapAccum< tuple_type >(heapSize,

sortKey [, sortKey_i]*)
TUPLE

GroupByAccum

key: baseType, TUPLE, STRING COMPRESS

accumulator: ListAccum, SetAccum,

BagAccum, MapAccum

How do I use accumulators?

How do I reference the ID fields of a vertex or edge in a
built-in query?

5/13/25, 9:12 PM 3.3

684

Vertex and edge IDs (i.e., the unique identifier for each vertex or edge) are treated

differently than user-defined attributes. Special keywords must be used to refer to

the PRIMARY_ID, FROM, or TO id fields.

Vertices :

In a CREATE VERTEX statement, the PRIMARY_ID is required and is always listed

first. User-defined attributes are optional and come after the required ID fields.

In a built-in query, if you wish to select vertices by specifying an attribute value,

you use the attribute name (e.g., title):

In contrast, if you wish to reference vertices by the id value, the lowercase keyword

primary_id must be used. Note that that query does not use the id name pid .

Edges :

In a CREATE EDGE statement, the FROM and TO vertex identifiers are required and

are always listed first. The FROM and TO values should match the PRIMARY_ID

values of a source vertex and a target vertex. In the example below, rating and

date_time are user-defined optional attributes.

In a query, if you wish to select edges by specifying their FROM or TO vertex

values, you must use the lowercase keywords from_id or to_id .

CREATE VERTEX Book (PRIMARY_ID bookcode STRING, title STRING)
CREATE VERTEX Genre (PRIMARY_ID genre_id STRING, genre_name STRING)
CREATE UNDIRECTED EDGE book_genre (FROM Book, TO Genre)
CREATE GRAPH book_rating (Book, Genre, book_genre)

SELECT * FROM Book WHERE title=="The Three-Body Problem"

SELECT * FROM Book WHERE primary_id=="101"

CREATE UNDIRECTED EDGE book_genre (FROM Book, TO Genre, rating uint, date_

5/13/25, 9:12 PM 3.3

685

The data are in JSON format. See the section "Output Statements" in the GSQL

Language Reference Part 2 - Querying .

Yes. The maximum output size for a query is 2GB. If the result of a query would be

larger than 2GB, the system may return no data. No error message is returned.

Also, for built-in queries (using the Standard Data Manipulation REST API), queries

return at most 10240 vertices or edges.

INSTALL QUERY query_name is required for each GSQL query, after its initial

CREATE QUERY query_name statement and before using RUN QUERY query_name .

After INSTALL query has been executed, RUN QUERY can now be used.

Anytime after INSTALL QUERY, another statement, INSTALL QUERY -OPTIMIZE can

be executed once. This operation optimizes all previously installed queries,

reducing their run times by about 20%.

Optimize a query if query run time is more important to you than query installation

time.

The initial INSTALL QUERY operation runs quickly. This is good for the development

phase.

SELECT * FROM Book-(book_genre)->Genre WHERE from_id=="101"

What is the format of data returned by a query?

Is there an output size limit for a data query?

How and when do I use INSTALL QUERY and INSTALL
QUERY -OPTIMIZE?

Should I run INSTALL QUERY -OPTIMIZE?

5/13/25, 9:12 PM 3.3

686

The optional additional operation INSTALL QUERY -OPTIMIZE will take more time,

but it will speed up query run time. This makes sense for production systems.

Legal:

Illegal:

In short, yes. They will not be executed at the same time, but the installations will be

queued by the order in which they were received.

Yes. A ListAccum is like an array, a 1-dimensional array. If you nest ListAccums as

the elements within an outer ListAccum, you have effectively made a 2-dimensional

array. Please read Section "Nested Accumulators" in the GSQL Language

Reference Part 2 - Querying for more details. Here is an example:

CREATE QUERY query1...
INSTALL QUERY query1
RUN QUERY query1(...)
...
INSTALL QUERY -OPTIMIZE # (optional) optimizes run time performance for
RUN QUERY query1(...) # runs faster than before

INSTALL QUERY -OPTIMIZE query_name

Can multiple users install queries at the same time?

Can I make a 2-dimensional (or multi-dimensional)
array?

5/13/25, 9:12 PM 3.3

687

Yes, please read Section "Nested Accumulators" in the GSQL Language Reference

Part 2 - Querying for more details. There are seven types of container

accumulators: ListAccum, SetAccum, BagAccum, MapAccum, ArrayAccum

HeapAccum, and GroupByAccum. Here the allowed combinations:

• ListAccum can contain ListAccum.

• MapAccum and GroupByAccum can contain any container accumulator except

HeapAccum.

• ArrayAccum is always nested.

CREATE QUERY nestedAccumEx() FOR GRAPH anyGraph {
 ListAccum<ListAccum<INT>> @@_2d_list;
 ListAccum<ListAccum<ListAccum<INT>>> @@_3d_list;
 ListAccum<INT> @@_1d_list;
 SumAccum <INT> @@sum = 4;

 @@_1d_list += 1;
 @@_1d_list += 2;
 // add 1D-list to 2D-list as element
 @@_2d_list += @@_1d_list;

 // add 1D-enum-list to 2D-list as element
 @@_2d_list += [@@sum, 5, 6];
 // combine 2D-enum-list and 2d-list
 @@_2d_list += [[7, 8, 9], [10, 11], [12]];

 // add an empty 1D-list
 @@_1d_list.clear();
 @@_2d_list += @@_1d_list;

 // combine two 2D-list
 @@_2d_list += @@_2d_list;

 PRINT @@_2d_list;

 // test 3D-list
 @@_3d_list += @@_2d_list;
 @@_3d_list += [[7, 8, 9], [10, 11], [12]];
 PRINT @@_3d_list;
}

Can I make nested container Accumulators?

5/13/25, 9:12 PM 3.3

688

Here is an example:

To write a loading job, you must know the format of the input data files, so that you

can describe to GSQL how to parse each data line and convert it into vertex and

edge attributes. To validate a loading job, that is, to check that the actual input data

meet your expectations, and that they produce the expected vertices and edges,

you can use two features of the RUN JOB command: the -DRYRUN option and

loading a specified range of data lines.

The full syntax for an (offline) loading job is the following:

RUN JOB [-DRYRUN] [-n [first_line_num ,] last_line_num] job_name

The -DRYRUN option will read input files and process data as instructed by the job,

but it does not store data in the graph store.

The -n option limits the loading job to processing only a range of lines of each

input data file. The selected data will be stored in the graph store, so the user can

CREATE QUERY nestedMap() FOR GRAPH anyGraph
{
 MapAccum<String, MapAccum<int, String>> @@testMap;

 @@testMap += ("m1" -> (0 -> "value1"));
 @@testMap += ("m1" -> (1 -> "value2"));
 @@testMap += ("m2" -> (2 -> "value3"));

 IF @@testMap.containsKey("m1") THEN
 PRINT @@testMap.get("m1");
 END;
 //for map, we can get it's value, and then, get the value's key.
 PRINT @@testMap.get("m1").get(0);
}

Testing and Debugging

How can I validate a loading job?

5/13/25, 9:12 PM 3.3

689

check the results. The -n flag accepts one or two arguments. For example,

-n 50 means read lines 1 to 50.

-n 10,50 means read lines 10 to 50.

The special symbol $ is interpreted as "last line", so -n 10,$ means reads from

line 10 to the end.

The following command lists the log locations of the log files:

If the platform has been installed with default file locations, so that

<TigerGraph_root_dir> = /home/tigergraph/tigergraph, then the output would be the

following:

As of v2.4, the GSQL log files have been moved in order to keep all logs in a standard
directory.

GPE: general system performance logs.

GSE: Graph services logs.

RESTPP: REST API call logs.

GSQL: General GSQL logs.

gadmin log

GPE : /home/tigergraph/tigergraph/logs/gpe/gpe1.out
GPE : /home/tigergraph/tigergraph/logs/GPE_1_1/log.INFO
GSE : /home/tigergraph/tigergraph/logs/gse/gse1.out
GSE : /home/tigergraph/tigergraph/logs/GSE_1_1/log.INFO
RESTPP : /home/tigergraph/tigergraph/logs/restpp/restpp1.out
RESTPP : /home/tigergraph/tigergraph/logs/RESTPP_1_1/log.INFO
RESTPP : /home/tigergraph/tigergraph/logs/RESTPP-LOADER_1_1/log.INFO
GSQL : /home/tigergraph/tigergraph/logs/gsql_server_log/GSQL_LOG

Where are the logs?

Where are the log files of loading runs?

5/13/25, 9:12 PM 3.3

690

Each loading run creates a log file, stored in the folder

<TigerGraph_rootdir>/app/<VERSION_NUM>/dev/gdk/gsql/output . The filename

load_output.log is a link to the most recent log file. This file contains summary

statistics on the number of lines read, the vertices created, and various types of

errors encountered. Or, you can type a shell command to find log paths " gadmin

log ".

The log files record detailed internal operations and state information in response to

user actions. They provide vital information for diagnosing and debugging your

system. All log files can be found in the /home/tigergraph/tigergraph/logs directory.

Through typing the command gadmin log , you will be given all the file paths of the

most commonly used log files.

GPE Logs - Graph Processing Engine Logs

GSE Logs - Graph Storage Engine Logs

GSQL Logs - System & Query Logs

RESTPP Logs - API call Logs

NGINX Logs - HTTP Request Logs

VIS Logs - GraphStudio Logs

One possible explanation is that you have reached a capacity limit controlled by

your product license. To check if this is the case, run the command gadmin status. If

the limit has been reached, there will be a warning message, such as the following:

In Limited Capacity mode, additional data may not be inserted. Data may be queried

and deleted.

[Warning] License limit exceeded. The system is running in limited capacit

What are in the log files?

I canʼt seem to load any more data. What s̓ the matter?

5/13/25, 9:12 PM 3.3

691

Troubleshooting Guide

This troubleshooting guide is only up to date for v2.6 and below.
Additional guidance for v3.0+ is in development.

The Troubleshooting Guide teaches you how to monitor the status of your

TigerGraph system, and when needed, find the log files in order to get a better

understanding of why certain errors are occurring. This section covers log file

debugging for data loading and querying.

Before any deeper investigation, always run these general system checks :

The following command reveals the location of the log files :

$ gadmin status (Make sure all TigerGraph services are UP.)

$ df -lh (Make sure all servers are getting enough disk spac

$ free -g (Make sure all servers have enough memory.)

$ tsar (Make sure there is no irregular memory usage on th

$ dmesg -T | tail (Make sure there are no Out of Memory, or any other

$ grun all "date" (Make sure the time across all nodes are synchroniz
 with time difference under 2 seconds.)

gadmin log

Introduction

General

Location of Log Files

5/13/25, 9:12 PM 3.3

692

You will be presented with a list of log files. The left side of the resulting file paths is

the component for which the respective log file is logging information. The majority

of the time, these files will contain what you are looking for. You may notice that

there are multiple files for each TigerGraph component.

The .out file extension is for errors.
The .INFO file extension is for normal behaviors.

In order to diagnose an issue for a given component, you'll want to check the .out

log file extension for that component.

Other log files that are not listed by the gadmin log command are those for

Zookeeper and Kafka, which can be found here:

TigerGraph will experience a variety of issues if clocks across different nodes in a

cluster are out of sync. If running grun all "date" shows that the clocks are out

of sync, it is highly recommended that you install NTP implementations such as

chrony or timesyncd to keep them in sync.

zookeeper : ~/tigergraph/zk/zookeeper.out.*
kafka : ~/tigergraph/kafka/kafka.out

Synchronize time across nodes in a cluster

5/13/25, 9:12 PM 3.3

https://chrony.tuxfamily.org/index.html
https://chrony.tuxfamily.org/index.html
http://manpages.ubuntu.com/manpages/xenial/man8/systemd-timesyncd.service.8.html
http://manpages.ubuntu.com/manpages/xenial/man8/systemd-timesyncd.service.8.html

693

The installation will quit if there are any missing dependency packages, and output a

message. Please run bash install_tools.sh to install all missing packages. You

will need an internet connection to install the missing dependencies.

Using the -x flag during installation will show you the detailed shell commands being

run during installation.

bash -x install.sh

• The /home directory requires at least 200MB of space, or the installation will fail

with an out of disk message. This is temporary only during installation and will

be moved to the root directory once installation is complete.

• The /tmp directory requires at least 1GB of space, or the installation will fail

with an out of disk message

• The directory in which you choose to install TigerGraph requires at least 20GB of

space, or the installation will report the error and exit.

If your firewall blocks all ports not defined for use, we recommend opening up

internal ports 1000-50000.

If you are using a cloud instance, you will need to configure the firewall rules

through the respective consoles.

e.g. Amazon AWS or Microsoft Azure

Installation Error Debugging

Missing Dependencies

Pinpoint The Failed Step

Disk Space Errors

Firewall Errors

5/13/25, 9:12 PM 3.3

694

If you are managing a local machine, you can manage your open ports using the

iptables command. Please refer to the example below to help with your firewall

configuration.

To better help you understand the flow of a query within the TigerGraph system,

we've provided the diagram below with arrows showing the direction of information

flow. We'll walk through the execution of a typical query to show you how to

observe the information flow as recorded in the log files.

iptables help page
$ sudo iptables -h

This will list your firewall rules
$ sudo iptables -L

Allow incoming SSH connections to port 22 from the 192.168.0.0 subnet
$ sudo iptables -A INPUT -p tcp --dport 22 -s 192.168.0.0/24 -j ACCEPT
$ sudo iptables -A INPUT -p tcp --dport 22 -s 127.0.0.0/8 -j ACCEPT
$ sudo iptables -A INPUT -p tcp --dport 22 -j DROP

Query Debugging

Checking the Logs - Flow of a query in the system

5/13/25, 9:12 PM 3.3

695

From calling a query to returning the result, here is how the information flows:

1. Nginx receives the request.

You can click on the image below to expand it.

2. Nginx sends the request to Restpp.

3. Restpp sends an ID translation task to GSE and a query request to GPE.

4. GSE sends the translated ID to GPE, and the GPE starts to process the query.

grep <QUERY_NAME> /home/tigergraph/tigergraph/logs/nginx/ngingx_1.access.l

grep <QUERY_NAME> /home/tigergraph/tigergraph/logs/RESTPP_1_1/log.INFO

5/13/25, 9:12 PM 3.3

696

5. GPE sends the query result to Restpp, and sends a translation task to GSE, which

then sends the translation result to Restpp.

6. Restpp sends the result back to Nginx.

7. Nginx sends the response.

grep <REQUEST_ID> /home/tigergraph/tigergraph/logs/GPE_1_1/log.INFO

grep <REQUEST_ID> /home/tigergraph/tigergraph/logs/GSE_1_1/log.INFO

grep <REQUEST_ID> /home/tigergraph/tigergraph/logs/RESTPP_1_1/log.INFO

grep <QUERY_NAME> /home/tigergraph/tigergraph/logs/nginx/nginx_1.access.lo

5/13/25, 9:12 PM 3.3

697

Multiple situations can lead to slower than expected query performance:

• Insufficient Memory

When a query begins to use too much memory, the engine will start to put data

onto the disk, and memory swapping will also kick in. Use the Linux command:

free -g to check available memory and swap status, or you can also monitor

the memory usage of specific queries through GPE logs. To avoid running into

insufficient memory problems, optimize the data structure used within the query

or increase the physical memory size on the machine.

• GSQL Logic

Usually, a single server machine can process up to 20 million edges per second.

If the actual number of vertices or edges is much much lower, most of the time

it can be due to inefficient query logic. That is, the query logic is now following

the natural execution of GSQL. You will need to optimize your query to tune the

performance.

• Disk IO

When the query writes the result to the local disk, the disk IO may be the

bottleneck for the query's performance. Disk performance can be checked with

Check recently executed query:
$ grep UDF:: /home/tigergraph/tigergraph/logs/GPE_1_1/log.INFO | tail -n 5

Get the number of queries executed recently:
$ grep UDF::End /home/tigergraph/tigergraph/logs/GPE_1_1/log.INFO | wc -l

Grep distributed query log:
$ grep “Action done” /home/tigergraph/tigergraph/logs/GPE_1_1/log.INFO | t

Grep logs from all servers:
$ grun all “grep UDF:: /home/tigergraph/tigergraph/logs/GPE_*/log.INFO | t

Other Useful Commands for Query Debugging

Slow Query Performance

5/13/25, 9:12 PM 3.3

698

this Linux command : sar 1 10 .

If you are writing (PRINT) one line at a time and there are many lines, storing the

data in one data structure before printing may improve the query performance.

• Huge JSON Response

If the JSON response size of a query is too massive, it may take longer to

compose and transfer the JSON result than to actually traverse the graph. To

see if this is the cause, check the GPE log.INFO file. If the query execution is

already completed in GPE but has not been returned, and CPU usage is at about

200%, this is the most probable cause. If possible, please reduce the size of the

JSON being printed.

• Memory Leak

This is a very rare issue. The query will progressively become slower and

slower, while GPE's memory usage increases over time. If you experience these

symptoms on your system, please report this to the TigerGraph team.

• Network Issues

When there are network issues during communication between servers, the

query can be slowed down drastically. To identify that this is the issue, you can

check the CPU usage of your system along with the GPE log.INFO file. If the

CPU usage stays at a very low level and GPE keeps printing ??? , it means

network IO is very high.

• Frequent Data Ingestion in Small Batches

Small batches of data can increase the data loading overhead and query

processing workload. Please increase the batch size to prevent this issue.

When a query hangs or seems to run forever, it can be attributed to these

possibilities :

• Services are down

Please check that TigerGraph services are online and running. Run gadmin
status and possibly check the logs for any issues that you find from the status

check.

• Query is in an infinite loop

To verify this is the issue, check the GPE log.INFO file to see if graph iteration

log lines are continuing to be produced. If they are, and the edgeMaps log the

same number of edges every few iterations, you have an infinite loop in your

Query Hangs

5/13/25, 9:12 PM 3.3

699

query.

If this is the case, please restart GPE to stop the query : gadmin restart gpe -
y .

Proceed to refine your query and make sure your loops within the query are able

to break out of the loop.

• Query is simply slow

If you have a very large graph, please be patient. Ensure that there is no infinite

loop in your query, and refer to the slow query performance section for possible

causes.

• GraphStudio Error

If you are running the query from GraphStudio, the loading bar may continue

spinning as if the query has not finished running. You can right-click the page

and select inspect->console (in the Google Chrome browser) and try to find any

suspicious errors there.

If a query runs and does not return a result, it could be due to two reasons:

1. Data is not loaded.

From the Load Data page on GraphStudio, you are able to check the number of

loaded vertices and edges, as well as the number of each vertex or edge type.

Please ensure that all the vertices and edges needed for the query are loaded.

2. Properties are not loaded.

The number of vertices and edges traversed can be observed in the GPE log.INFO

file. If for one of the iterations you see activated 0 vertices, this means no target

vertex satisfied your searching condition. For example, the query can fail to pass a

WHERE clause or a HAVING clause.

If you see 0 vertex reduces while the edge map number is not 0, that means that all

edges have been filtered out by the WHERE clause, and that no vertices have

entered into the POST-ACCUM phase. If you see more than 0 vertex reduces, but

activated 0 vertices, this means all the vertices were filtered out by the HAVING

clause.

To confirm the reasoning within the log file, use GraphStudio to pick a few vertices

or edges that should have satisfied the conditions and check their attributes for any

Query Returns No Result

5/13/25, 9:12 PM 3.3

700

unexpected errors.

Query Installation may fail for a handful of reasons. If a query fails to install, please

check the GSQL log file. The default location for the GSQL log is here :

Go down to the last error and it will point you to the error. This will show you any

query errors that could be causing the failed installation. If you have created a user-

defined function, you could potentially have a c++ compilation error.

If you have a c++ user-defined function error, your query will fail to install, even if it
does not utilize the UDF.

GPE records memory usage by query at different stages of the query and saves it to

$(gadmin config get System.LogRoot)/gpe/log.INFO . You can monitor how much

memory a query is using by searching the log file for the request ID and filter for

lines that contain "QueryMem" :

You can also run a query first, and then run the following command immediately

after to retrieve the most recent query logs and filter for "QueryMem" :

/home/tigergraph/tigergraph/logs/gsql_server_log/GSQL_LOG

grep -i <request_id> $(gadmin config get System.LogRoot)/gpe/log.INFO |
 grep -i "querymem"

tail -n 50 $(gadmin config get System.LogRoot)/gpe/log.INFO |
 grep -i "querymem"

Query Installation Failed

Debugging Memory-related Failures

How to monitor memory usage by query

5/13/25, 9:12 PM 3.3

701

You will get results that look like the following, which shows memory usage by the

query at different stages of its execution. The number at the end of each line

indicates the number of bytes of memory utilized by the query:

You can check how much free memory your system has as a percentage of its total

memory by running the following command:

The number following "FreePct" indicates the percentage of the system free

memory. The following example shows the system free memory is 69%:

When free memory drops below 10 percent (SysMinFreePct), all queries are

aborted. This threshold is adjustable through gadmin config .

0415 01:33:40.885433 6553 gpr.cpp:195] Engine_MemoryStats| \
ldbc_snb::,196612.RESTPP_1_1.1618450420870.N,NNN,15,0,0| \
MONITORING Step(1) BeforeRun[GPR][QueryMem]: 116656

I0415 01:33:42.716199 6553 gpr.cpp:241] Engine_MemoryStats| \
ldbc_snb::,196612.RESTPP_1_1.1618450420870.N,NNN,15,0,0| \
MONITORING Step(1) AfterRun[GPR][QueryMem]: 117000

tail -n 50 $(gadmin config get System.LogRoot)/gpe/log.INFO | grep -i 'fre

I0520 23:40:09.845811 7828 gsystem.cpp:622]
System_GSystem|GSystemWatcher|Health|ProcMaxGB|0|ProcAlertGB|0|
CurrentGB|1|SysMinFreePct|10|SysAlertFreePct|30|FreePct|69

 log:W0312 02:10:57.839139 15171 scheduler.cpp:116] System Memory in Criti

How to check system free memory percentage

How to retrieve information on queries aborted due to memory
usage

Data Loading Debugging

5/13/25, 9:12 PM 3.3

702

Using GraphStudio, you are able to see, from a high-level, a number of errors that

may have occurred during the loading. This is accessible from the Load Data page.

Click on one of your data sources, then click on the second tab of the graph

statistics chart. There, you will be able to see the status of the data source loading,

number of loaded lines, number of lines missing, and lines that may have an

incorrect number of columns. (Refer to picture below.)

If you see there are a number of issues from the GraphStudio Load Data page, you

can dive deeper to find the cause of the issue by examining the log files. Check the

loading log located here:

Open up the latest .log file and you will be able to see details about each data

source. The picture below is an example of a correctly loaded data file.

/home/tigergraph/tigergraph/logs/restpp/restpp_loader_logs/<GRAPH_NAME>/

Checking the Logs

GraphStudio

Command Line

5/13/25, 9:12 PM 3.3

703

Here is an example of a loading job with errors :

From this log entry, you are able to see the errors being marked as lines with invalid

attributes. The log will provide you the line number from the data source which

contains the loading error, along with the attribute it was attempting to load to.

Normally, a single server running TigerGraph will be able to load from 100k to 1000k

lines per second, or 100GB to 200GB of data per hour. This can be impacted by any

of the following factors:

• Loading Logic

How many vertices/edges are generated from each line loaded?

• Data Format

Is the data formatted as JSON or CSV? Are multi-level delimiters in use? Does

the loading job intensively use temp_tables?

Slow Loading

5/13/25, 9:12 PM 3.3

704

• Hardware Configuration

Is the machine set up with HDD or SSD? How many CPU cores are available on

this machine?

• Network Issue

Is this machine doing local loading or remote POST loading? Any network

connectivity issues?

• Size of Files

How large are the files being loaded? Many small files may decrease the

performance of the loading job.

• High Cardinality Values Being Loaded to String Compress Attribute Type

How diverse is the set of data being loaded to the String Compress attribute?

To combat the issue of slow loading, there are also multiple methods:

• If the computer has many cores, consider increasing the number of Restpp load

handlers.

• Separate ~/tigergraph/kafka from ~/tigergraph/gstore and store them on

separate disks.

• Do distributed loading.

• Do offline batch loading.

• Combine many small files into one larger file.

When a loading job seems to be stuck, here are things to check for :

• GPE is DOWN

You can check the status of GPE with this command : gadmin status gpe
If GPE is down, you can find the logs necessary with this command : gadmin log
-v gpe

$ gadmin --config handler
increase the number of handlers
save
$ gadmin --config apply

Loading Hangs

5/13/25, 9:12 PM 3.3

705

• Memory is full

Run this command to check memory usage on the system : free -g

• Disk is full

Check disk usage on the system : df -lh

• Kafka is DOWN

You can check the status of Kafka with this command : gadmin status kafka
If it is down, take a look at the log with this command : vim
~/tigergraph/kafka/kafka.out

• Multiple Loading Jobs

By default, the Kafka loader is configured to allow a single loading job. If you

execute multiple loading jobs at once, they will run sequentially.

If the loading job completes, but data is not loaded, there may be issues with the

data source or your loading job. Here are things to check for:

• Any invalid lines in the data source file. Check the log file for any errors. If an

input value does not match the vertex or edge type, the corresponding vertex or

edge will not be created.

• Using quotes in the data file may cause interference with the tokenization of

elements in the data file. Please check the GSQL Language Reference section

under Other Optional LOAD Clauses. Look for the QUOTE parameter to see how

you should set up your loading job.

• Your loading job loads edges in the incorrect order. When you defined the graph

schema, the from and to vertex order will affect the way you write the loading

job. If you wrote the loading job in reversed order, the edges will not be created,

possibly also affecting the population of vertices.

If you know what data you expect to see (number of vertices and edges, and

attribute values), but the loaded data does not mean your expectations, there are a

number of possible causes to investigate:

1. First, check the logs for important clues.

Data Not Loaded

Loading is Incorrect

5/13/25, 9:12 PM 3.3

706

2. Are you reaching and reading all the data sources (paths and permissions)?

3. Is the data mapping correct?

4. Are your data fields correct? In particular, check data types. For strings, check

for unwanted extra strings. Leading spaces are not removed unless you apply an

optional token function to trim the extra spaces.

5. Do you have duplicate ids, resulting in the same vertex or edge being loading

more than once. Is this intended or unintended? TigerGraph's default loading

semantics is UPSERT. Check the loading documentation to maker sure you

understand the semantics in detail:

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-

job#cumulative-loading

Possible causes of a loading job failure are:

• Loading job timed out

If a loading job hangs for 600 seconds, it will automatically time out.

• Port Occupied

Loading jobs require port 8500. Please ensure that this port is open.

This section will only cover the debugging schema change jobs, for more

information about schema changes, please read the Modifying a Graph Schema

page.

Understanding what happens behind the scenes during a schema change.

1. DSC (Dynamic Schema Change) Drain - Stops the flow of traffic to RESTPP and

GPE

If GPE receives a DRAIN command, it will wait 1 minute for existing running

queries to finish up. If the queries do not finish within this time, the DRAIN step

will fail, causing the schema change to fail.

2. DSC Validation - Verification that no queries are still running.

Loading Failure

Schema Change Debugging

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#cumulative-loading
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#cumulative-loading
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#cumulative-loading

707

3. DSC Apply - Actual step where the schema is being changed.

4. DSC Resume - Traffic resumes after schema change is completed.

Resume will automatically happen if a schema change fails. RESTPP comes back

online. All buffered query requests will go through after RESTPP resumes, and

will use the new updated schema.

Schema changes are not recommended for production environments.
Even if attributes are deleted, TigerGraph's engine will still scan all previous attributes.
We recommend limiting schema changes to dev environments.

Schema changes are all or nothing. If a schema change fails in the middle, changes will
not be made to the schema.

• Failure when creating a graph

• Global Schema Change Failure

• Local Schema Change Failure

• Dropping a graph fails

• If GPE or RESTPP fail to start due to YAML error, please report this to

TigerGraph.

If you encounter a failure, please take a look at the GSQL log file : gadmin log

gsql . Please look for these error codes:

• Error code 8 - The engine is not ready for the snapshot. Either the pre-check

failed or snapshot was stopped. The system is in critical non-auto recoverable

error state. Manual resolution is required. Please contact TigerGraph support.

• Error code 310 - Schema change job failed and the proposed change has not

taken effect. This is the normal failure error code. Please see next section for

failure reasons.

• Another schema change or a loading job is running. This will cause the schema

change to fail right away.

Signs of Schema Change Failure

Reasons For Dynamic Schema Change Failure

5/13/25, 9:12 PM 3.3

708

• GPE is busy. Potential reasons include :

◦ Long running query.

◦ Loading job is running.

◦ Rebuild process is taking a long time.

• Service is down. (RESTPP/GPE/GSE)

• Cluster system clocks are not in sync. Schema change job will think the request

is stale, causing this partition's schema change to fail.

• Config Error. If the system is shrunk manually, schema change will fail.

You will need to check the logs in this order : GSQL log, admin_server log, service

log.

Admin_server log files can be found here : ~/tigergraph/logs/admin_server/ You

will want to take a look at the INFO file.

The service log is each of the services respectively. gadmin log <service_name>

will show you the location of these log files.

$ grep DSC ~/tigergraph/logs/admin_server/INFO.20181011-101419.98774

I1015 12:04:14.707512 116664 gsql_service.cpp:534] Notify RESTPP DSCDrain
I1015 12:04:15.765108 116664 gsql_service.cpp:534] Notify GPE DSCDrain suc
I1015 12:04:16.788666 116664 gsql_service.cpp:534] Notify GPE DSCValidatio
I1015 12:04:17.805620 116664 gsql_service.cpp:534] Notify GSE DSCValidatio
I1015 12:04:18.832386 116664 gsql_service.cpp:534] Notify GPE DSCApply suc
I1015 12:04:21.270011 116664 gsql_service.cpp:534] Notify RESTPP DSCApply
I1015 12:04:21.692147 116664 gsql_service.cpp:534] Notify GSE DSCApply suc

E1107 14:13:03.625350 98794 gsql_service.cpp:529] Failed to notify RESTPP
E1107 14:13:03.625562 98794 gsql_service.cpp:344] DSC failed at Drain stag
E1107 14:14:03.814132 98794 gsql_service.cpp:513] Failed to notify RESTPP

Log Files

Example of a successful schema change job. (admin_server log)

Example of DSC fail

5/13/25, 9:12 PM 3.3

709

In this case, we see that RESTPP failed at the DRAIN stage. We need to first look at

whether RESTPP services are all up. Then, verify that the time of each machine is

the same. If all these are fine, we need to look at RESTPP log to see why it fails.

Again, use the "DSC" keyword to navigate the log.

To check the status of GSE, and all other processes, run gadmin status to show

the status of key TigerGraph processes. As with all other processes, you are able to

find the log file locations for GSE by the gadmin log command. Refer to the

Location of Log Files for more information about which files to check.

If the GSE process fails to start, it is usually attributed to a license issue, please

check these factors :

• License Expiration

gadmin status license This command will show you the expiration date of

your license.

• Single Node License on a Cluster

If you are on a TigerGraph cluster, but using a license key intended for a single

machine, this will cause issues. Please check with your point of contact to see

which license type you have.

• Graph Size Exceeds License Limit

Two cases may apply for this reason. The first reason is you have multiple

graphs but your license only allows for a single graph. The second reason is that

your graph size exceeds the memory size that was agreed upon for the license.

Please check with your point of contact to verify this information.

$ gadmin log gse
[Warning] License will expire in 5 days
GSE : /home/tigergraph/tigergraph/logs/gse/gse_1_1.out
GSE : /home/tigergraph/tigergraph/logs/GSE_1_1/log.INFO

GSE Error Debugging

GSE Process Fails To Start

5/13/25, 9:12 PM 3.3

710

Usually in this state, GSE is warming up. This process can take quite some time

depending on the size of your graph.

<INCLUDE PROCESS NAME SHOWING CPU USAGE TO VERIFY THE "WARMING

UP" STATE>

Very rarely, this will be a ZEROMQ issue. Restarting TigerGraph should resolve this
issue

gadmin restart -y

GSE crashes are likely due to and Out Of Memory issue. Use the dmesg -T

command to check any errors.

If GSE crashes, and there are no reports of OOM, please reach out to TigerGraph
support.

If your system has unexpectedly high memory usage, here are possible causes :

• Length of ID strings is too long

GSE will automatically deny IDs with a length longer than 16k. Memory issues

could also arise if an ID string is too long (> 500). One proposed solution to this

is to hash the string.

• Too Many Vertex Types

Check the number of unique vertex types in your graph schema. If your graph

schema requires more than 200 unique vertex types, please contact TigerGraph

support.

GSE status is "not_ready"

GSE crash

GSE High Memory Consumption

5/13/25, 9:12 PM 3.3

711

If your browser crashes or freezes (shown below), please refresh your browser.

If you suspect GraphStudio has crashed, first run gadmin status to verify all the

components are in good shape. Two known causes of GraphStudio crashes are :

• Huge JSON response

User-written queries can return very large JSON responses. If GraphStudio often

crashes on large query responses, you can try reducing the size limit for JSON

responses by changing the GUI.RESTPPResponseMaxSizeBytes configuration

using gadmin config . The default limit is 33554432 bytes.

GraphStudio Debugging

Browser Crash / Freeze

GraphStudio Crash

5/13/25, 9:12 PM 3.3

712

• Very Dense Graph Visualization

On the Explore Graph page, the "Show All Paths" query on a very dense graph is

known to cause a crash.

To find the location of GraphStudio log files, use this command : gadmin log gui

Allowing GraphStudio DEBUG mode will print out more information to the log files.

To allow DEBUG mode, please edit the following file :

/home/tigergraph/tigergraph/visualization/server/src/config/local.json

After editing the file, run gadmin restart gui -y to restart the GraphStudio

service. Follow along the log file to see what is happening : tail -f

/home/tigergraph/tigergraph/logs/gui/gui_INFO.log

Repeat the error-inducing operations in GraphStudio and view the logs.

$ gadmin config entry GUI.RESTPPResponseMaxSizeBytes
New: 33554431
[Info] Configuration has been changed. Please use 'gadmin config apply'
$ gadmin config apply

$ gadmin log vis
[Warning] License will expire in 5 days
VIS : /home/tigergraph/tigergraph/logs/gui/gui_ADMIN.log
VIS : /home/tigergraph/tigergraph/logs/gui/gui_INFO.log

DEBUG mode

5/13/25, 9:12 PM 3.3

713

There is a list of known GraphStudio issues here.

If after taking these actions you cannot solve the issue, please reach out to

support@tigergraph.com to request assistance.

Known Issues

Further Debugging

5/13/25, 9:12 PM 3.3

714

Log Files
TigerGraph Database captures key information on activities occurring across its

different components through log functions that output to log files. These log files

are not only helpful in troubleshooting but also serve as an auditory resource. This

document gives a high-level overview of TigerGraph's logging structure and lists

some common information one might need to monitor their database services and

where to obtain them in the logs.

Logs in TigerGraph are stored at <tigergraph_root_dir>/log/ . TigerGraph's logs

are divided into different folders by the different internal components and each

folder corresponds to a different component. Log formats also vary across the

different components. In folders where logs are checked often, such as restpp ,

gsql , and admin , there are three symbolic links that help you quickly get to the

most recent log file of that category:

• log.INFO

◦ Contains regular output and errors

• log.ERROR

◦ Contains errors only

• <component_name>.out

◦ Contains all output from the component process

• log.WARNING or log.DEBUG

◦ log.WARNING contains warnings

◦ In the gsql folder, log.DEBUG contains very specific information you only

need when certain errors happen

Knowing where certain activities are recorded allows one to use tools such as the

Linux grep command to easily obtain critical information from your database.

Overall Logging Structure

Log locations on a cluster

5/13/25, 9:12 PM 3.3

715

In a TigerGraph cluster, each node will only keep logs of activities that took place on

the node itself. For example, the GSQL logs on the m1 node will only record events

for m1 and are not replicated across the cluster.

For GSQL specifically, the cluster will elect a leader to which all GSQL requests will

be forwarded. To check which node is the leader, start by checking the GSQL logs

of the m1 node. Check the most recent lines of log.INFO and look for lines

containing information about leader switch. For example, the logs below recorded a

GSQL leader switch from m2 to m1:

All requests made to TigerGraph's REST endpoints are recorded by the RESTPP logs

and Nginx logs. Information available in the logs includes:

• Timestamp of the request

• API request parameters

• Request Status

• User information (when RESTPP authentication is turned on)

RESTPP is responsible for many tasks in the TigerGraph internal architecture and

records many internal API calls, which can be hard to distinguish from manual

requests. When RESTPP authentication is on, the RESTPP log will record the user

information and mark a call if it is made by an internal API. Therefore, you can use

the command below to filter for manual requests:

I@20210709 13:56:52.214 (GsqlHAHandler.java:231) GSQL leader switches fro
E@20210709 13:56:52.215 (GsqlHAHandler.java:246) GSQL HA leader switches
If you want to lower the chance of leader switch by increasing timeout, pl
I@20210709 13:56:52.219 (SessionManager.java:197) Abort and clear all ses
I@20210709 13:56:52.220 (SessionManager.java:204) All sessions aborted.
I@20210709 13:56:52.224 (GsqlHAHandler.java:283) switched to new leader m

Monitor request history

5/13/25, 9:12 PM 3.3

716

RequestInfo contains the ID of the request, which you can use to look up more

information on the request :

Here is an example of using a request ID to look up a request in the restpp log:

User management activities, such as logins, role and privilege changes are recorded

in the GSQL logs in the folder gsql .

To view recent activities, use the symlink log.INFO . There is a lot of information in

the logs - to filter for information that you need, you can use Linux commands such

In the restpp log directory
$ grep -i "requestinfo" log.INFO | grep -v "__INTERNAL_API__"

All requests exluding the ones made by internal API
I0315 21:11:59.666318 14535 handler.cpp:351] RequestInfo|,1.RESTPP_1_1.161
I0315 21:41:36.462616 14541 handler.cpp:351] RequestInfo|,196622.RESTPP_1_

Request ID

$ grep "1615842719666" log.INFO

Returns all information about the specific request
RawRequest log is captured at the entry point of a query
I0315 21:11:59.666026 14535 handler.cpp:285] RawRequest|,1.RESTPP_1_1.1615
RequestInfo log is captured after the request has been parsed,
and contains information such as username and the function or UDF to run
I0315 21:11:59.666318 14535 handler.cpp:351] RequestInfo|,1.RESTPP_1_1.161
ReturnResult is captured when the request has been processed
I0315 21:11:59.666509 14535 requestrecord.cpp:325] ReturnResult|0|0ms|REST

Monitor user management tasks

5/13/25, 9:12 PM 3.3

717

as grep and tail For example, to view recent changes in roles, you can run

the following command in the gsql log directory:

To view login activities, search log.INFO for "login" instead.

$ grep -i "role" log.INFO

Returns all lines containing the word "role"
username source IP
I@20210312 22:41:16.167 tigergraph|127.0.0.1:45854|00000000077 (BaseHandle
I@20210312 22:41:16.863 tigergraph|127.0.0.1:45854|00000000077 (BaseHandle

$ grep -i "login" log.INFO

Returns all lines containing the world "login"
I@20210315 21:08:42.047 tigergraph|127.0.0.1:53960|00000000001 (BaseHandle
I@20210315 21:08:42.061 tigergraph|127.0.0.1:53960|00000000001 (LoginHandl
is /home/tigergraph/tigergraph/log/restpp
I@20210315 21:08:42.072 tigergraph|127.0.0.1:53960|00000000001 (LoginHandl
I@20210315 21:08:42.080 tigergraph|127.0.0.1:53960|00000000001 (BaseHandle

5/13/25, 9:12 PM 3.3

https://linuxcommand.org/lc3_man_pages/grep1.html
https://linuxcommand.org/lc3_man_pages/grep1.html
http://linuxcommand.org/lc3_man_pages/tail1.html
http://linuxcommand.org/lc3_man_pages/tail1.html

718

Set up Log Viewing with
Elasticsearch, Kibana and Filebeat
The TigerGraph system produces extensive and detailed logs about each of its

components. Starting with TigerGraph 3.2, TigerGraph provides a gadmin utility

that allows users to easily view log files through an Elasticsearch, Kibana, and

Filebeat setup. This page offers a step-by-step guide to set up log viewing for all

components in a TigerGraph cluster with Elastic search, Kibana, and Filebeat.

• Install Elasticsearch on a machine that is running TigerGraph.

◦ If you have a TigerGraph cluster, you only need to install Elasticsearch on

one node.

• Install Kibana on the same machine where you installed Elasticsearch.

• Install Filebeat .

◦ If you have a TigerGraph cluster, you need to install Filebeat on all nodes in

the cluster.

The default Elasticsearch settings only allow the Elasticsearch service to be

accessed from the same machine it starts from. In order to allow Elasticsearch to

receive log files from other servers in the cluster, we have to make the following

edits to the file at /etc/elasticsearch/elasticsearch.yml

Before you begin

Procedure

1. Configure Elasticsearch for remote access

5/13/25, 9:12 PM 3.3

https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/install-elasticsearch.html
https://www.elastic.co/guide/en/kibana/current/install.html
https://www.elastic.co/guide/en/kibana/current/install.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation-configuration.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-installation-configuration.html

719

After editing the configurations, restart the Elasticsearch service.

Elasticsearch is a memory-intensive service. For more information on memory
management for Elasticsearch, see Managing and Troubleshooting Elasticsearch

Memory .

You need to make the following changes to the file at /etc/kibana/kibana.yml:

• To allow remote access, change the value of server.host to the IP address or

DNS name of the Kibana server. Since the Kibana server is on the same machine

as Elasticsearch, this value should be the same private IP that you specified as

Elasticsearch's network.host .

• Additionally, you need to provide the address of the Elasticsearch server in the

elasticsearch.hosts setting. By default, Elasticsearch is on port 9200, so the

value for this setting should be ["server_private_ip:9200"]

After editing the configurations, restart the Kibana service.

Finally, we need to configure Filebeat to have each component on each node send

its logs to the Elasticsearch server. To do so, run the following gadmin command:

network.host: "<server_private_ip>"
discovery.seed_hosts: ["<server_private_ip>"]
server_private_ip refers to the private ip address of the machine where
elasticsearch is installed
cluster.initial_master_nodes: ["node-1"]
"node-1" is the default name of the Elasticsearch node. If you changed
the defualt name, you would use the name you chose instead

gadmin log build filebeat <--host={ip_address_1}[,{ip_address_n}]*>

2. Configure Kibana with Elasticsearch and enable
remote access

3. Configure Filebeat

5/13/25, 9:12 PM 3.3

https://www.elastic.co/blog/managing-and-troubleshooting-elasticsearch-memory
https://www.elastic.co/blog/managing-and-troubleshooting-elasticsearch-memory
https://www.elastic.co/blog/managing-and-troubleshooting-elasticsearch-memory

720

The command outputs a Filebeat configuration file filebeat.yml . The following

options are available:

After generating the filebeat.yml file, copy it to the directory /etc/filebeat on

every node, and restart the Filebeat service on each node.

After the service restarts, you should be able to view the logs through Kibana's user

interface in your browser at server_ip:5601 .

Option Description

--host=<ip_list>

Required. The list of IP addresses of the

nodes whose logs you want to send to the

Elasticsearch server.

Example:

 --
host=10.128.0.97,10.128.0.99,10.128.0.10
0

--from-beginning

Optional. If this flag is provided, Filebeat will

harvest all log files including the oldest. If

not included, Filebeat will only harvest the

logs since the most recent time each

service started.

--path=<path_to_file>

Optional. The path to output the

configuration file. By default, the command

outputs the configuration file filebeat.yml
to the current directory.

--service=<service_list>
Optional. The services you want Filebeat to

monitor. By default, all services are

included. Example: --service=

5/13/25, 9:12 PM 3.3

721

Error Codes
The reference page for status codes on the TigerGraph platform.

This page documents the status codes and exit codes on the TigerGraph platform.

Each status code follows the format: <component>-<code> , while exit codes are

numeric values between 0 - 255.

If the system was handling a user request, the status code and message will be in

the JSON response (see GSQL Query Output Format). For internal errors, the error

information may be in a log file.

The GSQL Client will exit with a non-zero code if thereʼs an error while handling a

user request. To view the exit code of the GSQL client, run the command echo $?

and the exit code of the most recent command will be printed to the terminal.

This section covers return codes from the REST++ server.

Codes in this range are success codes. When the conditions for multiple codes are

true, the lowest code is returned.

Code Description

REST-0000 General successful completion

REST-0001 Successful vertex insertion or update

REST-0002 Successful edge insertion or update

REST-0003
Successful vertex and edge insertion or

update

Return codes

REST

0000 - 0999

5/13/25, 9:12 PM 3.3

722

RESTPP endpoint errors.

Payload errors.

RESTPP general errors.

REST-0004 Empty response

Code Description

REST-1000 The endpoint does not exist.

REST-1003
The query could not run because there is no

graph schema.

REST-1004 The graph cannot be found.

Code Description

REST-2001 The JSON payload is invalid.

REST-2004
The payload contains vertices of an invalid

type.

REST-2005
The payload contains edges of an invalid

type.

Code Description

REST-3000
The query timed out from the timeout limit

set by the request header.

REST-3001
The query timed out from the timeout limit

set by the built-in endpoint.

1000 - 1999

2000 - 2999

3000 - 3999

5/13/25, 9:12 PM 3.3

723

Other RESTPP errors.

Codes in this range are success codes. GSQL will return the smallest code when the

conditions are met for multiple codes.

REST-3002

The query timed out from the timeout limit

set by the

RESTPP.Factory.DefaultQueryTimeoutSec
parameter.

Code Description

REST-10001 The endpoint has been removed.

REST-10004
There was an exception when starting a

scheduler.

REST-10005
There was an exception when processing

results.

REST-10015
The request is in an orphan state due to

malfunction in user-defined schedulers.

REST-10016 Access denied due to an invalid token.

REST-12000
RESTPP failed to get a response from GSE

or GPE in time.

REST-12001 No running GSE or GPE instance detected.

REST-12002 The query was aborted by the user.

REST-12003
The query failed due to insufficient disk

space.

10000+

GSQL

0000 - 0999

5/13/25, 9:12 PM 3.3

724

Query parameter errors.

JSON string related errors.

Operator errors.

Code Description

GSQL-0000 The query is successful.

GSQL-0001
Vertices and edges were updated or

inserted successfully.

GSQL-0002
Vertices were updated or inserted

successfully.

GSQL-0003
Edges were updated or inserted

successfully.

Code Description

GSQL-1001
The query contains a parameter with a

NULL value.

GSQL-1002 General parameter error.

GSQL-1020 Invalid parameters.

Code Description

GSQL-2010 JSON object format error.

GSQL-2011 JSON array format error.

1000 - 1999

2000 - 2499

2500 - 2999

5/13/25, 9:12 PM 3.3

725

Dynamic expression errors and expression function errors.

Vertex type, edge type, and ID translation errors

Code Description

GSQL-2500 Division by zero error.

GSQL-2501
The query contains incorrectly formatted

DATETIME strings.

GSQL-2502 The query contains illegal patterns.

GSQL-2503 The query contains invalid operators.

GSQL-2601
The parameter provided is of the wrong

primitive type.

GSQL-2620 The query contains an invalid array index.

GSQL-2621
The query contains an out-of-bounds array

index.

Code Description

GSQL-3000
The query references non-existent

attributes.

GSQL-3001
The query references non-existent vertex

types.

Code Description

GSQL-4500
The query references a vertex type that

does not exist.

GSQL-4501
The query references an edge type that

does not exist.

3000 - 3999

4500 - 4999

5/13/25, 9:12 PM 3.3

726

Print errors.

Errors related to updating the graph.

GSQL-4502 The query references an invalid vertex ID.

GSQL-4511
The query contains an invalid vertex

attribute.

GSQL-4521 The query contains an invalid edge attribute.

GSQL-4522 The number of edge attributes is invalid.

GSQL-4523
An edge points from an invalid source

vertex.

GSQL-4524 An edge points to an invalid target vertex.

GSQL-4525
An edge has both invalid source and target

Code Description

GSQL-5101
A file referenced in the query cannot be

opened.

GSQL-5101 A file referenced in the query does not exist.

GSQL-5105
GSQL was denied access to a file

referenced in the query.

GSQL-5111
A file referenced in the query cannot be

read.

Code Description

GSQL-6000
The query inserts an edge with an unknown

vertex.

GSQL-6001 Unsupported type of attribute update.

5000 - 5499

6000 - 6499

5/13/25, 9:12 PM 3.3

727

Built-in query errors.

Unexpected exceptions (C++).

User-defined exception errors.

This section covers engine-related errors.

Code Description

GSQL-6500 The query was aborted by the user.

Code Description

GSQL-7002 The query timed out.

Code Description

GSQL-8001 Boost library exception

GSQL-8002 Runtime exception

GSQL-8003 std exception

GSQL-8999 All other exceptions

Code Description

6500 - 6999

7000 - 7999

8000 - 8999

40000+

SYS

5/13/25, 9:12 PM 3.3

728

The GSQL client will exit with non-zero code if thereʼs an error while handling a user

request. To check the exit code, run the Linux command echo $? and the exit code

of the most recent command will be printed in the console.

: The exit codes marked with a star () are only applicable when a GSQL script is
given as an argument.

SYS-0001 The engine is not available.

SYS-0002
The query was rejected because the

memory limit has been reached.

SYS-0003 The query is aborted.

SYS-0004 The endpoint has been removed.

Exit Code Description

0 No error

41

Login or authentication error. The GSQL will

also exit with this code if a graph with the

supplied graph name cannot be found.

201 Invalid argument error

202 Connection error

203 Compatibility error

204 Session timeout

211* Syntax error

212 Runtime error

213* No graph in use error

255 Unknown error

GSQL client exit codes

5/13/25, 9:12 PM 3.3

729

System Administration

5/13/25, 9:12 PM 3.3

730

TigerGraph Administrators Guide

5/13/25, 9:12 PM 3.3

731

Hardware and Software Requirements
This section provides an overview of the system requirements for running

TigerGraph in a production or development environment.

TigerGraph can be used for different scopes and the system requirements largely

depend on the use of the software. This page provides a good reference, but actual

hardware requirements will vary based on your data size and workload.

*Actual needs (CPU, memory, storage) depend on data size and application

requirements. Consult our solution architects for an estimate of memory and storage

needs.

Comments:

• The TigerGraph system is optimized to take advantage of multiple cores.

• Performance is optimal when the memory is large enough to store the full graph

and to perform computations.

Component Minimum Recommended

CPU*

4 cores for <500MB data,

8 cores for >500MB data

(64-bit processor)

16+ cores

(64-bit processor)

Memory* 8 GB ≥ 64GB

Storage* 20 GB

≥ 1TB, RAID10 volumes for

better I/O throughput.

SSD storage is

recommended.

Network 1 Gigabit Ethernet adapter

10Gigabit Ethernet adapter

for inter-node

communication

Hardware Requirements

5/13/25, 9:12 PM 3.3

732

The TigerGraph Software Suite is built on 64-bit Linux. It can run on a variety of

Linux 64-bit distributions. The software has been tested on the operating systems

listed below:

When a range of versions is given, it means that the software has been tested on

the oldest and newest versions. We continually evaluate the operating systems on

the market and work to update our set of supported operating systems as needed.

The TigerGraph installer will install its own copies of Java JDK and GCC, accessible

only to the TigerGraph user account, to avoid interfering with any other applications

on the same server.

On-Premises

hosting
Java JDK version

GCC version

(C/C++)

RedHat 7.0 to 7.8

(x64)
Yes 1.8.0_141 4.8.2

RedHat 8.0 to 8.3

(x64)
Yes 1.8.0_141 4.8.2

Centos 7.0 to 7.4

(x64)
Yes 1.8.0_141 4.8.2

Centos 8.0 to 8.2

(x64)
Yes 1.8.0_141 4.8.2

Ubuntu 16.04 LTS

Ubuntu 18.04 LTS

Ubuntu 20.04 LTS

(x64)

Yes 1.8.0_141 4.8.4

Debian 8 (jessie) Yes 1.8.0_141 4.8.4

Certified Operating Systems

Prerequisite Software

5/13/25, 9:12 PM 3.3

733

Please use a bash shell for the installation process.

Before offline installation, the TigerGraph system needs a few basic software

packages to be present:

• tar

• curl

• crontab

• ip

• ssh / sshd (Only required for cluster installation)

• more

• netstat

• sshpass

◦ if you intend to use password login method (P method) instead of ssh key
login method (K method) to install the TigerGraph platform.

If they are not present, contact your system administrator to have them installed on

your target system. For example, they can be installed with one of the following

commands.

Centos or RedHat:
sudo yum install tar curl cronie iproute util-linux-ng net-tools coreutils

Ubuntu or Debian (Except Ver 18.04):
sudo apt install tar curl cron iproute util-linux net-tools coreutils open

Ubuntu or Debian (Ver. 18.04):
sudo apt install tar curl cron iproute2 util-linux net-tools coreutils ope

Shell

Utilities

NTP

5/13/25, 9:12 PM 3.3

734

If you are running TigerGraph on a multi-node cluster, you must install, configure

and run the NTP (Network Time Protocol) daemon service. This service will

synchronize system time among all cluster nodes.

If you are running TigerGraph on a multi-node cluster, you must configure the

iptables/firewall rules to make all TCP ports open among all cluster nodes.

In an on-premises installation, the system is fully functional without a web browser.

To run the optional browser-based TigerGraph GraphStudio User Interface or Admin

Portal, you need an appropriate browser:

Browser Chrome Safari Firefox Opera Edge
Inte

Exp

Supported

version
54.0+ 11.1+ 59.0+ 52.0+ 80.0+ 10+

Firewall

Browser

5/13/25, 9:12 PM 3.3

735

Installation and Configuration
Installation, Cluster Configuration and Scale-out, License Activation

5/13/25, 9:12 PM 3.3

736

Installation Guide
Installing Single-machine and Multi-machine systems

This guide describes how to install the TigerGraph platform either as a single node

or as a multi-node cluster, interactively or non-interactively.

If you signed up for the Enterprise Free license, you also have access to the
TigerGraph platform as a Docker image or a virtual machine (VirtualBox) image.
Follow the instructions in Getting started to start up TigerGraph in a Docker container
or with VirtualBox.

Before you can install the TigerGraph system, you need the following:

• One or more machines that meet the minimum Hardware and Software

Requirements.

• A sudo user with the same username and login credential on every machine.

◦ If sudo privilege is not available, please contact TigerGraph support for

workarounds.

• A license key provided by TigerGraph (not applicable to Enterprise Free)

• A TigerGraph system package

◦ If you do not yet have a TigerGraph system package, you can request one at

the following address: https://www.tigergraph.com/get-tigergraph

• If you are installing a cluster, ensure that every machine has the same SSH port

and the port stays open during installation

TigerGraph's installation script support both single-node and cluster installation,

and the user can choose to install either interactively and non-interactively.

Preparation

Installation

5/13/25, 9:12 PM 3.3

https://www.tigergraph.com/get-tigergraph/
https://www.tigergraph.com/get-tigergraph/

737

The following describes the procedure to install TigerGraph on Linux interactively.

The filename of your package may vary, depending on the product edition and

version. For the examples here, we use the filename tigergraph-

<version>.tar.gz , which should be replaced by the actual filename of your

package.

Extract the package by running the following command. A folder named

tigergraph-<version>-offline will be created.

Navigate to the tigergraph-<version>-offline folder and run script install.sh

with the following commands:

The installer will ask for the following information, for which you may choose to hit

Enter to skip and use the system default or enter a new value:

• Your agreement to the License Terms and Conditions

Example: extract for <version> = x.y.z

$ tar -xzf tigergraph-<version>.tar.gz

Example: Default installation for <version> = 3.1.0

$ cd tigergraph-<version>-offline

to install enterprise license
$ sudo ./install.sh

For non-interactive installations, please see the non-interactive mo

Interactive installation

Step 1: Extract the package

Step 2: Run installation script

5/13/25, 9:12 PM 3.3

738

• Your license key (not applicable for Enterprise Free)

• Username for the Linux user who will own and manage the TigerGraph platform

◦ The installer creates a Linux user who is the only authorized user that can

run gadmin commands to manage the TigerGraph Platform, and for whom

this username is for

• Password for the Linux user who will own and manage the TigerGraph platform

• Path to where the installation folder will be

• Path to where the data folder will be

• Path to where the log folder will be

• Path to where the temp folder will be

• The SSH port for your machine

To see what the default settings are, read the Installation options section below.

Since license keys are long – over 100 characters long. If you copy-and-paste the
license key, be careful not to accidentally include an end-of-line character.

TigerGraph cluster configuration enables the graph database to be partitioned and

distributed across multiple server nodes in a local network. After you have answered

the questions described in the previous step, the installation script will ask for the

following to complete cluster configuration:

• The number of nodes in your cluster. Each node will be given an alias following

the input (m1 , m2 , m3 , etc.)

◦ If this is a single-node installation, enter 1

• The IP address of each node

• Username and credentials information of the sudo user

◦ Every machine in the cluster must have a sudo user with the same username
and password or SSH key.

• Permission to set NPT time synchronization

• Permission to set firewall rules among the cluster nodes

Step 3: Configure cluster settings

5/13/25, 9:12 PM 3.3

739

In TigerGraph 3.x, the installation machine can be within or outside the cluster. If
outside the cluster, the installation machine still needs to be a Linux machine.

After all the questions are answered, the script will proceed to installation. A

screenshot of the interactive installation is shown below:

After installation is complete, you can switch to the Linux user who owns the

platform (created in Step 2) with the following command :

At the prompt, enter the password that was set in Step 2.

$ su <username> # default username: tigergraph

Step 4: Verify installation

5/13/25, 9:12 PM 3.3

740

After switching to the correct user, you now have access to gadmin commands.

Confirm successful installation by running gadmin status . If the system is installed

correctly and the license is activated, the command should report that all services

are up and ready. Since there is no graph data loaded yet, GSE and GPE will show

"Warmup" .

The following describes the procedure to install TigerGraph on Linux non-

interactively.

Extract the package by running the following command. A folder named

tigergraph-<version>-offline will be created.

Status of all components upon successful installation

Non-interactive installation

Step 1: Extract the package

5/13/25, 9:12 PM 3.3

741

Navigate to the tigergraph-<version>-offline folder. Inside the folder, there is a

file named install_conf.json . For non-interactive mode installation, the user must

review and modify all the settings in the file install_conf.json before running the

installer.

Below is an example of the install_conf.json file:

Example: extract for <version> = x.y.z

$ tar -xzf tigergraph-<version>.tar.gz

Step 2: Configure installation settings

5/13/25, 9:12 PM 3.3

742

Here is a description of all the fields in the config file:

• "BasicConfig"

◦ "TigerGraph" : Information about the Linux user that will be created by the
installer who owns and manages the TigerGraph platform.

▪ "Username" : Username of the Linux user.

▪ "Password" : Password of the Linux user.

▪ "SSHPort" : Port number used to establish SSH connections.

▪ "PrivateKeyFile" (optional): Absolute path to a valid private key file. If

left empty, TigerGraph will generate one named tigergraph.rsa

{
 "BasicConfig": {
 "TigerGraph": {
 "Username": "tigergraph",
 "Password": "tigergraph",
 "SSHPort": 22,
 "PrivateKeyFile": "",
 "PublicKeyFile": ""
 },
 "RootDir": {
 "AppRoot": "/home/tigergraph/tigergraph/app",
 "DataRoot": "/home/tigergraph/tigergraph/data",
 "LogRoot": "/home/tigergraph/tigergraph/log",
 "TempRoot": "/home/tigergraph/tigergraph/tmp"
 },
 "License": "eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJJc3N1ZXIiOiJUaWdlc
 "NodeList": [
 "m1: 127.0.0.1"
]
 },
 "AdvancedConfig": {
 "ClusterConfig": {
 "LoginConfig": {
 "SudoUser": "sudoUserName",
 "Method": "P[or K]",
 "P": "<sudo_user_password>",
 "K": "</path/to/my_key.pem_rsa>"
 },
 "ReplicationFactor": 1
 }
 }
}

5/13/25, 9:12 PM 3.3

743

automatically.

▪ "PublicKeyFile" (optional): Absolute path to a valid public key file. If left

empty, TigerGraph will generate one named tigergraph.pub
automatically.

◦ "RootDir"

▪ "AppRoot" : Absolute path to where application folder will be.

▪ "DataRoot ": Absolute path to where the data folder will be.

▪ "LogRoot" : Absolute path to where the log folder will be.

▪ "TempRoot" : Absolute path to where the temp folder will be.

◦ "License" : Your TigerGraph license string.

◦ "Node List" : A JSON array of the nodes in the cluster. Each machine in

the cluster is defined as a key-value pair, where the key is a machine alias
(m1, m2, m3, etc) and the value is the IP address of the node.

• "AdvancedConfig"

◦ "ClusterConfig" : Cluster configurations

▪ "LoginConfig" : Login configurations

• "SudoUser" : Username of the sudo user who will be used to execute

the installation on all nodes.

• "Method" : Authentication method for SSH. Enter "P" to use

password authentication and "K" to use key-based authentication.

• "P" : Password of the sudo user.

• "K" : Absolute path to the SSH key to be used to authenticate the
sudo user.

▪ "ReplicationFactor" : Replication factor of the cluster.

• If you would like to enable the High Availability (HA) feature, please

make sure you have at least 3 nodes in the cluster and set the

replication factor to be greater than 1. For example, if your cluster has
6 nodes, you could set the replication factor to be 2 or 3. If you set

the replication factor to be 2, then the partitioning factor will be 6 / 2

= 3. Therefore, 3 nodes will be used for one copy of the data, and

the other 3 nodes will be used as a replica copy of the data.

• Ensure that the total number of nodes can be fully divided by the
replication factor. Otherwise, some nodes may not be utilized as

parts of the HA cluster.

5/13/25, 9:12 PM 3.3

744

Start the non-interactive installation process by running the install.sh script with

the -n option:

The following default settings will be applied if no parameters are specified:

• The installer will create a Linux user with username tigergraph and with
password tigergraph . This user will be the only user authorized to run gadmin
commands to manage the TigerGraph platform and services.

◦ If there is already a user named tigergraph , this user will be designated as

the platform owner and no other user will be created.

• The default root directory for the installation would be

/home/tigergraph/tigergraph with the App/Data/Log/Temp files within it :
App Path : /home/tigergraph/tigergraph/app
Data Path : /home/tigergraph/tigergraph/data
Log Path : /home/tigergraph/tigergraph/log
Temp Path : /home/tigergraph/tigergraph/tmp

• The root directory for the installation (referred to as <tigerGraph_root_dir>) is

a folder called tigergraph located in the tigergraph user's home directory, i.e.,

/home/tigergraph/tigergraph .

The installation can be customized by running command-line options with the

install.sh script:

$ sudo ./install.sh -n

Step 3: Run install script with -n option

Installation options

Command-line options

5/13/25, 9:12 PM 3.3

745

Command-line options for install.sh
Usage:
./install.sh [-n] [-u <user>] [-p <password>] [-r <tigergraph_root_dir>] [
./install.sh -h
Options:
 -h -- Show help information
 -u -- Username of Linux user to create [default: tigergraph]
 -p -- Password of Linux user to create [default: tigergraph]
 -l -- TigerGraph license key
 -n -- Non-interactive option: suppress prompts, and install
 using default config
 -F -- Set iptables (firewall) rules to open TCP ports among cluster no
 -N -- Set NTP system time synchronization among cluster nodes

[NOTE]: Using option '-n' will non-interactively install the platform
 on single node or cluster with all configurations from
 config file "install_config.json". In this case, the config
 file should be modified before installation.

[WARNING]: Installer will fail if any option (except -F and -N)
 is provided with option '-n' at the same time.

5/13/25, 9:12 PM 3.3

746

Upgrading an Existing Installation
This page describes the steps to upgrade an existing installation of TigerGraph to

TigerGraph 3.3.

This page lists all the versions you can upgrade from through self-service. If you are

trying to upgrade a production system to 3.3 from a different version than those

listed on this page, please first follow the corresponding guide to upgrade to one of

the versions listed on this page, and then upgrade to 3.3 from that version, or

contact TigerGraph Support .

If you are running a production system, please contact TigerGraph Support before
upgrading to 3.3.

Any 3.x version of TigerGraph can up upgraded to another v3.x version by running

the installation script with the upgrade(-U) flag.

1. Download the version of TigerGraph to your system.

2. Extract the tarball.

3. Run the install script under the Linux user created during installation with the

upgrade flag (-U) that was extracted from the tarball:

$./install.sh -U

Upgrading from v3.2

5/13/25, 9:12 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com

747

HA Cluster Configuration
A TigerGraph system with High Availability (HA) is a cluster of server machines

which uses replication to provide continuous service when one or more servers are

not available or when some service components fail. TigerGraph HA service

provides load balancing when all components are operational, as well as automatic

failover in the event of a service disruption. The replication factor is the number of

copies of data. In contrast, the partitioning factor is the number of machines across

which one copy of the database is distribution.

If the replication factor is 2, a fully-functioning system maintains two copies of the

data, stored on separate machines. Users can choose a higher replication factor for

greater query throughput and greater system resiliency.

• The total cluster size should be (partitioning factor) X (replication factor).

• The smallest possible distributed database with HA is 2 x 2 = 4 machines.

• The smallest possible non-distributed database with HA is 1 x 3 = 3 machines.

• There is no upper limit for either partitioning factor or replication factor.

• The same version of the TigerGraph software package is installed on each

machine.

Replication factor vs. partitioning factor

System Requirements

5/13/25, 9:12 PM 3.3

748

Starting from version 3.0, configuring a HA cluster is part of platform installation.

See the Installation Guide page for details.

HA configuration can only be done at the time of system installation and before
deploying the system for database use. HA configuration change after installation is
not supported. Converting a non-HA system to an HA cluster would require reinstalling
all the TigerGraph components and rebuilding the database from the start.

During TigerGraph platform installation, specify the replication factor. The default

value for replication factor is 1, which means there is no HA setup for the cluster.

The user does not explicitly set the partitioning factor. Instead, the TigerGraph

system will set

partitioning factor = (number of machines / replication factor)

If the division does not produce an integer, some machines will be left unused.

Example: If you install a 7-node cluster with replication factor = 2, the resulting

configuration will be 2-way HA for a database with with a partitioning factor of 3.

One machine will be unused.

Configuring HA

5/13/25, 9:12 PM 3.3

749

Uninstallation
To uninstall TigerGraph, open the command line of the Linux server and switch to

the TigerGraph user, which is created during installation:

Then as the TigerGraph user, run the following Linux command:

If you have the TigerGraph platform installed on a multi-node cluster, when running

the guninstall command on a single node in the cluster, you will have the option

to uninstall TigerGraph from all of the nodes in the cluster or just a single node.

$ su - <username> # Default username is tigergraph

$ guninstall

5/13/25, 9:12 PM 3.3

750

High Availability Support
for GSQL Server

By Design, TigerGraph has built-in HA for all the internal critical components from

the beginning. This includes GPE, GSE, REST API Servers, etc. However, the user-

facing applications (GSQL and GraphStudio) were designed to be set up by

customers based on their High Availability (HA) needs. This included building

solutions using non-TigerGraph components. With 3.1 release, TigerGraph will

support native HA functionality for user-facing applications as well. This simplifies

and streamlines HA deployment for users completely. For Operations personnel, this

will reduce the operational overhead while enhancing the availability for end users.

Before we elaborate the design, we need to understand the topology of how

TigerGraph services are deployed in a cluster. TigerGraph nodes in a cluster are

organized as ‘m1 ,̓ ‘m2 ,̓ and so on. Although all nodes in the cluster serve the same

function - store data and participate in query execution, m1 is a special node. GSQL

server runs on this node to address critical services such as storing client metadata

as well as managing connections between client and server. With this feature, m1

will no longer serve as the only node for GSQL server connections. In the new

design, other nodes will run standby GSQL servers to provide high availability for

client connections.

In the 3.1 release, primary GSQL server will continue to perform all the tasks handled

by GSQL server prior to 3.1 release. This includes:

Introduction:

Overview of the design:

Role of Primary GSQL server

5/13/25, 9:12 PM 3.3

751

1. Process client connections

2. Querying requests from GSQL clients

3. User management requests including token management

In addition to these, when Primary fails, a standby server will switch to become the

Primary server, and when the old Primary server is back to normal function, it will

become a GSQL Standby server.

1. Redirect requests to Primary Server

2. Help Primary server to check for source data file existence and parse file header

(if ANY is chosen)

There is no change in how GSQL Client works.

Users store the following data on m1 node that is needed for query execution:

• GSQL loader's Token functions

• ExprFunctions

• ExprUtil

This is part of the user source code that TigerGraph system uses to compile. Prior to

3.1 release, this information is available to GSQL server only on m1 node. Typically,

users can modify these files directly on the machine. But with HA, the Primary GSQL

may not be in m1, and can be switched to any other machine at any time. Users have

Role of Standby GSQL Servers

Role of GSQL Client

User Impact and Changes:

User Source Code Maintenance

5/13/25, 9:12 PM 3.3

752

to make sure all the machines have the same content whenever there are updates to

the files. This is a new requirement for users.

GSQL server will retrieve the User source code files in the following priority order

when it needs them:

• Via github/github enterprise (if configuration is set),

• Files uploaded via PUT,

• Default files that are shipped with the product

This requires public network access, or github enterprise server access. User need

to provide the following gadmin configuration:

Example:

When GSQL server needs to compile the files, it will retrieve them from github if the

GitHub access is configured as above. It will retry 3 times, with timeout=5s for each

time. If the connection fails, it will go to the next priority level method, i.e. file

uploaded via PUT.

GSQL.GithubUserAcessToken # the credential, or "anonymous", empty means no
GSQL.GithubRepository # e.g. tigergraph/ecosys
GSQL.GithubBranch # optional, o/w use "master" branch, e.g. demo_g
GSQL.GithubPath # path to the directory in the github that has T
GSQL.GithubUrl # optional, used for github enterprise, e.g. htt

gadmin config set GSQL.GithubUserAcessToken anonymous
gadmin config set GSQL.GithubRepository tigergraph/ecosys
gadmin config set GSQL.GithubBranch demo_github
gadmin config set GSQL.GithubPath sample_code/src
gadmin config apply

User source code in github code repository

User Source code maintenance for local files in the cluster:

5/13/25, 9:12 PM 3.3

753

We are introducing new GSQL commands to address this need. These commands

will allow users to upload and download the user source files.

Upload source code

Example:

Download source code

Example:

The uploaded files will be saved to all nodes. Users will need to have either

‘superuserʼ and ‘global_designerʼ roles to have the sufficient privileges to run the

PUT/GET commands.

PUT TokenBank FROM "path/to/a/file"
PUT ExprFunctions FROM "path/to/a/file"
PUT ExprUtil FROM "path/to/a/file"

temp_TokenBank=$tempDir/tmp_TokenBank.cpp
temp_ExprFunctions=$tempDir/tmp_ExprFunctions.hpp
temp_ExprUtil=$tempDir/tmp_ExprUtil.hpp

eval gsql 'PUT TokenBank FROM \"$temp_TokenBank\"'
eval gsql 'PUT ExprFunctions FROM \"$temp_ExprFunctions\"'
eval gsql 'PUT ExprUtil FROM \"$temp_ExprUtil\"'

GET TokenBank TO "path/to/a/file"
GET ExprFunctions TO "path/to/a/file"
GET ExprUtil TO "path/to/a/file"

temp_TokenBank2=$tempDir/tmp_TokenBank_2.cpp
temp_ExprFunctions2=$tempDir/tmp_ExprFunctions_2.hpp
temp_ExprUtil2=$tempDir/tmp_ExprUtil_2.hpp

echo "GET TokenBank.cpp, ExprFunctions.hpp and ExprUtil.hpp to current nod

eval gsql 'GET TokenBank TO \"$temp_TokenBank2\"'
eval gsql 'GET ExprFunctions TO \"$temp_ExprFunctions2\"'
eval gsql 'GET ExprUtil TO \"$temp_ExprUtil2\"'

5/13/25, 9:12 PM 3.3

754

When calling GET command, the user can download the corresponding file from the

Primary node, to a local directory at the current cluster node.

When calling PUT command, the local file will be copied to all of the cluster nodes,

including itself.

Example usage scenario to update of the files is as follows:

For each cluster node, TokenBank.cpp is stored at:

ExprFunctions.hpp and ExprUtil.hpp files are stored at:

Full path should be provided including the file name for PUT/GET, eg:

Notice that in the first command, we use absolute path, while in the second

command, we use relative path. Both are supported. But “~” is not supported (eg:

“~/tmp/x.hpp”).

Additionally, users can also use the commands in the following manner as well:

• Use a folder name, and automatically default name will be added. For example:

It will use ExprFunctions.hpp under the directory "/home/path/tmp" for PUT.

// Download the current file via GET, or create a new file from draft;
GET TokenBank TO "/myFolder/file.cpp"
// Upload the file via PUT
PUT TokenBank FROM "/myFolder/file.cpp"

 $(gadmin config get System.DataRoot)/gsql/tokenbank/

 $(gadmin config get System.DataRoot)/gsql/udf/

put ExprFunctions from "/home/path/tmp/ExprFunc.hpp"
get TokenBank to "doc/path/tmp/myTB.cpp"

put ExprFunctions from "/home/path/tmp"

5/13/25, 9:12 PM 3.3

755

It will create/overwrite the file "home/path/tmp/TokenBank.cpp".

If the file name is given in the path, its file extension must be consistent with the

corresponding file. For example:

is not allowed, since PUT/GET ExprFunctions must use “.hpp” as file extension.

If the corresponding file is not found, the GSQL Primary server will use the default

file in the package. These default files are at:

In Pre-3.1 release design, the file path used in loading jobs refers to the file in m1,

unless the user specifies machine name before the path (ALL, ANY, m1, m2,…). In

the new HA design, the Primary server can be running on any machine, and can be

switched. This means GSQL server may or may not find the file. To be back-

compatible we prefix a machine name if the client is in TigerGraph cluster.

Users can specify the node ID before the path using: ALL, ANY, m1, m2 and so forth.

Declaring ALL or ANY as host ID will load files from every cluster node.

User can use form like “m1|m3|m4” to declare the combination of several nodes.

If the hosts are not specified, it will look for the host ID of the current node that is

running the loading job, (through searching the nodes in $(gadmin config get

get TokenBank to "home/path/tmp/"

put ExprFunctions from "/home/path/tmp/test1.gsql"

$(gadmin config get System.AppRoot)/dev/gdk/gsql/src/TokenBank/TokenBank.c
$(gadmin config get System.AppRoot)/dev/gdk/gsql/src/QueryUdf/ExprUtil.hpp
$(gadmin config get System.AppRoot)/dev/gdk/gsql/src/QueryUdf/ExprFunction

Default file shipped with TigerGraph package

File Path Configuration

5/13/25, 9:12 PM 3.3

756

GSQL.BasicConfig.Nodes)). If not found, it will use node “m1” by default.

Data source can be created and used with a file path or a JSON string, same as

above.

GSQL client can connect to GSQL server in the different ways with the following

priority order:

Users can specify the ip and port when calling GSQL client using “gsql -i” or “gsql -

ip”. For example:

GSQL clients will try these ips and ports one by one. Notice the port is optional, it

will use 14240 by default, which is the default port for GSQL server.

current refers to /path/to/csv in m1
LOAD "/path/to/csv" TO VERTEX vt VALUES($0)
LOAD "ALL:/path/to/csv" TO VERTEX vt VALUES($0)
LOAD "m1|m2:/path/to/csv" TO VERTEX vt VALUES($0)

create data_source kafka k1 for graph poc_graph
set k1 = "/tmp/kafka_config.json"
create data_source kafka k2 = "/tmp/kafka_config.json"

CREATE LOADING JOB load_kafka FOR GRAPH poc_graph {
 DEFINE FILENAME f1 = "$k1:/tmp/topic_partition_config.json";
 LOAD f1
 TO VERTEX MyNode VALUES ($2)
 USING SEPARATOR="|";
}

gsql -ip 192.168.11.32:14240,192.168.11.34:14240,192.168.11.36

GSQL Client connection setup:

Using IP address:

Using GSQL IP Configuration:

5/13/25, 9:12 PM 3.3

757

If “gsql -i” or “gsql -ip” are not used, GSQL client will search the file

gsql_server_ip_config where the user runs the GSQL client. The file

gsql_server_ip_config should be a one-line file such as shown below. GSQL client

will traverse the ips and ports in the file in its order.

Similarly, the port number is also optional, using 14240 by default.

If “gsql -i” or “gsql -ip” are not used, and the file gsql_server_ip_config does not

exist where “gsql” is called, GSQL client will try to connect to the local server

(127.0.0.1:8123).

Use gadmin config to get/set the following configurations related to GSQL High

Availability.

The first is the heartbeat interval in milliseconds. The second (“max misses”) is the

total timeout for switching to the Primary server which will measure the number of

heartbeat intervals. It must be at least 2 to allow 1 heartbeat miss.

For example, if we use “IntervalMS = 2000” and “max misses = 4” as shown above,

then the total timeout is 2s×4 = 8 seconds. So the current Primary server will be

switched if its heartbeat has stopped for more than 8 seconds.

172.18.0.101,172.18.0.102:14240,172.18.0.103:14240

Controller.LeaderElectionHeartBeatIntervalMS = 2000
Controller.LeaderElectionHeartBeatMaxMiss = 4

Using default local server:

Setting GSQL HA Configuration

5/13/25, 9:12 PM 3.3

758

High Availability Support
for Application Server

TigerGraph supports native HA functionality for its application server, which serves

the APIs for TigerGraph's GUI - GraphStudio and Admin Portal. The application

server follows the active-active architecture, in which the server is always on m1

and all replicas of m1. If one server falls offline, you can use the other servers

without any loss of functionality.

When you deploy TigerGraph in a cluster with multiple replicas, it is ideal to set up

load balancing to distribute network traffic evenly across the different servers. This

page discusses what to do when a server dies when you haven't set up load

balancing, and the steps needed to set up load balancing for the application server.

When a server dies, users can proceed to the next available server within the cluster

to resume the operations. For example, assuming the TigerGraph cluster has

Application Server on m1 and m2. If the server on m1 dies, users can access m2 to

use GraphStudio and Admin Portal.

To find out which node hosts the application server, run the gssh command in the

bash terminal of any active node in the cluster. The output will show you which

nodes are hosting a GUI server.

Keep in mind that any long-running operation that is currently in process when the

server dies will be lost.

Introduction

When a server dies

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/v/3.2/admin/admin-guide/system-management/advanced-platform-operations#show-deployment-information
https://docs.tigergraph.com/v/3.2/admin/admin-guide/system-management/advanced-platform-operations#show-deployment-information

759

When you deploy TigerGraph in a cluster with multiple replicas, it is ideal to set up

load balancing to distribute network traffic evenly across the different servers.

One possible choice for setting up load balancing is through the use of Nginx.

Here is an example Nginx configuration for the upstream and server directives:

 upstream flask_pool {
 ip_hash;
 zone flask_pool 64k;
 server 172.31.86.19:14240;
 server 172.31.88.70:14240;
 server 172.31.94.90:14240;

 keepalive 32;
 }

 server {
 listen 8000;
 server_name localhost;

 location / {
 root html;
 index index.html index.htm;
 proxy_pass http://flask_pool;
 proxy_read_timeout 3600;
 proxy_set_header Connection "";
 proxy_http_version 1.1;
 chunked_transfer_encoding off;
 proxy_buffering off;
 proxy_cache off;
 }
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root html;
 }
 }

Load Balancing

Set up load balancing with Nginx

5/13/25, 9:12 PM 3.3

760

The server directives should specify your nodes' addresses which you want to load

balance. Since TigerGraph requires session persistence, the load balancing

methods will be limited to ip_hash or hash, unless you have access to Nginx Plus,

which then means any load balancing method may be used with session persistence

setup: https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-

balancer/#sticky

An active health check can be set on the following endpoint if using Nginx Plus:

/api/ping

Otherwise, only a passive health check is available. See Nginx documentation for

more information: https://docs.nginx.com/nginx/admin-guide/load-balancer/http-

health-check/

If your applications are provisioned on AWS, another choice for load balancing is

through the use of an Application Load Balancer .

To create an application load balancer, follow AWS's guide to create an application

load balancer . The following configurations apply as you follow the guide:

When creating or using an existing security group in Step 3, make sure it allows

requests from the load balancer to port 14240 of the instances in the target group.

In Step 4, set the health check URL to /api/ping

In Step 5, enter 14240 for the port of your instances.

Set up AWS Elastic Load Balancer

Configure a security group

Health check URL

Configure targets for the target group

5/13/25, 9:12 PM 3.3

https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#sticky
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#sticky
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/#sticky
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-health-check/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-health-check/
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-health-check/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-application-load-balancer.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-application-load-balancer.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-application-load-balancer.html

761

After following the steps and creating your load balancer, enable sticky sessions in

your target group.

After successfully creating your load balancer, you should now be able to access

GraphStudio through the load balancer's DNS name. The DNS name can be found

under the "Description" tab of your load balancer in the Amazon EC2 console.

If your instances are provisioned on Azure, you can set up an Application Gateway

.

Follow the steps for setting up an Application Gateway outlined here: Quickstart:

Direct web traffic using the portal - Azure Application Gateway

Some different TigerGraph specific settings are required during Application Gateway

setup:

• Under the section “Configuration Tab”

◦ For step 5, where it states to use port 80 for the backend port, use port

14240 instead.

◦ In the same window, enable “Cookie-based affinity”.

After the Application Gateway is complete, we need to create a custom health probe

in order to check the health/status of our Application Servers. You can follow the

following steps outlined here: Create a custom probe using the portal - Azure

Application Gateway

When filling out the health probe information, the fields below should have the

following values:

Enable sticky sessions

Set up Azure Application Gateway

Create a custom probe for Application Gateway

5/13/25, 9:12 PM 3.3

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/sticky-sessions.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/sticky-sessions.html
https://docs.microsoft.com/en-us/azure/application-gateway/overview
https://docs.microsoft.com/en-us/azure/application-gateway/overview
https://docs.microsoft.com/en-us/azure/application-gateway/quick-create-portal
https://docs.microsoft.com/en-us/azure/application-gateway/quick-create-portal
https://docs.microsoft.com/en-us/azure/application-gateway/quick-create-portal
https://docs.microsoft.com/en-us/azure/application-gateway/application-gateway-create-probe-portal
https://docs.microsoft.com/en-us/azure/application-gateway/application-gateway-create-probe-portal
https://docs.microsoft.com/en-us/azure/application-gateway/application-gateway-create-probe-portal

762

Pick port from backend HTTP settings: yes

Path: /api/ping

HTTP Settings: The HTTP settings associated with the backend pool create during

the Application Gateway setup

After successfully creating the Application Gateway, you should now be able to

access GraphStudio from the frontend IP associated with the Application Gateway.

If your instances are provisioned on Google Cloud, you can set up an External

HTTP(s) Load Balancer :

You can follow Googleʼs provided steps in their documentation for setup here:

Setting up an external HTTPS load balancer | Identity-Aware Proxy

When creating the instance group :

• Click “Specify port name mapping”, and use 14240 for the port

When setting up the health check :

• For the port, use 14240.

• For the path, use /api/ping .

Lastly, we need to set up session affinity for our load balancer. This is outlined in

GCP documentation here: External HTTP(S) Load Balancing overview | Google

Cloud

After successfully creating the load balancer, you should now be able to access

GraphStudio from the frontend IP associated with the load balancer.

Set up GCP External HTTP(s) Load Balancer

5/13/25, 9:12 PM 3.3

https://cloud.google.com/load-balancing/docs/https
https://cloud.google.com/load-balancing/docs/https
https://cloud.google.com/load-balancing/docs/https
https://cloud.google.com/iap/docs/load-balancer-howto
https://cloud.google.com/iap/docs/load-balancer-howto
https://cloud.google.com/iap/docs/load-balancer-howto
https://cloud.google.com/iap/docs/load-balancer-howto#mig
https://cloud.google.com/iap/docs/load-balancer-howto#mig
https://cloud.google.com/load-balancing/docs/health-checks
https://cloud.google.com/load-balancing/docs/health-checks
https://cloud.google.com/load-balancing/docs/https#session_affinity
https://cloud.google.com/load-balancing/docs/https#session_affinity
https://cloud.google.com/load-balancing/docs/https#session_affinity

763

Advanced License Issues
This guide covers two advanced license issues:

1. Activating a System-Specific License

2. Usage limits enforced by certain license keys

This section provides step-to-step instructions for activating or renewing a

TigerGraph license, by generating and installing a license key unique to that

TigerGraph system. This document applies to both non-distributed and distributed

systems. In this document, a cluster acting cooperatively as one TigerGraph

database is considered one system.

A valid license key activates the TigerGraph system for normal operation. A license

key has a built-in expiration date and is valid on only one system. Some license keys

may apply other restrictions, depending on your contract. Without a valid license

key, a TigerGraph system can perform certain administrative functions, but

database operations will not work.

To activate a new license, a user first configures their TigerGraph system. The user

then collects the fingerprint of the TigerGraph system (license seed) using a

TigerGraph-provided utility program. Then the collected materials are sent to

TigerGraph or an authorized agent via email or web form. TigerGraph certifies the

license based on the collected materials and sends a license key back to the user.

The user then installs the license key on their system using another TigerGraph

command. A new license key (e.g., one with a later expiration) can be installed on a

live system that already has a valid license; the installation process does not disrupt

database operations.

If your system is currently using an older string-based license key that does not use a
license seed, please contact support@tigergraph.com for the procedure to upgrade
to the new system-specific license type.

System-Specific License Activation

5/13/25, 9:12 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com

764

Before beginning the license activation process, the TigerGraph package must be
installed on each server, and the TigerGraph system must be configured with gadmin.

1. Collect the fingerprint of the whole TigerGraph system using the command

gadmin license seed <host_signature_type> , which can be executed on any
machine in the system. The command packs all the collected data to generate

the license seed and writes it into a file. When the command has completed

successfully, it outputs the path of the file to the console.

Depending on the host machine, the user needs to choose the appropriate type

of host signature for gadmin to collect. The options are: aws . azure , gcp ,

hardware, and node-id . If you are generating the seed on a cloud instance,
choose the corresponding cloud provider for the host signature type. If you are

generating the seed on your own machines, choose either hardware or node-
id . Signatures generated with the hardware parameter will use unique

hardware information that persists through software changes, while signatures
generated with node-id will use a unique machine ID that may change during

an OS reinstall. Most users installing their own instances should use the

hardware option.

2. Send the license seed file to TigerGraph, either through our license activation
web portal (preferred) or by email to license@tigergraph.com. If using email,

please include the following information:

a. Company/Organization name

b. Contract number. If you do not know your contract number, please contact

your sales representative or sales@tigergraph.com.

3. A new license key file will be certificated and sent back to you.

4. Copy the license key file to a directory on the TigerGraph system where the
TigerGraph Linux user has read permission.

5. Run the following three commands to install the license key:

$ gadmin license seed hardware
[Info] seed generated at: ./tigergraph_v3_seed, please send it to T

Step-by-Step Guide

Collect Fingerprint of TigerGraph System

5/13/25, 9:12 PM 3.3

https://man7.org/linux/man-pages/man5/machine-id.5.html#:~:text=The%20%2Fetc%2Fmachine%2Did,may%20not%20be%20all%20zeros.
https://man7.org/linux/man-pages/man5/machine-id.5.html#:~:text=The%20%2Fetc%2Fmachine%2Did,may%20not%20be%20all%20zeros.
mailto:license@tigergraph.com.
mailto:license@tigergraph.com.
mailto:sales@tigergraph.com.
mailto:sales@tigergraph.com.

765

If the installation completes successfully, the message "install license successfully"

will be displayed in the console.

After a license key has been installed successfully on a TigerGraph system, the

information of the installed license is available via either the CLI command gadmin

license status or via the following REST API:

$ gadmin license set <new_license_key>
[Info] Configuration has been changed.
Please use 'gadmin config apply' to persist the changes.

$ gadmin config apply
[Warning] No difference from staging config, config apply is skipped.
[Info] Successfully applied configuration change. Please restart se

$ gadmin restart
[Note] Restart the service(s)? (y/N)y
[Info] Stopping DICT ADMIN GSE NGINX GPE RESTPP KAFKASTRM-LL KAFKACO
[Info] Starting ZK ETCD DICT KAFKA ADMIN GSE NGINX GPE RESTPP KAFKAS

 $ curl -X GET "localhost:9000/showlicenseinfo"
 {
 "message": "",
 "error": false,
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2",
 }
 "code": "",
 "results": [
 {
 "Days remaining": 10160,
 "Expiration date": "Mon Oct 2 04:00:00 2045\n"
 }
]
 }

Checking License Information

Get License Information

5/13/25, 9:12 PM 3.3

766

Some license keys include a limit on the graph size, or on the number and size of

machines which may be used, or restrict the use of certain optional features. In the

case of a memory usage or graph size limit, when a TigerGraph system reaches its

license's limit, additional data will not be loaded into the graph. You may still query

the graph and delete data. To check whether or not you have exceeded your license

limits, use the command gstatusgraph and collect the VertexCount, EdgeCount, and

Partition Size. Compare this information to the limits established for your license.

The output may include a warning message such such as the following:

~/tigergraph/loadingData$ gstatusgraph
=== graph ===
[GRAPH] Graph was loaded (/home/tigergraph/tigergraph/data/gstore/0/part
[m1] Partition size: 23KiB, IDS size: 47KiB, Vertex count: 5, Edge co
[WARN] Above vertex and edge counts are for internal use which show app

[Warning] License limit exceeded. The system is running in limited capacit

Usage Limits Controlled by License Key

Checking graph limits

5/13/25, 9:12 PM 3.3

767

Kubernetes
Users can deploy TigerGraph single servers and clusters in Kubernetes on Docker

Desktop locally, or on any cloud provider of their choice.

Known issue: TigerGraph 3.3 deployments on Kubernetes do not support backup or
restore.

• Quickstart with Docker Desktop

• Quickstart with GKE

• Quickstart with EKS

• Quickstart with AKS

5/13/25, 9:12 PM 3.3

768

Quickstart with Docker Desktop
This guide provides instructions to deploy a single-server TigerGraph instance to a

local Kubernetes cluster via Docker Desktop.

• Install Docker Desktop on your computer.

• Install the Kubernetes CLI kubectl .

• Enable the Docker Desktop Kubernetes engine. For more information, see

Docker official documentation .

• Verify that you have sufficient CPU, RAM and DISK for your TigerGraph

deployment.

Download tigergraph-docker.yaml . This is the file that describes your

Kubernetes deployment.

Make sure that you have configured kubectl to use the correct context. In this

case, the name of the context should be docker-desktop . Then run kubectl

apply to create the deployment. Replace <path_to_tigergraph.yaml> with the

path to the tigergraph-docker.yaml file you downloaded in the step before.

$ kubectl apply -f <path_to_tigergraph.yaml>

Before you begin

Procedure

1. Download Kubernetes manifest

2. Create deployment

5/13/25, 9:12 PM 3.3

https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://docs.docker.com/desktop/kubernetes/
https://docs.docker.com/desktop/kubernetes/
https://raw.githubusercontent.com/tigergraph/ecosys/053b9abe8610e9a63d6fbfc1f4d4b0618841467f/k8s/deploy/tigergraph-docker.yaml
https://raw.githubusercontent.com/tigergraph/ecosys/053b9abe8610e9a63d6fbfc1f4d4b0618841467f/k8s/deploy/tigergraph-docker.yaml

769

Verify that the pods were created successfully:

The deployment maps port 9000 of the pod to port 30090 of localhost . We can

test that the REST API is up and running by making a curl call to port 30090:

Port 14240 of the pod is mapped to port 30240 of localhost . Visit

http://localhost:30240 to access GraphStudio.

Run the following command to delete all cluster resources:

$ kubectl get pods -l app=tigergraph -w

$ curl http://localhost:30090/echo
{"error":false, "message":"Hello GSQL"}%

$ kubectl delete -f <path_to_tigergraph.yaml> && kubectl delete pvc -l ap

3. Verify deployment

4. Test deployment

Cleanup

5/13/25, 9:12 PM 3.3

770

Quickstart with GKE
This is a quick start guide for deploying TigerGraph on Kubernetes with Google

Kubernetes Engine (GKE).

• Single-server deployment

• Cluster-deployment

• The gcloud command-line interface (CLI) is installed on your machine.

• The kubectl Kubernetes client command-line tool is installed on your
machine.

• A running GKE cluster with nodes that meet the minimum hardware and

software requirements for running TigerGraph.

• You have configured cluster access for kubectl .

This section describes the steps to deploy, verify, and remove a single-server

deployment of TigerGraph on GKE.

Step 1: Generate deployment manifest. Clone the TigerGraph ecosystems

repository and change into the k8s directory. You can edit the

kustimization.yaml file in the gke folder to change the namespace and image

name for your deployment. The default namespace is default . No need to edit the

files if no changes are needed.

Next, run the ./tg script in the k8s directory to generate the deployment manifest

for a single-server deployment. A deploy directory will be created automatically

Prerequisites

Single-server deployment

Deploy single server

5/13/25, 9:12 PM 3.3

https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/install
https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl
https://github.com/tigergraph/ecosys
https://github.com/tigergraph/ecosys
https://github.com/tigergraph/ecosys

771

and you should find the manifest named tigergraph-gke.yaml in the directory.

Step 2: Deploy manifest. Run kubectl apply to create the deployment using the

manifest you generated in Step1.

Run kubectl get pods to confirm that the pods were created successfully:

Run kubectl describe service/tg-external-service to find the IP address of the

load balancer. You can then make curl calls to port 9000 to make sure that RESTPP

is running:

You can also copy the IP address into your browser and visit port 14240 to make

sure that GraphStudio is working.

$./tg gke kustomize -s 1

$ kubectl apply -f deploy/tigergraph-gke.yaml

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
installer-zsnb4 1/1 Running 0 4m11s
tigergraph-0 1/1 Running 0 4m10s

$ curl <load_balancer_ip>:9000/echo | jq .
 % Total % Received % Xferd Average Speed Time Time Time Cu
 Dload Upload Total Spent Left Sp
100 39 100 39 0 0 120 0 --:--:-- --:--:-- --:--:--
{
 "error": false,
 "message": "Hello GSQL"
}

Verify single server

Connect to single server

5/13/25, 9:12 PM 3.3

772

You can use kubectl to get a shell to the container or log in via ssh

To use GraphStudio, copy the IP address into your browser and visit port 14240.

Run the command below to delete all cluster resources:

Once your GKE cluster is ready, you can start following the below steps to deploy a

TigerGraph cluster on Kubernetes.

Clone the TigerGraph ecosystem repository and change into the k8s directory:

You can customize your deployment by editing the kustomize.yaml file in the gke

directory. The tg script in the k8s folder offers a convenient way to make

Via kubectl
kubectl exec -it tigergraph-0 -- /bin/bash

Via ssh
ip_m1=$(kubectl get pod -o wide |grep tigergraph-0| awk '{print $6}')
ssh tigergraph@ip_m1

$ kubectl delete -f deploy/tigergraph-gke.yaml && kubectl delete pvc -l ap

$ git clone https://github.com/tigergraph/ecosys.git
$ cd ecosys/k8s

Remove single server resources

Cluster deployment

Deploy TigerGraph cluster

1. Generate Kubernetes manifest

5/13/25, 9:12 PM 3.3

https://github.com/tigergraph/ecosys.git
https://github.com/tigergraph/ecosys.git

773

common customizations such as namespace, TigerGraph version, as well as cluster

size. Run ./tg -h to view the help text on how to use the script.

Use the tg script in the k8s directory of the repo to create a Kubernetes manifest.

Use -s or --size to indicate the number of nodes in the cluster. Use the --ha

option to indicate the replication factor of the cluster, and the partitioning factor will

be the number of nodes divided by the replication factor.

For example, the following command will create a manifest that will deploy a 3*2

cluster with a replication factor of 2 and a partitioning factor of 3. The --version

flag specifies the version of TigerGraph to use for the deployment.

The command will create a directory named deploy with the manifest inside.

Run kubectl apply to create the deployment

Run kubectl get pods to verify the pods were created successfully:

Run kubectl describe service/tg-external-service to find the IP address of the

load balancer for your GKE cluster. You can make a curl call to port 9000 to make

sure that RESTPP is working:

$./tg gke kustomize -s 6 --ha 2 --version 3.2.0

$ kubectl apply -f ./deploy/tigergraph-gke.yaml

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
installer-zsnb4 1/1 Running 0 4m11s
tigergraph-0 1/1 Running 0 4m10s
tigergraph-1 1/1 Running 0 75s

2. Deploy the cluster

Verify cluster

5/13/25, 9:12 PM 3.3

774

You can also copy the IP address into your browser and visit port 14240 to make

sure that GraphStudio is working.

You can use kubectl to get a shell to the container or log in via ssh

To use GraphStudio, copy the IP address into your browser and visit port 14240.

Run the command below to delete all cluster resources:

$ curl <load_balancer_ip>:9000/echo | jq .
 % Total % Received % Xferd Average Speed Time Time Time Cu
 Dload Upload Total Spent Left Sp
100 39 100 39 0 0 120 0 --:--:-- --:--:-- --:--:--
{
 "error": false,
 "message": "Hello GSQL"
}

Via kubectl
kubectl exec -it tigergraph-0 -- /bin/bash

Via ssh
ip_m1=$(kubectl get pod -o wide |grep tigergraph-0| awk '{print $6}')
ssh tigergraph@ip_m1

$ kubectl delete -f deploy/tigergraph-gke.yaml && kubectl delete pvc -l ap

Connect to instances

Delete cluster resources

5/13/25, 9:12 PM 3.3

775

Quickstart with EKS
This is a quickstart guide for deploying TigerGraph in Kubernetes on AWS's Elastic

Kubernetes Service (EKS).

• Single-server deployment

• Cluster deployment

• Provision Kubernetes cluster on EKS with nodes that meet the hardware and

software requirements to run TigerGraph.

• Install kubectl on your machine, and make sure your local kubectl version
is within one minor version's difference from the kubectl version on your

cluster.

• Configure kubectl for EKS cluster access.

This section describes the steps to deploy, verify, and remove a single-server

deployment of TigerGraph on EKS.

Step 1: Generate deployment manifest. Clone the TigerGraph ecosystems

repository and change into the k8s directory. You can edit the

kustimization.yaml file in the eks folder to change the namespace and image

name for your deployment. The default namespace is default . No need to edit the

files if no changes are needed.

Next, run the ./tg script in the k8s directory to generate the deployment manifest

for a single-server deployment. A deploy directory will be created automatically

and you should find the manifest named tigergraph-eks.yaml in the directory.

Before you begin

Single-server deployment

Deploy single server

5/13/25, 9:12 PM 3.3

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://github.com/tigergraph/ecosys.git
https://github.com/tigergraph/ecosys.git
https://github.com/tigergraph/ecosys.git

776

Step 2: Deploy manifest. Run kubectl apply to create the deployment using the

manifest you generated in step1.

After you create the deployment, run kubectl get pods to verify that the pods

were created successfully.

Run kubectl describe service/tg-external-service to find the IP address of the

load balancer. You can then make curl calls to port 9000 to make sure that RESTPP

is running:

You can also copy the IP address into your browser and visit port 14240 to make

sure that GraphStudio is working.

You can use kubectl to get a shell to the container or log in via ssh

./tg eks kustomize -s 1

kubectl apply -f deploy/tigergraph-eks.yaml

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
installer-zsnb4 1/1 Running 0 4m11s
tigergraph-0 1/1 Running 0 4m10s

$ curl <load_balancer_ip>:9000/echo | jq .
 % Total % Received % Xferd Average Speed Time Time Time Cu
 Dload Upload Total Spent Left Sp
100 39 100 39 0 0 120 0 --:--:-- --:--:-- --:--:--
{
 "error": false,
 "message": "Hello GSQL"
}

Verify single server

Connect to single server

5/13/25, 9:12 PM 3.3

777

To use GraphStudio, copy the IP address into your browser and visit port 14240.

Run the command below to delete all cluster resources:

This section describes the steps to deploy, verify, and remove a TigerGraph cluster

in Kubernetes on EKS.

Clone the TigerGraph ecosystem repository and change into the k8s directory:

You can customize your deployment by editing the kustomize.yaml file in the aks

directory. The tg script in the k8s folder offers a convenient way to make

common customizations such as namespace, TigerGraph version, as well as cluster

size. Run ./tg -h to view the help text on how to use the script.

Via kubectl
kubectl exec -it tigergraph-0 -- /bin/bash

Via ssh
ip_m1=$(kubectl get pod -o wide |grep tigergraph-0| awk '{print $6}')
ssh tigergraph@ip_m1

$ kubectl delete -f deploy/tigergraph-eks.yaml && kubectl delete pvc -l ap

$ git clone https://github.com/tigergraph/ecosys.git
$ cd ecosys/k8s

Remove single server resources

Cluster deployment

Deploy TigerGraph cluster

1. Generate Kubernetes manifest

5/13/25, 9:12 PM 3.3

778

Use the tg script at in the k8s directory of the repo to create a Kubernetes

manifest. Use -s or --size to indicate the number of nodes in the cluster. Use the

--ha option to indicate the replication factor of the cluster; the partitioning factor

will be the number of nodes divided by the replication factor.

For example, the following command will create a manifest that will deploy a 3*2

cluster with a replication factor of 2 and a partitioning factor of 3. The --version

flag specifies the version of TigerGraph to use for the deployment.

The command will create a directory named deploy with the manifest inside.

Run kubectl apply to create the deployment

Run kubectl get pods to verify the pods were created successfully:

Run kubectl describe service/tg-external-service to find the IP address of the

load balancer for your EKS cluster. You can make a curl call to port 9000 to make

sure that RESTPP is working:

$./tg eks kustomize -s 6 --ha 2 --version 3.2.0

$ kubectl apply -f ./deploy/tigergraph-eks.yaml

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
installer-zsnb4 1/1 Running 0 4m11s
tigergraph-0 1/1 Running 0 4m10s
tigergraph-1 1/1 Running 0 75s

2. Deploy the cluster

Verify cluster

5/13/25, 9:12 PM 3.3

779

You can also copy the IP address into your browser and visit port 14240 to make

sure that GraphStudio is working.

You can use kubectl to get a shell to the container or log in via ssh

To use GraphStudio, copy the IP address into your browser and visit port 14240.

Run the command below to delete all cluster resources:

$ curl <load_balancer_ip>:9000/echo | jq .
 % Total % Received % Xferd Average Speed Time Time Time Cu
 Dload Upload Total Spent Left Sp
100 39 100 39 0 0 120 0 --:--:-- --:--:-- --:--:--
{
 "error": false,
 "message": "Hello GSQL"
}

Via kubectl
kubectl exec -it tigergraph-0 -- /bin/bash

Via ssh
ip_m1=$(kubectl get pod -o wide |grep tigergraph-0| awk '{print $6}')
ssh tigergraph@ip_m1

$ kubectl delete -f deploy/tigergraph-eks.yaml && kubectl delete pvc -l ap

Connect to instances

Delete cluster resources

5/13/25, 9:12 PM 3.3

780

Quickstart with AKS
This is a quickstart guide for deploying TigerGraph single servers and clusters in

Kubernetes on Azure Kubernetes Service(AKS).

• Single-server deployment

• Cluster-deployment

• Provision Kubernetes cluster on AKS with nodes that meet the hardware and

software requirements to run TigerGraph.

• Install kubectl on your machine, and make sure your local kubectl version

is within one minor version's difference from the kubectl version on your

cluster.

• Configure kubectl for AKS cluster access .

This section describes the steps to deploy, verify, and remove a single-server

deployment of TigerGraph on AKS.

Step 1: Generate deployment manifest. Clone the TigerGraph ecosystems

repository and change into the k8s directory. You can edit the

kustimization.yaml file in the aks folder to change the namespace and image

name for your deployment. The default namespace is default , and the default

image is the official docker image for TigerGraph 3.2.0. No need to edit the files if

no changes are needed.

Next, run the ./tg script in the k8s directory to generate the deployment manifest

for a single-server deployment. A deploy directory will be created automatically

Before you begin

Single-server deployment

Deploy single server

5/13/25, 9:12 PM 3.3

https://kubernetes.io/docs/tasks/tools/
https://kubernetes.io/docs/tasks/tools/
https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough#connect-to-the-cluster
https://docs.microsoft.com/en-us/azure/aks/kubernetes-walkthrough#connect-to-the-cluster
https://github.com/tigergraph/ecosys.git
https://github.com/tigergraph/ecosys.git
https://github.com/tigergraph/ecosys.git

781

and you should find the manifest named tigergraph-aks.yaml in the directory.

Step 2: Deploy manifest. Run kubectl apply to create the deployment using the

manifest you generated in step 1.

After you create the deployment, run kubectl get pods to verify that the pods

were created successfully.

Run kubectl describe service/tg-external-service to find the IP address of the

load balancer. You can then make curl calls to port 9000 to make sure that RESTPP

is running:

You can also copy the IP address into your browser and visit port 14240 to make

sure that GraphStudio is working.

./tg aks kustomize -s 1

kubectl apply -f deploy/tigergraph-aks.yaml

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
installer-zsnb4 1/1 Running 0 4m11s
tigergraph-0 1/1 Running 0 4m10s

$ curl <load_balancer_ip>:9000/echo | jq .
 % Total % Received % Xferd Average Speed Time Time Time Cu
 Dload Upload Total Spent Left Sp
100 39 100 39 0 0 120 0 --:--:-- --:--:-- --:--:--
{
 "error": false,
 "message": "Hello GSQL"
}

Verify single server

Connect to single server

5/13/25, 9:12 PM 3.3

782

You can use kubectl to get a shell to the container or log in via ssh

To use GraphStudio, copy the IP address into your browser and visit port 14240.

Run the command below to delete all cluster resources:

This section describes the steps to deploy, verify, and delete a TigerGraph cluster in

Kubernetes on AKS.

Clone the TigerGraph ecosystem repository and change into the k8s directory:

You can customize your deployment by editing the kustomize.yaml file in the aks

directory. The tg script in the k8s folder offers a convenient way to make

Via kubectl
kubectl exec -it tigergraph-0 -- /bin/bash

Via ssh
ip_m1=$(kubectl get pod -o wide |grep tigergraph-0| awk '{print $6}')
ssh tigergraph@ip_m1

$ kubectl delete -f deploy/tigergraph-aks.yaml && kubectl delete pvc -l ap

$ git clone https://github.com/tigergraph/ecosys.git
$ cd ecosys/k8s

Remove single server resources

Cluster deployment

Deploy TigerGraph cluster

1. Generate Kubernetes manifest

5/13/25, 9:12 PM 3.3

https://github.com/tigergraph/ecosys.git
https://github.com/tigergraph/ecosys.git

783

common customizations such as namespace, TigerGraph version, as well as cluster

size. Run ./tg -h to view the help text on how to use the script.

Use the tg script in the k8s directory of the repo to create a Kubernetes manifest.

Use -s or --size to indicate the number of nodes in the cluster. Use the --ha

option to indicate the replication factor of the cluster, and the partitioning factor will

be the number of nodes divided by the replication factor.

For example, the following command will create a manifest that will deploy a 3*2

cluster with a replication factor of 2 and a partitioning factor of 3. The --version

flag specifies the version of TigerGraph to use for the deployment.

The command will create a directory named deploy with the manifest inside.

Run kubectl apply to create the deployment

Run kubectl get pods to verify the pods were created successfully:

Run kubectl describe service/tg-external-service to find the IP address of the

load balancer for your AKS cluster. You can make a curl call to port 9000 to make

sure that RESTPP is working:

$./tg aks kustomize -s 6 --ha 2 --version 3.2.0

$ kubectl apply -f ./deploy/tigergraph-aks.yaml

kubectl get pods
NAME READY STATUS RESTARTS AGE
installer-zsnb4 1/1 Running 0 4m11s
tigergraph-0 1/1 Running 0 4m10s
tigergraph-1 1/1 Running 0 75s

2. Deploy the cluster

Verify cluster

5/13/25, 9:12 PM 3.3

784

You can also copy the IP address into your browser and visit port 14240 to make

sure that GraphStudio is working.

You can use kubectl to get a shell to the container or log in via ssh

To use GraphStudio, copy the IP address into your browser and visit port 14240.

Run the command below to delete all cluster resources:

$ curl <load_balancer_ip>:9000/echo | jq .
 % Total % Received % Xferd Average Speed Time Time Time Cu
 Dload Upload Total Spent Left Sp
100 39 100 39 0 0 120 0 --:--:-- --:--:-- --:--:--
{
 "error": false,
 "message": "Hello GSQL"
}

Via kubectl
kubectl exec -it tigergraph-0 -- /bin/bash

Via ssh
ip_m1=$(kubectl get pod -o wide |grep tigergraph-0| awk '{print $6}')
ssh tigergraph@ip_m1

$ kubectl delete -f deploy/tigergraph-aks.yaml && kubectl delete pvc -l ap

Connect to instances

Delete cluster resources

5/13/25, 9:12 PM 3.3

785

User Access Management
User Privileges and Authentication, LDAP, Single Sign-on

TigerGraph's user access management features are based on the Role-based

Access Control model, on top of which there are additional features that give users

finer-grain data access control. Some key features include:

• Authentication

• User management

• Role management

• Vertex-level access control (VLAC)

• Lightweight Directory Access Protocol (LDAP)

• Single sign-on

A TigerGraph user is a database-level security principal on the TigerGraph platform.

When user authentication is enabled, only clients who can provide credentials that

identify themselves as a user can interact with the TigerGraph database.

The TigerGraph platform offers two options for credentials:

1. A username-password pair

2. A token - a unique 32-character string used for REST++ requests, with an

expiration date.

Users and Credentials

5/13/25, 9:12 PM 3.3

786

Enabling User Authentication
Enabling user authentication on TigerGraph enforces access control, requiring users

to identify themselves and ensuring that users can only perform actions allowed by

their roles.

When the TigerGraph platform is first installed, user authentication is disabled. The

installation process creates a gsql superuser who has the name tigergraph and

password tigergraph . As long as this user's password is tigergraph , GSQL

authentication remains disabled.

Because there are two ways to access the TigerGraph system, either through the

GSQL shell or through REST++ requests, there are two steps needed to secure your

system with authentication enabled for both points of entry:

• Enable user authentication for the GSQL Shell

• Enable OAuth 2 authentication for REST++

To enable user authentication for GSQL, change the password of the default user

whose username tigergraph to something other than tigergraph .

1. Log in to the GSQL shell as the default user tigergraph . Since authentication is

not enabled, entering gsql into the Linux terminal under the TigerGraph Linux
user will log you in as user tigergraph automatically.

2. Run the following command to change the password, and enter the new

password as prompted:

3. User authentication has been enabled. Exit the GSQL shell and try to reenter,

and confirm that GSQL will now prompt for your password.

GSQL > ALTER PASSWORD

Enable GSQL authentication

Procedure

5/13/25, 9:12 PM 3.3

787

4. To log in as a different user, use the -u option when you enter the GSQL shell.
You can also supply the password in the same command with the -p option.

To enable RESTPP authentication, set the RESTPP.Factory.EnableAuth parameter

to true .

1. As the TigerGraph Linux user, run the following command:

2. Run the following commands to save the configuration and restart system

services:

$ gsql
Password for tigergraph : ********

$ gsql -u newuser -p mypassword

$ gadmin config set RESTPP.Factory.EnableAuth true

$ gadmin config apply
$ gadmin restart restpp nginx gui gsql -y

Enable RESTPP authentication

Procedure

Enabling REST++ OAuth Authentication

Enabling REST++ OAuth Authentication

5/13/25, 9:12 PM 3.3

788

Managing Credentials
When user authentication is enabled, the TigerGraph system will execute a

requested operation only if the requester provides credentials for a user who has

the privilege to perform the requested operation.

The TigerGraph system offers two options for credentials.

• Username and password pair.

• API token: A unique 32-character string that can be used for REST++ requests.

A token expires 1 month from the date of creation by default. Users can use their
secrets or their username and password pair to generate a token.

The following set of commands are used to create and manage passwords and

secrets.

Like any other GSQL commands, the user must supply credentials to run these
commands. In order to create a secret, the user must supply their password.

Users can change their own passwords with the ALTER PASSWORD command. If the

user has the WRITE_USER privilege, they can change the password of another user.

If a username is not provided, the command changes the password of the current

user. To change the password of another user, specify the username of the user

ALTER PASSWORD [user1]
CREATE SECRET [alias1]
SHOW SECRET
DROP SECRET <secret1>

ALTER PASSWORD [<user1>]

Passwords

GSQL Commands for Managing Credentials

5/13/25, 9:12 PM 3.3

789

whose password you wish to change:

Secrets are unique strings that serve as a user's credentials in certain

circumstances. A user can have multiple secret strings. Each secret is associated

with one user and their role for one graph. If the role is revoked, the secret also

becomes invalid.

Use the CREATE SECRET command to generate a secret for the current user and

graph. It is optional to provide an alias for the secret.

Beginning with TigerGraph 3.1.4, the system will generate a random alias for the

secret if the user does not provide an alias for that secret. Randomly generated

aliases begin with AUTO_GENERATED_ALIAS_ and include a random 7-character

string.

herminone:GSQL > ALTER PASSWORD
Password: *******
New Password : ************
Re-enter Password : ************
Password has been changed.

tigergraph:GSQL > ALTER PASSWORD hermione
Password: *******
New Password : ************
Re-enter Password : ************
Password has been changed.

CREATE SECRET [<alias>]

Secrets

Create a secret

Example: User changing his/her own password

Example: Admin changing another user's password

5/13/25, 9:12 PM 3.3

790

Use SHOW SECRET to list all secrets of the current user. The secrets will be masked

and only the first and last three characters of the secrets will be shown. The alias of

the secret and the graph that the secret is associated with will also be listed:

Use the DROP SECRET command to drop a secret. Since a user can have multiple

secrets, the secret to drop must be specified in the command. You can specify a

secret either by the secret string itself or by its alias.

SHOW SECRET

GSQL > SHOW SECRET
 - Secret: s7s****3k5
 - Alias: HH
 - GraphName: Hogwarts
 - Secret: 75j****9i2
 - Alias: LL
 - GraphName: London

DROP SECRET <secret>

List secrets

Drop a secret

5/13/25, 9:12 PM 3.3

791

Roles and Privileges
TigerGraph uses Role-based Access Control (RBAC) to manage authorization. On

every graph, privileges to perform actions are assigned to roles, and roles are

granted to users. Outside of the permissions granted by their roles, a user has no

access to the system.

Privilege is permission to perform an action in a given scope. When a privilege is

assigned to a role, it allows users with the role to perform the specified action in the

specified scope. For example, the privilege READ_SCHEMA on graph social gives a

user read permission to the schema of the graph social . This allows the user to

run commands such as ls and SHOW VERTEX on the graph.

To view a complete list of privileges available in TigerGraph and the commands they

enable a user to run, see List of Privileges.

The scope of a privilege can be global or local. Global privileges apply to all graphs

and global objects. Local privileges only apply on the graph they belong to.

For example, a role with WRITE_QUERY on graph social can only create queries on

graph social , but not on other graphs. In contrast, a role with WRITE_QUERY on the

global scope can create queries on all graphs.

Local roles can only be granted local privileges, while global roles can be granted

both local and global privileges.

Global-only privileges

Some privileges can only be global by nature. For example, since users are global

objects, any user-related privileges are global only. To see which privileges are

global-only, see List of Privileges .

Privileges

Global vs local privileges

5/13/25, 9:12 PM 3.3

https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/reference/list-of-privileges.md
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/reference/list-of-privileges.md

792

A role is a collection of privileges you can assign to users to grant them permission

to perform actions on specific resources.

Roles can be global or local. Local roles can only be granted local privileges, while

global roles can be granted both local and global privileges.

For example, if a user creates a role manager on the graph social :

This role can only be granted privileges on the graph social . It cannot be granted

global privileges.

GSQL offers 5 built-in local roles and 2 built-in global roles. The built-in roles cannot

be dropped. Below is a table of the built-in roles and their corresponding set of

privileges.

GSQL > CREATE ROLE manager ON GRAPH social
Successfully created roles: [manager].

Name Global or Local Privilege List

observer Local

READ_SCHEMA ,

READ_LOADINGJOB , READ_QU
ERY

queryreader Local

READ_SCHEMA ,

READ_LOADINGJOB , READ_QU
ERY , EXECUTE_LOADINGJOB ,

READ_DATA

Roles

Global vs local roles

Built-in roles

5/13/25, 9:12 PM 3.3

793

Users can define roles with their own list of privileges they want to grant to the role.

To learn how to create/drop user-defined roles and manage privileges for the roles,

see Role Management.

querywriter Local

READ_SCHEMA ,

READ_LOADINGJOB , READ_QU
ERY , EXECUTE_LOADINGJOB ,

READ_DATA , WRITE_QUERY,
WRITE_DATA

designer Local

READ_SCHEMA ,

READ_LOADINGJOB , READ_QU
ERY , EXECUTE_LOADINGJOB ,

READ_DATA , WRITE_QUERY,
WRITE_DATA ,

WRITE_SCHEMA ,

WRITE_LOADINGJOB ,

ACCESS_TAG

admin Local

READ_SCHEMA ,

READ_LOADINGJOB , READ_QU
ERY , EXECUTE_LOADINGJOB ,

READ_DATA , WRITE_QUERY,
WRITE_DATA ,

WRITE_SCHEMA ,

WRITE_LOADINGJOB ,

ACCESS_TAG WRITE_ROLE ,

WRITE_DATASOURCE ,

READ_ROLE , READ_USER ,

READ_PROXYGROUP

globaldesigner Global

Designerʼs privileges on

global + drop graph created

by the same user

User-defined roles

5/13/25, 9:12 PM 3.3

794

Role Management
This page explains the procedures for various role management tasks under

TigerGraph's authorization model.

Syntax

Required privilege

WRITE_ROLE

Procedure

1. To create a local role, run the CREATE ROLE command like below. If you choose

not to specify a graph in the command, the current scope will be used as the

scope of the role:

This will create two roles named role1 and role2 on graph example_graph . By

default, these two roles do not have any privilege:

CREATE ROLE <role_name> (, <role_name>)* [ON GRAPH <graph_name>]

GSQL > USE GRAPH example_graph
GSQL > CREATE ROLE role1, role2

Successfully created local roles for graph 'example_graph': [role1, role2]

CREATE ROLE <role_name> (, <role_name>)* ON GLOBAL

Create a local role

Create a global role

Syntax

5/13/25, 9:12 PM 3.3

795

WRITE_ROLE on the global scope

1. To create a global role, run the CREATE ROLE command like below. Replace

role1 with the name of the role you are creating.

This will create a role named role1 on the global scope. By default, this role has no

privileges:

Syntax

Required privilege

READ_ROLE

Procedure

1. To view the privileges of a role, run the SHOW PRIVILEGE ON ROLE command,

and replace role1, role2 with the names of the roles whose privileges you
want to view:

This will show the privileges of the role role1 and role2:

CREATE ROLE role1 ON GLOBAL

Successfully created global roles: [role1].

SHOW PRIVILEGE ON ROLE <role_name> (, <role_name2>)*

GSQL > SHOW PRIVILEGE ON ROLE role1 , role2

Required privilege

Procedure

View privileges of a role

5/13/25, 9:12 PM 3.3

796

Syntax

Required privilege

READ_ROLE

Procedure

1. To list all existing roles, first ensure that you are in the correct scope. Run USE
<graph_name> or USE GLOBAL to switch to your desired scope.

2. Run the SHOW ROLE command:

This will show all the roles in your current scope:

Role: "role1"
 - Graph 'tpc_graph' Privileges:
 WRITE_QUERY

Role: "role2"
This role has no privilege.

SHOW ROLE

GSQL > SHOW ROLE

List all existing roles

5/13/25, 9:12 PM 3.3

797

Syntax

Require privilege

WRITE_ROLE

Procedure

1. To grant privileges to a role, run the GRANT PRIVILEGE command from the GSQL

shell:

This will allow users with the roles role1 and role2 to edit and install queries, as

well as modify roles on the graph example_graph . To see a full list of privileges and

the command they allow users to run, see List of Privileges.

 - Builtin Roles:
 observer
 queryreader
 querywriter
 designer
 admin
 globaldesigner
 superuser

 - User Defined Roles:
 - Graph 'tpc_graph' Roles:
 role1
 role2

GRANT PRIVILEGE <privilege_name1> (, privilege_name2)*
 [ON GRAPH <graph_name>] TO <role_name1> (, <role_name2>)*

GSQL > GRANT PRIVILEGE WRITE_QUERY, WRITE_ROLE
 ON GRAPH example_graph TO role1 , role2

Grant privileges to a role

Revoke privileges from a role

5/13/25, 9:12 PM 3.3

798

Syntax

Required privilege

WRITE_ROLE

Procedure

1. To revoke privileges from a role, run the REVOKE PRIVILEGE command from the

GSQL shell:

This will revoke the WRITE_QUERY privilege from the role role1 on graph

example_graph.

Syntax

Required privilege

WRITE_ROLE

Procedure

1. To drop a role, run the DROP ROLE command from the GSQL shell:

REVOKE PRIVILEGE <privilege_name1> (, privilege_name2)*
 [ON GRAPH <graph_name>] FROM <role_name1> (, <role_name2>)*

GSQL > REVOKE PRIVILEGE WRITE_QUERY
 ON GRAPH example_graph FROM role1

DROP ROLE <role_name> (, <role_name2>)*

GSQL > DROP ROLE role1 , role2

Drop a role

5/13/25, 9:12 PM 3.3

799

This will drop the roles role1 and role2 . This will also revoke the roles from users

who have been granted these roles.

5/13/25, 9:12 PM 3.3

800

User Management
This page explains the procedures for various user management tasks under

TigerGraph's authorization model.

Syntax

Required privilege

WRITE_USER

Procedure

1. From the GSQL shell, run the CREATE USER command:

2. Enter the user information in the prompts that follow:

Syntax

Required privilege

CREATE USER

GSQL > CREATE USER

User Name : frank
New Password : ************
Re-enter Password : ************
The user "frank" is created.

SHOW USER

Create a user

View roles of a user

Example: Create user

5/13/25, 9:12 PM 3.3

801

READ_USER for displaying roles of other users

Procedure

1. From the GSQL shell, run the SHOW USER command:

If the user running the command has the READ_USER privilege, role information on

all users will be displayed. Otherwise, only the current user's roles will be displayed.

Syntax

Required privilege

READ_USER

Procedure

1. From the GSQL shell, run the SHOW PRIVILEGE ON USER command :

The above command will show the privileges of user tigergraph :

GSQL > SHOW USER

SHOW PRIVILEGE ON USER <username> (, <username>)*

GSQL > SHOW PRIVILEGE ON USER tigergraph

View privileges of a user

5/13/25, 9:12 PM 3.3

802

Syntax

Required privilege

WRITE_ROLE

Procedure

1. Start the GSQL shell and make sure you are using the correct graph

User: "tigergraph"
 - Global Privileges:
 READ_SCHEMA
 WRITE_SCHEMA
 READ_LOADINGJOB
 EXECUTE_LOADINGJOB
 WRITE_LOADINGJOB
 READ_QUERY
 WRITE_QUERY
 READ_DATA
 WRITE_DATA
 WRITE_DATASOURCE
 READ_ROLE
 WRITE_ROLE
 READ_USER
 WRITE_USER
 READ_PROXYGROUP
 WRITE_PROXYGROUP
 READ_FILE
 WRITE_FILE
 DROP_GRAPH
 EXPORT_GRAPH
 CLEAR_GRAPHSTORE
 DROP_ALL
 ACCESS_TAG

GRANT ROLE <role_name1> (, role_name2)* [ON GRAPH <graph_name>]
 TO <username1> (, <username2>)*

Grant a role to a user

5/13/25, 9:12 PM 3.3

803

2. From the GSQL shell, run the GRANT ROLE command. You can grant multiple

roles to multiple users:

The above command will grant roles role1 and role2 on graph example_graph

to users user1 and user2 .

Syntax

Required privilege

WRITE_ROLE

Procedure

1. Start the GSQL shell and make sure you are using the correct graph

2. From the GSQL shell, run the REVOKE_ROLE command. You can revoke multiple

roles from multiple users at the same time:

The above command will revoke roles role1 and role2 on graph example_graph

from users user1 and user2 .

$ gsql
GSQL > USE GRAPH example_graph

GSQL > GRANT ROLE role1 , role2 ON GRAPH example_graph
 TO user1, use2

REVOKE ROLE <roleName1> (, <roleName2)* [ON GRAPH <graphName>]
 FROM <userName1> (, <userName2>)*

$ gsql
GSQL > USE GRAPH example_graph

GSQL > REVOKE ROLE role1, role2 ON GRAPH example_graph
 FROM user1, user2

Revoke a role from a user

5/13/25, 9:12 PM 3.3

804

Syntax

Required privilege

WRITE_USER for changing the password of a user other than the current user

Procedure

1. From the GSQL shell, run the following command. Replace username with the

user whose password you want to change

2. Enter the new password in the prompt that follows.

Syntax

Required privilege

WRITE_USER

Procedure

1. From the GSQL shell, run the DROP USER command. You can drop multiple users

in the same command.

2. GSQL will confirm that the users you entered have been dropped

ALTER PASSWORD <username>

GSQL > ALTER PASSWORD username

DROP USER <user1> (,<user2>)*

GSQL > DROP USER user1, user2

Change a user's password

Drop a user

5/13/25, 9:12 PM 3.3

805

Vertex-Level Access Control (Beta)

Vertex-level Access Control (VLAC) allows database administrators to control data

access on the vertex level by attaching tags to individual vertices on a graph (the

base graph) and creating tag-based graphs. Tag-based graphs share the underlying

data with the base graph but have their own sets of roles and privileges, which

allows administrators to exercise fine-grained data access control without the vertex

type boundary.

Figure 1 below illustrates two tag-based graphs built upon a base graph. The base

graph contains vertices of person type, and vertices of post type. Two tags (A

and B) are used to tag them. For example, vertex 1 and vertex 9 both have tag A.

Vertex 3 and vertex 11 both have tag A and B. A tag-based graph named tagA will

only present to its users those base graph vertices that have tag A (the bottom-left

graph). The other tag-based graph named tagB will only present to its users those

base graph vertices that have tag B (the bottom-right graph).

For users operating on a tag-based graph, tags are an invisible aspect that silently

filters how they load and query data. A tag-based graph defines its view, and all

data outside its view is invisible to it.

Figure 1. Tag-based graphs as subgraphs of a Base graph

5/13/25, 9:12 PM 3.3

806

Sufficient privileges on the base graph or on the global scope are required to

perform the steps described on this page.

• ACCESS_TAG

◦ Any operation involving tags

• WRITE_SCHEMA

◦ Create/run schema change jobs

◦ Create tag-based graphs

• READ_DATA, WRITE_DATA

◦ Run queries that modify the graph

• WRITE_LOADINGJOB , EXECUTE_LOADINGJOB

◦ Create/run loading jobs

Below is the basic workflow on using the VLAC to control data access for a

database administrator:

1. Define tags.

2. Mark vertex types as taggable.

3. Create a tag-based graph.

• Grant built-in roles to users on a tag-based graph

Prerequisites

Workflow - Using Vertex Level Access
Control

1. Create a tag-based graph

2. Manage users of the tag-based graph

5/13/25, 9:12 PM 3.3

807

• Define roles and grant them to users on a tag-based graph

There are three main options for tagging vertices.

1. Explicitly add/modify tags on existing data: A user with the privilege

ACCESS_TAG and WRITE_DATA privileges on the base graph can create and run a
DML query that sets tags on selected individual vertices.

2. Explicitly set tags when loading data into to a base graph: A user with

EXECUTE_LOADINGJOB , WRITE_LOADINGJOB and ACCESS_TAG privileges on the

base graph can create and run a loading job that explicitly sets tags on the

newly loaded base graph vertices.

3. Implicitly set tags when loading into a tag-based graph: A user with tag-based

graph loading or insert privilege (e.g., a designer or querywriter) can create

an ordinary loading or upsert job which inserts new vertices. The new vertices

will be automatically tagged according to the tag-based graph's schema
definition.

Users with data read and write privileges (e.g., the querywriter and queryreader

built-in roles) can query and update the tag-based graph as they would do any other

graph. The data filtering for querying or data tagging for insertion is applied

automatically.

The rest of this tutorial will first describe tag management: creating and dropping

tags, making vertex type taggable, and using tags to define tag-based graphs. Next,

the three ways to tag vertices are described and illustrated. We summarize the

privilege scheme of tag-based graphs in terms of GSQL's predefined roles. Finally,

we give some use cases that can be solved by VLAC.

Features not yet supported:

• DDL tag operations can only be done in GSQL. They are not yet supported in

GraphStudio. This includes create/drop tags, create/alter vertices that are

taggable, define a tag-based graph.

3. Load and tag data

4. Query and update Data

5/13/25, 9:12 PM 3.3

808

• The privilege control for DDL operations (only admin and designer users should be

able to explicitly manage tags) is not fully functional.

In summary, all necessary operations to set up VLAC graphs and users are supported
in GSQL. Due to a known bug, standard users (with querywriter and queryreader
roles) can run some DDL operations which they should not be able to.

Weʼll use the graph socialNet as an example in the following sections.

A tag is a special attribute of a vertex, which appears as a string for input and output

purposes. If a vertex type is declared to be taggable, then each vertex of that type

can have one or more tags. The maximum number of different tags in a global graph

is 64. All operations involving tags requires the user to have the ACCESS_TAG

privilege.

A tag name has to be defined via ADD TAG before it can be used. Each base graph

defines its own set of tags. However, there is a global maximum number of different

tags, currently set at 64.

ADD TAG can only be used inside a SCHEMA_CHANGE JOB . An example is below:

ADD TAG <tag_name> [DESCRIPTION <tag_description>]

Tag Management

Define a tag

Syntax for ADD TAG

5/13/25, 9:12 PM 3.3

https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/dev/gsql-ref/querying/appendix-query/example-graphs.md#socialnet
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/dev/gsql-ref/querying/appendix-query/example-graphs.md#socialnet

809

Run ls to see a list of defined tags:

The DROP TAG command not only removes the given tag(s) from the catalog of

available tags, but also deletes them from each vertex to which it is attached. You

can drop multiple tags in one statement.

Like ADD TAG , DROP TAG also needs to be inside a SCHEMA_CHANGE JOB :

USE GRAPH socialNet

CREATE SCHEMA_CHANGE JOB add_tags {
 ADD TAG public DESCRIPTION "Open for public";
 ADD TAG tech DESCRIPTION "All about technology";
 ADD TAG vip DESCRIPTION "Very Important Person";
 ADD TAG dummy DESCRIPTION "Yeah, just a dummy";
}
RUN SCHEMA_CHANGE JOB add_tags

...

Tags:
- TAG public DESCRIPTION "Open for public"
- TAG tech DESCRIPTION "All about technology"
- TAG vip DESCRIPTION "Very Important Person"
- TAG dummy DESCRIPTION "Yeah, just a dummy"

DROP TAG <tag_name> ["," <tag_name>]*

List tags

Drop a tag

Syntax for DROP TAG

5/13/25, 9:12 PM 3.3

810

1. You cannot drop a tag if it is used in the definition of a tag-based graph. You must

drop the graph first.

2. When DROP TAG is executed, the specified tags will be made invalid, and then the

foreground process will complete. A background process will continue to run to

remove the tags from all data. In the meantime, each dropped tag still takes up one

of the 64 slots for tags. The slot(s) will become available once the background

process finishes.

A tag-based graph is a filtered view of a base graph, where a base graph is a simple

collection of vertex types and edge types, without any tag specifiers. A tag-based

graph must include at least one taggable vertex type from the base graph.

A vertex type has to be taggable to accept tags. TAGGABLE is a boolean property of

a vertex type that can be set with CREATE VERTEX initially or with ALTER VERTEX in a

schema change job:

USE GRAPH socialNet

CREATE SCHEMA_CHANGE JOB drop_dummy_tag {
 DROP TAG dummy;
}
RUN SCHEMA_CHANGE JOB drop_dummy_tag

USE GRAPH socialNet

in general, this would be a local schema change job, but in socialNet, t
vertex types are global, so this needs to be a global schema change job
CREATE GLOBAL SCHEMA_CHANGE JOB make_taggable {
 ALTER VERTEX person WITH TAGGABLE="true";
 ALTER VERTEX post WITH TAGGABLE="true";
}

RUN GLOBAL SCHEMA_CHANGE JOB make_taggable

Create a tag-based graph

Mark vertex types as taggable

5/13/25, 9:12 PM 3.3

811

The property TAGGABLE is false by default. To change this default, use the WITH

clause below when creating a vertex type:

1. To change a vertex type from taggable to untaggable, use WITH
TAGGABLE="false".

2. You cannot make a vertex type untaggable if it is used in the definition of a tag-

based graph.

3. Edge types are never tagged. See the next section to see how we determine which

edges to include in the tag-based graph.

After a tag set and taggable vertex types have been created, we can use the tags to

define a tag-based graph. For each vertex type we want to include, we may also

specify a tag expression which must be satisfied for an individual vertex to be

included.

Examples

Here is an example of creating a tag-based graph from the base graph socialNet .

The interpretation is "Starting from the socialNet graph, create a tag-based graph

called vipNet which includes person vertices which are tagged ' vip '. Also

include all post vertices and all friend , posted and liked edges."

Edges do not have tag expressions. An edge will be included when both of its vertex

endpoints are included (and its edge type is included in the tag graph schema).

To describe a combination of tags, use the & operator to combine the tags:

CREATE VERTEX v2(PRIMARY_ID id UINT, name STRING) WITH TAGGABLE="true"

USE GRAPH socialNet
CREATE GRAPH vipNet AS socialNet(person:vip, post, friend, posted, liked)

Create a Tag-Based Graph

5/13/25, 9:12 PM 3.3

812

The graph mixedNet will only include the person vertices having both the public

and vip tags, and posts having all three of the public , tech and dummy tags.

Same tag for all vertex types

If the desired tag-based graph is "anything in the base graph that has these tags",

there is a convenient shortcut:

is the same as

General Syntax

The formal syntax for both the general form and the simplified form of creating a

tag-based graph is shown below:

USE GRAPH socialNet
CREATE GRAPH mixedNet AS socialNet(person:public&vip, post:public&tech&dum

USE GRAPH socialNet
CREATE GRAPH publicNet2 AS socialNet:public

USE GRAPH socialNet
CREATE GRAPH publicNet1 AS socialNet(person:public, post:public, friend, p

<create_tag_graph> :=
 CREATE GRAPH <tag_graph_name> AS <base_graph_name>
 ("(" <tagged_element_name> ("," <tagged_element_name>)* ")" | ":" <ta

<tagged_element_name> := <tagged_vertex_name> | <edge_name>

<tagged_vertex_name> := <vertex_name> [":" <tag_expr>]

<tag_expr> := <tag> ("&" <tag_expr>)*

How To Tag Vertices

Syntax for CREATE GRAPH for a tag-based graph

5/13/25, 9:12 PM 3.3

813

There are three main options for tagging vertices in the base graph.

• Add tags on existing data with DML queries. For existing data, a user with base
graph tagging privilege (e.g., an admin or designer) can create and run a DML

query that sets tags on selected individual vertices.

• Explicitly set tags when loading/inserting to a base graph. For new data, a user

with base graph loading and tagging privilege (e.g., an admin or designer)

can create and run a loading job that explicitly sets tags on the newly loaded
vertices.

• Implicitly set tags when loading/inserting into a tag-based graph. For new

data, a user with tag-based graph loading or insert privilege (e.g., a designer
or querywriter) can create an ordinary Loading or Upsert Job which inserts
new vertices. The new vertices will be automatically tagged according to the

tag-based graph's schema definition.

In GSQL, special vertex methods are provided to access and modify the tags of a

vertex in a DML query (full list available on page Vertex Functions). These functions

are only available for vertex aliases (defined in the FROM clause of a SELECT

statement); they cannot be applied to vertex variables in other contexts.

There are 8 DML-level tag-access functions in the vertex-query block or edge-

query block. Use the v.addTags() function to tag a vertex.

READ_DATA , WRITE_DATA , WRITE_QUERY , ACCESS_TAG

To add or modify tags, you should work at the base graph level.

Examples

addTags() is shown below. This query will add tags to person vertices to achieve

the same effect as a base graph loading job example in the previous section.

Add tags on existing data

Required privilege

5/13/25, 9:12 PM 3.3

https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/reference/reference.md#addtags-string-tag-1-string-tagn
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/reference/reference.md#addtags-string-tag-1-string-tagn

814

Use removeTags() and removeAllTags() to remove tags from vertices:

CREATE QUERY addTagsToPerson() {
 Seed = { any };
 # person1 ~ person5 will be tagged as public.
 vSet = SELECT s
 FROM Seed:s
 WHERE s.id IN ("person1","person2","person3","person4","person5")
 ACCUM s.addTags("public");

 # person6 and person7 will be tagged as public and vip.
 vSet = SELECT s
 FROM Seed:s
 WHERE s.id IN ("person6","person7")
 ACCUM s.addTags("vip", "public");

 # person8 will be tagged as vip
 vSet = SELECT s
 FROM Seed:s
 WHERE s.id == "person8"
 ACCUM s.addTags("vip");
}

// remove tag “vip” and “public” from all person vertices.
CREATE QUERY removetagsFromPerson() {
 vSet = { person.* };
 # remove tag vip and public from all person vertices
 vSet = SELECT s
 FROM vSet:s
 ACCUM s.removeTags("vip", "public");
}

// remove all tags from all person vertices.
CREATE QUERY removealltagsFromPerson() {
 vSet = { person.* };
 # remove all tags from all person vertices
 vSet = SELECT s
 FROM vSet:s
 ACCUM s.removeAllTags();
}

Set tags explicitly with TAGS clause

5/13/25, 9:12 PM 3.3

815

Tags can be added to vertices at their loading time using a base graph loading job.

The LOAD statement has an optional clause for explicit tagging of loaded data. The

tagging clause has two keywords, TAGS and BY:

• TAGS(<tag_list>) specifies the tags to be set.

• BY specifies how to merge tags if the targeted vertex exists in the graph

◦ BY OR: Add the given tags to the existing set of tags.

◦ BY OVERWRITE: Replace the existing tags with the given ones.

WRITE_LOADINGJOB , EXECUTE_LOADINGJOB , ACCESS_TAG

Example 1

Suppose we want to put the tags vip and public on the person vertex data

coming from a certain file. We have three files: persons1 , persons2 , persons3 .

Create and run three loading jobs:

$ cat persons1
person1,Male
person2,Female
person3,Male
person4,Female
person5,Female

$ cat persons2
person6,Male
person7,Male

$ cat persons3
id,gender,label
person8,Male,vip

Required privilege

5/13/25, 9:12 PM 3.3

816

Note that the TAGS clause can specify a tag with a string literal ("vip") so every

vertex gets the same tag, or with a token reference by position ($2) or by name

($"label") from the source file, so each vertex gets a data-dependent tag. If the

tag clause refers to a non-existent tag, the loading job will still run, but the data will

not be loaded at runtime. The loading job log will report these non-loaded vertices.

Example 2

We have three post files: posts1 , posts2 , and posts3 .

USE GRAPH socialNet

person1 - person5 will be tagged as public.
CREATE LOADING JOB loadPersonPublic {
 DEFINE filename f;
 LOAD f TO VERTEX person VALUES($0, $0, $1) TAGS("public") BY OR;
}
RUN LOADING JOB loadPersonPublic USING f="./persons1"

person6 and person7 will be tagged as public and vip.
CREATE LOADING JOB loadPersonPublicVip {
 DEFINE filename f;
 LOAD f TO VERTEX person VALUES($0, $0, $1) TAGS("public", "vip") BY OR;
}
RUN LOADING JOB loadPersonPublicVip USING f="./persons2"

person8 will be tagged as vip which is derived from the file.
CREATE LOADING JOB loadPerson {
 DEFINE filename f;
 LOAD f TO VERTEX person VALUES($0, $0, $1) TAGS($2) BY OR USING HEADER="
}
RUN LOADING JOB loadPerson USING f="./persons3"

5/13/25, 9:12 PM 3.3

817

We create and run the following loading jobs:

Loading data to a tag-based graph automatically tags each vertex with the tags

specified in the graph's definition. For example, when loading to vipNet , the

person vertices will automatically be tagged with vip .

$ cat posts1
3,cats,2011-02-05 01:02:44
8,cats,2011-02-03 17:05:52
9,cats,2011-02-05 23:12:42
10,cats,2011-02-04 03:02:31
11,cats,2011-02-03 01:02:21

$ cat posts2
4,coffee,2011-02-07 05:02:51

$ cat posts3
0,Graphs,2010-01-12 11:22:05
1,tigergraph,2011-03-03 23:02:00
2,query languages,2011-02-03 01:02:42
5,tigergraph,2011-02-06 01:02:02
6,tigergraph,2011-02-05 02:02:05
7,Graphs,2011-02-04 17:02:41

USE GRAPH socialNet

posts 3, 8, 9, 10, and 11 will be tagged as public.
CREATE LOADING JOB loadPostPublic {
 DEFINE filename f;
 LOAD f TO VERTEX post VALUES($0, $1, $2) TAGS("public") BY OR ;
}
RUN LOADING JOB loadPostPublic USING f="./posts1"

posts 0, 1, 2, 5, 6, and 7 will be tagged as both public and tech.
CREATE LOADING JOB loadPostPublicTech {
 DEFINE filename f;
 LOAD f TO VERTEX post VALUES($0, $1, $2) TAGS("public", "tech") BY OR;
}
RUN LOADING JOB loadPostPublicTech USING f="./posts3"

post 4 will remain untagged.

Set tags implicitly by inserting into a tag-based graph

5/13/25, 9:12 PM 3.3

818

If you load data into a tag-based graph, these vertices are actually being added to

the parent base graph. If two tag-based graphs have overlapping views (e.g. if the

graph vipNet2 also includes person:vip), then when one adds a vertex via the

tag-based graph, the other tag-based graph may also see it.

• Portability and Reusability: The same loading job works for socialNet or any

graph derived from socialNet which contains person . The difference is in the

effect: running it with vipNet will apply the vip tag. Running it with a different

tag-based graph would apply different tags. Users of a given tag-based graph

automatically insert and query data for that tag-based graph.

• Tagging Shared Data: The default behavior of GSQL loading is upsert: if you

attempt to insert a vertex or edge which already exists (e.g., uses an existing ID),

you will instead update the existing element with the new attribute values. If the

attribute is a list or set, the new values will be added to the existing list/set. This

applies to tags. If you attempt to load an existing vertex, the new tag(s) will be

added to any existing tags. Loading a vertex that already exists extends the tag set

with the guidance of the tag-graph schema.

The graph vipNet only includes vertices with the tag vip . We can verify this by

running a simple query to return all person vertices in vipNet :

USE GRAPH vipNet

CREATE LOADING JOB loadMember {
 DEFINE filename f;
 // TAGS("vip") BY OR will be applied implicitly
 // since vipNet is defined based on person:vip
 LOAD f TO VERTEX person VALUES($0, $0, $1);
}
RUN LOADING JOB loadMember USING f="./persons3"

Query a Tag-based Graph

5/13/25, 9:12 PM 3.3

819

The output of the query would be:

USE GRAPH vipNet

CREATE QUERY findAll() {
 seed = {person.*};
 result =
 SELECT v
 FROM seed:v
 ORDER BY v.id;

 PRINT result;
}
INSTALL QUERY findAll
RUN QUERY findAll()

5/13/25, 9:12 PM 3.3

820

Users with global WRITE_SCHEMA and ACCESS_TAG privileges can create, modify and

drop tags, as well as create tag-based graphs for all graphs.

{
 "error": false,
 "message": "",
 "version": {
 "schema": 2,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"res": [
 {
 "v_id": "person6",
 "attributes": {
 "gender": "Male",
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "gender": "Male",
 "id": "person8"
 },
 "v_type": "person"
 }
]}]
}

Access Control

On the base graph

5/13/25, 9:12 PM 3.3

821

Users with roles on the base graph that have the ACCESS_TAG privilege (e.g. admin

and designer roles) can create/drop tags, and tag vertices. Users that have both

the ACCESS_TAG privilege and WRITE_SCHEMA privilege (e.g. admin and designer

roles) can create/drop tag-based graphs of the base graph.

Users with roles that don't have the ACCESS_TAG privilege on the base graph are

able to access the base graph as their roles allow, but they do not have access to

the tags on the base graph. They cannot see whether any vertex type on the graph

is taggable or if there are tag-based graphs of the base graph.

Users with roles on the tag-based graphs of the base graph cannot access the base

graph if they don't have a role with privileges for the base graph.

When a new tag-based graph is created, users with admin or designer roles will

inherit their base graph role on the tag-based graph. Additionally, the creator of the

tag-based graph becomes an admin of the tag-based graph.

Users who are given roles on a tag-based graph have the privileges on the tag-

based graph that correspond to their roles, except they are not allowed to edit the

tag-based graph's graph schema.

Problem

A user with admin role on a graph wants to grant a group of users access to a

selective set of vertices.

Solution

The base graph admin can do the following security setup.

On tag-based graphs

Sample Use Cases

Scenario I

5/13/25, 9:12 PM 3.3

822

1. Define a tag. In a schema change job, declare a tag T for this application.

2. Mark vertex types as taggable. Identify the vertex types you want to give
selective access for, and mark those vertex types as taggable in a schema

change job.

3. Define a tag-based graph. Define a tag-based graph B with the taggable

vertex types, with T as their tag expression.

4. Tag vertices. Write a DML query on the base graph and use the tag functions in
the query to tag the vertices you want to include in the tag-based graph, and

run the query.

5. Grant users permission to the tag-based graph. On the tag-based graph B,

grant roles that have the appropriate privileges for graph B to the target users.

Problem

You have a source file containing class annotations (tags) on vertex data. You want

to grant users access to the vertices that have the annotation T1 . In the future, you

also want the ability to give other users access to vertices based on the vertex

class.

Solution

The base graph admin user can do the following setup.

1. Define tags. Declare tags T1, T2, … Tn for all the classes in your source file

in a schema change job.

2. Mark vertex types as taggable. Identify the vertex types of the vertices in your
source file that have class annotations, and mark those vertex types as taggable

 in a schema change job.

3. Define a tag-based graph. Define a tag-based graph B with T1 as the tag

expression.

4. Explicitly tag vertices during data loading. Write a base graph loading job, and
in the loading job, use a TAGS() BY clause to explicitly add tags to the

ingested vertices.

Scenario II

5/13/25, 9:12 PM 3.3

https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#define-a-tag
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#define-a-tag
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#taggable-vertex-types
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#taggable-vertex-types
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#create-a-tag-based-graph
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#create-a-tag-based-graph
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#Use-tag-functions-in-a-DML-query-to-update-base-graph-vertices
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#Use-tag-functions-in-a-DML-query-to-update-base-graph-vertices
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#define-a-tag
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#define-a-tag
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#taggable-vertex-types
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#taggable-vertex-types
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#taggable-vertex-types
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#create-a-tag-based-graph
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#create-a-tag-based-graph
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#set-tags-explicitly-during-data-loading
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#set-tags-explicitly-during-data-loading

823

5. Grant roles on the tag-based graph. On the tag-based graph B , grant roles

that have the appropriate privileges for the graph B to target users.

Problem

An admin user on a graph wants to give a group of users read/write access for a

specific class of vertices. The users would be able to insert new vertices into the

graph and query the data, and all the data they insert into the graph are tagged as

the same class.

Solution

The base graph admin can do the following setup.

• Define a tag. Declare a tag T for this application in a schema change job.

• Mark vertex types as taggable. Identify the vertex types to give selective

access to, and mark the relevant vertex types as taggable in a schema change
job.

• Define a tag-based graph. Define a tag-based graph B with T as the tag

expression.

• Grant roles on the tag-based graph. On the tag-based graph, grant roles with

the appropriate privileges to target users.

These group users operate (including delete/update/insert) on graph B as if it is a

normal graph. They can ingest new data, as well as operate on those vertices from

the base graph that have the tag T .

Scenario III

5/13/25, 9:12 PM 3.3

https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#define-a-tag
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#define-a-tag
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#taggable-vertex-types
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#taggable-vertex-types
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#create-a-tag-based-graph
https://app.gitbook.com/s/-LHvjxIN4__6bA0T-QmU-1769813804/admin/admin-guide/user-access/vertex-level-access-control.md#create-a-tag-based-graph

824

Lightweight Directory
Access Protocol (LDAP)

The Lightweight Directory Access Protocol (LDAP) is an industry-standard protocol

for accessing and maintaining directory information services across a network.

Typically, LDAP servers provide centralized user authentication services. The

Tigergraph system supports LDAP authentication by allowing a TigerGraph user to

log in using an LDAP username and credentials. During the authentication process,

the GSQL server connects to the LDAP server and requests the LDAP server to

authenticate the user.

GSQL LDAP authentication supports any LDAP server that follows the LDAPv3

protocol. StartTLS/SSL connection is also supported.

SASL authentication is not yet supported. Some LDAP servers are configured to

require a client certificate upon connection. Client certificates are not yet supported

in GSQL LDAP authentication.

In order to manage the user roles and privileges, the TigerGraph GSQL server

employs two concepts—proxy user and proxy group.

A proxy user is a GSQL user created to correspond to an external LDAP user. When

operating within GSQL, the external LDAP user's roles and privileges are determined

by the proxy user.

Supported Features

Mapping Users From LDAP to GSQL

Proxy User

5/13/25, 9:12 PM 3.3

825

A proxy group is a GSQL user group that is used to manage a group of proxy users

who share similar properties/attributes in LDAP.

An existing LDAP user can log in to GSQL only when the user matches at least one

of the existing proxy groups' criteria. Once the criteria are satisfied, a proxy user will

be created for the LDAP user. The roles and privileges of the proxy user are at least

as permissive as the proxy group(s) he belongs to. It is also possible to change the

roles of a specific proxy user independently. When the roles and privileges of a

proxy group changes, the roles and privileges of all the proxy users belonging to

this proxy group change accordingly.

To configure a TigerGraph system to use LDAP, there are two main configuration

steps:

1. Configure the LDAP Connection.

2. Configure GSQL Proxy Groups and Users.

In order to choose and specify your LDAP configuration settings, you must

understand some basic LDAP concepts. One reference for LDAP concepts is

https://www.ldap.com/basic-ldap-concepts .

Sufficient privileges are required to configure LDAP Authentication:

• WRITE_ROLE

• WRITE_PROXYGROUP

Proxy Group

Configure GSQL LDAP Authentication

Prerequisites

Step 1 - Configure the LDAP Connection

5/13/25, 9:12 PM 3.3

https://www.ldap.com/basic-ldap-concepts
https://www.ldap.com/basic-ldap-concepts

826

To enable and configure LDAP, run three commands.

1. Configure LDAP:

The gadmin program will then prompt the user for the settings for several LDAP

configuration parameters.

2. Apply the configuration:

3. Restart the gsql server:

An example configuration is shown below.

gadmin config entry ldap

gadmin config apply -y

gadmin restart gsql -y

5/13/25, 9:12 PM 3.3

827

Below is an explanation of each configuration parameter.

Example of gadmin config entry ldap

$ gadmin config entry ldap

Security.LDAP.Enable [false]: Enable LDAP authentication: default false
New: true

Security.LDAP.Hostname [localhost]: Configure LDAP server hostname: defa
New: ldap.tigergraph.com

Security.LDAP.Port [389]: Configure LDAP server port: default 389
New: 389

Security.LDAP.BaseDN []: Configure LDAP search base DN, the root node to
New: dc=tigergraph,dc=com

Security.LDAP.SearchFilter [(objectClass=*)]: Configure LDAP search base
New: (objectClass=*)

Security.LDAP.UsernameAttribute [uid]: Configure the username attribute
New: uid

Security.LDAP.AdminDN []: Configure the DN of LDAP user who has read acc
New: cn=Manager,dc=tigergraph,dc=com

Security.LDAP.AdminPassword [secret]: Configure the password of the admi
New: secret

Security.LDAP.Secure.Protocol [none]: Enable SSL/StartTLS for LDAP conne
New: none

Security.LDAP.Secure.TruststorePath []: Configure the truststore absolut
New: /tmp/ca_server.pkcs12

Security.LDAP.Secure.TruststoreFormat [JKS]: Configure the truststore fo
New: PKCS12

Security.LDAP.Secure.TruststorePassword [changeit]: Configure the trusts
New: test

Security.LDAP.Secure.TrustAll [false]: Configure to trust all LDAP serve
New: false
[Info] Configuration has been changed. Please use 'gadmin config apply'

5/13/25, 9:12 PM 3.3

828

Name Description Example

Security.LDAP.AdminDN

Configure the DN of LDAP

user who has read access

to the base DN specified

above. Empty if everyone

has read access to LDAP

data: default empty

nan

Security.LDAP.AdminPassw

ord

Configure the password of

the admin DN specified

above. Needed only when

admin_dn is specified:

default empty. If the value

provided is a path to a

script, the parameter will be

set to the output of the

script.

secret

Security.LDAP.BaseDN

Configure LDAP search

base DN, the root node to

start the LDAP search for

user authentication: must

specify

nan

Security.LDAP.Enable
Enable LDAP authentication:

default false
false

Security.LDAP.Hostname
Configure LDAP server

hostname: default localhost
localhost

Security.LDAP.Port
Configure LDAP server port:

default 389
389

Security.LDAP.SearchFilter

Configure LDAP search

base DN, the root node to

start the LDAP search for

user authentication.

(objectClass=*)

Security.LDAP.Secure.Proto

col

Enable SSL/StartTLS for

LDAP connection

[none/ssl/starttls]: default

none

none

Security.LDAP.Secure.Trust

All

Configure to trust all LDAP

servers (unsafe): default

false

false

5/13/25, 9:12 PM 3.3

829

This section explains how to configure a GSQL proxy group in order to allow LDAP

user authentication.

A GSQL proxy group is created by the CREATE GROUP command with a given proxy

rule. For example, assume there is an attribute called "role" in the LDAP directory,

and "engineering" is one of the "role" attribute values. We can create a proxy group

with the proxy rule "role=engineering". Different roles can then be assigned to the

proxy group. An example is shown below. When a user logins, the GSQL server

searches for the user's entry in the LDAP directory. If the user's LDAP entry

matches the proxy rule of an existing proxy group, a proxy user is created to which

the user will log in.

Security.LDAP.Secure.Trust

storeFormat

Configure the truststore

format [JKS/PKCS12]:

default JKS

JKS

Security.LDAP.Secure.Trust

storePassword

Configure the truststore

password: default changeit
changeit

Security.LDAP.Secure.Trust

storePath

Configure the truststore

absolute path for the

certificates used in SSL:

default empty. If the value

provided is a path to a

script, the parameter will be

set to the output of the

script.

nan

Security.LDAP.UsernameAtt

ribute

Configure the username

attribute name in LDAP

server: default uid

uid

Step 2 - Configure GSQL Proxy Groups and Users

Configure Proxy Group

CREATE GROUP command

5/13/25, 9:12 PM 3.3

830

The SHOW GROUP command will display information about a group. The DROP

GROUP command deletes the definition of a group.

Nothing needs to be configured for a proxy user. As long as the proxy rule matches,

the proxy user will be automatically created upon login. A proxy user is very similar

to a normal user. The minor differences are that a proxy user cannot change their

password in GSQL and that a proxy user comes with default roles inherited from the

proxy group that they belong to.

Admin_dn is the "distinguished name" of an LDAP entry. In LDAP, "distinguished

name" is often abbreviated as dn. When configuring this field, a dn entry with read

permission on the ldap directory is expected. Configuring a dn with no read

permission will result in an error. Not configuring this field will likely result in an error

since the LDAP server is typically not publicly readable. Please note that only the dn

field will be accepted for this entry. All other entries will result in an authentication

create a proxy group
CREATE GROUP developers PROXY "role=engineering" // Any user in LDAP with

grant role to proxy group
GRANT ROLE querywriter ON GRAPH computerNet TO developers

show the current groups
SHOW GROUP

delete a proxy group
DROP GROUP developers

Proxy User

Frequently Asked Questions

What is security.ldap.admin_dn?

SHOW GROUP and DROP GROUP commands

5/13/25, 9:12 PM 3.3

831

error. The corresponding password for the configured dn should also be set

correctly in the configured entry "security.ldap.admin_password ".

It depends on what type of protocol your LDAP server uses. SSL/TLS is very

common in enterprise use today. When SSL is used, the port is typically 636 instead

of default port 389.

You need to configure the truststore when SSL/TLS is used in the LDAP server. The

truststore's path, password, and format need to be configured accordingly. We

support two formats—JKS and PKCS12. The JKS is Java KeyStore. The

corresponding certificates for the LDAP server need to be imported to the JKS for

successful authentication. Different truststore formats are typically interchangeable.

This might be the case if SSL/TLS is enabled from the LDAP server side but you

don't have a certificate. You can set "security.ldap.secure.trust_all" to true to bypass

the SSL/TLS certificate checking.

"Parameter error" means some of the LDAP configurations are not set properly.

Most often it is because admin_dn, admin_password, or the login username and

password are not set correctly. Unfortunately, we cannot know exactly what field is

wrong because the LDAP server side does not respond back with such detail.

What protocol should I use for
security.ldap.secure.protocol?

Should I configure the truststore and how?

What if I just want to test the LDAP login without any
certificate?

What does it mean when I try to login but got "parameter
error"? Can I see a more detailed error message?

5/13/25, 9:12 PM 3.3

832

Congratulations! This means the LDAP is working. However, TigerGraph cannot find

a matching rule for the login user. Please create a proxy group for the user. See

documents for creating a proxy group here.

What does it mean when I see error "User does not
match any proxy rule"?

5/13/25, 9:12 PM 3.3

833

Single Sign-On
The Single Sign-On (SSO) feature in TigerGraph enables you to use your

organization's identity provider (IDP) to authenticate users to access TigerGraph

GraphStudio and Admin Portal UI.

Currently we have verified following the identity providers which support SAML 2.0

protocol:

• Okta

• Auth0

For supporting additional IDPs, please inquire sales@tigergraph.com and submit a

feature request.

In order to use Single Sign-On , you need to perform four steps :

1. Configure your identity provider to create a TigerGraph application.

2. Provide information from your identity provider to enable TigerGraph Single

Sign-On .

3. Create user groups with proxy rules to authorize Single Sign-On users.

4. Change the password of the tigergraph user to be other than the default, if you

haven't done so already.

We assume you already have TigerGraph up and running , and you can access

GraphStudio UI through a web browser using the URL: http://tigergraph-machine-

honestname:14240

If you enabled SSL connection, change http to https . If you changed the Nginx

port of the TigerGraph system, replace 14240 with the port you have set.

Here we provide detailed instructions for identity providers that we have verified.

Please consult your IT or security department for how to configure the identity

Configure Identity Provider

5/13/25, 9:12 PM 3.3

https://www.okta.com/
https://www.okta.com/
https://auth0.com/
https://auth0.com/

834

provider for your organization if it is not listed here.

After you finish configuring your identity provider, you will get the following:

• An Identity Provider Single Sign-On URL

• An Identity Provider Entity ID

• an X.509 certificate file idp.cert . You need these 3 things to configure

TigerGraph next.

After logging into Okta as the admin user, click Admin button at the top-right corner.

Okta

5/13/25, 9:12 PM 3.3

835

Click Add Applications in the right menu.

5/13/25, 9:12 PM 3.3

836

Click Create New App button in the left toolbar.

In the pop up window, choose SAML 2.0 and click Create .

5/13/25, 9:12 PM 3.3

837

Input TigerGraph (or whatever application name you want to use) in App Name , and

click Next . Upload a logo if you like.

Enter the Assertion Consumer Service URL / Single sign on URL , and SP Entity ID .

5/13/25, 9:12 PM 3.3

838

Both are URLs in our case. You need to know the hostname of the TigerGraph

machine. If you can visit GraphStudio UI through a browser, the URL contains the

hostname. It can be either an IP or a domain name.

The Assertion Consumer Service URL, or Single sign on URL, is

http://tigergraph-machine-hostname:14240/api/auth/saml/acs

The SP entity id URL is:

http://tigergraph-machine-hostname:14240/gsqlserver/gsql/saml/meta

Scroll to the bottom for Group Attribute Statements. Usually you want to grant roles

to users based on their user group. You can give a name to your attribute statement;

here we use group . For filter, we want to return all group attribute values of all

users, so we use Regex .* as the filter. Click Next after you set up everything.

5/13/25, 9:12 PM 3.3

839

In the final step, choose whether you want to integrate your app with Okta or not.

Then click Finish .

5/13/25, 9:12 PM 3.3

840

Now your Okta identity provider settings are finished. Click View Setup Instructions

button to gather information you will need to setup TigerGraph Single Sign-On.

5/13/25, 9:12 PM 3.3

841

Here you want to save Identity Provider Single Sign-On URL and Identity Provider

Issuer (usually known as Identity Provider Entity Id). Download the certificate file as

okta.cert, rename it as idp.cert , and put it somewhere on the TigerGraph machine.

Let's assume you put it under your home folder: /home/tigergraph/idp.cert. If you

installed TigerGraph in a cluster, you should put it on the machine where the GSQL

server is installed (usually it's the machine whose alias is m1).

5/13/25, 9:12 PM 3.3

842

Finally, return to previous page, go to the Assignments tab, click the Assign button,

and assign people or groups in your organization to access this application.

5/13/25, 9:12 PM 3.3

843

After logging into Auth0, click Clients in the left navigation bar, and then click

CREATE CLIENT button.

Auth0

5/13/25, 9:12 PM 3.3

844

In the pop-up window, enter TigerGraph (or whatever application name you want to

use) in the Name input box. Choose Single Page Web Application , and then click

the CREATE button.

5/13/25, 9:12 PM 3.3

845

Click Clients again. In the Shown Clients list, click the settings icon of your newly

created TigerGraph client.

5/13/25, 9:12 PM 3.3

846

Scroll down to the bottom of the settings section, and click Show Advanced Settings

.

5/13/25, 9:12 PM 3.3

847

Click the Certificates tab and then click DOWNLOAD CERTIFICATE. In the chooser

list, choose CER. Rename the downloaded file as idp.cert , and put it somewhere on

the TigerGraph machine. Let's assume you put it under your home folder:

/home/tigergraph/idp.cert. If you installed TigerGraph in a cluster, you should put it

on the machine where the GSQL server is installed (usually it's the machine whose

alias is m1).

5/13/25, 9:12 PM 3.3

848

Click the Endpoints tab, and copy the text in the SAML Protocol URL text box. This

is the Identity Provider Single Sign-On URL that will be used to configure TigerGraph

in an upcoming step.

5/13/25, 9:12 PM 3.3

849

Scroll up to the top of the page, click the Addons tab, and switch on the toggle at

the right side of the SAML2 card.

5/13/25, 9:12 PM 3.3

850

In the pop-up window, enter the Assertion Consumer Service URL in the Application

Callback URL input box:

http://tigergraph-machine-hostname:14240/api/auth/saml/acs

5/13/25, 9:12 PM 3.3

851

Scroll down to the end of the settings JSON code, click the DEBUG button, and log

in as any existing user in your organization in the pop-up login page.

5/13/25, 9:12 PM 3.3

852

If login in successfully, the SAML response will be shown in decoded XML format.

Scroll down to the attributes section. Here you will see some attribute names, which

you will use to set proxy rules when creating groups in an upcoming configuration

step.

5/13/25, 9:12 PM 3.3

853

Return to the previous pop-up window and click the Usage tab. Copy the Issuer

value. This is the Identity Provider Entity Id that will be used to configure TigerGraph

in an upcoming step.

5/13/25, 9:12 PM 3.3

854

Click the Settings tab, scroll to the bottom of the pop-up window, and click the SAVE

button. Close the pop-up window.

5/13/25, 9:12 PM 3.3

855

Enable Single Sign-On in TigerGraph

5/13/25, 9:12 PM 3.3

856

According to the SAML standard trust model, a self-signed certificate is considered

fine. This is different from configuring a SSL connection, where a CA-authorized

certificate is considered mandatory if the system goes to production.

There are multiple ways to create a self-signed certificate. One example is shown

below.

First, use the following command to generate a private key in PKCS#1 format and a

X.509 certificate file. In the example below, the Common Name value should be your

server hostname (IP or domain name).

Second, convert your private key from PKCS#1 format to PKCS#8 format:

$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /home/tigerg

Generating a 2048 bit RSA private key
..
........+++
writing new private key to '/home/tigergraph/sp-pkcs1.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Redwood City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:TigerGraph Inc.
Organizational Unit Name (eg, section) []:GLE
Common Name (e.g. server FQDN or YOUR name) []: tigergraph-machine-hostnam
Email Address []:support@tigergraph.com

openssl pkcs8 -topk8 -inform pem -nocrypt -in /home/tigergraph/sp-pkcs1.ke

Prepare certificate and private key on TigerGraph
machine

Self-Signed Certificate generation example using openssl

5/13/25, 9:12 PM 3.3

857

From a TigerGraph machine, run the following command: gadmin config entry

Security.SSO.SAML

Answering the questions is straightforward; an example is shown below.

Since v2.3, the requirements for the Security.SSO.SAML.SP.Hostname parameter
changed. The url must be a full url, starting with protocol (such as http) and ending
with port number.

Enable and configure Single Sign-On Using Gadmin

configure sso.saml example

5/13/25, 9:12 PM 3.3

858

The reason we change Security.SSO.SAML.ResponseSigned to false is because

some identity providers (e.g., Auth0) don't support signed assertion and response at

$ gadmin config entry Security.SSO.SAML

Security.SSO.SAML.Enable [false]: Enable SAML2-based SSO: default false
New: true

Security.SSO.SAML.AuthnRequestSigned [true]: Sign AuthnRequests before s
New: true

Security.SSO.SAML.AssertionSigned [true]: Require Identity Provider to s
New: true

Security.SSO.SAML.ResponseSigned [true]: Require Identity Provider to si
New: false

Security.SSO.SAML.MetadataSigned [true]: Sign Metadata: default true
New: true

Security.SSO.SAML.SignatureAlgorithm [rsa-sha256]: Signiture algorithm [
New: rsa-sha256

Security.SSO.SAML.BuiltinUser [__GSQL__saml]: The builtin user for SAML
New: __GSQL__saml

Security.SSO.SAML.RequestedAuthnContext []: Authentication context (comm
New: urn:oasis:names:tc:SAML:2.0:ac:classes:Password

Security.SSO.SAML.SP.Hostname [http://127.0.0.1:14240]: TigerGraph Servi
New: http://localhost:14240

Security.SSO.SAML.SP.X509Cert []: Content of the x509 Certificate: defau
New: <x509 certificate>

Security.SSO.SAML.SP.PrivateKey []: Content of the host machine's privat
New: <private key>

Security.SSO.SAML.IDP.EntityId [http://idp.example.com]: Identity Provid
New: http://idp.example.com

Security.SSO.SAML.IDP.SSOUrl [http://idp.example.com/sso/saml]: Single S
New: http://idp.example.com/sso/saml

Security.SSO.SAML.IDP.X509Cert []: Identity Provider's x509 Certificate
New: /home/tigergraph/idp.cert

5/13/25, 9:12 PM 3.3

859

the same time. If your identity provider supports signing both, we strongly suggest

you leave it as true.

After making the configuration settings, apply the config changes, and restart gsql.

In order to authorize Single Sign-On users, you need create user groups in GSQL

with proxy rules and grant roles on graphs for the user groups.

In TigerGraph Single Sign-On, we support two types of proxy rules:

• nameid equations

• attribute equations

Attribute equations are more commonly used because usually user group

information is transferred as attributes to your identity provider SAML assertions. In

the Okta identity provider configuration example, it is transferred by the attribute

statement named group. By granting roles to a user group, all users matching the

proxy rule will be granted all the privileges of that role. In some cases if you want to

grant one specific Single Sign-On user some privilege, you can use a nameid

equation to do so.

• WRITE_PROXYGROUP for creating proxy groups.

• WRITE_ROLE for granting roles to users

$ gadmin config apply -y
$ gadmin restart gsql -y

Create user groups with proxy rules to
authorize Single Sign-On users

Required privilege

Single User Proxy

5/13/25, 9:12 PM 3.3

860

For example, if you want to create a user group SuperUserGroup that contains the

user with nameid admin@your.company.com only, and grant superuser role to that

user, you can do so with the following command:

Suppose you want to create a user group HrDepartment which corresponds to the

identity provider Single Sign-On users having the group attribute value "hr-

department", and want to grant the queryreader role to that group on the graph

HrGraph:

Don't forget to enable User Authorization in TigerGraph by changing the password

of the default superuser tigergraph to other than its default value. If you do not

change the password, then every time you visit the GraphStudio UI, you will

automatically log in as the superuser tigergraph.

GSQL > CREATE GROUP SuperUserGroup PROXY "nameid=admin@your.company.com"
GSQL > GRANT ROLE superuser TO SuperUserGroup
Role "superuser" is successfully granted to user(s): SuperUserGroup

GSQL > CREATE GROUP HrDepartment PROXY "group=hr-department"
GSQL > GRANT ROLE queryreader ON GRAPH HrGraph TO HrDepartment
Role "queryreader" is successfully granted to user(s): HrDepartment

GSQL > change password
New Password : ********
Re-enter Password : ********
Password has been changed.
GSQL > exit

User Group Proxy

Change Password Of Default User

Testing Single Sign-On

5/13/25, 9:12 PM 3.3

861

Now you have finished all configurations for Single Sign-On. Let's test it.

Visit the GraphStudio UI in your browser. You should see a Login with SSO button

appear on top of the login panel:

Clicking the button will navigate to your identity provider's login portal. If you have

already logged in there, you will be redirected back to GraphStudio immediately.

After about 10 seconds, the verification should finish, and you are authorized to use

GraphStudio. If you haven't login at your identity provider yet, you will need to log in

there. After logging in successfully, you will see your Single Sign-On username

when you click the User icon at the upper right of the GraphStudio UI.

5/13/25, 9:12 PM 3.3

862

If after redirecting back to GraphStudio, you return to the login page with the error

message shown below, that means the Single Sign-On user doesn't have access to

any graph. Please double check your user group proxy rules, and roles you have

granted to the groups.

5/13/25, 9:12 PM 3.3

863

If your Single Sign-On fails with error message show below, that means either some

configuration is inconsistent between TigerGraph and your identity provider, or

something unexpected happened.

5/13/25, 9:12 PM 3.3

864

You can check your GSQL log to investigate. First, find your GSQL log file with the

following:

Then, grep the SAML authentication-related logs:

Focus on the latest errors. Usually the text is self-descriptive. Follow the error

message and try to fix TigerGraph or your identity provider's configuration. If you

encounter any errors that are not clear, please contact support@tigergraph.com .

$ gadmin log gsql
GSQL : /home/tigergraph/tigergraph/log/gsql/log.INFO

cat /home/tigergraph/tigergraph/log/gsql/log.INFO | grep SAMLAuth

5/13/25, 9:12 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com

865

Cluster Resizing
As your workload changes, it makes sense to resize your cluster to meet your

production needs. The section describes the steps to perform the following cluster

resizing operations:

• Expand a cluster

• Downsize a cluster

• Repartition a cluster

5/13/25, 9:12 PM 3.3

866

Cluster Expansion
As your workload changes, you can expand your cluster to improve its query

performance, system availability, and fault tolerance. Expanding a cluster adds more

nodes to the cluster. During an expansion, you can also change the replication

factor of your cluster.

• TigerGraph must already be installed on the new nodes in exactly the same

version as the cluster.

• No loading jobs, queries, or REST requests are running on the new node or the

cluster.

• Obtain a few key measures for the state of your data before the expansion, such

as vertex counts/edge counts or certain query results. This will be useful in
verifying data integrity after the expansion completes.

• If the original cluster is a single node installation, make sure the IP used is not a

local loopback address such as 127.0.0.1.

Before running any commands to expand a cluster, make sure you have a clear idea

of how the new cluster should be distributed. You should have the following

information:

• The new replication factor of the cluster

• The new partitioning factor of the cluster

• The IP addresses of the new nodes to be added to the cluster

Before you begin

Procedure

Step 1: Identify new cluster replication and partition

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Localhost
https://en.wikipedia.org/wiki/Localhost

867

To expand the cluster, run the gadmin cluster expand command like below. If the

expansion involves changing the replication factor, use the --ha option to indicate

the new replication factor:

node_ip_list is the machine aliases of the nodes you are adding to the cluster

mapped to their IP addresses with a colon(:), and separated by a comma. Below is

an example:

We suggest naming the new nodes following the convention of m<serial> , such as

m1 , m2 , and m3 for a 3-node cluster. If you are adding a fourth node, then the

fourth node would be named m4 . If you decide to name them differently, make sure

that all names are unique within the cluster.

Extra disk space is required during cluster expansion. If more space is not available

on the same disk, you can supply a staging location on a different disk to hold

temporary data:

If you choose to supply a staging location, make sure that the TigerGraph Linux user

has write permission to the path you provide. The overall amount of space required

for expansion on each node is (1 + Math.ceil(oldPartition/newPartition)) *

dataRootSize . oldPartition and newPartition each stand for the partitioning

factor of the cluster before and after expansion; dataRootSize stands for the size

of the data root folder on the node.

$ gadmin cluster expand node_ip_list [--ha <replication_factor>]

$ gadmin cluster expand m3:10.128.0.81,m4:10.128.0.82 --ha 1

$ gadmin cluster expand m3:192.168.1.3,m4:192.168.1.4 --stagingPath /tmp/

Step 2: Expand the cluster

Supply a staging location

5/13/25, 9:12 PM 3.3

868

For example, if you are expanding from a 6 node cluster with a replication factor of 2

and a partitioning factor of 3, to a 10-node cluster with a replication factor of 2 and a

partitioning factor of 5, and the size of the data root folder on a node is 50GB. Then

you would need more than (1 + Math.ceil(3/5)) * 50) = 100 GB of free space

on the staging path.

When the expansion completes, you should see a message confirming the

completion of the cluster change. The message will also include the location of the

temporary files created during the expansion.

Verify data integrity by comparing vertex/edge counts or query results. After

confirming a successful expansion, delete the temporary files to free up disk space.

Step 3: Verify success and delete temporary files

5/13/25, 9:12 PM 3.3

869

Cluster Shrinking
Shrinking a cluster can make sense for a few reasons:

• Your workload has changed and you can operate a cluster with fewer resources.

• Your data volume is lower than projected.

Shrinking a cluster removes nodes from the cluster. The data stored on those nodes

will be redistributed to the remaining nodes.

• No loading jobs, queries, or REST requests are running on the new node or the

cluster.

• Obtain a few key measures for the state of your data before shrinking, such as
vertex counts/edge counts or certain query results. This will be useful in

verifying data integrity after shrinking completes.

Before running any commands to shrink a cluster, make sure you have a clear idea

of how the new cluster should be distributed. You should have the following

information:

• The new replication factor of the cluster

• The new partitioning factor of the cluster

• The names and IP addresses of the nodes to be removed from the cluster

Before you begin

Procedure

Step 1: Identify new cluster replication and partition

Step 2: Shrink the cluster

5/13/25, 9:12 PM 3.3

870

To shrink the cluster, run the gadmin cluster shrink command like below. If the

shrinking involves changing the replication factor, use the --ha

<replicattion_factor> option to indicate the new replication factor:

node_ip_list is the list of nodes you are removing from the cluster mapped to their

IP addresses with a colon(:), and separated by a comma. Below is an example:

Extra disk space is required during cluster shrinking. If more space is not available

on the same disk, you can supply a staging location on a different disk to hold

temporary data:

If you choose to supply a staging location, make sure that the TigerGraph Linux user

has write permission to the path you provide. The overall amount of space required

for cluster shrinking on each node is (1 + Math.ceil(oldPartition/newPartition)

) * dataRootSize . oldPartition and newPartition each stand for the

partitioning factor of the cluster before and after shrinking; dataRootSize stands

for the size of the data root folder on the node.

For example, if you are shrinking from a 10-node cluster with a replication factor of 2

and a partitioning factor of 5, to a 6-node cluster with a replication factor of 2 and a

partitioning factor of 3, and the size of the data root folder on a node is 50GB. Then

you would need more than (1 + Math.ceil(5/3)) * 50) = 150 GB of free space

on the staging path.

$ gadmin cluster shrink node_ip_list [--ha <replication_factor>]

$ gadmin cluster shrink m3:10.128.0.81,m4:10.128.0.82 --ha 1

$ gadmin cluster shrink m3:192.168.1.3,m4:192.168.1.4 --stagingPath /tmp/

Supply a staging location

Step 3: Verify success and delete temporary files

5/13/25, 9:12 PM 3.3

871

When shrinking completes, you should see a message confirming the completion of

the cluster change. The message will also include the location of the temporary files

created during the operation.

Verify data integrity by comparing vertex/edge counts or query results to what they

were before the shrinking. After confirming a successful cluster contraction, delete

the temporary files to free up disk space.

Uninstall TigerGraph from the removed nodes by removing all root directories (app ,

data and tmp) except the log directory of TigerGraph.

For security reasons, guninstall is disabled on the removed nodes. Therefore, you
need to delete TigerGraph by manually deleting the root directories.

Step 4: Uninstall TigerGraph on the removed nodes

5/13/25, 9:12 PM 3.3

872

Cluster Repartition
You can repartition a cluster to meet the changing needs of your workload.

Repartitioning a cluster changes the replication factor and the partitioning factor of

your cluster without adding or removing nodes from the cluster.

You can also change the replication factor when you expand or shrink a cluster. See

Expand a Cluster and Shrink a Cluster.

• No loading jobs, queries, or REST requests are running on the cluster.

• Obtain a few key measures for the state of your data before the repartition, such
as vertex counts/edge counts or certain query results. This will be useful in

verifying data integrity after the repartition completes.

To repartition a cluster, calculate the new replication factor for your cluster. You can

calculate the replication factor by dividing the total number of nodes in the cluster

by the number of partitions you'd like your cluster to have.

To repartition a cluster, use the gadmin cluster expand command like below. Use

the --ha option to indicate the new replication factor of the cluster. For example,

the command below will change the replication factor to 2:

$ gadmin cluster expand --ha 2

Before you begin

Procedure

Step 1: Calculate new replication factor

Step 2: Repartition the cluster

5/13/25, 9:12 PM 3.3

873

The partitioning factor of your cluster will change automatically based on your

specified replication factor. Its updated value will be the total number of nodes

divided by the replication factor.

If the total number of nodes cannot be fully divided by the replication factor, the

remainder nodes will be left idle. For example, if you currently have a 5-node cluster

with a replication factor of 1 and a partitioning factor of 5. Changing the replication

factor to 2 without adding new nodes will change the distribution of your cluster to

be 2*2, with one node being left idle. To avoid nodes being left idle, ensure that you

pick a replication factor that can fully divide the total number of nodes you have in

the cluster.

Extra disk space is required during cluster repartition. If more space is not available

on the same disk, you can supply a staging location on a different disk to hold

temporary data:

If you choose to supply a staging location, make sure that the TigerGraph Linux user

has write permission to the path you provide. The overall amount of space required

for cluster repartition on each node is (1 + Math.ceil(oldPartition/newPartition)

) * dataRootSize . oldPartition and newPartition each stand for the

partitioning factor of the cluster before and after repartition; dataRootSize stands

for the size of the data root folder on the node.

For example, if you are repartitioning from a 6-node cluster with a replication factor

of 2 and a partitioning factor of 3, to a 6-node cluster with a replication factor of 3

and a partitioning factor of 2, and the size of the data root folder on a node is 50GB.

Then you would need more than (1 + Math.ceil(3/2)) * 50) = 150 GB of free

space on the staging path.

$ gadmin cluster expand --stagingPath /tmp/

Supply a staging location

Step 3: Verify success and delete temporary files

5/13/25, 9:12 PM 3.3

874

When the repartition completes, you should see a message confirming the

completion of the cluster change. The message will also include the location of the

temporary files created during the repartition.

Verify data integrity by comparing vertex/edge counts or query results. After

confirming a successful repartition, delete the temporary files to free up disk space.

5/13/25, 9:12 PM 3.3

875

Data Encryption
Encryption for Data at Rest and Data in Motion

5/13/25, 9:12 PM 3.3

876

Encrypting Connections
TigerGraph supports secure data-in-flight communication, using SSL/TLS

encryption protocol. This applies to any outward-facing channel, including GSQL

clients, RESTPP endpoints, and the GraphStudio web interface. When SSL/TLS is

enabled, HTTPS takes the place of HTTP for RESTPP and GraphStudio connections.

You should have basic knowledge about how SSL works:

1. What the SSL certificate and key are used for

2. That an SSL certificate is bound to a domain

3. How an SSL certificate chain works

A good primer on SSL is available to

https://httpd.apache.org/docs/2.4/ssl/ssl_intro.html

TigerGraph uses the Nginx web server, so SSL configuration makes use of some

built-in support in Nginx.

http://nginx.org/en/docs/http/configuring_https_servers.html

The two main options for obtaining an SSL Certificate are to generate your own self-

signed certificate or to purchase a certificate from a trusted Certificate Authority.

Regardless of which method you choose, your certificate should be chained to a

trusted root certificate embedded in your browser. The options and details for

producing a trusted SSL certificate are beyond the scope of this document. The

Prerequisites

Nginx-Based

Step 1. Obtain an SSL Certificate

5/13/25, 9:12 PM 3.3

https://httpd.apache.org/docs/2.4/ssl/ssl_intro.html
https://httpd.apache.org/docs/2.4/ssl/ssl_intro.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html

877

focus of this document is how to configure your TigerGraph system to use the

certificate to enable SSL.

First, obtain an SSL certificate from a trusted agent of your choice. Certificate

vendors will provide clear instructions for ordering a certificate and then for

installing it on your system.

Then you can configure the certificate with gadmin config entry ssl

There are multiple ways to create a self-signed certificate. One example is shown

below.

For simplicity, the method below will use the root certificate directly as the HTTPS
server certificate. This method is satisfactory for testing but should not be used for a
production system.

In the example below, the Common Name value should be your server hostname, since
HTTPS certificates are bound to domain names.

Option 1: Using a Certificate From A Trusted Agent

Option 2: Create a Self-Signed Certificate

Self-Signed Certificate generation example using openssl

5/13/25, 9:12 PM 3.3

878

For security reasons, the certificates can only be used with permission 600 or less.

With the self-signed certificate successfully generated, you can configure it with

gadmin , so that all the HTTP traffic will be protected with SSL.

TigerGraph's SSL only accepts PEM-encoded certificates. If you have a certificate
encoded in other formats (e.g. DER), you need to convert it to a PEM-encoded

certificate first.

$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout ~/nginx-self

Generating a 2048 bit RSA private key
..
........+++
writing new private key to '/home/tigergraph/nginx-selfsigned.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Redwood City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:TigerGraph
Organizational Unit Name (eg, section) []:GLE
Common Name (e.g. server FQDN or YOUR name) []: my.ip.addr.num
Email Address []:engineer@tigergraph.com

$ chmod 600 ~/nginx-selfsigned.*

Change the Certificate Permission

Step 2: Configure SSL with gadmin

5/13/25, 9:12 PM 3.3

https://www.sslshopper.com/ssl-converter.html
https://www.sslshopper.com/ssl-converter.html
https://www.sslshopper.com/ssl-converter.html

879

After saving the settings, apply the configuration settings.

Then restart the following services: gsql , nginx , ts3 , and gui .

Now you may test the connection.

A direct curl request to the server will fail due to certificate verification failure:

$ gadmin config entry ssl

 Nginx.SSL.Enable [false]: Enable SSL connection for all HTTP requests
New: true

Nginx.SSL.Key [<masked>]: Private key for SSL
New: @privateKey_file_path

Nginx.SSL.Cert [<masked>]: Public certificate for SSL
New: @ssl_cert_path

This config (Nginx.ProxySSLVerify) was removed in v3.1.1
Nginx.ProxySSLVerify [false]: Enable verification of the proxied HTTPS s
New: true

gadmin config apply -y

[Info] Successfully applied configuration change. Please restart services

$ gadmin restart gsql nginx gui ts3 -y

Testing Your SSL Connection

5/13/25, 9:12 PM 3.3

880

In v1.2, the default TCP/IP port for Nginx has changed from 44240 to 14240, to avoid
possible port conflicts with Zookeeper.

You may use the -k option to turn off the verification, but it is unsafe and not

recommended.

To successfully make requests with curl, you will need to specify the certificate by

using the --cacert parameter:

$ curl https://localhost:14240

curl: (60) server certificate verification failed. CAfile: /etc/ssl/certs/
More details here: http://curl.haxx.se/docs/sslcerts.html

curl performs SSL certificate verification by default, using a "bundle"
of Certificate Authority (CA) public keys (CA certs). If the default
bundle file isn't adequate, you can specify an alternate file
using the --cacert option.

If this HTTPS server uses a certificate signed by a CA represented in
the bundle, the certificate verification probably failed due to a
problem with the certificate (it might be expired, or the name might
not match the domain name in the URL).

If you'd like to turn off curl's verification of the certificate, use
the -k (or --insecure) option.

$ curl --cacert /home/tigergraph/nginx-selfsigned.crt https://localhost:14

<!doctype html><html lang="en"><head><meta charset="utf-8"><title>GraphStu

5/13/25, 9:12 PM 3.3

881

Encrypting Data At Rest

The TigerGraph graph data store uses a proprietary encoding scheme which both

compresses the data and obscures the data unless the user knows the

encoding/decoding scheme. In addition, the TigerGraph system supports integration

with industry-standard methods for encrypting data when stored in disk ("data at

rest").

Data at rest encryption can be applied at many different levels. A user can choose to

use one or more level.

File system encryption employs advanced encryption algorithms. Some tools allow

the user to select from a menu of encryption algorithms. It can be done either in

kernel mode or user mode. To run in kernel mode, superuser permission is

required.

Encryption Level Description TigerGraph Support

Hardware

Use specialized hard disks

which perform automatic

encryption on write and

decryption on read (by

authorized OS users)

Invisible to TigerGraph

Kernel-level file system

Use Linux built-in utilities to

encrypt data.

Root privilege required.

Invisible to TigerGraph

User-level file system

Use Linux built-in utilities

and customized libraries to

encrypt data.

Root privilege is not

required.

Invisible to TigerGraph

Encryption Levels

Kernel-level Encryption

5/13/25, 9:12 PM 3.3

882

Since Linux 2.6, device-mapper has been an infrastructure, which provides a

generic way to create virtual layers of block devices with transparent encryption

blocks using the kernel crypto API.

In Ubuntu, full-disk encryption is an option during the OS installation process. For

other Linux distributions, the disk can be encrypted with dm-encrypt .

A commonly used utility is eCryptfs , which is licensed under GPL, and it is built

into some kernels, such as Ubuntu.

If root privilege is not available, a workaround is to use FUSE (Filesystem in User

Space) to create a user-level filesystem running on top of the host operating

system. While the performance may not be as good as running in kernel mode, there

are more options available for customization and tuning.

In this example, we use dm-crypt to provide kernel-mode file system encryption.

The dm-crypt utility is widely available and offers a choice of encryption algorithms.

It also can be set to encrypt various units of storage – full disk, partitions, logical

volumes, or files.

The basic idea of this solution is to create a file, map an encrypted file system to it,

and mount it as a storage directory for TigerGraph with R/W permission only to

authorized users.

Before you start, you will need a Linux machine on which

• you have root permission,

User-Level Encryption

Example 1: Kernel-mode file system
encryption with dm-crypt

Prerequisites

5/13/25, 9:12 PM 3.3

https://wiki.archlinux.org/index.php/Dm-crypt
https://wiki.archlinux.org/index.php/Dm-crypt
http://ecryptfs.org/
http://ecryptfs.org/

883

• the TigerGraph system has not yet been installed,

• and you have sufficient disk space for the TigerGraph data you wish to encrypt.

This may be on your local disk or on a separate disk you have mounted.

• Install cryptsetup (cryptsetup is included with Ubuntu, but other OS users may

need to install it with yum).

• Install the TigerGraph system.

• Grant sudo privilege to the TigerGraph OS user.

• Stop all TigerGraph services with the following commands:
gadmin stop all -y

gadmin stop admin -y

• Acting as the tigergraph OS user, run the following export commands to set

variables. Replace the placeholders enclosed in angle brackets <...> with the
values of your choice:

• Create a file for TigerGraph data storage.

The username for TigerGraph Database System, for example: tigergraph
export db_user='<username>'

The path of encrypted file to be created for TigerGraph storage, for exa
export encrypted_file_path='<path-to-encrypted-file>'

The size of encrypted file to be created (used by dd command), for examp
export encrypted_file_size=<storage-size>

The password for the encrypted file, for example: DataAtRe5tPa55w0rd
export encryption_password='<password>'

The root directory for tigergraph, for example: $HOME/tigergraph
export tigergraph_data_root="<tigergraph-data-root>"

Set the first available loop device for encrypted file mapping
export loop_device=$(losetup -f)

dd of=$encrypted_file_path bs=$encrypted_file_size count=0 seek=1

Instructions

5/13/25, 9:12 PM 3.3

884

• Change the permission of the file so that only the owner of the file (that is, only
the tigergraph user who created the file in the previous step) will be able to

access it:

• Associate a loopback device with the file:

• Encrypt storage in the device. cryptsetup will use the Linux device mapper to

create, in this case, $encrypted_file_path . Initialize the volume and set a

password interactively with the password you set to $encryption_password :

If you are trying to automate the process with a script running with root TTY session

, you may use the following command:

• Open the partition, and create a mapping to $encrypted_file_path :

If you are trying to automate the process with a script running with root TTY session

, you may use the following command:

• Clear the password from bash variables and bash history.

The following commands may clear your previous bash histories as well. Instead, you
may edit ~/.bash_history to selectively delete the related entries.

chmod 600 $encrypted_file_path

sudo losetup $loop_device $encrypted_file_path

sudo cryptsetup -y luksFormat $loop_device

echo "$encryption_password" | cryptsetup -y luksFormat $loop_device

sudo cryptsetup luksOpen $loop_device tigergraph_gstore

echo "$encryption_password" | cryptsetup luksOpen $loop_device tigergraph_

5/13/25, 9:12 PM 3.3

885

• Create a file system and verify its status:

• Mount the new file system to /mnt/secretfs:

• Change the permission to 700 so that only $db_user has access to the file

system:

• Move the original TigerGraph files to the encrypted filesystem and make a

symbolic link. If you wish to encrypt only the TigerGraph data store (called

gstore), use the following commands:

There are other TigerGraph files which you might also consider to be sensitive and

wish to encrypt. These include the dictionary, kafka data files, and log files. You

could selectively identify files to protect or you could encrypt the entire TigerGraph

folder(App/Data/Log/TempRoot). In this case, simply move $tigergraph_data_root

instead of $tigergraph_data_root/gstore.

The data of TigerGraph data is now stored in an encrypted filesystem. It will be

automated decrypted when the tigergraph user (and only this user) accesses it.

unset encryption_password
history -c
history -w

sudo mke2fs -j -O dir_index /dev/mapper/tigergraph_gstore

sudo mkdir -p /mnt/secretfs
sudo mount /dev/mapper/tigergraph_gstore /mnt/secretfs

sudo chmod -R 700 /mnt/secretfs
sudo chown -R $db_user:$db_user /mnt/secretfs

mv $tigergraph_data_root/gstore /mnt/secretfs/gstore
ln -s /mnt/secretfs/gstore $tigergraph_data_root/gstore

mv $tigergraph_data_root /mnt/secretfs/tigergraph
ln -s /mnt/secretfs/tigergraph $tigergraph_data_root

5/13/25, 9:12 PM 3.3

886

To automatically deploy this encryption solution, you may

1. Chain all the steps as a bash script

2. Remove all "sudo" since the script will be running as root.

3. Run the script as root user after TigerGraph Installation.

The setup scripts contain your encryption password. To follow good security
procedures, do not leave your password in plaintext format in any files on your disk.
Either remove the setup scripts or edit out the password.

Encryption is usually CPU-bound rather than I/O-bound. If CPU usage reamains

below 100%, encryption should not cause much performance slowdown. A

performance test using both small and large queries supports this prediction: for

small (~1 sec) and large (~100 sec) queries, there is a ~5% slowdown due to

filesystem encryption.

We used the TPC-H dataset with scale factor 10 (http://www.tpc.org/tpch/). The

data size is 23GB after loading into TigerGraph..The write test (data loading) was

done by running a loading job and then killing the GPE with SIGTERM (to exit

gracefully) to ensure that all kafka data is consumed.The read test (GSE cold start)

measures the time from "gadmin start gse" until "online" appears in "gadmin status

gse".

GSE Cold Start (read) Load Data (write)

original 45s 809s

encrypted 47s 854s

% slowdown 4.4% 5.8%

Performance Evaluation

Example 2: Encrypting Data on Amazon EC2

5/13/25, 9:12 PM 3.3

http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

887

Major cloud service providers often provide their own methodologies for encrypting

data at rest. For Amazon EC2, we recommend users start by reading the AWS

Security Blog: How to Protect Data at Rest with Amazon EC2 Instance Store

Encryption .

In this section, we provide a simple example for configuring file system encryption

for a TigerGraph running on Amazon EC2. The steps are based on those given in

How to Protect Data at Rest with Amazon EC2 Instance Store Encryption , with

some additions and modifications.

The basic idea of this solution is to create a file, map an encrypted file system to it,

and mount it as a storage directory for TigerGraph with permission only to

authorized users.

Angle brackets <...> are used to mark placeholders which you should replace with
your own values (without the angle brackets).

Make sure you have installed and configured AWS CLI with keys locally.

Sign in to the S3 console and choose Create Bucket .
In the Bucket Name box, type your bucket name and then choose Create .
You should see the details about your new bucket in the right pane.

Prerequisites

Create an S3 Bucket

Configure IAM roles and permission for the S3 bucket

from Amazon Data-at-Rest blog

from Amazon Data-at-Rest blog

5/13/25, 9:12 PM 3.3

https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

888

If you don't have a KMS key, you can create it first:

1. From the IAM console , choose Encryption keys from the navigation pane.

2. Select Create Key , and type in <your-key-alias>

3. For Step 2 and Step 3 , see

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html for

advice.

4. In Step 4 : Define Key Usage Permissions , select <your-role-name>

5. The role now has permission to use the key.

1.Sign in to the AWS Management Console and navigate to the IAM console .

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::<your-bucket-name>/LuksInternalStora
 }
]
}
The preceding policy grants read access to the bucket where the encrypted
(The following instructions have been updated since the original blog post

2."Select type of trusted entity: Choose AWS service .
3."Select the service that will use this role": Choose EC2 then choose Nex
4.Choose the policy you created in Step 1 and then choose Next: Review.
5.On the Create role page, type your role name , a Role description, and c
6.The newly created IAM role is now ready. You will use it when launching

Create a KMS Key (optional)

5/13/25, 9:12 PM 3.3

https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

889

In this section, you launch a new EC2 instance with the new IAM role and a

bootstrap script that executes the steps to encrypt the file system.

The script in this section requires root permission, and it cannot be run manually
through an ssh tunnel or by an unprivileged user.

Step 2. Create Key

Next, use KMS to encrypt a secret password. To encrypt text by using KMS,

To encrypt a secret password with KMS and store it in the S3 bucket:

From the AWS CLI, type the following command to encrypt a secret password
aws --region <your-region> kms encrypt --key-id 'alias/<your-key-alias>' -

aws s3 cp LuksInternalStorageKey s3://<your-bucket-name>/LuksInternalStora
The preceding commands encrypt the password (Base64 is used to decode the

Encrypt a secret password with KMS and store it in the
S3 bucket

Configure EC2 with role and launch configurations

from Amazon Data-at-Rest blog

5/13/25, 9:12 PM 3.3

890

1. In the EC2 console , launch a new instance (see this tutorial for more details).

Amazon Linux AMI 2017.09.1 (HVM), SSD Volume Type (If NOT using Amazon
Linux AMI, a script the installs python, pip and AWS CLI needs to be added in the

beginning).

2. In Step 3: Configure Instance Details

a. In IAM role , choose <your-role-name>

b. In User Data , paste the following code block after replacing the placeholders

with your values and appending TigerGraph installation script

5/13/25, 9:12 PM 3.3

https://console.aws.amazon.com/ec2/v2/home
https://console.aws.amazon.com/ec2/v2/home
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html

891

Encryption bootstrap script

5/13/25, 9:12 PM 3.3

892

5/13/25, 9:12 PM 3.3

893

#!/bin/bash

db_user=tigergraph

Initial setup to be executed on boot
##====================================
Create an empty file. This file will be used to host the file system.
In this example we create a <disk-size> (for example: 60G) file at <path
dd of=<path-to-encrypted-file> bs=<disk-size> count=0 seek=1

Lock down normal access to the file.
chmod 600 <path-to-encrypted-file>

Associate a loopback device with the file.
losetup /dev/loop0 <path-to-encrypted-file>

#Copy encrypted password file from S3. The password is used to configure L
aws s3 cp s3://<your-bucket-name>/LuksInternalStorageKey .

Decrypt the password from the file with KMS, save the secret password in
LuksClearTextKey=$(aws --region <your-region> kms decrypt --ciphertext-blo

Encrypt storage in the device. cryptsetup will use the Linux
device mapper to create, in this case, /dev/mapper/tigergraph_gstore.
Initialize the volume and set an initial key.
echo "$LuksClearTextKey" | cryptsetup -y luksFormat /dev/loop0

Open the partition, and create a mapping to /dev/mapper/tigergraph_gstor
echo "$LuksClearTextKey" | cryptsetup luksOpen /dev/loop0 tigergraph_gstor

Clear the LuksClearTextKey variable because we don't need it anymore.
unset LuksClearTextKey

Create a file system and verify its status.
mke2fs -j -O dir_index /dev/mapper/tigergraph_gstore

Mount the new file system to /mnt/secretfs.
mkdir -p /mnt/secretfs
mount /dev/mapper/tigergraph_gstore /mnt/secretfs

create user tigergraph
adduser $db_user

Change the permission so that only tigergraph has access to the file sys
chmod -R 700 /mnt/secretfs
chown -R $db_user:$db_user /mnt/secretfs

Install TigerGraph

5/13/25, 9:12 PM 3.3

894

It may take a few minutes for the script to complete after system launch.

Then, you should be able to launch one or more EC2 machines with an encrypted

folder under /mnt/secretfs that only OS user tigergraph can access.

Encryption is usually CPU-bound rather than I/O bound. If CPU usage is below

100%, TigerGraph tests show no significant performance downgrade.

Run the one-command installation script with TigerGraphh root path under

Performance

5/13/25, 9:12 PM 3.3

895

System Management
Admin Portal, gamin utility, GBAR backup and restore

5/13/25, 9:12 PM 3.3

896

Managing with gadmin
Managing TigerGraph Servers with gadmin

TigerGraph Graph Administrator (gadmin) is a tool for managing TigerGraph servers.

It has a self-contained help function and a man page, whose output is shown below

for reference. If you are unfamiliar with the TigerGraph servers, please see GET

STARTED with TigerGraph.

To see a listing of all the options or commands available for gadmin, run any of the

following commands:

After changing a configuration setting, it is generally necessary to run ** gadmin
config apply . **Some commands invoke config apply automatically. If you are not
certain, just run
gadmin config apply

Below is the man page for gadmin. Most of the commands are self-explanatory.

Common examples are provided with each command.

NOTE: Some commands have changed in v3.0. In particular,
gadmin set <config | license>
has changed to
gadmin <config | license> set

$ gadmin -h
$ gadmin --help

Introduction

List of commands

5/13/25, 9:12 PM 3.3

897

Gadmin autocomplete is more of a feature than a command. It is an auto-complete

feature that allows you to see all possible entries of a specific configuration. You

can press tab when typing a command to either print out all possible entries, or

auto-complete the entry you are currently typing.

GADMIN(1) User Commands

NAME
 gadmin - manual page for TigerGraph Administrator.

SYNOPSIS
 gadmin [flags]
 gadmin [command]

DESCRIPTION
 gadmin is a tool for managing TigerGraph servers

OPTIONS
 Available Commands:
 autocomplete Generate autocomplete script
 config Manage the configuration for the TigerGraph system
 help Help about any command
 init Init the whole cluster or given service
 license Manage TigerGraph license
 log List log files of the given services or all services
 reset Reset the whole init or given service with its data
 restart Restart services by service id
 start Start services by service id
 status Show current status of service
 stop Stop services by service id
 version Show the version information

Flags:
 --debug enable debug log output to stdout
 -h, --help help for gadmin

Use "gadmin [command] --help" for more information about a command.
GADMIN(1)

gadmin autocomplete

5/13/25, 9:12 PM 3.3

898

The example below shows an example of the autocomplete for the command

gadmin status .

gadmin config commands are used to manage the configuration for the

TigerGraph system. To get a complete list of configuration parameters that are

available, see Configuration Parameters.

gadmin config has many sub-entries as well, they will be listed below.

$ gadmin autocomplete -h

Generate autocomplete script

Usage:
 gadmin autocomplete <bash|zsh> [flags]

Description:
 If you want to make this automatic, add ". <(gadmin autocomplete bash)"
 .bashrc file.

Flags:
 -h, --help help for autocomplete

Global Flags:
 --debug enable debug log output to stdout

tigergraph@ubuntu:~$ gadmin status
admin exe ifm nginx
all gpe infra restpp
ctrl gse kafka ts3
dict gsql kafkaconn ts3serv
etcd gui kafkastrm-ll zk

gadmin config

5/13/25, 9:12 PM 3.3

899

Example: Change the retention size of the kafka queue to 10GB:

$ gadmin config -h

Manage the configuration for the TigerGraph system

Usage:
 gadmin config [flags]
 gadmin config [command]

Description:
 You can specify local config file to turn on file mode, which no remote
 connection will be made and the configs are read/write from/to the file.
 all config commands work on file mode.

Available Commands:
 apply Apply the config changes in staging state
 diff Show the differences between staging and applied configs
 discard Discard the staging config changes
 dump Dump the staging system config in json format
 entry Configure the entries with given substring patterns interact
 get Get the config value of given entry name non-interactivly
 group Configure the entries of given groups interactively
 init Initialize configuration
 list List the available config entries or groups
 reset Reset the given entry to its default value
 set Configure the entry of given config entry name in non-intera

Flags:
 --file string specify config file path
 -h, --help help for config

Global Flags:
 --debug enable debug log output to stdout

$ gadmin config set Kafka.RetentionSizeGB 10

gadmin config apply

5/13/25, 9:12 PM 3.3

900

Show what configuration changes were made.

Discard the configuration changes without applying them.

$ gadmin config apply -h
Apply the config changes in staging state

Usage:
 gadmin config apply [flags]

Flags:
 -y, --confirm confirm to apply
 -f, --force force components to apply new config
 -h, --help help for apply
 --initial config apply with the initial configuration w
 --with-config string the input config file used to config apply, w

Global Flags:
 --debug enable debug log output to stdout
 --file string specify config file path

$ gadmin config diff -h
Show the differences between staging and applied configs

Usage:
 gadmin config diff [flags]

Flags:
 -h, --help help for diff

Global Flags:
 --debug enable debug log output to stdout
 --file string specify config file path

gadmin config diff

gadmin config discard

5/13/25, 9:12 PM 3.3

901

Display all configuration entries.

Change a configuration entry.

$ gadmin config discard -h
Discard the staging config changes

Usage:
 gadmin config discard [flags]

Flags:
 -h, --help help for discard

Global Flags:
 --debug enable debug log output to stdout
 --file string specify config file path

$ gadmin config dump -h
Dump the staging system config in json format

Usage:
 gadmin config dump [flags]

Flags:
 -h, --help help for dump

Global Flags:
 --debug enable debug log output to stdout
 --file string specify config file path

gadmin config dump

gadmin config entry

5/13/25, 9:12 PM 3.3

902

Get the value of a specific configuration entry.

Configure entries for a specific service group.

e.g. KAFKA, GPE, ZK

$ gadmin config entry -h
Configure the entries with given substring patterns interactively

Usage:
 gadmin config entry [EntryName] [flags]

Description:
 You may use `config entry system` to go through all the system related e

Flags:
 -a, --all configure all entries
 --basic configure basic entries only
 -h, --help help for entry

Global Flags:
 --debug enable debug log output to stdout
 --file string specify config file path

$ gadmin config get -h
Get the config value of given entry name non-interactivly

Usage:
 gadmin config get [EntryName] [flags]

Flags:
 -h, --help help for get

Global Flags:
 --debug enable debug log output to stdout
 --file string specify config file path

gadmin config get

gadmin config group

5/13/25, 9:12 PM 3.3

903

Initialize your configuration.

List all configurable entries or entry groups.

$ gadmin config group -h
Configure the entries of given groups interactively

Usage:
 gadmin config group [GroupName] [flags]

Description:
 You may use `gadmin config list group` to see all the groups.

Flags:
 -h, --help help for group

Global Flags:
 --debug enable debug log output to stdout
 --file string specify config file path

$ gadmin config init -h
Initialize configuration

Usage:
 gadmin config init [flags]

Flags:
 --all display every configurable entry
 --expert display node assignment entries
 --ha enable HA for init
 -h, --help help for init
 -i, --input string provide an input file name and init the configurati
 --template show the template for init initialization

Global Flags:
 --debug enable debug log output to stdout
 --file string specify config file path

gadmin config init

gadmin config list

5/13/25, 9:12 PM 3.3

904

Reset one or more configuration parameters to their default setting. View the full list

of configuration parameters and their default values at Configuration Parameters.

$ gadmin config list -h
List the available config entries or groups

Usage:
 gadmin config list <group|entry> [flags]

Description:
 List prints out the available config groups or config entries, which can
 in entry/group commands.

Flags:
 --basic list basic entries only
 -h, --help help for list

Global Flags:
 --debug enable debug log output to stdout
 --file string specify config file path

$ gadmin config set -h
Configure the entry of given config entry name in a non-interactive manner

Usage:
 gadmin config set [EntryName] [EntryValue] [flags]

Description:
 [EntryName] [EntryValue] must be provided in pairs, and use space to sep
 each pair.

Flags:
 -h, --help help for set

Global Flags:
 --debug enable debug log output to stdout
 --file string specify config file path

gadmin config set

gadmin config reset

5/13/25, 9:12 PM 3.3

905

Options for configuring your license.

Usage:
gadmin config reset [EntryName...] [flags]

Flags:
-h, --help help for reset

Global Flags:
--debug enable debug log output to stdout
--file string specify config file path

$ gadmin init -h

Init the whole cluster or given service

Usage:
 gadmin init [flags]
 gadmin init [command]

Description:
 Init command initializes the cluster/kafka. When "cluster" is specified,
 a config path is required.

Available Commands:
 cluster Init the whole cluster
 kafka Init the KAFKA

Flags:
 -h, --help help for init

Global Flags:
 --debug enable debug log output to stdout

Use "gadmin init [command] --help" for more information about a command.

gadmin init

gadmin license

5/13/25, 9:12 PM 3.3

906

To generate a license seed, use the following command:

Depending on your host machine, you need to choose the appropriate host

signature type. If you are generating the seed from a cloud instance, choose the

corresponding cloud provider as your signature type.

If you are generating the seed from your own machine, choose either node-id or

hardware .

• The hardware option tells gadmin to collect information from your machine's

hardware as the host signature to generate the license seed. A signature

produced by using this parameter will not be altered by software changes on the
machine, including OS reinstalls. This is the usual choice.

• node-id refers to the machine ID in the machine-id file located at

/etc/machine-id and is a unique signature for the OS that identifies your

$ gadmin license -h

Manage TigerGraph license

Usage:
 gadmin license [flags]
 gadmin license [command]

Available Commands:
 seed Collects host signature and generates seed file for issuing
 set Set new license
 status Display license status and info

Flags:
 -h, --help help for license

Global Flags:
 --debug enable debug log output to stdout

Use "gadmin license [command] --help" for more information about a command

$ gadmin license seed <host_signature_type>
host_signature_type: [aws|azure|gcp|hardware|node-id]

Generating a license seed

5/13/25, 9:12 PM 3.3

907

machine. A reinstall of the OS may change the machine ID.

Example flow for applying a new license (which may be replacing an existing license

key):

Once the license has been set and config has been applied, you can run gadmin

license status to view the details of your license, including the expiration date and

time.

$ gadmin license set <new_license_key>
[Info] Configuration has been changed.
Please use 'gadmin config apply' to persist the changes.

$ gadmin config apply
[Warning] No difference from staging config, config apply is skipped.
[Info] Successfully applied configuration change. Please restart servic

$ gadmin restart
[Note] Restart the service(s)? (y/N)y
[Info] Stopping DICT ADMIN GSE NGINX GPE RESTPP KAFKASTRM-LL KAFKACONN
[Info] Starting ZK ETCD DICT KAFKA ADMIN GSE NGINX GPE RESTPP KAFKASTRM

Applying a new license key

5/13/25, 9:12 PM 3.3

908

The gadmin log command will reveal the location of all commonly checked log files

for the TigerGraph system.

$ gadmin license status
[Warning] License will expire in 6 days

 Issuer: TigerGraph Inc.
 Audience: tigergraph user
IssueTime: 2020-06-12 17:45:10 +0000 UTC
 EndTime: 2020-06-30 17:45:10 +0000 UTC
 Edition: Enterprise

Host:
MaxCPUCore: 1024
MaxPhysicalMemorySize: 1073741824.00MB
MaxClusterNodeNumber: 1024

Topology:
MaxVertexNumber: 9.007199254740991e+15
MaxEdgeNumber: 9.007199254740991e+15
MaxGraphNumber: 1000
MaxTopologySize: 8.00MB

RuntimeMemory:
MaxUserResidentSetSize: 1073741824.00MB

$ gadmin log -h

List log files of the given services or all services

Usage:
 gadmin log [service name...] [flags]

Description:
 Service name should be a valid TigerGraph service name, for example, GSE
 or GPE.

Flags:
 -h, --help help for log

Global Flags:
 --debug enable debug log output to stdout

gadmin log

5/13/25, 9:12 PM 3.3

909

$ gadmin log
ADMIN : /home/tigergraph/tigergraph/log/admin/ADMIN#1.out
ADMIN : /home/tigergraph/tigergraph/log/admin/ADMIN.INFO
CTRL : /home/tigergraph/tigergraph/log/controller/CTRL#1.log
CTRL : /home/tigergraph/tigergraph/log/controller/CTRL#1.out
DICT : /home/tigergraph/tigergraph/log/dict/DICT#1.out
DICT : /home/tigergraph/tigergraph/log/dict/DICT.INFO
ETCD : /home/tigergraph/tigergraph/log/etcd/ETCD#1.out
EXE : /home/tigergraph/tigergraph/log/executor/EXE_1.log
EXE : /home/tigergraph/tigergraph/log/executor/EXE_1.out
GPE : /home/tigergraph/tigergraph/log/gpe/GPE_1#1.out
GSE : /home/tigergraph/tigergraph/log/gse/GSE_1#1.out
GSE : /home/tigergraph/tigergraph/log/gse/log.INFO
GSQL : /home/tigergraph/tigergraph/log/gsql/GSQL#1.out
GSQL : /home/tigergraph/tigergraph/log/gsql/log.INFO
GUI : /home/tigergraph/tigergraph/log/gui/GUI#1.out
IFM : /home/tigergraph/tigergraph/log/informant/IFM#1.log
IFM : /home/tigergraph/tigergraph/log/informant/IFM#1.out
KAFKA : /home/tigergraph/tigergraph/log/kafka/controller.log
KAFKA : /home/tigergraph/tigergraph/log/kafka/kafka-request.log
KAFKA : /home/tigergraph/tigergraph/log/kafka/kafka.log
KAFKA : /home/tigergraph/tigergraph/log/kafka/server.log
KAFKA : /home/tigergraph/tigergraph/log/kafka/state-change.log
KAFKACONN: /home/tigergraph/tigergraph/log/kafkaconn/KAFKACONN#1.out
KAFKACONN: /home/tigergraph/tigergraph/log/kafkaconn/kafkaconn.log
KAFKASTRM-LL: /home/tigergraph/tigergraph/log/kafkastrm-ll/KAFKASTRM-LL_1.
KAFKASTRM-LL: /home/tigergraph/tigergraph/log/kafkastrm-ll/kafkastrm-ll.lo
NGINX : /home/tigergraph/tigergraph/log/nginx/logs/NGINX#1.out
NGINX : /home/tigergraph/tigergraph/log/nginx/logs/error.log
NGINX : /home/tigergraph/tigergraph/log/nginx/logs/nginx.access.log
NGINX : /home/tigergraph/tigergraph/log/nginx/logs/nginx.error.log
RESTPP : /home/tigergraph/tigergraph/log/restpp/RESTPP#1.out
RESTPP : /home/tigergraph/tigergraph/log/restpp/log.INFO
TS3 : /home/tigergraph/tigergraph/log/ts3/TS3_1.log
TS3 : /home/tigergraph/tigergraph/log/ts3/TS3_1.out
TS3SERV: /home/tigergraph/tigergraph/log/ts3serv/TS3SERV#1.out
ZK : /home/tigergraph/tigergraph/log/zk/ZK#1.out
ZK : /home/tigergraph/tigergraph/log/zk/zookeeper.log

gadmin reset

5/13/25, 9:12 PM 3.3

910

The gadmin restart command is used to restart one, many, or all TigerGraph

services. You will need to confirm the restarting of services by either entering y

(yes) or n (no). To bypass this prompt, you can use the -y flag to force confirmation.

$ gadmin reset -h

Reset the whole init or given service with its data

Usage:
 gadmin reset [service name...] [flags]

Description:
 Service name should be a valid TigerGraph service name, for example, GSE
 or GPE.

Flags:
 -y, --confirm confirm to reset service
 -h, --help help for reset

Global Flags:
 --debug enable debug log output to stdout

$ gadmin restart -h

Restart services by service id

Usage:
 gadmin restart [serviceID...] [flags]

Description:
 ServiceID should be [serviceName][_partition][#replica], e.g., GSE_1#3.
 replica field empty(e.g. GSE_1) to either refer to all replicas of given
 partition, or if the service has no replicas(e.g. EXE_1). Same for parit

Flags:
 -y, --confirm confirm to restart service
 -h, --help help for restart
 --no-dep restart service without dependency

Global Flags:
 --debug enable debug log output to stdout

gadmin restart

5/13/25, 9:12 PM 3.3

911

The gadmin start command can be used to start one, many, or all services.

$ gadmin restart all -y
[Info] Stopping ZK ETCD DICT KAFKA ADMIN GSE NGINX GPE RESTPP KAFKASTRM
[Info] Stopping CTRL
[Info] Stopping EXE
[Info] Starting EXE
[Info] Starting CTRL
[Info] Starting ZK ETCD DICT KAFKA ADMIN GSE NGINX GPE RESTPP KAFKASTRM

Usage:
 gadmin start [serviceID...] [flags]

Description:
 ServiceID should be [serviceName][_partition][#replica], e.g., GSE_1#3.
 replica field empty(e.g. GSE_1) to either refer to all replicas of given
 partition, or if the service has no replicas(e.g. EXE_1). Same for parit
 If no serviceID is specified, it only starts services excluding the
 infrastructure. Use 'gadmin start all' to start all services.

Flags:
 --auto-restart auto restart the service on crash
 --dry-run dry run and output command to start the servi
 -h, --help help for start
 --ignore-error ignore errors when starting services
 --no-dep start service without dependency
 --timeout int request timeout(in MilliSecond) to start the
 --with-config string start with given config file and dump it to e

Global Flags:
 --debug enable debug log output to stdout

$ gadmin start all
[Info] Starting EXE
[Info] Starting CTRL
[Info] Starting ZK ETCD DICT KAFKA ADMIN GSE NGINX GPE RESTPP KAFKASTRM

gadmin start

gadmin status

5/13/25, 9:12 PM 3.3

912

Check the status of TigerGraph component servers:

Use gadmin status to report whether each of the main component servers is

running (up) or stopped (off). The example below shows the normal status when the

graph store is empty and a graph schema has not been defined:

$ gadmin status -h

Show current status of service

Usage:
 gadmin status [serviceID...] [flags]

Description:
 ServiceID should be [serviceName][_partition][#replica], e.g., GSE_1#3.
 replica field empty(e.g. GSE_1) to either refer to all replicas of given
 partition, or if the service has no replicas(e.g. EXE_1). Same for parit
 If no serviceID is specified, it will show all service status

Flags:
 -h, --help help for status
 -v, --verbose report service status in detail

Global Flags:
 --debug enable debug log output to stdout

5/13/25, 9:12 PM 3.3

913

You can also check the status of each instance using the verbose flag : gadmin

status -v or gadmin status --verbose . This will show each machine's status. See

example below

Here are the most common service and process status states you might see from

running the gadmin status command :

• **Online **- The service is online and ready.

$ gadmin status

+--------------------+-------------------------+-------------------------+
| Service Name | Service Status | Process State |
+--------------------+-------------------------+-------------------------+
ADMIN	Online	Running
CTRL	Online	Running
DICT	Online	Running
ETCD	Online	Running
GPE	Online	Running
GSE	Online	Running
GSQL	Online	Running
GUI	Online	Running
IFM	Online	Running
KAFKA	Online	Running
KAFKACONN	Online	Running
KAFKASTRM-LL	Online	Running
NGINX	Online	Running
RESTPP	Online	Running
TS3	Online	Running
TS3SERV	Online	Running
ZK	Online	Running
+--------------------+-------------------------+-------------------------+

$ gadmin status -v GPE

+--------------------+-------------------------+-------------------------+
| Service Name | Service Status | Process State |
+--------------------+-------------------------+-------------------------+
| GPE_1#1 | Warmup | Running |
| GPE_1#2 | Warmup | Running |
+--------------------+-------------------------+-------------------------+

Service Status Definitions

5/13/25, 9:12 PM 3.3

914

• **Warmup **- The service is processing the graph information and will be

online soon.

• **Stopping **- The service has received a stop command and will be down
soon.

• **Offline **- The service is not available.

• **Down **- The service has been stopped or crashed.

• **StatusUnknown **- The valid status of the service is not tracked.

• **Init **- Process is initializing and will be in the running state soon.

• **Running **- The process is running and available.

• **Zombie **- There is a leftover process from a previous instance.

• **Stopped **- The process has been stopped or crashed.

• **StatusUnknown **- The valid status of the process is not tracked.

The gadmin stop command can be used to stop one, many, or all TigerGraph

services. You will need to confirm the restarting of services by either entering y

(yes) or n (no). To bypass this prompt, you can use the -y flag to force confirmation.

Process State Status Definitions

gadmin stop

5/13/25, 9:12 PM 3.3

915

$ gadmin stop -h

Stop services by service id

Usage:
 gadmin stop [serviceID...] [flags]

Description:
 ServiceID should be [serviceName][_partition][#replica], e.g., GSE_1#3.
 replica field empty(e.g. GSE_1) to either refer to all replicas of given
 partition, or if the service has no replicas(e.g. EXE_1). Same for parit
 If no serviceID is specified, it only stops services excluding the
 infrastructure. Use 'gadmin stop all' to stop all services.

Flags:
 -y, --confirm confirm to stop service
 -h, --help help for stop
 --ignore-error stopping services with ignore-error will stop all possib

Global Flags:
 --debug enable debug log output to stdout

$ gadmin stop gsql
[Note] Stop the service(s)? (y/N)y
[Info] Stopping GSQL

gadmin version

5/13/25, 9:12 PM 3.3

916

TigerGraph offers two levels of memory thresholds using the following configuration

settings:

SysAlertFreePct and SysMinFreePct

SysAlertFreePct setting indicates that the memory usage has crossed a threshold

where the system will start throttling Queries to allow long-running queries to finish

and release the memory.

SysMinFreePct setting indicates that the memory usage has crossed a critical

threshold and the Queries will start aborting automatically to prevent GPE crash and

system stability.

By default, SysMinFreePct is set at 10%, at which point Queries will be aborted.

$ gadmin version -h

Show the version information

Usage:
 gadmin version [flags]

Description:
 Show version information of all TigerGraph components, including repo na
 version, git commit number, git commit datetime.

Flags:
 -h, --help help for version

Global Flags:
 --debug enable debug log output to stdout

More examples

**Configuring memory use thresholds **

5/13/25, 9:12 PM 3.3

917

**Example: **

SysAlertFreePct=30 means when the system memory consumption is over** 70%

**of the memory, the system will enter an alert state, and Graph updates will start to

slow down.

SysMinFreePct=20 means 20% of the memory is required to be free. When

memory consumption enters a critical state (over 80% memory consumption)

queries will be aborted. automatically.

Follow the steps documented in this support article to update the Nginx

configurations of your TigerGraph instance.

$ gadmin config entry GPE.BasicConfig.Env

GPE.BasicConfig.Env [LD_PRELOAD=$LD_PRELOAD; LD_LIBRARY_PATH=$LD_LIBRARY_
✔ New: LD_PRELOAD=$LD_PRELOAD; LD_LIBRARY_PATH=$LD_LIBRARY_PATH;

Add this line to the existing config :
SysMinFreePct=20;SysAlertFreePct=70;

Your config line should now look like this :

GPE.BasicConfig.Env [LD_PRELOAD=$LD_PRELOAD; LD_LIBRARY_PATH=$LD_LIBRARY_
✔ New: LD_PRELOAD=$LD_PRELOAD; LD_LIBRARY_PATH=$LD_LIBRARY_PATH;SysMinFree

$ gadmin restart gpe -y

Configuring Nginx configuration template

5/13/25, 9:12 PM 3.3

https://tigergraph.freshdesk.com/support/solutions/articles/5000867964-change-default-value-for-fastcgi-read-timeout-nginx-configuration-
https://tigergraph.freshdesk.com/support/solutions/articles/5000867964-change-default-value-for-fastcgi-read-timeout-nginx-configuration-

918

File Output Policy
GSQL restricts where a query can produce output to files through a file output

policy. The policy consists of a whitelist and a blacklist.

• GSQL queries must only output to the directories and their descendants or the

files indicated by paths in the whitelist.

• GSQL queries cannot output to the directories and their descendants or the files

indicated by paths in the blacklist. The blacklist takes precedence over the

whitelist.

By default, the file output policy allows outputs to all files.

The file output policy is implemented through the system configuration

parameter GSQL.FileOutputPolicy , which is a JSON array of strings that represents

a list of paths. If there is an exclamation mark (!) preceding a path, the path is on

the blacklist. If there is no exclamation mark preceding a path, the path is on the

whitelist.

For example, if the value for GSQL.FileOutputPolicy is ["/home/tigergraph",

"!/home/tigergraph/documents", "!/home/tigergraph/desktop"] , then below are

the paths on the white list and on the black list:

• Whitelist: /home/tigergraph and all its descendants

• Blacklist: /home/tigergraph/documents, /home/tigergraph/desktop and all

their descendants.

Since the blacklist takes precedence, GSQL will allow queries to write to all files and

directories under /home/tigergraph except the documents and destktop folders.

GSQL.FileOutputPolicy

Example

Edit the file output policy

5/13/25, 9:12 PM 3.3

919

1. To edit the file policy, ensure that you are logged in as the TigerGraph Linux

user, and run the following command:

2. In the prompt, enter the new value for the parameter:

3. Apply the new configurations and restart GSQL

After implementing the file output policy, queries that write to paths that are not on

the whitelist are forbidden:

If a FILE object is defined with an empty string, it is regarded as a null file. The file
output policy will not block the definition of the FILE object, but writing to a null file
would cause a runtime error.

Additionally, queries that write to paths on the whitelist, but also on the blacklist are

also forbidden:

$ gadmin config entry GSQL.FileOutputPolicy

GSQL.FileOutputPolicy [["/"]]: The policy to control file outputs in
New: ["/home/tigergraph", "!/home/tigergraph/app"]
Whitelist: /home/tigergraph and all its descendants
Blacklist: /home/tigergraph/app and all its decendants
Effect: GSQL can output to /home/tigergraph and all its decendants ex

$ gadmin config apply
$ gadmin restart gsql

GSQL > BEGIN
GSQL > CREATE QUERY fileOutput() FOR GRAPH tpc_graph {
GSQL > FILE f ("/home/documents/data.txt");
GSQL > }
GSQL > END

Semantic Check Error in query fileOutput (SEM-2502): line 2, col 7
The path '/home/documents/data.txt' is not allowed by the file output poli
For more info, please check log at node 'm2': /home/tigergraph/tigergraph/
Failed to create queries: [fileOutput].

5/13/25, 9:12 PM 3.3

920

GSQL > BEGIN
GSQL > CREATE QUERY fileOutput() FOR GRAPH tpc_graph {
GSQL > FILE f ("/home/tigergraph/app/data.txt");
GSQL > }
GSQL > END

Semantic Check Error in query fileOutput (SEM-2502): line 3, col 7
The path '/home/tigergraph/app/data.txt' is not allowed by the file output
policy.
For more info, please check log at node 'm2': /home/tigergraph/tigergraph/
Failed to create queries: [fileOutput].

5/13/25, 9:12 PM 3.3

921

Backup and Restore
GBAR - Graph Backup and Restore

Graph Backup And Restore (GBAR), is an integrated tool for backing up and

restoring the data and data dictionary (schema, loading jobs, and queries) of a

TigerGraph instance or cluster.

The backup feature packs TigerGraph data and configuration information into a

directory on the local disk or a remote AWS S3 bucket. Multiple backup files can be

archived. Later, you can use the restore feature to roll back the system to any

backup point. This tool can also be integrated easily with Linux cron to perform

periodic backup jobs.

The current version of GBAR is intended for restoring the same machine that was
backed up. For help with cloning a database (i.e., backing up machine A and restoring
the database to machine B), please contact support@tigergraph.com .

Usage: gbar backup [options] -t <backup_tag>
 gbar restore [options] <backup_tag>
 gbar list [backup_tag] [-j]
 gbar remove|rm <backup_tag>
 gbar cleanup
 gbar expand [-a] <new_nodes>
 New nodes must be written in <name>:<host> pairs separa
 Example:
 m1:192.168.1.2,m2:192.168.1.3,m3:192.168.1.4

Options:
 -h, --help Show this help message and exit
 -v Run with debug info dumped
 -vv Run with verbose debug info dumped
 -y Run without prompt
 -j Print gbar list as JSON
 -t BACKUP_TAG Tag for backup file, required on backup
 -a, --advanced Enable advanced mode for node expansion

Syntax

Synopsis

5/13/25, 9:12 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com

922

The -y option forces GBAR to skip interactive prompt questions by selecting the

default answer. There is currently one interactive question:

• At the start of restore, GBAR will always ask if it is okay to stop and reset the
TigerGraph services: (y/N)? The default answer is yes.

Before using the backup or the restore feature, GBAR must be configured.

1. Run gadmin config entry system.backup . At each prompt, enter the

appropriate values for each config parameter.

2. After entering the configuration values, run the following command to apply the
new configurations

$ gadmin config entry system.backup

System.Backup.TimeoutSec [18000]: The backup timeout in seconds
New: 18000

System.Backup.CompressProcessNumber [8]: The number of concurrent pro
New: 8

System.Backup.Local.Enable [true]: Backup data to local path
New: true

System.Backup.Local.Path [/tmp/backup]: The path to store the backup
New: /data/backup

System.Backup.S3.Enable [false]: Backup data to S3 path
New: false

System.Backup.S3.AWSAccessKeyID [<masked>]: The path to store the ba
New:

System.Backup.S3.AWSSecretAccessKey [<masked>]: The path to store the
New:

System.Backup.S3.BucketName []: The path to store the backup files
New:

Configure GBAR

5/13/25, 9:12 PM 3.3

923

Note:

• You can specify the number of parallel processes for backup and restore.

• You must provide username and password using GSQL_USERNAME and

GSQL_PASSWORD environment variables.

To perform a backup, run the following command as the TigerGraph Linux user:

Depending on your configuration settings, your backup archive will be output to

your local backup path and/or your AWS S3 bucket. If you are running a cluster,

there will be a backup archive on every node in the same path.

A backup archive is stored as several files in a folder, rather than as a single file. The

backup tag acts like a filename prefix for the archive filename. The full name of the

backup archive will be <backup_tag>-<timestamp> , which is a subfolder of the

backup repository.

• If System.Backup.Local.Enable is set to true , the folder is a local folder on
every node in a cluster, to avoid massive data moving across nodes in a cluster.

• If System.Backup.S3.Enable is set to true , every node will upload data located

on the node to the s3 repository. Therefore, every node in a cluster needs

access to Amazon S3.

GBAR Backup performs a live backup, meaning that normal operations may continue

while the backup is in progress. When GBAR backup starts, GBAR will check if there

are running loading jobs. If there are, it will pause loading for 1 minute to generate a

snapshot and then continue the backup process. You can specify the loading

pausing interval by the environment variable PAUSE_LOADING .

gadmin config apply -y

$ GSQL_USERNAME=tigergraph GSQL_PASSWORD=tigergraph gbar backup -t dai

gbar backup -t <backup_tag>

Perform a backup

5/13/25, 9:12 PM 3.3

924

GBAR then sends a request to the admin server, which then requests the GPE and

GSE to create snapshots of their data. Per the request, the GPE and GSE store their

data under GBARʼs own working directory. GBAR also directly contacts the

Dictionary and obtains a dump of its system configuration information. In addition,

GBAR gathers the TigerGraph system version and customized information including

user-defined functions, token functions, schema layouts and user-uploaded icons.

Then, GBAR compresses each of these data and configuration information files in

tgz format and stores them in the <backup_tag>-<timestamp> subfolder on each

node. As the last step, GBAR copies that file to local storage or AWS S3, according

to the Config settings, and removes all temporary files generated during backup.

The current version of GBAR Backup takes snapshots quickly to make it very likely

that all the components (GPE, GSE, and Dictionary) are in a consistent state, but it

does not fully guarantee consistency.

Backup does not save input message queues for REST++ or Kafka.

This command lists all generated backup files in the storage place configured by the

user. For each file, it shows the fileʼs full tag, its size in human-readable format, and

its creation time.

Before restoring a backup, you should ensure that the backup you are restoring

from is in the same exact version as your current version of TigerGraph.

To restore a backup, run the following command:

gbar list

gbar restore <archive_name>

List Backup Files

Restore from a backup archive

5/13/25, 9:12 PM 3.3

925

If GBAR can verify that the backup archive exists and that the backup's system

version is compatible with the current system version, GBAR will shut down the

TigerGraph servers temporarily as it restores the backup. After completing the

restore, GBAR will restart the TigerGraph servers. If you are running a cluster, and

you have copied the backup files to each individual node in the cluster, running

gbar restore on any node will restore the entire cluster.

Restore is an offline operation, requiring the data services to be temporarily shut

down. The user must specify the full archive name (<backup_tag>-<timestamp>)

to be restored. When GBAR restore begins, it first searches for a backup archive

exactly matching the archive name supplied in the command line. Then it

decompresses the backup files to a working directory. Next, GBAR will compare the

TigerGraph system version in the backup archive with the current system's version,

to make sure that the backup archive is compatible with that current system. It will

then shut down the TigerGraph servers (GSE, RESTPP, etc.) temporarily. Then,

GBAR makes a copy of the current graph data, as a precaution. Next, GBAR copies

the backup graph data into the GPE and GSE and notifies the Dictionary to load the

configuration data. Also, GBAR will notify the GST to load backup user data and

copy the backup user-defined token/functions to the right location. When these

actions are all done, GBAR will restart the TigerGraph servers.

Note: GBAR restore does not estimate the uncompressed data size and check

whether there is sufficient disk space.

The primary purpose of GBAR is to save snapshots of the data configuration of a
TigerGraph system, so that in the future the same system can be rolled back (restored)
to one of the saved states. A key assumption is that Backup and Restore are performed
on the same machine, and that the file structure of the TigerGraph software has not
changed.

Restore needs enough free space to accommodate both the old gstore and the gstore
to be restored.

To remove a backup, run the gbar remove command:

Remove a backup

5/13/25, 9:12 PM 3.3

926

The command removes a backup from the backup storage path. To retrieve the tag

of a backup, you can use the gbar list command.

Run gbar cleanup to delete the temporary files created during backup or restore

operations:

The following example describes a real example, to show the actual commands, the

expected output, and the amount of time and disk space used, for a given set of

graph data. For this example, an Amazon EC2 instance was used, with the following

specifications:

Single instance with 32 vCPU + 244GB memory + 2TB HDD.

Naturally, backup and restore time will vary depending on the hardware used.

To run a daily backup, we tell GBAR to backup with the tag name daily.

$ gbar remove <backup_tag>

$ gbar cleanup

Clean up temporary files

GBAR Detailed Example

GBAR Backup Operational Details

5/13/25, 9:12 PM 3.3

927

The total backup process took about 31 minutes, and the generated archive is about

49 GB. Dumping the GPE + GSE data to disk took 12 minutes. Compressing the files

took another 20 minutes.

To restore from a backup archive, a full archive name needs to be provided, such as

daily-20180607232159. By default, restore will ask the user to approve to continue.

If you want to pre-approve these actions, use the "-y" option. GBAR will make the

default choice for you.

$ gbar backup -t daily
[23:21:46] Retrieve TigerGraph system configuration
[23:21:51] Start workgroup
[23:21:59] Snapshot GPE/GSE data
[23:33:50] Snapshot DICT data
[23:33:50] Calc checksum
[23:37:19] Compress backup data
[23:46:43] Pack backup data
[23:53:18] Put archive daily-20180607232159 to repo-local
[23:53:19] Terminate workgroup
Backup to daily-20180607232159 finished in 31m33s.

GBAR Restore Operational Details

5/13/25, 9:12 PM 3.3

928

For our test, GBAR restore took about 23 minutes. Most of the time (20 minutes) was

spent decompressing the backup archive.

Note that after the restore is done, GBAR informs you were the pre-restore graph

data (gstore) has been saved. After you have verified that the restore was

successful, you may want to delete the old gstore files to free up disk space.

$ gbar restore daily-20180607232159
[23:57:06] Retrieve TigerGraph system configuration
GBAR restore needs to reset TigerGraph system.
Do you want to continue?(y/N):y
[23:57:13] Start workgroup
[23:57:22] Pull archive daily-20180607232159, round #1
[23:57:57] Pull archive daily-20180607232159, round #2
[00:01:00] Pull archive daily-20180607232159, round #3
[00:01:00] Unpack cluster data
[00:06:39] Decompress backup data
[00:17:32] Verify checksum
[00:18:30] gadmin stop gpe gse
[00:18:36] Snapshot DICT data
[00:18:36] Restore cluster data
[00:18:36] Restore DICT data
[00:18:36] gadmin reset
[00:19:16] gadmin start
[00:19:41] reinstall GSQL queries
[00:19:42] recompiling loading jobs
[00:20:01] Terminate workgroup
Restore from daily-20180607232159 finished in 22m55s.
Old gstore data saved under /home/tigergraph/tigergraph/gstore with suffix

GStore size Backup file size Backup time Restore time

219GB 49GB 31 mins 23 mins

Performance Summary of Example

5/13/25, 9:12 PM 3.3

929

Database Import/Export
Export/Import is a complement to Backup/Restore, not a substitute.

The GSQL EXPORT and IMPORT commands perform a logical backup and restore. A

database export contains the database's data, and optionally some types of

metadata, which can be subsequently imported in order to recreate the same

database, in the original or in a different TigerGraph platform instance.

To import an exported database, ensure that the export files are from a database

that was running the exact same version of TigerGraph as the database that you

are importing into.

Known Issues (Updated Feb 16th):

• User-defined loading jobs containing DELETE statements are not exported

correctly.

• If a graph contains vertex or edge types with a composite key, the graph data is

exported in a nonstandard format that cannot be reimported.

The EXPORT GRAPH command reads the data and metadata for all graphs in the

TigerGraph system and writes the information to a zip file in the designated folder. If

no options are specified, then a full backup is performed, including schema, data,

template information, and user profiles.

Syntax

Introduction

EXPORT GRAPH

5/13/25, 9:12 PM 3.3

930

The export directory should be empty before running EXPORT GRAPH because all
contents are zipped and compressed.

EXPORT_GRAPH

The EXPORT GRAPH command exports all graphs in the database.

The export contains four categories of files:

1. Data files in CSV format, one file for each type of vertex and each type of edge.

2. GSQL DDL command files created by the export command. The import

command uses these files to recreate the graph schema(s) and reload the data.

3. Copies of the database's queries, loading jobs, and user-defined functions.

4. GSQL command files used to recreate the users and their privileges.

The following files are created in the specified directory when exporting and are

then zipped into a single file called ExportedGraphs.zip.

If the file is password-protected, it can only be unzipped using GSQL IMPORT. The
security feature prevents users from directly unzipping it.

EXPORT GRAPH ALL [exportOptions] TO "/path/to/a/folder"

exportOptions ::=
(-S | --SCHEMA | -T | --TEMPLATE | -D | --DATA | -U | --USERS | -P | -

 -S, --SCHEMA Only Schema will be exported
 -T, --TEMPLATE Only Schema, Queries, Loading Jobs, UDFs
 -D, --DATA Only Data Sources will be exported
 -U, --USERS Includes Permissions, Secrets, and Tokens
 -P, --PASSWORD Encrypt with password. User will be prompted.

Output

5/13/25, 9:12 PM 3.3

931

• A DBImportExport_<graphName>.gsql for each graph called <graphName> in a
multigraph database that contains a series of GSQL DDL statements that do the

following:

◦ Create the exported graph, along with its local vertex, edge, and tuple types,

◦ Create the loading jobs from the exported graphs

◦ Create data source file objects

◦ Create queries

• A graph_<graphName>/ folder for each graph in a multigraph database

containing data for local vertex/edge types in <graphName>. For each vertex or
edge type called <type>, there is one of the following two data files:

◦ vertex_<type>.csv

◦ edge_<type>.csv

• global.gsql - DDL job to create all global vertex and edge types, and data

sources.

• tuple.gsql - DDL job to create all User Defined Tuples.

• Exported data and jobs used to restore the data:

◦ GlobalTypes/ - folder containing data for global vertex/edge types

▪ vertex_name.csv

▪ edge_name.csv

◦ run_loading_ jobs.gsql - DDL created by the export command which will be
used during import:

▪ Temporary global schema change job to add user-defined indexes. This

schema job is dropped after it is has run.

▪ Loading jobs to load data for global and local vertex/edges.

• Database's saved queries, loading jobs, and schema change jobs

◦ SchemaChangeJob/ - folder containing DDL for schema change jobs. See

section "Schema Change Jobs" for more information

▪ Global_Schema_Change_Jobs.gsql contains all global schema change
jobs

▪ graphName_Schema_Change_Jobs.gsql contains schema change jobs

for each graph "graphName"

Tokenbank.cpp - copy of

<tigergraph.root.dir>/app/<VERSION_NUM>/dev/gdk/gsql/src/TokenBank/T

5/13/25, 9:12 PM 3.3

932

okenBank.cpp

◦ ExprFunctions.hpp - copy of

<tigergraph.root.dir>/app/<VERSION_NUM>dev/gdk/gsql/src/QueryUdf/Exp
rFunctions.hpp

◦ ExprUtil.hpp - copy of
<tigergraph.root.dir>/app/<VERSION_NUM>/dev/gdk/gsql/src/QueryUdf/Ex
prUtil.hpp

• Users:

◦ users.gsql - DDL to create all exported users and import Secrets and

Tokens, and grant permissions.

If not enough disk space is available for the data to be exported, the system returns

an error message indicating not all data has been exported. Some data may have

already been written to disk. If an insufficient disk error occurs, the files will not be

zipped, due to the possibility of corrupted data which would then corrupt the zip

file. The user should clear enough disk space, including deleting the partially

exported data, before reattempting the export.

It is possible for all the files to be written to disk and then to run out of disk space
during the zip operation. If that is the case, the system will report this error. The
unzipped files will be present in the specified export directory.

If the timeout limit is reached during export, the system returns an error message

indicating not all data has been exported. Some data may have already been written

Example

EXPORT GRAPH ALL TO "/tmp/export_graphs/"

Insufficient Disk Space

Default Timeout and Session Parameter export_timeout

5/13/25, 9:12 PM 3.3

933

to disk. If a timeout error occurs, the files will not be zipped. The user should delete

the export files, increase the timeout limit and then rerun the export.

The timeout limit is controlled by the session parameter export_timeout. The

default timeout is ~138 hours. To change the timeout limit, use the command:

The IMPORT GRAPH command unzips the .zip file ExportedGraph.zip located in

the designated folder, unzips it, and then runs the GSQL command files within.

IMPORT GRAPH looks for specific filenames. If either the zip file or any of its contents
are renamed by the user, IMPORT GRAPH may fail.

IMPORT GRAPH erases the current database (equivalent to running DROP ALL). The
current version does not support incremental or supplemental changes to an existing
database (except for the --keep-users option)

set export_timeout = <timeout_in_ms>

Syntax

IMPORT GRAPH ALL [importOptions] FROM "/path/from/a/folder"

importOptions ::= [-P | --PASSWORD] [(-KU | -- keep-users]
 -P, --PASSWORD Decrypt with password. User will be prompted.
 -KU, --KEEP-USERS Do not delete user identities before importing

Example

IMPORT GRAPH ALL FROM "/tmp/export_graphs/"

IMPORT GRAPH

5/13/25, 9:12 PM 3.3

934

WRITE_SCHEMA , WRITE_QUERY , WRITE_LOADINGJOB , EXECUTE_LOADINGJOB , DROP

ALL , WRITE_USERS

There are two sets of loading jobs:

1. Those that were in the catalog of the database which was exported. These are

embedded in the file DBImportExport_graphName.gsql

2. Those that are created by EXPORT GRAPH and are used to assist with the

import process. These are embedded in the file run_loading_ jobs,gsql.

The catalog loading jobs are not needed to restore the data. They are included for

archival purposes.

Some special rules apply to importing loading jobs. Some catalog loading jobs will not
be imported.

1. If a catalog loading job contains DEFINE FILENAME F = "/path/to/file/" , the

path will be removed and the imported loading job will only contain DEFINE
FILENAME F .

This is to allow a loading job to still be imported even though the file may no
longer exist or the path may be different due to moving to another TigerGraph

instance.

2. If a specific file path is used directly in the LOAD statement, and the file

cannot be found, the loading job cannot be created and will be skipped.

For example, LOAD "/path/to/file" to vertex v1 cannot be created if

/path/to/file does not exist.

3. Any file path using $sys.data_root will be skipped.

This is because the value of $sys.data_root is not retained from export.
During import, $sys.data_root is set to the root folder of the import location.

Required privilege

Loading Jobs

5/13/25, 9:12 PM 3.3

935

There are two sets of schema change jobs:

1. Those that were in the catalog of the database which was exported. These are

stored in the folder /SchemaChangeJobs.

2. Those that were created by EXPORT GRAPH and are used to assist with the

import process. These are in the run_loading_ jobs.gsql command file. The jobs

are dropped after the import command is finished with them.

The database's schema change jobs are not executed during the import process.

This is because if a schema change job had been run before the export, then the

exported schema already reflects the result of the schema change job. The

directory /SchemaChangeJobs contains these files:

• Global_Schema_Change_Jobs.gsql contains all global schema change jobs

• <graphName>_Schema_Change_Jobs.gsql contains schema change jobs for
each graph <graphName>.

In v3.0, importing and exporting clusters is not fully automated. The database can

be exported and imported by following some additional steps.

Rather than creating a single export zip file, export will create a file for each

machine. Before exporting, specific folders must be created on each server using

the following commands:

Run on each server before EXPORT

Schema Change Jobs

Cluster Mode

Export from a Cluster

5/13/25, 9:12 PM 3.3

936

Then run the export command on one server. The EXPORT command does not

bundle all the files to one server, and it does not compress each server's files to one

zip. Some files, including the data files, will be exported to each server, to the

folders created above. Some files will be only on the local server where EXPORT

GRAPH was run.

You may only import to a cluster that has the same number and configuration of

servers as the data from which the export originated. Transfer the files from one

export server to a corresponding import server. That is, copy the files from

export_server_n:/path/to/export_directory to

import_server_n:/path/to/import/directory

2. Manually modify the loading jobs

On the main server, edit the run_loading_ jobs.gsql files as follows.

Find the line(s) of the form:

LOAD "sys.data_root/.../<vertex_or_edge_type>.csv"

Close to it should be similar line that is commented out which have the "all:" data

source directive:

#LOAD "all:sys.data_root/.../<vertex_or_edge_type>.csv"

See the example below:

grun all "mkdir -p /path/to/export_directory/GlobalTypes/"
grun all "mkdir -p /path/to/export_directory/graph_<graphName>/"

LOAD "$sys.data_root/graph_graph1/localE.csv"
#If running on a cluster, check that the file exists on all nodes then unc
#LOAD "all:$sys.data_root/graph_graph1/localE.csv"
 TO EDGE localE VALUES ($"from", $"to") USING SEPARATOR = "^]", HEADER

Import to a Cluster

1. Place the files on the import servers

5/13/25, 9:12 PM 3.3

937

Comment out the LOAD line and uncomment the LOAD all: line. Be sure that you do

this for all data source files.

3. Run the IMPORT GRAPH command from the main server (e.g., the one that

corresponds to the server where EXPORT GRAPH was run).

5/13/25, 9:12 PM 3.3

938

Advanced Platform-layer Commands
This page documents a list of advanced Linux commands that simplify platform

operations that are performed often during debugging, especially on high availability

(HA) clusters. Only the TigerGraph platform owner - the Linux user created during

installation has access to the commands on this page.

Users are advised to use these commands only at the guidance and recommendation
of TigerGraph support.

This command allows you to connect to another node in your cluster via SSH.

$ gssh <node_name>

Originally on m1
[tigergraph@ip-172-31-88-111 ~]$ gssh m3
Last login: Fri Apr 23 18:24:27 2021
Now connected to m3 via ssh
[[tigergraph@ip-172-31-93-187 ~]$

Connection between nodes

Connect to another node via SSH

Example:

Loading data

Offline loading

5/13/25, 9:12 PM 3.3

939

With huge data volumes, data loading can be time-consuming. If you find yourself

often loading huge volumes of data into an empty graph, and your data volume is so

large that your loading jobs are taking hours to complete, you might consider using

offline loading to speed up data loading.

In order to use offline loading, all the filename variables in the loading job must take

an initial path value. After creating the loading job and ensuring that all the data files

are referenced correctly in the loading job, use the options -g and -j to specify

the graph and loading job to run. During offline loading, your database is focused on

loading data and will not be able to handle requests and queries.

Offline loading deletes all existing graph data before it starts. Back up your data before
using offline loading.

• -g <graph_name> : Name of the graph whose loading job to run

• -j <loading_job_name> : Name of the loading job to run

The following command runs the loading job load_ldbc_snb on the graph

ldbc_snb :

You can also provide the graph name and the loading job name with a config file

written in Bash:

$ gautoloading.sh (-g <graph_name> -j <loading_job_name> | path_to_config_

$ gautoloading.sh -g ldbc_snb -j load_ldbc_snb

Options

Example

~/example_config

5/13/25, 9:12 PM 3.3

940

Once you have the config file, you can run gautoloading.sh with the config file

instead of the -g and -j options:

This command allows you to copy files from the current node to target folders on

multiple nodes at the same time. The file or directory on the current node specified

by the source path will be copied into the target folder on every node. If the target

folder does not exist at the path given, the target folder will be created

automatically. You can also specify multiple source files or directories, in which

case, the source paths need to be absolute paths, put in quotes, and separated by

space.

You can specify the nodes where you want the copy operation to occur in the

following ways:

• gscp all <source_path> <target_dir> will execute the command on all nodes

• gscp <component_name> <source_path> <target_dir> will execute the

command on nodes where the component you specified is running

• gscp <node_list> <source_path> <target_dir> will execute the command on

the nodes you specify in the node list

the name of the graph for the initial loading
GRAPH_NAME="tpc_graph"

the name of loading jobs separated by white space
LOADING_JOBS=("load_test")

$ gautoloading.sh ~/example_config

$ gscp <all|component_name|node_list> <source_path> <target_dir>

File operations

Copy files on the specified nodes

5/13/25, 9:12 PM 3.3

941

Single source

$ gscp all /tmp/gscp_test /tmp/gscp_test_folder

Connecting to local server 172.31.91.54 ...

Connecting to remote server 172.31.88.179 ...

Connecting to remote server 172.31.91.208 ...

// A copy of gscp_test is on every node
$ grun all 'ls /tmp/gscp_text_folder'

Connecting to local server 172.31.91.54 ...
gscp_test

Connecting to remote server 172.31.88.179 ...
gscp_test

Connecting to remote server 172.31.91.208 ...
gscp_test

// Copy file to the target folder only on nodes where GPE is running
$ gscp gpe /tmp/gscp_test1 /tmp/gscp_test_folder

// Copy file to a specified list of nodes
$ gscp m1,m2 /tmp/gscp_test3 /tmp/gscp_test_folder

Multiple sources

Example

5/13/25, 9:12 PM 3.3

942

This command downloads a file or directory from every specified node to the target

directory on the current node.

$ gscp all "/tmp/gscp_test1 /tmp/gscp_test2" /tmp/gscp_test_folder

Connecting to local server 172.31.91.54 ...

Connecting to remote server 172.31.88.179 ...

Connecting to remote server 172.31.91.208 ...

// Copies of both files are on every node
$ grun all 'ls /tmp/gscp_text_folder'

Connecting to local server 172.31.91.54 ...
gscp_test1 gscp_test2

Connecting to remote server 172.31.88.179 ...
gscp_test1 gscp_test2

Connecting to remote server 172.31.91.208 ...
gscp_test1 gscp_test2

$ gfetch <all|component_name|node_list> <source_path> <target_dir>

Download file from another node

Example

5/13/25, 9:12 PM 3.3

943

This command allows you to run commands on a specified list of nodes in your

cluster one by one, and the output from every node will be visible to the terminal.

grun will wait for the command to finish running on one node before executing the

command on the next node.

You can specify which nodes to run commands on in the following ways:

• grun all '<command>' will execute the command on all nodes

• grun <component_name> '<command>' will execute the command on nodes

where the component you specified is running

• grun <node_list> '<command>' will execute the commands on the nodes you

specify in the node list

$ gfetch all ~/test.txt ~/test_folder

Connecting to local server 172.31.91.54 ...

Connecting to remote server 172.31.88.179 ...

Connecting to remote server 172.31.91.208 ...
scp: /home/tigergraph/test.txt: No such file or directory

// Nothing is downloaded if the file does not exist on a node
$ ls ~/test_folder
test.txt_m1 test.txt_m2

$ grun <all|component_name|node_list> '<command>'

All nodes

Run commands on multiple nodes

Run commands sequentially

Example

5/13/25, 9:12 PM 3.3

944

grun all 'echo "hello world"'

Connecting to local server 172.31.91.54 ...
hello world

Connecting to remote server 172.31.88.179 ...
hello world

Connecting to remote server 172.31.91.208 ...
hello world

By component name

Run 'echo "hello world"' on every node where GPE is running
grun gpe 'echo "hello world"'

Connecting to local server 172.31.91.54 ...
hello world

Connecting to remote server 172.31.88.179 ...
hello world

Connecting to remote server 172.31.91.208 ...
hello world

By node list

grun m1,m3 'echo "hello world"'

Connecting to local server 172.31.91.54 ...
hello world

Connecting to remote server 172.31.91.208 ...
hello world

$ grun_p <all|component_name|node_list> '<command>'

Run commands in parallel

5/13/25, 9:12 PM 3.3

945

This command allows you to run commands on a specified list of nodes in your

cluster in parallel, and the output will be visible to the terminal where the grun_p

command was run. You can specify the nodes to run commands on in the following

ways:

• grun_p all '<command>' will execute the command on all nodes

• grun_p <component_name> '<command>' will execute the command on nodes

where the component you specified is running

• grun_p <node_list> '<command>' will execute the commands on the nodes you
specify in the node list. The list of nodes should be separated by a comma, e.g.:

m1,m2

All nodes

$ grun_p all 'echo "hello world"'

Connecting to local server 172.31.91.54 ...

Connecting to remote server 172.31.88.179 ...

Connecting to remote server 172.31.91.208 ...

---- (m1)_172.31.91.54 ---0--
hello world

---- (m2)_172.31.88.179 ---0--
hello world

---- (m3)_172.31.91.208 ---0--
hello world

By component

5/13/25, 9:12 PM 3.3

946

$ grun_p gpe 'echo "hello world"'

Connecting to local server 172.31.91.54 ...

Connecting to remote server 172.31.88.179 ...

Connecting to remote server 172.31.91.208 ...

---- (m1)_172.31.91.54 ---0--
hello world

---- (m2)_172.31.88.179 ---0--
hello world

---- (m3)_172.31.91.208 ---0--
hello world

By node list

$ grun_p m1,m3 'echo "hello world"'

Connecting to local server 172.31.91.54 ...

Connecting to remote server 172.31.91.208 ...

---- (m1)_172.31.91.54 ---0--
hello world

---- (m3)_172.31.91.208 ---0--
hello world

$ gmyip

Display cluster information

Show current node IP

5/13/25, 9:12 PM 3.3

947

This command returns the private IP address of your current node.

This command returns your current node number as well as all servers that are

running on the current node.

In this example, m1 is the current node number, and ADMIN#1 , admin#1 etc. are all

servers that are running on m1 .

The gssh command, when used without arguments, outputs information about

server deployments in your cluster. The output contains the names and IP addresses

of every node. For each node, the output shows the full list of servers that are

running on the node. For each server, the output shows the full list of the nodes that

the server is running on.

$ gmyip
172.31.93.187 # Current node IP address

$ ghostname

$ ghostname

m1 ADMIN#1 admin#1 CTRL#1 ctrl#1 DICT#1 dict#1 ETCD#1 etcd#1 EXE_1 exe_1 G

$ gssh

Example:

Show current node number and servers

Example

Show deployment information

5/13/25, 9:12 PM 3.3

948

$ gssh

Usage: gssh m1|gpe_1#1|gse1_1#1|...
Usage: ----------------Available hosts--------------
Host *
 IdentityFile /home/tigergraph/.ssh/tigergraph_rsa
 Port 22

Host m1 ADMIN#1 admin#1 CTRL#1 ctrl#1 DICT#1 dict#1 ETCD#1 etcd#1 EXE_1 ex
 HostName 172.31.91.54

Host m2 ADMIN#2 admin#2 CTRL#2 ctrl#2 DICT#2 dict#2 ETCD#2 etcd#2 EXE_2 ex
 HostName 172.31.88.179

Host m3 ADMIN#3 admin#3 CTRL#3 ctrl#3 DICT#3 dict#3 ETCD#3 etcd#3 EXE_3 ex
 HostName 172.31.91.208

#cluster.nodes: m1:172.31.91.54,m2:172.31.88.179,m3:172.31.91.208
#admin.servers: m1,m2,m3
#ctrl.servers: m1,m2,m3
#dict.servers: m1,m2,m3
#etcd.servers: m1,m2,m3
#exe.servers: m1,m2,m3
#gpe.servers: m1,m2,m3
#gse.servers: m1,m2,m3
#gsql.servers: m1,m2,m3
#gui.servers: m1,m2,m3
#ifm.servers: m1,m2,m3
#kafka.servers: m1,m2,m3
#kafkaconn.servers: m1,m2,m3
#kafkastrm-ll.servers: m1,m2,m3
#nginx.servers: m1,m2,m3
#restpp.servers: m1,m2,m3
#ts3.servers: m1,m2,m3
#ts3serv.servers: m1
#zk.servers: m1,m2,m3
#log.root: /home/tigergraph/tigergraph/log
#app.root: /home/tigergraph/tigergraph/app/3.1.1
#data.root: /home/tigergraph/tigergraph/data

Example

Show graph status

5/13/25, 9:12 PM 3.3

949

This command returns the size of your data, the number of existing vertices and

edges, as well as the number of deleted and skipped vertices on every node in your

cluster. If you are running TigerGraph on a single node, it will return the same

information that one node.

$ gstatusgraph

$ gstatusgraph
=== graph ===
[GRAPH] Graph was loaded (/home/tigergraph/tigergraph/data/gstore/0/part
[m1] Partition size: 437MiB, IDS size: 103MiB, Vertex count: 3181724,
[WARN] Above vertex and edge counts are for internal use which show app

$ gstatusgraph
=== graph ===
[GRAPH] Graph was loaded (/home/tigergraph/tigergraph/data/gstore/0/part
[m1] Partition size: 246MiB, IDS size: 31MiB, Vertex count: 1152822,
[m2] Partition size: 248MiB, IDS size: 31MiB, Vertex count: 1157325,
[m3] Partition size: 225MiB, IDS size: 29MiB, Vertex count: 1049883,
[WARN] Above vertex and edge counts are for internal use which show app

Single-node example

Cluster example

5/13/25, 9:12 PM 3.3

950

Cross-Region Replication
TigerGraph's Cross-Region Replication (CRR) feature allows users to keep two or

more TigerGraph clusters in different data centers or regions in sync. One cluster is

the primary cluster, where users would perform all normal database operations,

while the other is a read-only Disaster Recovery(CR) cluster that syncs with the

primary cluster. CRR includes complete native support for syncing all data and

metadata including automated schema, user, and query changes.

For users of TigerGraph, cross-region replication will help deliver on the following

business goals:

• Disaster Recovery: Support Disaster Recovery functionality with the use of a

dedicated remote cluster

• Enhanced Availability: Enhance Inter-cluster data availability by synchronizing
data using Read Replicas across two clusters

• Enhanced Performance: If the customer application is spread over different

regions, CRR can take advantage of data locality to avoid network latency.

• Improved System Load-balancing: CRR allows you to distribute computation

load evenly across two clusters if the same data sets are accessed in both

clusters.

• Data Residency Compliance: Cross-Region replication allows you to replicate

data between different data centers or Regions to satisfy compliance

requirements. Additionally, this feature can be used to set up clusters in the

same region to satisfy more stringent Data sovereignty or localization business
requirements.

• Besides providing disaster recovery and enhanced business continuity, CRR also

allows you to set up the clusters as part of Blue/Green deployment purposes for

agile upgrades.

This page describes the procedure to set up a DR cluster, and the steps to perform a

failover in the event of a disaster.

What is included

5/13/25, 9:12 PM 3.3

951

The following information is automatically synced from the primary cluster to the DR

cluster:

• All data in every graph

• All graph schemas, including tag-based graphs

• All schema change jobs

• All users and roles

• All queries in every graph. Queries that are installed in the primary cluster will be
automatically installed in the DR cluster.

The following information and commands are not synced to the DR cluster

• GraphStudio metadata

◦ This includes graph layout data and user icons for GraphStudio.

• Loading jobs

• gadmin configurations

• gsql --reset command

• The following GSQL commands:

◦ EXPORT and IMPORT commands

◦ DROP ALL and CLEAR GRAPH STORE

When the primary cluster executes an IMPORT , DROP ALL , or CLEAR GRAPH STORE
GSQL command, or the gsql --reset bash command, the services on the DR cluster
will stop syncing with the primary and become outdated.

See Sync an outdated DR cluster on how to bring an outdated DR cluster back in sync.

Exclusions

Before you begin

5/13/25, 9:12 PM 3.3

952

• Install TigerGraph 3.2 or higher on both the primary cluster and the DR cluster in

the same version.

• Make sure that your DR cluster has the same number of partitions as the primary
cluster.

• Make sure that your DR cluster is in the same VPC as your primary cluster.

• Make sure TigerGraph is not installed with a local loopback IP such as 127.0.0.1.

The following setup is needed in order to perform a failover in the event of a

disaster.

This setup assumes that you are setting up a DR cluster for an existing primary cluster.
If you are setting up both the primary cluster and DR cluster from scratch, you only
need to perform Step 3 after TigerGraph is installed on both clusters.

Use GBAR to create a backup of the primary cluster. See Backup and Restore on

how to create a backup.

If you are setting up both the primary cluster and the DR cluster from scratch, you

can skip Steps 1, 2, and 4 and only perform Step 3.

Copy the backup files from every node to every node on the new cluster. Restore

the backup of the primary cluster on the DR cluster. See Backup and Restore on how

to restore a backup.

Setup

Step 1: Backup primary data

Step 2: Restore on the DR cluster

Step 3: Enable CRR on the DR cluster

5/13/25, 9:12 PM 3.3

953

Run the following commands on the DR cluster to enable CRR on the DR cluster.

Run the INSTALL QUERY -force ALL command on the primary cluster. After the

command is finished, all other metadata operations on the primary cluster will start

syncing to the DR cluster.

After being set up, the DR cluster will be read-only and all data update operations

will be blocked. This includes the following operations:

• All metadata operations

◦ Schema changes

◦ User access management operations

◦ Query creation, installation, and dropping

◦ User-defined function operations

• Data-loading operations

Enable Kafka Mirrormaker
gadmin config set System.CrossRegionReplication.Enabled true

Kafka mirrormaker primary cluster's IPs, separator by ','
gadmin config set System.CrossRegionReplication.PrimaryKafkaIPs PRIMARY_IP

Kafka mirrormaker primary cluster's KafkaPort
gadmin config set System.CrossRegionReplication.PrimaryKafkaPort 30002

The prefix of GPE/GUI/GSQL Kafka Topic, by default is empty.
gadmin config set System.CrossRegionReplication.TopicPrefix Primary

Apply the config changes, init Kafka, and restart
gadmin config apply -y
gadmin init kafka -y
gadmin restart all -y

Step 4: Force install queries on primary

Restrictions on the DR cluster

5/13/25, 9:12 PM 3.3

954

◦ Loading jobs operations

◦ RESTPP calls that modify graph data

• Queries that modify the graph

In the event of catastrophic failure that has impacted the full cluster due to Data

Center or Region failure, the user can initiate the failover to the DR cluster. This is a

manual process. Users will have to make the following configuration changes on the

DR cluster to upgrade it to the primary cluster.

After you fail over to your DR cluster, your DR cluster is now the primary cluster. You

may want to set up a new DR cluster to still be able to recover your services in the

event of another disaster.

To set up a new DR cluster over the upgraded primary cluster:

1. Make a backup of the upgraded primary cluster

2. Run the following command on the new cluster. The commands are the mostly

same as setting up the first DR cluster, except that in the fourth command, the

value for System.CrossRegionReplication.TopicPrefix becomes
Primary.Primary instead of Primary

3. On the new DR cluster, restore from the backup of the upgraded primary cluster

gadmin config set System.CrossRegionReplication.Enabled false
gadmin config set System.CrossRegionReplication.PrimaryKafkaIPs
gadmin config set System.CrossRegionReplication.PrimaryKafkaPort
gadmin config set System.CrossRegionReplication.TopicPrefix Primary
gadmin config apply -y
gadmin restart -y

Fail over to the DR cluster

Set up a new DR cluster after failover

5/13/25, 9:12 PM 3.3

955

There is no limit on the number of times a cluster can fail over to another cluster.

When designating a new DR cluster, make sure that you set the

System.CrossRegionReplication.TopicPrefix parameter correctly by adding an

additional .Primary .

For example, if your original cluster fails over once, and the current cluster's

TopicPrefix is Primary , then the new DR cluster needs to have its TopicPrefix

be Primary.Primary . If it needs to fail over again, the new DR cluster needs to have

its TopicPrefix be set to Primary.Primary.Primary .

When the primary cluster executes an IMPORT , DROP ALL , or CLEAR GRAPH STORE

GSQL command, or the gsql --reset bash command, the services on the DR

cluster will stop syncing with the primary and become outdated.

To bring an outdated cluster back in sync, you need to generate a fresh backup of

the primary cluster, and perform the setup steps again. However, you can skip Step

3: Enable CRR on the DR cluster, because CRR will have already been enabled.

Enable Kafka Mirrormaker
gadmin config set System.CrossRegionReplication.Enabled true

Kafka mirrormaker primary cluster's IPs, separator by ','
gadmin config set System.CrossRegionReplication.PrimaryKafkaIPs PRIMARY_IP

Kafka mirrormaker primary cluster's KafkaPort
gadmin config set System.CrossRegionReplication.PrimaryKafkaPort 30002

The prefix of GPE/GUI/GSQL Kafka Topic, by default is empty.
gadmin config set System.CrossRegionReplication.TopicPrefix Primary.Primar

Apply the config changes, init Kafka, and restart
gadmin config apply -y
gadmin init kafka -y
gadmin restart all -y

Sync an outdated DR cluster

5/13/25, 9:12 PM 3.3

956

System Administration FAQs

If you have a version 1.0 string-type license key, then during initial platform

installation, you can either specify your license key as an argument, for example:

Or you may input it when prompted.

To apply a new license key string, use the following command:

If you have a version 2.0 file-type license key which is linked to a specific machine

or cluster:

• If this is the initial installation or you are updating a previous key file, then please
see the document Activating a System-Specific License

• If you are updating from a version 1.0 key string to a version 2.0 key file, please

contact support@tigergraph.com for the correct procedure.

If you have a version 1.0 string-type license key, the following command will tell you

your key's expiration date:

If you have a version 2.0 file-type license key which is linked to a specific machine

or cluster, then run the following command:

./install.sh -l <your_license_key>

gadmin license set <license_key>
or
gadmin license set @textfile

gadmin status license

How do I apply or update my license key?

When does my license key expire?

5/13/25, 9:12 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com

957

If you are running TigerGraph v3.0+, run the following command:

A description of each component is given in the Glossary section of the TigerGraph

Platform Overview document.

The following command tells you the basic summary of each component:

curl -X GET "localhost:9000/showlicenseinfo"

gadmin license status

Command Line Usage Name : Official Name

"GPE" : GPE,
"GSE" : GSE,
"RESTPP" : RESTPP,
"GSQL" : GSQL,
"EXE" : EXECUTOR,
"IFM" : INFORMANT,
"GUI" : GUI,
"CTRL" : CONTROLLER,
"KAFKA" : KAFKA,
"ETCD" : ETCD,
"ZK" : ZK,
"NGINX" : NGINX,
"TS3" : TS3,
"TS3SERV" : TS3SERV,
"DICT" : DICT,
"ADMIN" : ADMIN,
"KAFKACONN" : KAFKACONN,
"KAFKASTRM-LL" : KAFKASTRMLL,

gadmin status

What are the components of the TigerGraph platform?

How can I find out current status of the system?

5/13/25, 9:12 PM 3.3

958

If you want to know more, including process information, memory/cpu usage

information of each component, use the -v option for verbose output.

To find out the port of a service, use the gadmin config get <port_name>

command:

To list and edit all ports, use the following command:

To change the port number of one service, use the following command:

GBAR is the utility to do backup and restore of TigerGraph system. Before a

backup, GBAR needs to be configured. Please see GBAR - Graph Backup and

Restore for details.

To backup the current system:

Please be advised that GBAR only backs up data and configuration. No logs or

binaries will be backed up.

gadmin status -v

$ gadmin config get RESTPP.NginxPort

gadmin config group port

gadmin config set <port_name> <port_number>

gbar backup -t <tag_of_the_backup>

How can I find out the port of a service?

How do I backup my data?

5/13/25, 9:12 PM 3.3

959

To restore an existing backup:

Please be advised that running restore will STOP the service and ERASE existing

data.

You can get statistics of Graph data on TigerGraph database instance using

gstatusgraph utility:

Due to a known bug, gstatusgraph command will count each undirected edge as two
edges. To get an accurate number of undirected edges, user should use the built-in
queries instead. The message below is sent as a warning to users when gstatusgraph
is used.

"[WARN] Above vertex and edge counts are for internal use which show
approximate topology size of the local graph partition. Use DML to get the
correct graph topology information"

gbar restore <tag_of_the_backup>

Syntax:

gstatusgraph [-s <node_name>]

using -s to do statistics for one node

$ gstatusgraph
=== graph ===
[GRAPH] Graph was loaded (/data/tigergraph/tigergraph3/data/gstore/0/par
[m1] Partition size: 43GiB, IDS size: 16GiB, Vertex count: 262053633,
[m2] Partition size: 40GiB, IDS size: 16GiB, Vertex count: 261996922,
[m3] Partition size: 44GiB, IDS size: 16GiB, Vertex count: 271436710,
[m4] Partition size: 44GiB, IDS size: 16GiB, Vertex count: 262030593,
[WARN] Above vertex and edge counts are for internal use which show app

How do I restore a backup?

How can I find out statistics of my graph data?

5/13/25, 9:12 PM 3.3

960

TigerGraph provides a RESTful API to tell request statistics. Assuming REST port is

9000, use command below:

If you need to restart everything, use the following:

If you know which component(s) you want to restart,you can list them:

Multiple component names are separated by spaces.

Normally it is not necessary to manually turn off any services. However if you wish

to, use the stop command.

curl -l http://localhost:9000/statistics

gadmin restart

gadmin restart <component_name(s)>

stop (nearly) all services
will stop services except for infrastructure services
gadmin stop

stop selected services
gadmin stop <component_name(s)>

How can I find out statistics of requests?

How do I restart a service?

How to I stop some or all services?

Why the service is down?

5/13/25, 9:12 PM 3.3

961

There are a few typical causes for a service being down:

1. Expired license key.

Double check your license key expiration date, and contact

support@tigergraph.com if it is expired. After applying a new license key, your
service will come back online.

Usually, TigerGraph will reach out before your license key expires. Please act

accordingly when that happens.

2. Not enough memory.
TigerGraph is a memory intensive system. When there is not much free memory,

Linux may kill a process based on memory usage. Please check your memory

usage after TigerGraph starts. We suggest at least 30% free memory after

TigerGraph starts up.
To confirm if one of TigerGraph's processes is a victim, use dmesg to check.

3. Not enough free disk space.

TigerGraph writes data, logs, as well as some temporary files onto disk(s). It

requires enough free space to function properly. If TigerGraph service or one of
its components is down, please check whether there is enough free space on

the disk using df .

Use following command to figure out where are log files for each component:

To log at the log file for a particular component:

Timeout is applied to any request coming into TigerGraph system. If a request runs

longer than the Timeout value, it will be killed. The default timeout value is 16

second.

gadmin log

gadmin log <component>

Where are the logs?

Why has my request timed out?

5/13/25, 9:12 PM 3.3

mailto:support@tigergraph.com
mailto:support@tigergraph.com
http://man7.org/linux/man-pages/man1/dmesg.1.html
http://man7.org/linux/man-pages/man1/dmesg.1.html
http://man7.org/linux/man-pages/man1/df.1.html
http://man7.org/linux/man-pages/man1/df.1.html

962

If you knows that your query will run longer than the value, configure all related

timeouts to a bigger value. To do this:

Input a value you expected, the unit is in second. Then apply the config to the

system and restart the service.

The timeout can also be changed for each query, but only when calling the REST

endpoint. You would need to use a timeout value each time you run a query,

otherwise the default timeout value will be assumed.

A core dump file is produced by the OS when a certain signal causes a process to

terminate. The core dump is a disk file containing an image of the process's

memory at the time of termination. This image can be used in a debugger (e.g.,

gdb) to inspect the state of the program at the time that it terminated.

The TigerGraph installation process configures the operating system to place core

dump files in the TigerGraph root directory, with the name core-%e-%s-%p.%t,

where

• %e: executable filename (without path prefix)

• %s: signal number which caused the dump

• %p: PID of dumped process

• %t: time of dump, expressed as seconds since the epoch

The coredump configuration was set by the following command:

gadmin config entry RESTPP.Factory.DefaultQueryTimeoutSec

gadmin config apply
gadmin restart

curl -X <GET/POST> -H "GSQL-TIMEOUT: <timeout value in milliseconds>" '<re

Where are the core dump files located?

5/13/25, 9:12 PM 3.3

963

If you want to alter the location or file name template, you can edit the contents of

/proc/sys/kernel/core_pattern

echo "$coreLocation/core-%e-%s-%p.%t" > /proc/sys/kernel/core_pattern

5/13/25, 9:12 PM 3.3

964

Reference

5/13/25, 9:12 PM 3.3

965

Configuration Parameters
This page lists the configuration parameters that are available for gadmin config .

To change a parameter, use the following command:

After updating a parameter, run gadmin config apply to apply the change and

restart the corresponding services to make the change take effect.

$ gadmin config set <parameter> <value>

Name Description Default

Admin.BasicConfig.Env
The runtime environment

variables, separated by ';'
nan

Admin.BasicConfig.LogConf

ig.LogFileMaxDurationDay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

Admin.BasicConfig.LogConf

ig.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

Admin.BasicConfig.LogConf

ig.LogLevel

The log

level("INFO","WARN","ERRO

R"), default is INFO

INFO

Admin.BasicConfig.LogConf

ig.LogRotationFileNumber

The maximum number of

old log files to retain
100

Admin.BasicConfig.LogDirR

elativePath

The relative path (to the

System.LogRoot) of log

directory for Admin

admin

Admin

5/13/25, 9:12 PM 3.3

966

[{"HostID":"m1","Partiti
on":0,"Replica":1},

Name Description Default

Controller.BasicConfig.Env
The runtime environment

variables, separated by ';'
nan

Controller.BasicConfig.LogC

onfig.LogFileMaxDurationD

ay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

Controller.BasicConfig.LogC

onfig.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

Controller.BasicConfig.LogC

onfig.LogLevel

The log

level("DEBUG","INFO","WAR

N","ERROR","PANIC","FATAL

"), default is INFO

INFO

Controller.BasicConfig.LogC

onfig.LogRotationFileNumb

er

The maximum number of

old log files to retain
100

Controller.BasicConfig.LogD

irRelativePath

The relative path (to the

System.LogRoot) of log

directory for Controller

controller

Controller.BasicConfig.Node

s

The nodes to deploy

Controller

[{"HostID":"m1","Partiti
on":0,"Replica":1},
{"HostID":"m2","Partition
":0,"Replica":2}]

Controller.ConfigRepoRelati

vePath

The relative path (to the

System.DataRoot) of config

repo where the service

config files are stored

configs

Controller.FileRepoRelativeP

ath

The relative path (to the

System.DataRoot) of the file

repo for file management

files

Controller

5/13/25, 9:12 PM 3.3

967

Controller.FileRepoVersionN

um

The maximum version of

files to keep in the file repo
3

Controller.LeaderElectionHe

artBeatIntervalMS

The maximum

interval(milliseconds) at

which each service should

call controller leader

election service to be

considered alive.

6000

Controller.LeaderElectionHe

artBeatMaxMiss

The maximum number of

heartbeat can be missed

before one service is

considered dead by

controller

5

Controller.Port
The serving grpc port for

Controller
9188

Name Description Default

Dict.BasicConfig.Env
The runtime environment

variables, separated by ';'
nan

Dict.BasicConfig.LogConfig.

LogFileMaxDurationDay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

Dict.BasicConfig.LogConfig.

LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

Dict.BasicConfig.LogConfig.

LogRotationFileNumber

The maximum number of

old log files to retain
100

Dict.BasicConfig.LogDirRela

tivePath

The relative path (to the

System.LogRoot) of log

directory for Dict

dict

Dict.BasicConfig.Nodes The node list for Dict

[{"HostID":"m1","Partiti
on":0,"Replica":1},

Dict

5/13/25, 9:12 PM 3.3

968

{"HostID":"m2","Partition
":0,"Replica":2}]

Dict.Port The port for Dict 17797

Name Description Default

ETCD.BasicConfig.LogConfi

g.LogFileMaxDurationDay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

ETCD.BasicConfig.LogConfi

g.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

ETCD.BasicConfig.LogConfi

g.LogLevel

The log

level("DEBUG","INFO","WAR

N","ERROR","PANIC","FATAL

"), default is INFO

INFO

ETCD.BasicConfig.LogConfi

g.LogRotationFileNumber

The maximum number of

old log files to retain
100

ETCD.BasicConfig.LogDirRe

lativePath

The relative path (to the

System.LogRoot) of log

directory for ETCD

etcd

ETCD.BasicConfig.Nodes The node list for ETCD

[{"HostID":"m1","Partiti
on":0,"Replica":1},
{"HostID":"m2","Partition
":0,"Replica":2}]

ETCD.ClientPort
The port of ETCD to listen

for client traffic
20000

ETCD.DataRelativePath
The data dir of etcd under

$DataRoot
etcd

ETCD.ElectionTimeoutMS
Time (in milliseconds) for an

election to timeout
1000

ETCD.HeartbeatIntervalMS
Time (in milliseconds) of a

heartbeat interval
100

ETCD

5/13/25, 9:12 PM 3.3

969

ETCD.MaxRequestBytes

Maximum client request

size in bytes the server will

accept

52428800

ETCD.MaxSnapshots

Maximum number of

snapshot files to retain (0 is

unlimited)

5

ETCD.MaxTxnOps

Maximum number of

operations permitted in a

transaction

8192

ETCD.MaxWals
Maximum number of wal

files to retain (0 is unlimited)
5

ETCD.PeerPort
The port of ETCD to listen

for peer traffic
20001

ETCD.SnapshotCount

Number of committed

transactions to trigger a

snapshot to disk

50000

Name Description Default

Executor.BasicConfig.Env
The runtime environment

variables, separated by ';'
nan

Executor.BasicConfig.LogC

onfig.LogFileMaxDurationD

ay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

Executor.BasicConfig.LogC

onfig.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

Executor.BasicConfig.LogC

onfig.LogLevel

The log

level("DEBUG","INFO","WAR

N","ERROR","PANIC","FATAL

"), default is INFO

INFO

Executor.BasicConfig.LogC

onfig.LogRotationFileNumb 100

Executor

5/13/25, 9:12 PM 3.3

970

er The maximum number of

old log files to retain

Executor.BasicConfig.LogDi

rRelativePath

The relative path (to the

System.LogRoot) of log

directory for Executor

executor

Executor.BasicConfig.Node

s

The nodes to deploy

Executors

[{"HostID":"m1","Partiti
on":1,"Replica":0},
{"HostID":"m2","Partition
":2,"Replica":0}]

Executor.DataRelativePath
The data dir of executor

under $DataRoot
executor

Executor.FileTransferPort
The port for Executor to do

file transfer
9178

Executor.FileVersionNum
The maximum version of

files to keep
10

Executor.Port
The serving port for

Executor
9177

Executor.WatchDogInterval

MS

The process status check

interval (ms)
1000

Name Description Default

FileLoader.BasicConfig.Env
The runtime environment

variables, separated by ';'
nan

FileLoader.BasicConfig.Log

Config.LogFileMaxDuration

Day

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

FileLoader.BasicConfig.Log

Config.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

FileLoader

5/13/25, 9:12 PM 3.3

971

FileLoader.BasicConfig.Log

Config.LogLevel

The log level("OFF",

"BRIEF", "DEBUG",

"VERBOSE"), default is

BRIEF

BRIEF

FileLoader.BasicConfig.Log

Config.LogRotationFileNum

ber

The maximum number of

old log files to retain
100

FileLoader.BasicConfig.Log

DirRelativePath

The relative path (to the

System.LogRoot) of log

directory for FileLoader

fileLoader

FileLoader.Factory.DefaultL

oadingTimeoutSec

The default per request

loading timeout (s) for

FileLoader

600

FileLoader.Factory.DefaultQ

ueryTimeoutSec

The default query timeout

(s) for FileLoader
16

FileLoader.Factory.Dynamic

EndpointRelativePath

FileLoader's relative (to data

root) path to store the

dynamic endpoint

fileLoader/endpoint/

FileLoader.Factory.Dynamic

SchedulerRelativePath

FileLoader's relative (to data

root) path to store the

dynamic scheduler

fileLoader/scheduler/

FileLoader.Factory.EnableA

uth

Enable authentication of

FileLoader
false

FileLoader.Factory.Handler

Count
FileLoader's handler count 4

FileLoader.Factory.StatsInte

rvalSec

FileLoader's time interval to

collect stats (e.g. QPS)
60

FileLoader.GPEResponseBa

sePort

The port of FileLoader to

accept GPE response
8400

FileLoader.GSEResponseBa The port of FileLoader to

Name Description Default

GPE

5/13/25, 9:12 PM 3.3

972

GPE.BasicConfig.Env
The runtime environment

variables, separated by ';'

LD_PRELOAD=$LD_PRELOAD;
LD_LIBRARY_PATH=$LD_LIBRA
RY_PATH;
CPUPROFILE=/tmp/tg_cpu_pr
ofiler;
CPUPROFILESIGNAL=12;
MALLOC_CONF=prof:true,pro
f_active:false

GPE.BasicConfig.LogConfig

.LogFileMaxDurationDay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

GPE.BasicConfig.LogConfig

.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

GPE.BasicConfig.LogConfig

.LogLevel

The log level("OFF",

"BRIEF", "DEBUG",

"VERBOSE"), default is

BRIEF

BRIEF

GPE.BasicConfig.LogConfig

.LogRotationFileNumber

The maximum number of

old log files to retain
100

GPE.BasicConfig.LogDirRela

tivePath

The relative path (to the

System.LogRoot) of log

directory for GPE

gpe

GPE.BasicConfig.Nodes The node list for GPE

[{"HostID":"m1","Partiti
on":1,"Replica":1},
{"HostID":"m2","Partition
":1,"Replica":2}]

GPE.Disk.CompressMethod
The compress method of

GPE disk data
nan

GPE.Disk.DiskStoreRelative

Path

The path(relative to temp

root) to store GPE

temporary disk data

gpe/disks

GPE.Disk.LoadThreadNumb

er

The number of threads to

load from disk
1

GPE.Disk.SaveThreadNumb

er

The number of threads to

save to disk
1

5/13/25, 9:12 PM 3.3

973

GPE.EdgeDataMemoryLimit
The memory limit of edge

data
-1

GPE.GPE2GPEResponsePort

The GPE port for receiving

response back from other

GPEs

7501

GPE.GPERequestPort
The GPE port for receiving

requests
7502

GPE.IdResponsePort
The GPE port for receiving

id response from GSE
7500

GPE.Kafka.BatchMsgNumb

er

The number of messages to

send in one batch when

using async mode. The

producer will wait until

either this number of

messages are ready to send

or queue buffer max ms is

reached.

64

GPE.Kafka.CompressCodec

This parameter allows you

to specify the compression

codec for all data generated

by this producer. Valid

values are none, gzip and

snappy.

none

GPE.Kafka.FetchErrorBacko

ffTimeMS

How long to postpone the

next fetch request for a

topic+partition in case of a

fetch error.

6

GPE.Kafka.FetchWaitMaxTi

meMS

The maximum amount of

time the server will block

before answering the fetch

request if there isn't

sufficient data to

immediately satisfy fetch

min bytes.

10

GPE.Kafka.MsgMaxBytes
Maximum transmit message

size.
10485760

The maximum number of

unsent messages that can

5/13/25, 9:12 PM 3.3

974

GPE.Kafka.QueueBufferMax

MsgNumber

be queued up the producer

when using async mode

before either the producer

must be blocked or data

must be dropped.

64

GPE.Kafka.QueueBufferMax

TimeMS

Maximum time to buffer

data when using async

mode.

1

GPE.Kafka.QueueMinMsgN

umber

Minimum number of

messages per

topic+partition in the local

consumer queue.

100000

GPE.Kafka.RequestRequired

Acks

This field indicates how

many acknowledgements

the leader broker must

receive from ISR brokers

before responding to the

request.

1

GPE.MemoryLimitMB
The total topology memory

limit GPE
0

GPE.NumberOfHashBucketI

nBit

The number of bits used to

represent hash bucket

counts.

5

GPE.RebuildThreadNumber
The number of rebuild

threads for GPE
3

GPE.StopTimeoutMS Stop GPE timeout 300000

GPE.VertexDataMemoryLimi

t

The memory limit of vertex

data
-1

Name Description Default

GSE.BasicConfig.Env
The runtime environment

variables, separated by ';'

LD_PRELOAD=$LD_PRELOAD;
LD_LIBRARY_PATH=$LD_LIBRA
RY_PATH;
CPUPROFILE=/tmp/tg_cpu_pr
ofiler;

GSE

5/13/25, 9:12 PM 3.3

975

CPUPROFILESIGNAL=12;
MALLOC_CONF=prof:true,pro
f_active:false

GSE.BasicConfig.LogConfig

.LogFileMaxDurationDay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

GSE.BasicConfig.LogConfig

.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

GSE.BasicConfig.LogConfig

.LogLevel

The log level("OFF",

"BRIEF", "DEBUG",

"VERBOSE"), default is

BRIEF

BRIEF

GSE.BasicConfig.LogConfig

.LogRotationFileNumber

The maximum number of

old log files to retain
100

GSE.BasicConfig.LogDirRela

tivePath

The relative path (to the

System.LogRoot) of log

directory for GSE

gse

GSE.BasicConfig.Nodes The node list for GSE

[{"HostID":"m1","Partiti
on":1,"Replica":1},
{"HostID":"m2","Partition
":1,"Replica":2}]

GSE.IdRequestPort
The id request serving port

of GSE
6500

GSE.JournalTopicPrefix
Kafka Topic prefix of GSE

journal storage/replication
GSE_journal_

GSE.LeaderElectionTTLSec

The time-to-live of a GSE

election participant.A GSE

will be kicked out of

election if one GSE is not

responsive after the TTL.

30

GSE.RLSPort
The serving port of GSE

RLS
8900

GSE.StopTimeoutMS Stop GSE timeout 300000

5/13/25, 9:12 PM 3.3

976

Name Description Default

GSQL.BasicConfig.Env
The runtime environment

variables, separated by ';'

CPATH=$CPATH;
LD_LIBRARY_PATH=$LD_LIBRA
RY_PATH;

GSQL.BasicConfig.LogConfi

g.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

GSQL.BasicConfig.LogConfi

g.LogLevel

GSQL log level: ERROR,

INFO, DEBUG
INFO

GSQL.BasicConfig.LogConfi

g.LogRotationFileNumber

The maximum number of

old log files to retain
100

GSQL.BasicConfig.LogDirRe

lativePath

The relative path (to the

System.LogRoot) of log

directory for GSQL

gsql

GSQL.BasicConfig.Nodes The node list for GSQL

[{"HostID":"m1","Partiti
on":0,"Replica":1},
{"HostID":"m2","Partition
":0,"Replica":2}]

GSQL.CatalogBackupFileMa

xDurationDay

The maximum number of

days for catalog backup

files to retain

30

GSQL.CatalogBackupFileMa

xNumber

The maximum number of

catalog backup files to

retain

20

GSQL.DataRelativePath
The data dir of gsql under

$DataRoot
gsql

GSQL.EnableStringCompres

s
Enable string compress false

GSQL.FileOutputPolicy
The policy to control file

outputs in GSQL queries
["/"]

The working branch in

provided repository. Will

GSQL

5/13/25, 9:12 PM 3.3

977

GSQL.GithubBranch use 'master' as the default

branch

nan

GSQL.GithubPath

The path to the directory in

the github that has

TokenBank.cpp,

ExprFunctions.hpp,

ExprUtil.hpp, e.g.

sample_code/src

nan

GSQL.GithubRepository
The repository name, e.g.

tigergraph/ecosys
nan

GSQL.GithubUrl

The url that is used for

github enterprise, e.g.

https://api.github.com

nan

GSQL.GithubUserAcessToke

n

The credential for github.

Set it to 'anonymous' for

public access, or empty to

not use github

nan

GSQL.GrpcMessageMaxSiz

eMB

The maximum size of grpc

message request of gsql
40

GSQL.ManageCatalogTimeo

utSec

GSQL connection timeout

(second) to admin server

when trying to

nan

GSQL.MaxAuthTokenLifeTi

meSec

The maximum lifetime of

auth token in seconds, 0

means unlimited

0

GSQL.OutputTokenBufferSiz

e

The buffer size for output

token from GSQL
16000000

GSQL.Port The server port for GSQL 8123

GSQL.QueryResponseMaxSi

zeByte

Maximum response size in

byte
33554432

GSQL.RESTPPRefreshTimeo

utSec

Refresh time in Seconds of

Restpp
60

GSQL.SchemaIndexFileNum

ber
File number 10

The grace time (in seconds)

for expired tokens to exist 0

5/13/25, 9:12 PM 3.3

978

GSQL.TokenCleaner.GraceTi

meSec

without being cleaned

GSQL.TokenCleaner.Interval

TimeSec

The running interval of

TokenCleaner in seconds
10800

GSQL.UserInfoLimit.TokenSi

zeLimit

The max number of tokens

allowed
60000

GSQL.UserInfoLimit.UserCa

talogFileMaxSizeByte

The file size limit for user

metadata in byte
2097152

GSQL.UserInfoLimit.UserSiz

eLimit

The max number of users

allowed
12000

GSQL.WaitServiceOnlineTim

eoutSec

Timeout to wait for all

services online
60

Name Description Default

GUI.BasicConfig.Env
The runtime environment

variables, separated by ';'
nan

GUI.BasicConfig.LogConfig.

LogFileMaxDurationDay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

GUI.BasicConfig.LogConfig.

LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

GUI.BasicConfig.LogConfig.

LogLevel

The log

level("DEBUG","INFO","WAR

N","ERROR","PANIC","FATAL

"), default is INFO

INFO

GUI.BasicConfig.LogConfig.

LogRotationFileNumber

The maximum number of

old log files to retain
100

GUI.BasicConfig.LogDirRela

tivePath

The relative path (to the

System.LogRoot) of log

directory for GUI

gui

GUI

5/13/25, 9:12 PM 3.3

979

GUI.BasicConfig.Nodes
The node list for

GraphStudio

[{"HostID":"m1","Partiti
on":0,"Replica":1},
{"HostID":"m2","Partition
":0,"Replica":2}]

GUI.ClientIdleTimeSec

The maximum idle time of

client-side GraphStudio and

AdminPortal before

inactivity logout

604800

GUI.Cookie.DurationSec
GUI Cookie duration time in

seconds
86400

GUI.Cookie.SameSite

Default mode: 1; Lax mode:

2; Strict mode: 3; None

mode: 4

3

GUI.DataDirRelativePath

The relative path of gui data

folder (to the

System.DataRoot)

gui

GUI.EnableDarkTheme

The boolean value on

whether or not GUI should

enable dark theme

true

GUI.GraphStatCheckInterval

Sec

The internval(in seconds)

GraphStudio wait before

checking the graph

statistics

10

GUI.HTTPRequest.RetryMax
GUI http request max retry

times
4

GUI.HTTPRequest.RetryWait

MaxSec

GUI HTTP request max retry

waiting time in seconds
30

GUI.HTTPRequest.RetryWait

MinSec

GUI HTTP request minimum

retry waiting time in

seconds

1

GUI.HTTPRequest.TimeoutS

ec

GUI HTTP request timeout

in seconds
3600

GUI.Port

The serving port for

GraphStudio Websocket

communication

14242

5/13/25, 9:12 PM 3.3

980

GUI.RESTPPResponseMaxSi

zeBytes

The RESTPP response size

limit bytes.
33554432

GUI.TempDirRelativePath

The relative path of gui

temp folder (to the

System.TempRoot)

gui

Name Description Default

Gadmin.StartServiceDefault

TimeoutMS

The start one service

default timeout in

milliseconds

30000

Gadmin.StartStopRequestTi

meoutMS

The start/stop service

default request timeout in

milliseconds

600000

Gadmin.StopServiceDefault

TimeoutMS

The stop one service

default request timeout in

milliseconds

30000

Name Description Default

Informant.BasicConfig.Env
The runtime environment

variables, separated by ';'
nan

Informant.BasicConfig.LogC

onfig.LogFileMaxDurationD

ay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

Informant.BasicConfig.LogC

onfig.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

Informant.BasicConfig.LogC

onfig.LogLevel

The log

level("DEBUG","INFO","WAR
INFO

Gadmin

Informant

5/13/25, 9:12 PM 3.3

981

N","ERROR","PANIC","FATAL

"), default is INFO
Informant.BasicConfig.LogC

onfig.LogRotationFileNumb

er

The maximum number of

old log files to retain
100

Informant.BasicConfig.LogD

irRelativePath

The relative path (to the

System.LogRoot) of log

directory for Informant

informant

Informant.BasicConfig.Node

s

The nodes to deploy

Informant

[{"HostID":"m1","Partiti
on":0,"Replica":1},
{"HostID":"m2","Partition
":0,"Replica":2}]

Informant.DBRelativePath

The relative path (to the

System.DataRoot) of

informant database source

folder

informant/db

Informant.GrpcPort
The grpc server port for

Informant
9166

Informant.RestPort
The restful server port for

Informant
9167

Informant.RetentionPeriodD

ay

The period in days for local

database records to keep,

set -1 for keeping forever

30

Name Description Default

Kafka.BasicConfig.Env
The runtime environment

variables, separated by ';'
nan

Kafka.BasicConfig.LogConfi

g.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

Kafka.BasicConfig.LogConfi

g.LogLevel

The log level for kafka

("TRACE", "DEBUG",

"INFO", "WARN", "ERROR",

"FATAL" "OFF")

INFO

Kafka

5/13/25, 9:12 PM 3.3

982

Kafka.BasicConfig.LogConfi

g.LogRotationFileNumber

The maximum number of

old log files to retain
100

Kafka.BasicConfig.LogDirRe

lativePath

The relative path (to the

System.LogRoot) of log

directory for Kafka

kafka

Kafka.BasicConfig.Nodes The node list for Kafka

[{"HostID":"m1","Partiti
on":0,"Replica":1},
{"HostID":"m2","Partition
":0,"Replica":2}]

Kafka.DataRelativePath
The data dir of kafka under

$DataRoot
kafka

Kafka.IOThreads
The number of threads for

Kafka IO
2

Kafka.LogFlushIntervalMS
The threshold of time for

flushing log (ms)
10000

Kafka.LogFlushIntervalMess

age

The threshold of message

for flushing log
10000

Kafka.MessageMaxSizeMB

The maximum size of a

message of Kafka to be

produced (megabytes)

10

Kafka.MinInsyncReplicas

The minimal number of

insync replicas that must

acknowledge, when

producer sets acks to 'all'

1

Kafka.NetworkThreads
The number of threads for

Kafka Network
4

Kafka.Port The serving port for Kafka 30002

Kafka.RetentionHours

The minimum age of a log

file of Kafka to be eligible

for deletion (hours)

168

Kafka.RetentionSizeGB

The minimum size of a log

file of Kafka to be eligible

for deletion (gigabytes)

40

Kafka.StartTimeoutMS Start kafka timeout 300000

5/13/25, 9:12 PM 3.3

983

Kafka.TopicReplicaFactor
The default replica number

f h i
1

Name Description Default

KafkaConnect.BasicConfig.

Env

The runtime environment

variables, separated by ';'
nan

KafkaConnect.BasicConfig.

LogConfig.LogFileMaxSize

MB

The maximum size in

megabytes of the log file

before it gets rotated

100

KafkaConnect.BasicConfig.

LogConfig.LogLevel

The log level for kafka

connect ("TRACE",

"DEBUG", "INFO", "WARN",

"ERROR", "FATAL" "OFF")

INFO

KafkaConnect.BasicConfig.

LogConfig.LogRotationFileN

umber

The maximum number of

old log files to retain
100

KafkaConnect.BasicConfig.

LogDirRelativePath

The relative path (to the

System.LogRoot) of log

directory for Kafka connect

kafkaconn

KafkaConnect.BasicConfig.

Nodes

The node list for Kafka

connect

[{"HostID":"m1","Partiti
on":0,"Replica":1},
{"HostID":"m2","Partition
":0,"Replica":2}]

KafkaConnect.MaxPollInter

valMS

The interval between Kafka

connect poll loop

processing message

900000

KafkaConnect.MaxRequest

Size

The max request size of

kafka connect producer
5242880

KafkaConnect.OffsetFlushIn

tervalMS

The interval at which Kafka

connect tasks' offsets are

committed

10000

KafkaConnect.Port
The port used for kafka

connect
30003

KafkaConnect

5/13/25, 9:12 PM 3.3

984

KafkaConnect.ReconnectBa

ckoffMS

The amount of time to wait

before attempting to

reconnect to a given host

500

KafkaConnect.RetryBackoff

MS

The amount of time to wait

before attempting to retry a

failed fetch request to a

given topic partition

10000

Name Description Default

KafkaLoader.BasicConfig.E

nv

The runtime environment

variables, separated by ';'
nan

KafkaLoader.BasicConfig.Lo

gConfig.LogFileMaxDuratio

nDay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

KafkaLoader.BasicConfig.Lo

gConfig.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

KafkaLoader.BasicConfig.Lo

gConfig.LogLevel

The log level("OFF",

"BRIEF", "DEBUG",

"VERBOSE"), default is

BRIEF

BRIEF

KafkaLoader.BasicConfig.Lo

gConfig.LogRotationFileNu

mber

The maximum number of

old log files to retain
100

KafkaLoader.BasicConfig.Lo

gDirRelativePath

The relative path (to the

System.LogRoot) of log

directory for KafkaLoader

kafkaLoader

KafkaLoader.Factory.Defaul

tLoadingTimeoutSec

The default per request

loading timeout (s) for

KafkaLoader

600

KafkaLoader.Factory.Defaul

tQueryTimeoutSec

The default query timeout

(s) for KafkaLoader
16

KafkaLoader

5/13/25, 9:12 PM 3.3

985

KafkaLoader.Factory.Dynam

icEndpointRelativePath

KafkaLoader's relative (to

data root) path to store the

dynamic endpoint

kafkaLoader/endpoint/

KafkaLoader.Factory.Dynam

icSchedulerRelativePath

KafkaLoader's relative (to

data root) path to store the

dynamic scheduler

kafkaLoader/scheduler/

KafkaLoader.Factory.Enable

Auth

Enable authentication of

KafkaLoader
false

KafkaLoader.Factory.Handle

rCount

KafkaLoader's handler

count
4

KafkaLoader.Factory.StatsIn

tervalSec

KafkaLoader's time interval

to collect stats (e.g. QPS)
60

KafkaLoader.GPEResponse

BasePort

The port of KafkaLoader to

accept GPE response
9400

KafkaLoader.GSEResponse

BasePort

The port of KafkaLoader to

accept GSE response
9500

KafkaLoader.ReplicaNumbe The number of replica of
1

Name Description Default

KafkaStreamLL.BasicConfig

.Env

The runtime environment

variables, separated by ';'
nan

KafkaStreamLL.BasicConfig

.LogConfig.LogFileMaxSize

MB

The maximum size in

megabytes of the log file

before it gets rotated

100

KafkaStreamLL.BasicConfig

.LogConfig.LogLevel

The log level for Kafka

stream LoadingLog

("TRACE", "DEBUG",

"INFO", "WARN", "ERROR",

"FATAL" "OFF")

INFO

KafkaStreamLL.BasicConfig

.LogConfig.LogRotationFile

Number

The maximum number of

old log files to retain
100

KafkaStreamLL

5/13/25, 9:12 PM 3.3

986

KafkaStreamLL.BasicConfig

.LogDirRelativePath

The relative path (to the

System.LogRoot) of log

directory for Kafka stream

LoadingLog

kafkastrm-ll

KafkaStreamLL.BasicConfig

.Nodes

The node list for Kafka

stream LoadingLog

[{"HostID":"m1","Partiti
on":1,"Replica":0},
{"HostID":"m2","Partition
":2,"Replica":0}]

KafkaStreamLL.Port
The port used for Kafka

stream LoadingLog
30004

KafkaStreamLL.StateDirRela

tivePath

The relative folder path for

Kafka stream LoadingLog

state

kafkastrm-ll

Name Description Default

Nginx.AllowedCIDRList

The whitelist of IPv4/IPv6

CIDR blocks to restrict the

application access,

separate in comma.

0.0.0.0/0, ::/0

Nginx.BasicConfig.LogConfi

g.LogFileMaxDurationDay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

Nginx.BasicConfig.LogConfi

g.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

Nginx.BasicConfig.LogConfi

g.LogRotationFileNumber

The maximum number of

old log files to retain
100

Nginx.BasicConfig.LogDirRe

lativePath

The relative path (to the

System.LogRoot) of log

directory for Nginx

nginx

Nginx.BasicConfig.Nodes The node list for Nginx

[{"HostID":"m1","Partiti
on":0,"Replica":1},

Nginx

5/13/25, 9:12 PM 3.3

987

{"HostID":"m2","Partition
":0,"Replica":2}]

Nginx.ClientMaxBodySize
The maximum request size

for Nginx in MB
200

worker_processes
__WORKER_PROCESSES__;\nda
emon off;\npid
__NGINX_PID_PATH__;\n\nev
ents {\n
worker_connections
10240;\n}\n\nhttp {\n\n
server_tokens off;\n\n
map $request_uri
$request_uri_path {\n
\~^(?
P\u003cpath\u003e[^?]*)
(\\?.*)?$\" $path;\n
}\n\n log_format
combined_no_query
'$remote_addr -
$remote_user
[$time_local] '\n
'\"$request_method
$request_uri_path
$server_protocol\"
$status $body_bytes_sent
'\n '\"$http_referer\"
\"$http_user_agent\"';\n\
n\t#Set allowed CIDR
blocks\n__CIDR_LIST__\n
types {\n text/html html
htm shtml;\n text/css
css;\n text/xml xml;\n
image/gif gif;\n
image/jpeg jpeg jpg;\n
application/javascript
js;\n
application/atom+xml
atom;\n
application/rss+xml
rss;\n\n text/mathml
mml;\n text/plain txt;\n
text/vnd.sun.j2me.app-
descriptor jad;\n
text/vnd.wap.wml wml;\n

5/13/25, 9:12 PM 3.3

988

text/x-component htc;\n\n
image/png png;\n
image/svg+xml svg svgz;\n
image/tiff tif tiff;\n
image/vnd.wap.wbmp
wbmp;\n image/webp
webp;\n image/x-icon
ico;\n image/x-jng jng;\n
image/x-ms-bmp bmp;\n\n
font/woff woff;\n
font/woff2 woff2;\n\n
application/java-archive
jar war ear;\n
application/json json;\n
application/mac-binhex40
hqx;\n application/msword
doc;\n application/pdf
pdf;\n
application/postscript ps
eps ai;\n application/rtf
rtf;\n
application/vnd.apple.mpe
gurl m3u8;\n
application/vnd.google-
earth.kml+xml kml;\n
application/vnd.google-
earth.kmz kmz;\n
application/vnd.ms-excel
xls;\n
application/vnd.ms-
fontobject eot;\n
application/vnd.ms-
powerpoint ppt;\n
application/vnd.oasis.ope
ndocument.graphics odg;\n
application/vnd.oasis.ope
ndocument.presentation
odp;\n
application/vnd.oasis.ope
ndocument.spreadsheet
ods;\n
application/vnd.oasis.ope
ndocument.text odt;\n
application/vnd.openxmlfo
rmats-
officedocument.presentati

5/13/25, 9:12 PM 3.3

989

onml.presentation\n
pptx;\n
application/vnd.openxmlfo
rmats-
officedocument.spreadshee
tml.sheet\n xlsx;\n
application/vnd.openxmlfo
rmats-
officedocument.wordproces
singml.document\n docx;\n
application/vnd.wap.wmlc
wmlc;\n application/x-7z-
compressed 7z;\n
application/x-cocoa
cco;\n application/x-
java-archive-diff
jardiff;\n application/x-
java-jnlp-file jnlp;\n
application/x-makeself
run;\n application/x-perl
pl pm;\n application/x-
pilot prc pdb;\n
application/x-rar-
compressed rar;\n
application/x-redhat-
package-manager rpm;\n
application/x-sea sea;\n
application/x-shockwave-
flash swf;\n
application/x-stuffit
sit;\n application/x-tcl
tcl tk;\n application/x-
x509-ca-cert der pem
crt;\n application/x-
xpinstall xpi;\n
application/xhtml+xml
xhtml;\n
application/xspf+xml
xspf;\n application/zip
zip;\n\n
application/octet-stream
bin exe dll;\n
application/octet-stream
deb;\n application/octet-
stream dmg;\n
application/octet-stream

5/13/25, 9:12 PM 3.3

990

iso img;\n
application/octet-stream
msi msp msm;\n\n
audio/midi mid midi
kar;\n audio/mpeg mp3;\n
audio/ogg ogg;\n audio/x-
m4a m4a;\n audio/x-
realaudio ra;\n\n
video/3gpp 3gpp 3gp;\n
video/mp2t ts;\n
video/mp4 mp4;\n
video/mpeg mpeg mpg;\n
video/quicktime mov;\n
video/webm webm;\n
video/x-flv flv;\n
video/x-m4v m4v;\n
video/x-mng mng;\n
video/x-ms-asf asx asf;\n
video/x-ms-wmv wmv;\n
video/x-msvideo avi;\n
}\n default_type
application/octet-
stream;\n
client_max_body_size
__MAX_BODY_SIZE__;\n\n
access_log
__NGINX_LOG_PER_RESTPP__
combined_no_query;\n
error_log
__NGINX_ERR_PER_RESTPP__;
\n fastcgi_temp_path
__TEMP_ROOT__;\n
fastcgi_buffers 256
8k;\n\n ###### [BEGIN]
customized headers
######\n
__HEADER_CONFIG__\n
[END] customized
headers ######\n\n\n
keepalive_timeout
900s;\n\n upstream
fastcgi_backend {\n
server
unix:__FASTCGI_PASS__;\n
keepalive 128;\n }\n\n #
Use upstream derivative

5/13/25, 9:12 PM 3.3

991

Nginx.ConfigTemplate

The template to generate

nginx config. Please use

@filepath to parse

template from file. Check

the default template first at

https://docs.tigergraph.com

.(Warning: Don't modify the

reserved keywords(string

like UPPER_CASE) in

template.)

for listing all gsql
server \n # that could be
used in requesttoken
proxy_pass\n
__ENABLE_RESTPP_AUTH__
upstream
gsql_token_server {\n
__ENABLE_RESTPP_AUTH__
__GSQL_TOKEN_SERVER_LIST_
_\n
__ENABLE_RESTPP_AUTH__
}\n\n # Keep it for
backward compatibility\n
server {\n add_header
Strict-Transport-Security
\"max-age=63072000;
includeSubdomains;
preload\";\n
ssl_protocols TLSv1.2;\n
ssl_ciphers ECDHE-ECDSA-
AES128-GCM-SHA256:ECDHE-
RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-
AES256-GCM-SHA384:ECDHE-
RSA-AES256-GCM-
SHA384:ECDHE-ECDSA-
CHACHA20-POLY1305:ECDHE-
RSA-CHACHA20-
POLY1305:DHE-RSA-AES128-
GCM-SHA256:DHE-RSA-
AES256-GCM-SHA384;\n
ssl_prefer_server_ciphers
on;\n listen
__PORT_PER_RESTPP__
__GUI_CONNECTION_TYPE__;\
n server_name
localhost;\n
large_client_header_buffe
rs
__LARGE_CLIENT_HEADER_BUF
FER_NUM__
__LARGE_CLIENT_HEADER_BUF
FER_SIZE__;\n\n
fastcgi_read_timeout
72000s;\n
fastcgi_send_timeout

5/13/25, 9:12 PM 3.3

992

72000s;\n\n
__SSL_CERT_ATTR__
__SSL_CERT_PATH__; # if
SSL is disabled, here
should be '#'\n
__SSL_KEY_ATTR__
__SSL_KEY_PATH__; # if
SSL is disabled, here
should be '#'\n\n\n
location / {\n
fastcgi_pass
fastcgi_backend;\n
fastcgi_keep_conn on;\n
fastcgi_param
REQUEST_METHOD
$request_method;\n
fastcgi_param
CONTENT_TYPE
$content_type;\n
fastcgi_param
CONTENT_LENGTH
$content_length;\n
fastcgi_param REQUEST_URI
$request_uri;\n
fastcgi_param GSQL_ASYNC
$http_gsql_async;\n
fastcgi_param
GSQL_TIMEOUT
$http_gsql_timeout;\n
fastcgi_param
GSQL_MEMLIMIT
$http_gsql_memlimit;\n
fastcgi_param
RESPONSE_LIMIT
$http_response_limit;\n
}\n\n # To ensure the
performance of RESTPP,
this rule shouldn't be
enabled\n # unless
restpp.authentication is
True.\n # And for
performance
consideration,\n #!!!!!!!
DO NOT USE REGULAR
EXPRESSION HERE !!!!!!!\n
__ENABLE_RESTPP_AUTH__

5/13/25, 9:12 PM 3.3

993

location = /requesttoken
{\n
__ENABLE_RESTPP_AUTH__
proxy_ssl_verify
__PROXY_SSL_VERIFY__;\n
__ENABLE_RESTPP_AUTH__
proxy_set_header X-Real-
IP $remote_addr;\n
__ENABLE_RESTPP_AUTH__
proxy_pass
__REQUEST_TOKEN_PROTOCOL_
_://gsql_token_server;\n
__ENABLE_RESTPP_AUTH__
}\n }\n\n server
{\n\t\tlisten
__NGINX_SERVICES_PORT__
__GUI_CONNECTION_TYPE__;\
n ssl_protocols
TLSv1.2;\n\t\tlarge_clien
t_header_buffers
__LARGE_CLIENT_HEADER_BUF
FER_NUM__
__LARGE_CLIENT_HEADER_BUF
FER_SIZE__;\n\t\tproxy_bu
ffer_size
__PROXY_BUFFER_SIZE__;\n\
t\tproxy_buffers
__PROXY_BUFFERS_NUM__
__PROXY_BUFFERS_SIZE__;\n
\t\tproxy_busy_buffers_si
ze
__PROXY_BUSY_BUFFERS_SIZE
__;\n\n\t\t__SSL_CERT_ATT
R__ __SSL_CERT_PATH__; #
if SSL is disabled, here
should be
'#'\n\t\t__SSL_KEY_ATTR__
__SSL_KEY_PATH__; # if
SSL is disabled, here
should be
'#'\n\n\t\tlocation /
{\n\t\t\t# Set whether to
enable
compression\n\t\t\tgzip
on;\n\t\t\tgzip_types\n\t
\t\t\tapplication/javascr

5/13/25, 9:12 PM 3.3

994

ipt # works significantly
with javascript files in
GUI\n\t\t\t;\n\t\t\troot
__GST_STATIC_FOLDER__;\n\
t\t\ttry_files $uri $uri/
@backend;\n\t\t}\n\n\t\tl
ocation /assets/img/user-
uploaded-icons/
{\n\t\t\talias
__GUI_DATA_FOLDER__/user_
icons/;\n\t\t\ttry_files
$uri $uri/ =
404;\n\t\t}\n\n\t\tlocati
on /admin/ {\n\t\t\t# Set
whether to enable
compression\n\t\t\tgzip
on;\n\t\t\tgzip_types\n\t
\t\t\tapplication/javascr
ipt # works significantly
with javascript files in
GUI\n\t\t\t;\n\t\t\talias
__ADMIN_PORTAL_STATIC_FOL
DER__/;\n\t\t\ttry_files
$uri $uri/ =
404;\n\t\t}\n\n\t\tlocati
on @backend
{\n\t\t\tproxy_read_timeo
ut
3600s;\n\t\t\tproxy_set_h
eader X-Real-IP
$remote_addr;\n\t\t\tprox
y_pass
http://localhost:__GUI_WE
BSERVER_PORT__;\n\t\t}\n\
n\t\tlocation ~ ^/ts3/(?
\u003cts3_uri\u003e.*)
{\n\t\t\tproxy_read_timeo
ut 3600s;\n\t\t\trewrite
^/ts3/(.*) /$ts3_uri
break;\n\t\t\tproxy_set_h
eader X-Real-IP
$remote_addr;\n\t\t\tprox
y_pass
http://localhost:__TS3_RE
ST_PORT__;\n\t\t}\n\n\t\t
location ~

5/13/25, 9:12 PM 3.3

995

^/gsqlserver/(?
\u003cgsql_uri\u003e.*)
{\t\n\t\t\trewrite
^/gsqlserver/(.*)
/$gsql_uri
break;\n\t\t\tproxy_read_
timeout
3600s;\n\t\t\tproxy_set_h
eader X-Real-IP
$remote_addr;\n\t\t\tprox
y_pass
http://localhost:__GSQL_S
ERVER_PORT__;\n\t\t\tprox
y_http_version
1.1;\n\t\t}\n\n\t\t# This
RESTPP endpoint shares
the same security
configuration\n\t\tfastcg
i_read_timeout
72000s;\n\t\tfastcgi_send
_timeout
72000s;\n\n\t\t__ENABLE_R
ESTPP_AUTH__ location ~
^/restpp/(?
\u003ctoken_uri\u003erequ
esttoken.*)
{\n\t\t__ENABLE_RESTPP_AU
TH__ rewrite
^/restpp/(.*) /$token_uri
break;\n\t\t__ENABLE_REST
PP_AUTH__
proxy_ssl_verify
__PROXY_SSL_VERIFY__;\n\t
\t__ENABLE_RESTPP_AUTH__
proxy_set_header X-Real-
IP
$remote_addr;\n\t\t__ENAB
LE_RESTPP_AUTH__
proxy_pass
__REQUEST_TOKEN_PROTOCOL_
_://gsql_token_server;\n\
t\t__ENABLE_RESTPP_AUTH__
}\n\n\t\tlocation ~
^/restpp/(.*)
{\n\t\t\tfastcgi_pass
fastcgi_backend;\n\t\t\tf

5/13/25, 9:12 PM 3.3

996

astcgi_keep_conn
on;\n\t\t\tfastcgi_param
REQUEST_METHOD
$request_method;\n\t\t\tf
astcgi_param CONTENT_TYPE
$content_type;\n\t\t\tfas
tcgi_param CONTENT_LENGTH
$content_length;\n\t\t\tf
astcgi_param REQUEST_URI
$1?$query_string; # the
url pattern matched
above\n\t\t\tfastcgi_para
m GSQL_TIMEOUT
$http_gsql_timeout;\n\t\t
\tfastcgi_param
GSQL_MEMLIMIT
$http_gsql_memlimit;\n\t\
t\tfastcgi_param
RESPONSE_LIMIT
$http_response_limit;\t
\n\t\t}\n\t}\n}\n"

Nginx.Port The serving port for Nginx 14240

Nginx.ResponseHeaders
The customized headers in

HTTP Response

[{"FieldName":"X-Frame-
Options","FieldValue":"SA
MEORIGIN"}]

Nginx.SSL.Cert

Public certificate for SSL.

(Could use @cert_file_path

to parse the certificate from

file)

nan

Nginx.SSL.Enable
Enable SSL connection for

all HTTP requests
false

Nginx.SSL.Key

Private key for SSL. (Could

use @key_file_path to parse

the key from file)

nan

Nginx.WorkerProcessNumb

er

The number of worker

processes for Nginx
4

Name Description Default

RESTPP

5/13/25, 9:12 PM 3.3

997

RESTPP.BasicConfig.Env
The runtime environment

variables, separated by ';'

LD_PRELOAD=$LD_PRELOAD;
LD_LIBRARY_PATH=$LD_LIBRA
RY_PATH;

RESTPP.BasicConfig.LogCo

nfig.LogFileMaxDurationDay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

RESTPP.BasicConfig.LogCo

nfig.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

RESTPP.BasicConfig.LogCo

nfig.LogLevel

The log level("OFF",

"BRIEF", "DEBUG",

"VERBOSE"), default is

BRIEF

BRIEF

RESTPP.BasicConfig.LogCo

nfig.LogRotationFileNumber

The maximum number of

old log files to retain
100

RESTPP.BasicConfig.LogDir

RelativePath

The relative path (to the

System.LogRoot) of log

directory for RESTPP

restpp

RESTPP.BasicConfig.Nodes The node list for RESTPP

[{"HostID":"m1","Partiti
on":0,"Replica":1},
{"HostID":"m2","Partition
":0,"Replica":2}]

RESTPP.FCGISocketBackLo

gMaxCnt

RESTPP fcgi socket backlog

max length which is the

listen queue depth used in

the listen() call.

36864

RESTPP.FCGISocketFileRela

tivePath

The relative path of FCGI

socket for RESTPP-Nginx

communitation under

$TempRoot

rest/restpp-
nginx.fcgi.sock

RESTPP.Factory.DefaultLoa

dingTimeoutSec

The default per request

loading timeout (s) for

RESTPP

600

RESTPP.Factory.DefaultQue

ryTimeoutSec

The default query timeout

(s) for RESTPP
16

5/13/25, 9:12 PM 3.3

998

RESTPP.Factory.DynamicEn

dpointRelativePath

RESTPP's relative (to data

root) path to store the

dynamic endpoint

restpp/endpoint/

RESTPP.Factory.DynamicSc

hedulerRelativePath

RESTPP's relative (to data

root) path to store the

dynamic scheduler

restpp/scheduler/

RESTPP.Factory.EnableAuth
Enable authentication of

RESTPP
false

RESTPP.Factory.HandlerCo

unt
RESTPP's handler count 4

RESTPP.Factory.QueryMem

oryLimitMB

The memory limit of query

runs for container on disk.

The default value is -1,

meaning no limit

-1

RESTPP.Factory.StatsInterv

alSec

RESTPP's time interval to

collect stats (e.g. QPS)
60

RESTPP.GPEResponsePort
The port of RESTPP to

accept GPE response
5400

RESTPP.GSEResponsePort
The port of RESTPP to

accept GSE response
5500

RESTPP.HttpServer.Enable
Enable RESTPP's http

server
false

RESTPP.HttpServer.Port RESTPP's http server port 10000

RESTPP.HttpServer.Worker

Num

RESTPP's http server

worker number
2

The port of RESTPP to

Name Description Default

Security.LDAP.AdminDN

Configure the DN of LDAP

user who has read access

to the base DN specified
nan

Security

5/13/25, 9:12 PM 3.3

999

above. Empty if everyone

has read access to LDAP

data: default empty

Security.LDAP.AdminPassw

ord

Configure the password of

the admin DN specified

above. Needed only when

admin_dn is specified:

default empty

secret

Security.LDAP.BaseDN

Configure LDAP search

base DN, the root node to

start the LDAP search for

user authentication: must

specify

nan

Security.LDAP.Enable
Enable LDAP authentication:

default false
false

Security.LDAP.Hostname
Configure LDAP server

hostname: default localhost
localhost

Security.LDAP.Port
Configure LDAP server port:

default 389
389

Security.LDAP.SearchFilter

Configure LDAP search

base DN, the root node to

start the LDAP search for

user authentication.

(objectClass=*)

Security.LDAP.Secure.Proto

col

Enable SSL/StartTLS for

LDAP connection

[none/ssl/starttls]: default

none

none

Security.LDAP.Secure.Trust

All

Configure to trust all LDAP

servers (unsafe): default

false

false

Security.LDAP.Secure.Trust

storeFormat

Configure the truststore

format [JKS/PKCS12]:

default JKS

JKS

Security.LDAP.Secure.Trust

storePassword

Configure the truststore

password: default changeit
changeit

Configure the truststore

absolute path for the
nan

5/13/25, 9:12 PM 3.3

1000

Security.LDAP.Secure.Trust

storePath

certificates used in SSL:

default empty

Security.LDAP.UsernameAtt

ribute

Configure the username

attribute name in LDAP

server: default uid

uid

Security.SSO.SAML.Asserti

onSigned

Require Identity Provider to

sign assertions: default true
true

Security.SSO.SAML.AuthnR

equestSigned

Sign AuthnRequests before

sending to Identity Provider:

default true

true

Security.SSO.SAML.BuiltinU

ser
The builtin user for SAML __GSQL__saml

Security.SSO.SAML.Enable
Enable SAML2-based SSO:

default false
false

Security.SSO.SAML.IDP.Enti

tyId

Identity Provider Entity ID:

default

http://idp.example.com

http://idp.example.com

Security.SSO.SAML.IDP.SS

OUrl

Single Sign-On URL: default

http://idp.example.com/sso/

saml

http://idp.example.com/s
so/saml

Security.SSO.SAML.IDP.X50

9Cert

Identity Provider's x509

Certificate filepath: default

empty. You can use

@/cert/file/path to pass the

certificate from a file.

nan

Security.SSO.SAML.Metada

taSigned
Sign Metadata: default true true

Security.SSO.SAML.Request

edAuthnContext

Authentication context

(comma separate multiple

values)

nan

Security.SSO.SAML.Respon

seSigned

Require Identity Provider to

sign SAML responses:

default true

true

Security.SSO.SAML.SP.Host

name

TigerGraph Service

Provider URL: default

http://127.0.0.1:14240

http://127.0.0.1:14240

5/13/25, 9:12 PM 3.3

1001

Security.SSO.SAML.SP.Priv

ateKey

Content of the host

machine's private key.

Require PKCS#8 format

(start with "BEGIN PRIVATE

KEY"). You can use

@/privatekey/file/path to

pass the certificate from a

file.

nan

Security.SSO.SAML.SP.X50

9Cert

Content of the x509

Certificate: default empty.

You can use

@/cert/file/path to pass the

certificate from a file.

nan

Security.SSO.SAML.Signatu

reAlgorithm

Signiture algorithm [rsa-

sha1/rsa-sha256/rsa-

sha384/rsa-sha512]: default

h 256

rsa-sha256

Name Description Default

System.AppRoot
The root directory for

TigerGraph applications

/home/tigergraph/tigergr
aph/app

System.AuthToken
The authorization token for

TigerGraph services

ZeMGgyCYLAQ0ysTdk2ynhX8D
RCKXcegX

System.Backup.CompressPr

ocessNumber

The number of concurrent

process for compression

during backup

8

System.Backup.Local.Enabl

e
Backup data to local path false

System.Backup.Local.Path
The path to store the

backup files
nan

System.Backup.S3.AWSAcc

essKeyID

The AWS access key ID for

s3 bucket of backup
nan

System.Backup.S3.AWSSec

retAccessKey

The secret access key for

s3 bucket
nan

System

5/13/25, 9:12 PM 3.3

1002

System.Backup.S3.BucketN

ame
The S3 bucket name nan

System.Backup.S3.Enable Backup data to S3 path false

System.Backup.TimeoutSec
The backup timeout in

seconds
18000

System.CrossRegionReplica

tion.Enabled
Enable Kafka Mirrormaker false

System.CrossRegionReplica

tion.PrimaryKafkaIPs

Kafka mirrormaker primary

cluster's IPs, separator by ','
nan

System.CrossRegionReplica

tion.PrimaryKafkaPort

Kafka mirrormaker primary

cluster's KafkaPort
30002

System.CrossRegionReplica

tion.TopicPrefix

The prefix of

GPE/GUI/GSQL Kafka Topic,

by default is empty.

nan

System.DataRoot The root directory for data
/home/tigergraph/tigergr
aph/data

System.Event.EventInputTo

pic

Kafka topic name of event

input queue
EventInputQueue

System.Event.EventOffsetFo

lderRelativePath

The relative path (to the

System.DataRoot) of the

folder to keep track of

Kafka offsets for event

input/output queue

offset

System.Event.EventOutputT

opic

Kafka topic name of event

output queue
EventOutputQueue

System.HostList
The aliases and

hostnames/IPs for nodes

[{"ID":"m1","Hostname":"
192.168.1.1","Region":"r1
"},
{"ID":"m2","Hostname":"19
2.168.1.2","Region":"r2"}
]

System.License
The license key for

TigerGraph system
nan

5/13/25, 9:12 PM 3.3

1003

System.LogRoot
The root directory for

TigerGraph logs

/home/tigergraph/tigergr
aph/log

System.SSH.ConfigFileRelat

ivePath

The relative path (to the

System.DataRoot) of SSH

config file

ssh/ssh_config

System.SSH.Port SSH port 22

System.SSH.User.Password
OS User password (optional

if using privatekey)
tigergraph

System.SSH.User.Privateke

y
OS user private key path nan

System.SSH.User.Username
OS Username for

TigerGraph database
tigergraph

Name Description Default

TS3.BasicConfig.Env
The runtime environment

variables, separated by ';'
nan

TS3.BasicConfig.LogConfig.

LogFileMaxDurationDay

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

TS3.BasicConfig.LogConfig.

LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

TS3.BasicConfig.LogConfig.

LogLevel

The log

level("DEBUG","INFO","WAR

N","ERROR","PANIC","FATAL

"), default is INFO

INFO

TS3.BasicConfig.LogConfig.

LogRotationFileNumber

The maximum number of

old log files to retain
100

TS3.BasicConfig.LogDirRela

tivePath

The relative path (to the

System.LogRoot) of log

directory for TS3

ts3

TS3

5/13/25, 9:12 PM 3.3

1004

TS3.BasicConfig.Nodes The node list for TS3

[{"HostID":"m1","Partiti
on":1,"Replica":0},
{"HostID":"m2","Partition
":2,"Replica":0}]

TS3.BufferSize The buffer size of TS3 10

TS3.DBRelativePath

The relative path (to the

System.DataRoot) of TS3

database source folder

ts3/db

TS3.DbTrace
Enable tracing for db

operations
false

TS3.Metrics
The metrics TS3 will be

collecting

cpu,mem,diskspace,qps,se
rvicestate,network,connec
tion

TS3.RetentionPeriodDay

The period in days for local

database records to keep,

set -1 for keeping forever

30

Name Description Default

TS3Server.BasicConfig.Env
The runtime environment

variables, separated by ';'
nan

TS3Server.BasicConfig.Log

Config.LogFileMaxDuration

Day

The maximum number of

days to retain old log files

based on the timestamp

encoded in their filename

90

TS3Server.BasicConfig.Log

Config.LogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

TS3Server.BasicConfig.Log

Config.LogLevel

The log

level("DEBUG","INFO","WAR

N","ERROR","PANIC","FATAL

"), default is INFO

INFO

TS3Server.BasicConfig.Log

Config.LogRotationFileNum 100

TS3Server

5/13/25, 9:12 PM 3.3

1005

ber The maximum number of

old log files to retain

TS3Server.BasicConfig.Log

DirRelativePath

The relative path (to the

System.LogRoot) of log

directory for TS3Serer

ts3serv

TS3Server.BasicConfig.Nod

es

The node list for

TS3Server(Currently only

support one node)

[{"HostID":"m1","Partiti
on":0,"Replica":1},
{"HostID":"m2","Partition
":0,"Replica":2}]

TS3Server.GrpcPort
The grpc api port for

TS3Server
19001

TS3Server.RestPort
The restful api port for

TS3Server
19000

Name Description Default

ZK.BasicConfig.Env
The runtime environment

variables, separated by ';'
ZK_SERVER_HEAP=4096;

ZK.BasicConfig.LogConfig.L

ogFileMaxSizeMB

The maximum size in

megabytes of the log file

before it gets rotated

100

ZK.BasicConfig.LogConfig.L

ogLevel

The log level for zk

("TRACE", "DEBUG",

"INFO", "WARN", "ERROR",

"FATAL" "OFF")

INFO

ZK.BasicConfig.LogConfig.L

ogRotationFileNumber

The maximum number of

old log files to retain
100

ZK.BasicConfig.LogDirRelati

vePath

The relative path (to the

System.LogRoot) of log

directory for ZK

zk

ZK.BasicConfig.Nodes The node list for Zookeeper

[{"HostID":"m1","Partiti
on":0,"Replica":1},
{"HostID":"m2","Partition
":0,"Replica":2}]

ZK

5/13/25, 9:12 PM 3.3

1006

ZK.DataRelativePath
The data dir of zookeeper

under $DataRoot
zk

ZK.ElectionPort
The port for Zookeeper to

do leader election
3888

ZK.ForceSync
The force syncronize

property of zookeeper
false

ZK.InitLimit

The amount of time, in

ticks(by default 2s for one

tick), to allow followers to

connect and sync to a

leader. Increased this value

as needed, if the amount of

data managed by

ZooKeeper is large

30

ZK.Port
The serving port for

Zookeeper
19999

ZK.QuorumPort
The port for Zookeeper to

do peer communication
2888

Name Description Default

download/upload/delete

catalog. Default value: 20
nan nan

download/upload/delete catalog

5/13/25, 9:12 PM 3.3

1007

Vertex-level Access
Control Functions
These functions are only available for vertex aliases (defined in the FROM clause of

a SELECT statement); they cannot be applied to vertex variables in other contexts.

Security Roles: In order to use these functions, a user must have admin or

designer roles on the base graph. These funcitons cannot be used on a tag-based

graph.

Function Description Return type

v.isTaggable()
Return true if v is of a

taggable vertex type.
BOOL

v.getTags()
Return v's set of tags. If v is

untaggable, it returns an

empty set.

SET<STRING>

v.hasTags(

STRING tag1,...
STRING tagN)

Return true if v has every

tag in the argument list of

tags.

BOOL

v.intersectTags(

VERTEX v2)

Return the set of tags that v

and v2 have in common.
SET<STRING>

v.differenceTags(

VERTEX v2)

Return the set of tags that v

has but v2 does not have.
SET<STRING>

v.addTags(

STRING tag1,...
STRING tagN)

Add the given tags to v. n/a

v.removeTags(

STRING tag1,...

STRING tagN)

Remove the given tags from

v.
n/a

v.removeAllTags() Remove all tags from V. n/a

5/13/25, 9:12 PM 3.3

1008

This function returns true if the vertex is taggable.

This function returns the vertex's tags as a set. If the vertex has no tags or is

untaggable, it returns an empty set.

Tip: getTags() can be used within a PRINT statement:

• PRINT R [R.getTags()];

//count the number of taggable vertices in the graph.
CREATE QUERY countIstaggable() for graph poc_graph_tag {
 SumAccum<int> @@count;
 vSet = { any };
 vSet = SELECT s
 FROM vSet:s
 WHERE s.isTaggable()
 ACCUM @@count += 1;
 PRINT @@count;
}

//print the tags of each vertices, in 2 different ways.
CREATE QUERY exampleGettags() {
 SetAccum<string> @vAcc;
 vSet = { any };
 vSet = SELECT s
 FROM vSet:s
 ACCUM s.@vAcc += s.getTags();
 PRINT vSet[vSet.@vAcc];
 PRINT vSet[vSet.gettags()];
}

isTaggable()

Example:

getTags()

Example:

5/13/25, 9:12 PM 3.3

1009

• or PRINT R WITH TAGS which is syntax sugar, except that it wonʼt print

"R.getTags()": [] for non-taggable vertices.

This function returns true if the vertex has every tag provided in the argument list

and returns false if it does not.

The output of the query would be:

USE GRAPH socialNet

CREATE QUERY findVertexWithTag(STRING tag) {
 seed = { ANY };
 res =
 SELECT v
 FROM seed:v
 WHERE v.hasTags(tag)
 ORDER BY v.id;
 PRINT res WITH TAGS;
}

INSTALL QUERY findVertexWithTag

RUN QUERY findVertexWithTag("vip")

hasTags(STRING tag1,... STRING tagN)

Example:

5/13/25, 9:12 PM 3.3

1010

{
 "error": false,
 "message": "",
 "version": {
 "schema": 2,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"res": [
 {
 "v_id": "person6",
 "attributes": {
 "gender": "Male",
 "id": "person6",
 "res.gettags()": [
 "vip",
 "public"
]
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "id": "person7",
 "res.gettags()": [
 "vip",
 "public"
]
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "gender": "Male",
 "id": "person8",
 "res.gettags()": ["vip"]
 },
 "v_type": "person"
 }
]}]
}

5/13/25, 9:12 PM 3.3

1011

This function returns the common tags between the vertex and another vertex as a

set.

This function returns the difference in tags between the vertex and another vertex

as a set.

//return the intersect set of tags between two vertices.
CREATE QUERY exampleIntersecttags() {
 SetAccum<string> @vAcc;
 vSet = { any };
 vSet = SELECT s
 FROM vSet:s -(_)-> :t
 WHERE t.type == "person"
 ACCUM s.@vAcc += s.intersectTags(t);
 PRINT vSet[vSet.@vAcc];
}

//return the difference set of tags between two vertices
CREATE QUERY exampleDifferencetags() {
 SetAccum<string> @vAcc;
 vSet = { any };
 vSet = SELECT s
 FROM vSet:s -(_)-> :t
 WHERE t.type == "person"
 ACCUM s.@vAcc += s.differenceTags(t);
 PRINT vSet[vSet.@vAcc];
}

intersectTags(VERTEX v2)

Example:

differenceTags(VERTEX v2)

Example:

addTags(STRING tag1,... STRING tagN)

5/13/25, 9:12 PM 3.3

1012

This function adds the tags provided in the argument list to the vertex.

This function removes the tags provided in the argument list from the vertex.

CREATE QUERY addTagsToPerson() {
 Seed = { any };
 # person1 ~ person5 will be tagged as public.
 vSet = SELECT s
 FROM Seed:s
 WHERE s.id IN ("person1","person2","person3","person4","person5")
 ACCUM s.addTags("public");

 # person6 and person7 will be tagged as public and vip.
 vSet = SELECT s
 FROM Seed:s
 WHERE s.id IN ("person6","person7")
 ACCUM s.addTags("vip", "public");

 # person8 will be tagged as vip
 vSet = SELECT s
 FROM Seed:s
 WHERE s.id == "person8"
 ACCUM s.addTags("vip");
}

//remove tag “vip” and “public” from all person vertices.
CREATE QUERY removetagsFromPerson() {
 vSet = { person.* };
 # remove tag vip and public from all person vertices
 vSet = SELECT s
 FROM vSet:s
 ACCUM s.removeTags("vip", "public");
}

Example:

removeTags(STRING tag1,... STRING tagN)

removeAllTags()

5/13/25, 9:12 PM 3.3

1013

This function removes all tags from the vertex.

//remove all tags from all person vertices.
CREATE QUERY removealltagsFromPerson() {
 vSet = { person.* };
 # remove all tags from all person vertices
 vSet = SELECT s
 FROM vSet:s
 ACCUM s.removeAllTags();
}

Example:

5/13/25, 9:12 PM 3.3

1014

List of Privileges
This page provides a complete list of privileges in TigerGraph's Role-based Access

Control system.

• Any privilege marked “on global only” can only be granted to a global role. It
cannot be granted to a local role (See Global role vs local role).

• The command IMPORT GRAPH <gName> needs multiple privileges, .e.g

WRITE_SCHEMA , WRITE_LOADING_JOB , WRITE_QUERY and so on.

• To run the command CREATE SECRET on a graph, the user must have at least

one of the access database privileges: READ_DATA , WRITE_DATA and
EXECUTE_LOADINGJOB on that graph. Thus the built-in queryreader role and

above can create secrets on a graph, but the observer role cannot.

Privilege Name Commands Associated Global Only

READ_SCHEMA

ls

show vertex <vName>

show edge <eName>

show graph <gName>

show job
(<schema_changeJobName>

No

WRITE_SCHEMA

create schema_change job
<scjName>

run schema_change job
<scjName>

drop schema_change job
<scjName>

create vertex <vName>

drop vertex <vName>

create edge <eName>

drop edge <eName>

create graph <gName>

No

Table of Privileges

5/13/25, 9:12 PM 3.3

1015

create global
schema_change job
<gscjName>

run global schema_change
job <gscjName>

drop global
schema_change job
<gscjName>

READ_LOADINGJOB

show job
<loadingJobName>

show data_source
<dsName>

No

EXECUTE_LOADINGJOB

run loading job
<ljName>

show loading status
<jobId>

abort loading job
<ljName>

resume loading job
<ljName>

No

WRITE_LOADINGJOB

create loading job
<ljName>

drop loading job
<ljName>

No

READ_QUERY show query <qName> No

WRITE_QUERY

create query <qName>

install query <qName>

drop query <qName>

No

READ_DATA
run Read_Only_Query
<qName>

No

WRITE_DATA

run Query_With_Update
<qName>

(including create,
delete, update in its own
or any sub-query)

No

5/13/25, 9:12 PM 3.3

1016

WRITE_DATASOURCE

create data_source
<dsName>

grant data_source
<dsName>

revoke data_source
<dsName>

drop data_source
<dsName>

No

READ_ROLE

show role

show privilege on role
<rName>

No

WRITE_ROLE

create role <rName>

grant role <rName>

revoke role <rName>

drop role <rName>

grant privilege <pName>
on graph <gName> to
<rName>

revoke privilege <pName>
on graph <gName> from
<rName>

No

READ_USER

show user

show privilege on user
<uName>

show secret

No

WRITE_USER

create user <uName>

drop user <uName>

alter password

Yes

READ_PROXYGROUP show group No

WRITE_PROXYGROUP

create group <pgName>
proxy <rule>

drop group <pgName>

Yes

READ_FILE
get <fileName> to <path-
to-file>

Yes

5/13/25, 9:12 PM 3.3

1017

WRITE_FILE
put <fileName> from
<path-to-file>

Yes

DROP_GRAPH drop graph <gName> Yes

EXPORT_GRAPH export graph <gName> Yes

CLEAR_GRAPHSTORE clear graph store Yes

DROP ALL drop all Yes

ACCESS_TAG

create/drop/run
schema_change jobs
involving tags

create/drop/install/run
queries involving tags

NO

5/13/25, 9:12 PM 3.3

1018

Web UI

5/13/25, 9:12 PM 3.3

1019

GraphStudio UI Guide

GraphStudio Overview

License

User Access Management

Design Schema

Map Data To Graph

Load Data

Explore Graph

Build Graph Patterns

Write Queries

Migrate From Relational Database

Export And Import Solution

5/13/25, 9:12 PM 3.3

1020

Known Issues

GraphStudio Patent and Third Party Notice

5/13/25, 9:12 PM 3.3

1021

GraphStudio Overview

The TigerGraph GraphStudio™ UI (User Interface) provides an intuitive, browser-

based interface that helps users get started quickly with graph-based application

development tasks: designing a graph schema, creating a schema mapping, loading

data, exploring the graph, and writing GSQL queries. This guide serves as an

introduction and quick-start manual for the GraphStudio UI.

As of Jan 2020, the GraphStudio UI is certified on following browsers:

Not all features are guaranteed to work on other browsers.

Please make sure to enable JavaScript and cookies in your browser settings.

If you are using GraphStudio in the TigerGraph cloud environment, you can directly

access GraphStudio via a browser.

For on-premise deployment, the system by default is listening to port 14240. Any

machine connected to the server can access GraphStudio from a browser with the

following address:

Browser Chrome Safari Firefox Opera Edge
Inte

Exp

Supported

version
54.0+ 11.1+ 59.0+ 52.0+ 80.0+ 10+

Overview

GraphStudio In The Cloud

GraphStudio On-Premises

5/13/25, 9:12 PM 3.3

1022

In v1.2, the default TCP/IP port for GraphStudio has changed from 44240 to 14240, to
avoid possible port conflicts with Zookeeper.

If you cannot access GraphStudio, check your firewall rules and open 14240 port to

public. For example, if your Linux OS uses firewall-cmd:

If the GraphStudio UI shows some errors at the login page like below, the GUI

service might be off.

To verify, in a linux shell of the server, type

If it is off, turn it on:

http://<your_tigergraph_server_ip_address>:<your_tigergraph_server_port>

$ firewall-cmd –zone=public –add-port=14240/tcp –permanent

$ gadmin status gui

$ gadmin start gui

5/13/25, 9:12 PM 3.3

1023

The home page of GraphStudio contains links to each of the six steps of solving a

business problem: Design Schema, Map Data To Graph, Load Data, Explore Graph,

Build Graph Patterns and Write Queries. Users can also navigate to each step from

the buttons in the left menu bar. Each of these major steps has its own page. To

hide/show the left menu bar, click the top-left menu button: . Clicking the logo on

the top of the left menu will take you back to the home page. You

can click to go to the Admin Portal (read more at Admin Portal UI Guide).

GraphStudio provides two themes: dark theme and light theme. By default it uses

dark theme. You can click the User icon and then toggle the Dark theme to be Off

to switch to light theme:

Home Page

Switch Between Dark And Light Theme

5/13/25, 9:12 PM 3.3

1024

GraphStudio supports 2 languages: English and Chinese. By default it uses English.

You can click and then select a language:

Switch Between Languages

5/13/25, 9:12 PM 3.3

1025

This shows what Home page looks like if you choose Chinese.

GraphStudio Session Timeout

5/13/25, 9:12 PM 3.3

1026

GraphStudio has a default session timeout of 1 week. If, during this time, the user

has no interaction with the page, the session will expire and the user will be logged

out automatically. The timeout can be configured with:

Visit TigerGraph Test Drive demos at: https://testdrive.tigergraph.com/

The GraphStudio online Test Drive features several instances of the TigerGraph

system, each one targeting a different use case. Each copy of TigerGraph has a

GraphStudio interface and is preloaded with application-specific queries and

synthetic data. These demo applications are provided in a read-only mode. Users

can explore and play with pre-installed queries. Users on these demo systems

cannot save changes to the graph schema, the loading job, or queries. The

corresponding buttons are disabled.

Some features which are available in GSQL are not available in GraphStudio.

• Fixed binary data types are not supported.

• PRIMARY KEY and composite key are not supported.

• Cannot load JSON data.

• Data loading jobs written in a GSQL console are not shown in GraphStudio.

$ gadmin config set GUI.ClientIdleTimeSec [timeout]

GraphStudio Online Test Drive

GraphStudio Limitations

Design Schema

Map Data to Graph

Load Data

5/13/25, 9:12 PM 3.3

https://testdrive.tigergraph.com/
https://testdrive.tigergraph.com/

1027

• USING options are not available.

• Concurrent loading is not available.

• You cannot define a user-defined function (you can use the user-defined

functions created from TigerGraph server by importing the solution which

contains pre-defined UDFs into GraphStudio).

Write Queries

5/13/25, 9:12 PM 3.3

1028

License

In order to use GraphStudio, you need a valid TigerGraph license that enables

GraphStudio access. Please contact sales@tigergraph.com for license related

questions.

Click the Information icon , and the current TigerGraph license status will pop up.

If a TigerGraph license key has not been added, the license status will look like this:

Without a valid license, it is not possible to navigate to the Design Schema, Map

Data To Graph, Load Data, Explore Graph, Build Graph Patterns or Write Queries

pages.

Click the link on the bottom of the license status to go to Admin Portal

license page to update a TigerGraph license key:

License

Update a TigerGraph License Key

5/13/25, 9:12 PM 3.3

1029

Click the SELECT FILE button and choose the license text file, then click UPDATE

button. The license detail will be loaded like below:

Please note that the GraphStudio item under Applications section needs to be

lightened like above. If it looks like this grayed icon: , it means

GraphStudio is not enabled in the provided license, and you won't be able to use

5/13/25, 9:12 PM 3.3

1030

GraphStudio in this case. You can upgrade your license to enable GraphStudio

access, contact sales@tigergraph.com for more information.

Click at the top-right corner of the page to go back to GraphStudio. If you

click the Info icon again, you should see the updated license. Now you can start

to use GraphStudio.

The Developer Edition package includes a pre-installed license. Please note that

Developer Edition may not be used for production use.

5/13/25, 9:12 PM 3.3

1031

User Access Management

GraphStudio follows TigerGraph user authentication and role-based access control

model. Read more in the document Managing User Privileges and Authentication.

If GSQL tigergraph superuser password hasn't been changed (default password is

tigergraph), then no user login is needed for GraphStudio. Otherwise, users must

provide credentials (e.g., username and password) to log in GraphStudio. In

addition, your system administrator can integrate TigerGraph with other user access

management systems (e.g., LDAP, Active Directory, or SAML-based Single Sign On).

See the User Access Management for how to set up LDAP or SSO.

After login, the user is assigned to one of the graphs for which he has access to.

For users other than superuser or globaldesigner, if users do not have access to any

graphs, they cannot enter GraphStudio. Hints will show in login page:

User Access Management

Log On

5/13/25, 9:12 PM 3.3

1032

After login, the user is assigned to one of the graphs for which he has access to.

To log out, click the User icon and then the Sign Out icon.

5/13/25, 9:12 PM 3.3

1033

TigerGraph uses role-based access control with several pre-defined roles. Each role

is a logical collection of data access privileges, such as querywriter or admin. Each

user is assigned one or more roles by a graph admin user or by a superuser. Roles

are also graph-specific. For example, user Pat could be an admin on graph G1 but a

querywriter on graph G2.

New feature available

In v3.0, Admin Portal supports user management. Read more at Admin Portal UI Guide

.

When a user logs in and/or selects a graph, GraphStudio will disable certain actions

based on the user's role on that graph. On each working panel, a warning note will

alert the user to features which are disabled. For example, in the current version of

GraphStudio, users with querywriter, queryreader, or observer role will see the

following warnings on the Design Schema working panel:

The table below summarizes the built-in roles and of their key privileges on

GraphStudio:

superuser
globaldesi

gner
admin designer

querywrite

r

que

er

Create a

new graph

schema

YES YES

Can only

drop

Role- and Graph- Based Access Control

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/ui/admin-portal
https://docs.tigergraph.com/ui/admin-portal
https://docs.tigergraph.com/ui/admin-portal

1034

Beginning with Version 1.2, the TigerGraph system can support multiple graphs

within one TigerGraph instance. Read more at MultiGraph - An Overview.

For superuser and globaldesigner users, by default they will be in global view.

Drop a

graph

YES graphs

created by

herself

Modify a

graph

schema

YES YES YES YES

View a

graph

schema

YES YES YES YES YES YES

Create a

data

mapping

YES YES YES YES

View a

data

mapping

YES YES YES YES YES YES

Load data YES YES YES YES YES YES

Explore a

graph
YES YES YES YES YES YES

Write a

query
YES YES YES YES YES

Run a

query
YES YES YES YES YES YES

Global View and Select A Graph

5/13/25, 9:12 PM 3.3

1035

Click the card showing current graph and user roles, and a dropdown menu of

graphs the current user can access will appear. In addition, superuser or

globaldesigner users can create and drop graphs.

5/13/25, 9:12 PM 3.3

1036

For other users, there is no access to global view, and you cannot create or drop

graphs.

5/13/25, 9:12 PM 3.3

1037

Click the graph name to switch to another graph.

A graph superuser grants each user access to particular graphs in User

Management page at Admin Portal. In addition, users with either superuser and

admin role can grant other users access to particular graphs using GSQL

commands.

5/13/25, 9:12 PM 3.3

1038

Design Schema

Beginning with Version 3.0, GraphStudio can support modifying multiple graphs

within one TigerGraph instance. Read more about multigraph at MultiGraph - An

Overview.

Designing the graph schema is the first and most important step of solving a

business problem. The graph schema is the model of the problem, and all of the

subsequent steps depend on the graph schema. If you are not on the Design

Schema page yet, click "Design Schema" on the left side menu bar.

Only certain roles have the privilege to modify a graph schema.

1. Only the superuser and globaldesigner roles can modify the global graph schema,

including creating local graphs.

2. Only the superuser, globaldesigner, and designer roles can modify a local graph

schema.

When there is no graph schema in the system, this page will show some hints:

1. Only the superuser and globaldesigner roles can modify the global graph
schema, including creating local graphs.

2. Only the superuser, globaldesigner, and designer roles modify a local graph

schema.

Design Schema

5/13/25, 9:12 PM 3.3

1039

Otherwise this page will visualize the schema:

Each circle represents a vertex type, and each link represents an edge type. You

can drag the circles to change their positions. There are two ways to zoom in and

out. If you have a touchpad, two-finger moving up zooms in; two-finger moving

down zooms out. Similarly, if your mouse has a scroll wheel, spinning forward

zooms in, and spinning backward zooms out.

5/13/25, 9:12 PM 3.3

1040

Note: The relationship between a vertex type and a vertex instance of a graph is like

the relationship between a table and one record of a table in the relational database

world. The relationship between an edge type and an edge instance is similar. In the

Design Schema step, the user defines vertex types and edge types to model the

data schema. After the schema has been created, the next two steps, Map Data To

Graph and Load Data, are for loading data into the graph.

For superuser and globaldesigner, they can modify global vertex and edge types

under Global View. Under global view, the toolbar area only contains "Publish

schema", "Add a vertex type", "Add an edge type", "Edit", "Delete", "Undo" and

"Redo" buttons. There will be a warning message in the working panel saying user is

under global view.

1. If under global view, other pages except Home and Design Schema will be

disabled.

2. Users other than superuser and globaldesigner cannot access global view.

Users can modify a graph schema under graph view. In a graph, there is one more in

the toolbar area - "View global vertex and edge types". And for global vertex and

edge types used in a graph, a little global icon is attached to them.

Global View vs. Graph View

5/13/25, 9:12 PM 3.3

1041

Click the add vertex type button to add a vertex type. The working space will

enter Add Vertex mode and the button color will change to green . Click the

button again to exit Add Vertex mode. The add vertex type panel in the right:

Add A Vertex Type

5/13/25, 9:12 PM 3.3

1042

In this window you specify a vertex type name, primary id name. GraphStudio will

automatically select a color for your vertex type icon. You can change the vertex

type color by clicking the value under the "Color hex" label. A color palette window

will pop up allowing you to choose a new color:

5/13/25, 9:12 PM 3.3

1043

Once you are satisfied with the color, click anywhere outside of the color palette

window to set the color.

You can also choose an icon for the vertex type by clicking the Select Icon button

. Then a Select Icon window will pop up. Select an icon that fits the vertex

type semantic best. You can type in keywords to help filter the icons and find the

best match faster.

5/13/25, 9:12 PM 3.3

1044

You can also upload your own icons by clicking the Upload Icon button, choosing a

PNG image, giving a name and click Upload:

5/13/25, 9:12 PM 3.3

1045

Then you can use your uploaded icons:

5/13/25, 9:12 PM 3.3

1046

Adding and Deleting Attributes

To add an attribute, click the green plus sign at the right of the Attributes section:

5/13/25, 9:12 PM 3.3

1047

Provide a name and data type for your new attribute. Optionally, you can specify a

default value for the attribute. (If you do not specify, every data type has a system

default value. For example, the default value for an integer is 0.)

For some types of attributes (INT, UINT, STRING, STRING COMPRESS, DATETIME),

you can add an index, which will improve query performance when accessing these

attributes.

Click the red minus sign to the right of the attribute to delete an existing attribute.

Once you are satisfied with the vertex type settings, click the Add button to add

the vertex type. A new circle will appear in the working panel. You can drag the

circle to any desired position.

Note: PRIMARY KEY and COMPOSITE KEY is not supported in GraphStudio. If you
decide to use these features, you will only be able to use command line interface.

Click the add edge type button to add an edge type. The working space will enter

Add Edge mode and the button color will change to green . Click the button again

to exit Add Edge mode.

Each edge type has one or many source vertex types and target vertex types. First,

click the source vertex type. A hint will appear on the vertex type circle:

Add An Edge Type

5/13/25, 9:12 PM 3.3

1048

Then click the target vertex type. The add edge type panel will be in the right:

You must specify an edge type name. The source vertex type and target vertex type

are selected based on your clicking action. However, you can change that by

choosing another vertex type in the dropdown list.

5/13/25, 9:12 PM 3.3

1049

You can also click the green plus sign at the right of the source and target vertex

types section to add more source and target vertex types of the edge type.

By default, the edge type is undirected. To make the edge type directed, mark the

Directed checkbox:

If Directed is checked, another checkbox will appear for you to choose whether the

edge type should include reverse edges. Including reverse edges provides more

flexibility when designing queries. Unselect the reverse edge checkbox ONLY IF

your machine memory is very tight, because if there is no reverse edge, queries will

not be able to traverse backwards along this directed edge type, from the target

vertex to the source vertex.

Editing edge type attributes is the same as editing vertex type attributes.

Once you are satisfied with the edge type settings, click the Add button to add

the edge type. A new link between the selected source vertex type circle(s) and

target vertex type circle(s) will appear in the working panel.

You can add multiple edge types between the same source vertex type and target

vertex type pair. Moreover, an edge can use the same vertex type for both its source

vertex type and its target vertex type, e.g., a Friendship edge from Person vertex to

Person vertex.

5/13/25, 9:12 PM 3.3

1050

You can edit the vertex types or edge types at any time after you add them. Just

click one vertex type circle or one edge link, and then click the edit button (double

clicking on the selected vertex/edge will have the same effect). The working space

will enter Edit mode and the button color will change to green . Click the button

again to exit Edit mode. The Edit Attributes panel in the right:

Once you are satisfied with the change, click the Update button .

Edit Vertex Or Edge Type

5/13/25, 9:12 PM 3.3

1051

In graph mode, you can only edit the style of a global vertex or edge type:

You can delete a vertex type or an edge type by first choosing the vertex type

circles or edge type links, then clicking the delete button . In order to delete

multiple vertex types and edge types, hold down the "Shift" key while you select

multiple items.

Note that user cannot delete a global vertex or edge type using delete button in a
graph.

Delete Vertex Or Edge Type

Redo And Undo

5/13/25, 9:12 PM 3.3

1052

You can redo and undo your changes by clicking the two buttons: . The whole

history since the time you entered Design Schema page is recorded.

Click the view global vertex and edge types button to assign global vertex and

edge types to a graph, or drop them from a graph. The working space will enter

View Global Vertex and Edge Types mode and the button color will change to green

. Click the button again to exit View Global Vertex and Edge Types mode. The

add vertex type panel in the right:

Only superuser or globaldesigner can modify global types in a graph. The view global
vertex and edge types button will be disabled for other users.

View Global Vertex And Edge Types

Publish Schema

5/13/25, 9:12 PM 3.3

1053

Once you are satisfied with the graph schema, click the publish schema button to

publish the schema to the TigerGraph system. If you are publishing a brand new

schema, a progress bar will show:

Note that Publish Schema applies to both creating a new schema as well as modifying
an existing schema. If you have already loaded data into or created queries for an
existing graph, please note that GraphStudio's Publish Schema is only able to retain
your existing data in some circumstances. Read the following section carefully.

If you are editing an existing graph schema, GraphStudio will analyze your changes.

If the change to a vertex or edge type is to remove some attributes and / or to add

some new attributes, or add or remove index to some attributes, GraphStudio will

employ a GSQL SCHEMA_CHANGE job in order to retain the graph data you already

loaded.

All other types of changes, including renaming the vertex or edge type, changing

attribute name or data type, changing edge direction, adding or removing reverse

edge will result in removing the old vertex or edge type and then adding the new

one with your desired configurations. In that case, the loaded data to that vertex or

edge type will be erased. Please think twice before you do this type of changes.

If a vertex type will be removed in order to change the schema, all edge types
connected to that vertex type will also be removed.

When you are editing a graph schema, a warning message in the top-left side of the

working panel will show which old vertex and edge types will be removed. Make

sure to check the message periodically to make sure it is as you expect:

5/13/25, 9:12 PM 3.3

1054

Finally, when you click publish schema button , a pop up window will summarize

your changes to the schema. The vertex and edge types that will be removed are

highlighted. Make sure you confirm the changes before continue:

Click continue button, and GraphStudio will start changing your schema:

If you have already created a data mapping and written queries, GraphStudio will try

its best to preserve your work when you publish your modified schema:

1. All your queries will be saved as query drafts, so you can install the queries
again after you change your schema. If a query has a conflict with the new

schema (e.g., referring to a vertex type that is deleted), you need to fix it before

installing the query.

2. GraphStudio will migrate your data mapping based on your changes to the

schema. Since GraphStudio records your whole operation history, the migration
is smart enough to cover most cases. The basic migration rules are the

following:

a. Rename vertex types and edge types

5/13/25, 9:12 PM 3.3

1055

b. Remove mappings to deleted vertex types and edge types.

c. Remove mappings to deleted or modified attributes.

d. New vertex types, edge types and new attributes won't be mapped.

e. After the schema is successfully published, GraphStudio will instruct you to
go to the Map Data To Graph page to verify and publish the revised data

mapping. If any mapping is not correct, you can fix it. You must publish the

migrated data mapping; otherwise, it will be lost.

If you have published some data mapping through GraphStudio, then after schema

is changed successfully, a pop up window will guide you to go to the Map Data To

Graph page to confirm and publish the migrated data mapping:

5/13/25, 9:12 PM 3.3

1056

Map Data To Graph

After you have created a graph schema, the next major step is to map your data to

the schema. Click "Map Data To Graph" on the left side menu bar. The working

panel is split into a left panel and a right panel. Initially when there is no data

mapping yet, the left panel will display only the graph schema.

The main steps are

1. Select a data source.

2. Add data file(s)

3. Map data file(s) to vertex/edge types

4. Map data file columns to vertex/edge fields

5. Publish data mapping

Map Data To Graph

1 Select a Data Source

5/13/25, 9:12 PM 3.3

1057

Beginning with v2.4, GraphStudio supports loading data from either local files on the

TigerGraph server or files stored on Amazon S3. In future releases, GraphStudio will

support loading from other data sources.

Click the data file type selector button on the banner of Add Data File window, and

choose either File or S3 from the list:

• If you select File, no more configuration is needed. Skip the sections for external

sources and go to Map Data To Graph.

• If you select S3, then read the section Create S3 Data Source.

This section contains a subsection for each of the different data sources. Read the

section which pertains to your data source:

• Local File System - Add Local Data File

• AWS S3 - Create S3 File Source

In this step, you inform GraphStudio about your data files. A data file is a file

containing structured data to be loaded into the graph, creating vertex and/or edge

instances. The first step for data mapping is to specify your data files. Click the Add

Data File button to add data files. The Add Data File window will pop up:

2 Add Data Files

Add Local Data File

5/13/25, 9:12 PM 3.3

1058

Initially, there are no data files in the server data folder.

Click the Upload File button . A file selection window will appear. Choose the

data files you want to use. The files will be uploaded to the server data folder:

If all the files are uploaded successfully, the progress window will close

automatically, otherwise the window will stay open to notify users of any errors.

Once the files are uploaded to the server, it will appear in the "Files on server" list

on the left side of the Add Data Files window.

Upload File To Server

5/13/25, 9:12 PM 3.3

1059

Data Files must be .csv files to allow data mapping in GraphStudio (.json file upload

is allowed in TigerGraph V3.0.5+ through GraphStudio)

The Add Data File box will only upload files which end in ".csv". If you manually place
files in the <TigerGraph_root_dir>/data/gui/loading_data folder, please don't put any
files into subfolders because they will be ignored.

In TigerGraph V3.0.5, you can upload files which end in ".json". This allows users to
upload ".json" files to the filesystems and use a remote GSQL client, or GSQL web shell
in TigerGraph Cloud to map data to the graph using GSQL commands. Currently, data
mapping for ".json" files through GraphStudio UI is not supported.

In this step, you tell GraphStudio how to parse your data file. If your data file is in

tabular format, the parser will split each line into a series of tokens. Click on one file

from the file list to choose it. The parsing result for the first line of data is shown as

a preview table on the right side:

If the parsing is not correct, click on the down arrow in a table column to choose a

different option for file format, delimiter, or end of line. The file will immediately be

Configure the File Parser

5/13/25, 9:12 PM 3.3

1060

re-parsed when you change a setting. The enclosing character is used to mark the

boundaries of a token, overriding the delimiter character. For example, if your

delimiter is comma (,), but you have commas in some strings, then you can define

either double quotes (") or single quotes (') as the enclosing character to mark the

endpoints of your string tokens. It is not necessary for every token to have enclosing

characters; the parser will use enclosing characters when it encounters them.

GraphStudio allows users to edit the header line of the parsing result, to make the

data mapping more intuitive. This doesn't affect the data loading because the

header line will be ignored.

Once you are satisfied with the file parsing configuration, click the add button

to add the data file into left working panel. The data file will be shown as a

file icon on the working panel:

Once you think a file is no longer needed, you can remove it from server by clicking

the delete button to the left of each file. Please note that you also need to

manually remove data mapping using this file as data file, otherwise when you load

data later, a "file not found" error will be triggered.

5/13/25, 9:12 PM 3.3

1061

After adding all your data files, continue with Step 3 Map Data to Vertex/Edge Types

After you click the S3 data source icon, you should see the following window:

Initially, there are no S3 data sources in the system.

A data source is an appropriately configured connection to some remote source of

data file(s). When the data file type is switched to S3, you can configure connection

to your S3 buckets.

Create S3 data source

5/13/25, 9:12 PM 3.3

1062

Click the Add new data source button , then the new S3 data source window

will pop up. Give a name to the data source, and provide the access key id and

secret access key to connect to S3. Then click the ADD button:

The data source will be created and shown in the Data Source list:

Click the data source to list all the buckets the credentials can access, and click the

Expand icon to see all the buckets or folders within the buckets. The file hierarchy

will be shown as a tree. Choose the file you want to add, and change the parsing

options if necessary. (See Configure the file parser.)

5/13/25, 9:12 PM 3.3

1063

Data files, after decompression, must be in either csv or parquet format.

TigerGraph supports loading from archived and compressed S3 files directly. Currently
supported file extensions includes zip, tar.gz, tgz and tar. GraphStudio detects the file
extension and automatically chooses the corresponding file format. If the file is
encoded with one of these formats but has a non-standard file extension, you can
manually specify the File format.

After clicking the ADD button, an S3 file icon will appear on the working panel:

After adding all your s3 data files, continue with Step 3 Map Data Files to

Vertex/Edge Types

5/13/25, 9:12 PM 3.3

1064

In this step, you link (map) a data file to a target vertex type or edge type. The

mapping can be many-to-many, which means one data file can map to multiple

vertex and / or edge types, and multiple data files can map to the same vertex or

edge type. Click the map data file to vertex or edge button to enter map data file

to vertex or edge mode. When you finish mapping the data files, click the button

again to exit this mode.

Then, click the data file icon. A hint will appear over the icon:

Next, click the target vertex type circle or edge type link. A dashed link will appear

between the data file and the target vertex or edge type:

3 Map Data Files To Vertex Type Or Edge
Type

5/13/25, 9:12 PM 3.3

1065

A red hint will appear if the target type has not yet received a mapping for its

primary id(s).

In this step, you link particular columns of a data file to particular ids or attributes of

a vertex type or edge type. First, choose one data mapping from one data file to one

vertex or edge type (represented as a dashed green link on the left working panel).

When selected, the dashed line becomes orange (active), and the right working

panel will show two tables. The left table shows the data file columns along with the

first row's tokens as sample data. The right table shows the fields of the target

vertex or edge. For a vertex, its fields are primary id and attributes. For an edge, its

fields are source vertex, target vertex, and attributes.

4 Map Data Columns To Vertex Or Edge
Attributes

5/13/25, 9:12 PM 3.3

1066

In order to a column in the data file to a vertex or edge field, first click the row

representing the data column in the left side data file table:

Then, click the row representing the target field in the right side table. A green arrow

appears to show the mapping. Repeat as needed to create all the mappings for this

table-to-vertex/edge pair. Since many-to-one mapping is allowed, it is not

necessary for one table to provide a mapping for every field in the target

vertex/edge.

5/13/25, 9:12 PM 3.3

1067

GraphStudio gives you access to both a set of built-in functions and user-defined

token functions to preprocess data file tokens before loading them in to the graph.

For example, you can concatenate two columns in the data file and load them as an

attribute. This section describes how to use these token functions.

First click the add token function button . The Add Token Function window will

pop up. Click the down arrow to see the list of available token functions and select

one. For some functions, you may also specify the number of input parameters.

(Most token functions have a fixed number of input parameters; gsql_concat can

accept any positive number of inputs). Click Add.

Using a Token Function

5/13/25, 9:12 PM 3.3

1068

GraphStudio currently does not support creating new user-defined functions. If a

user-defined function has been added via the GSQL interface, it will be listed here.

To use a user-defined token function, you must manually specify the number of

input parameters. The C++ code is shown in the Description section for your

reference:

A token function table will be added to the attribute mapping panel. You can drag

the tables to re-arrange them. Token functions act as intermediate steps in the

mapping. Create mappings from the data file table to the token function table, and

then from the token function table to the vertex/attribute table. The final result looks

like below:

Auto Mapping

5/13/25, 9:12 PM 3.3

1069

If the data file columns and the vertex/edge attributes have very similar names (only

capitalization and hyphen differences), you can click the auto mapping button .

All similar columns will be mapped automatically.

Sometimes, a user may need to load a constant value to an id or attribute. Here we

show how to do this in GraphStudio.

In the right working panel, double-click on the target id or attribute (in the left

column of the right table). In the example below, the attribute "label" has been

double-clicked:

This will cause the Load Constant window to pop up. Type in the constant value,

and click the Add button to apply the mapping.

Map A Constant Value To An Attribute Or Token
Function Input

Loading A Constant to An Attribute

5/13/25, 9:12 PM 3.3

1070

After adding the constant value, the attribute's label will change to id/attribute = "

(your valid input value)" .

To modify or remove a constant mapping, double-click the id/attribute again. In the

Load Constant window, enter the new value, or erase the value if you want to

remove the mapping. Click the Add button to apply.

First add the token function. Then double-click on the target input (in the left column

of the token function table). In the example below, "Input 0" has been double-

clicked.

Use A Constant Input for a Token Function

5/13/25, 9:12 PM 3.3

1071

This will cause the Load Constant window to pop up. Type in the constant value and

click the Add button to apply the mapping. After adding the constant value, the

input's label will change to Input = "(your input value)" .

The constant value can be modified or removed by double-clicking the label and

editing the value in the Load Constant window.

You can add a data filter to a data mapping so that only data records which meet

conditions that you specify will be loaded into the graph. This is equivalent to the

WHERE clause in a GSQL load statement.

You can add one data filter for each data mapping from a data file to a vertex type

or edge type, and the data filter only applies to that one mapping. Consider the

following data mapping:

By default, there is no data filter. Click the Data Filter button to start creating a

data filter. The Add Data Filter window will appear. The window contains three

parts:

Add Data Filter

5/13/25, 9:12 PM 3.3

1072

1. The top section shows one row of sample data from your file, as a handy

reference to the file's contents.

2. The middle sections shows what the data filter looks like when it is converted a

to GSQL WHERE clause. For more details, see the WHERE Clause section in the
GSQL Language Reference Part 1 - Defining Graphs and Loading Data

3. The bottom section is where you define your data filter. The data filter will be

converted to a GSQL WHERE clause and shown in real time.

A data filter condition is a Boolean expression, which can be a nested set of

conditions. TigerGraph data loader evaluates the condition for each line in your

input file. If the condition evaluates to be true, then the line of data is loaded.

First, click the Build Data Filter chooser (with default value "None"). A menu will

appear, with many Boolean expression templates. Choose one of the options. If you

plan to build a nested condition, start with your top level. The first several options

are for comparison expressions:

5/13/25, 9:12 PM 3.3

1073

After this are several more options, using operators such as AND, OR, NOT, IN,

BETWEEN...AND, IS NUMERIC, and IS EMPTY.

Note that each of these expressions calls for 1, 2, 3, or a list of operands, and the

operands themselves can be expressions. When you select an expression,

additional choosers will appear below for you to specify the operand expressions.

The operand choices are context-sensitive, but typically they include

• a Data Column from the input file

5/13/25, 9:12 PM 3.3

1074

• A constant value

• If the operator is AND, OR, or NOT, then the operand can be another condition.
Thus is how conditions can be nested.

Suppose you are loading friendship edges where the input data fields are (person1,

person2, friendship_start_date). You want to load only the records where person1 is

Tom and the friendship began on or before 2017-06-10. The data filter looks like the

following:

5/13/25, 9:12 PM 3.3

1075

5/13/25, 9:12 PM 3.3

1076

After adding the data filter, the right working panel will look like this:

Hovering the mouse over the data filter indicator will make the data filter

condition appear. If you want to modify the data filter, click the Data Filter button

or double-click the data filter indicator . The Add Data Filter panel will appear.

To remove a data filter, select "None" at the top level dropdown of Build Data Filter

section and then click Add. The data filter will be deleted.

More advanced data mapping features are grouped in the dropdown list under .

Advanced Features

Map data to a map type attribute

5/13/25, 9:12 PM 3.3

1077

Click in the dropdown list, then choose key type and value type. The

types must match the key type and value type of the attribute you are mapping

towards.

A Map widget will be added to the attribute mapping panel.

Create the mapping from the data columns to the Map widget, and from the Map

widget to the attribute.

Map data to a UDT type attribute

5/13/25, 9:12 PM 3.3

1078

Click in the dropdown list, then choose UDT name. The name must

match the UDT type of the attribute you are mapping towards.

A UDT widget will be added to the attribute mapping panel.

Create the mapping from the data columns to the UDT widget, and from the UDT

widget to the attribute.

5/13/25, 9:12 PM 3.3

1079

If you want to map data to an attribute of map type with UDT value type, you have to

combine a Map widget with a UDT widget.

Choose UDT as the value type and then choose the UDT name when adding the

Map widget.

Create data mapping between data columns, the UDT widget, the Map widget, and

the attribute.

In the Map Data To Graph page, you can delete anything that you added. Choose

what you want to delete, then click the delete button . Press the "Shift" key to

select multiple icons you want to delete. Note that you cannot delete vertex or edge

types in this page.

Map data to a map type attribute with UDT value type

Delete Options

Delete Data Files

5/13/25, 9:12 PM 3.3

1080

Select the data file icon(s), then click the delete button.

Select the dashed green link(s) between data file and mapped vertex/edge type,

then click the delete button.

Select the green arrow(s) between data file table and vertex/edge attributes table,

then click the delete button.

Delete Data File To Vertex Or Edge Mapping

Delete Data Column To Vertex Or Edge Attribute Mapping

5/13/25, 9:12 PM 3.3

1081

Select the token function table(s), then click the delete button.

You can undo or redo changes by clicking the Back or Forward buttons,

respectively: . The whole history since the time you entered the Map Data To

Graph page is recorded.

Delete Token Functions

Undo And Redo

5 Publish Data Mapping

5/13/25, 9:12 PM 3.3

1082

Once you are satisfied with the data loading procedure, click the publish schema

button to publish the data loading procedure to the TigerGraph system. It takes

about 2 to 3 seconds for publishing each data file mapping.

The following three buttons allow you to expand the left or right working panel:

.

By default, the two panels have equal widths. Click the left button to expand the left

working panel, or click the right button to expand the right working panel.

Expand Panels

5/13/25, 9:12 PM 3.3

1083

Load Data

After mapping data files to the graph schema, you can start loading data. Click

"Load Data" on the left side menu bar to go to the Load Data page.

The "Load Data" interface is separated into three parts:

• Data Mapping Overview

◦ Provides a general view of the graph and the data mapping.

◦ Shows the loading progress of each data file.

• Toolbar (above Data Mapping)

◦ Start/pause/resume/stop data loading and clear graph data buttons.

• Statistics

◦ Graph statistics: displays the numbers of vertices and edges in total and per

type, with real-time loading progress.

◦ Loading statistics: displays the total number of vertices and edges loader vs.

time.

Load Data

5/13/25, 9:12 PM 3.3

1084

To display real-time graph statistics, this page checks the number of vertices and
edges every 10 seconds, which adds overhead. To maximize loading performance,
move to a different page after starting loading, and only come back here occasionally
to check the progress.

GraphStudio provides two types of loading:

• Partial Loading: load a subset of the data files which the user selects.

• Full Loading: load all of the data files.

Select one or more data files (holding down the "shift" key to select multiple data

files), and click on the "start loading" button on the toolbar.

Start Loading

Load Some Data Files

5/13/25, 9:12 PM 3.3

1085

Click on a blank space in the data mapping overview panel to unselect the data

sources, and click on the "start/resume loading" button on the toolbar. While

loading is in progress a green hatched bar will appear over each data file to show its

real time progress.

Load All Data Sources

5/13/25, 9:12 PM 3.3

1086

Similar to Start Loading, you can pause loading some of the data files, or all loading

data files.

Select one or more data files (holding down the "shift" key to select multiple data

files), and click on the "pause loading" button on the toolbar. In the Paused state,

the progress bar will change to a solid orange color.

You can resume loading some or all loading data files which have been paused.

Pause Loading

Resume Loading

5/13/25, 9:12 PM 3.3

1087

Select one or more data files (holding down the "shift" key to select multiple data

files), and click on the "start/resume loading" button on the toolbar. After

resuming, the data file loading will continue from where it was paused:

After loading has been started or paused, you can stop loading from these data files

by clicking the "stop load" button . Similar to Start Loading, you can stop loading

some or all loading data files. After stopping, the loading status of the data files will

become "Stopped":

The Statistics panel contains two tabs: Graph Statistics (1st tab) and Data Loading

Statistics (2nd tab).

Stop Loading

Statistics Panel

5/13/25, 9:12 PM 3.3

1088

By default if no data file is selected, the Statistics panel will show Graph Statistics.

The table at the top shows the total number of vertices and edges in the current

graph, and the number of each vertex type and edge type as well. The line chart at

the bottom shows the number of vertices and edges over time, when loading is in

progress.

Graph Statistics

Data Loading Statistics

5/13/25, 9:12 PM 3.3

1089

If you click on one data file, the Statistics panel will change to show Data Loading

Statistics:

The table at the top shows the detailed loading information of the selected data file,

including:

• Status (RUNNING, PAUSED, STOPPED, etc)

• Loaded percentage (for files on server) or loaded size (for S3 file)

• Loading speed

• Average loading speed

• Number of loaded lines

• Number of missing token lines

• Number of oversize lines

• Loading start time

• Loading duration

5/13/25, 9:12 PM 3.3

1090

The area chart in the middle shows the real-time loading speed (lines per second)

for this data file.

The pie chart at the bottom shows the distribution of data lines, among three

categories:

• Loaded lines

• Missing token lines (the lines contain fewer tokens than required by the data

mapping)

• Oversize lines (some tokens are too large)

The number of loaded lines doesn't mean all these lines are successfully loaded. Some
issues during Data Mapping (like mapping a non-numeric column to an integer
attribute) or because of dirty data may cause some of these lines not to be loaded.

If data file loading encounters any issues and gets an error message, the error

message will be shown at the bottom:

Clear Graph Data

5/13/25, 9:12 PM 3.3

1091

Click on the "clear graph data" button on the toolbar to clear the graph data. This

operation will take approximately 1 minute or more, depending on the size of your

graph and the hardware.

Caution: Clear Graph Data deletes all data from your database. The schema and
queries will remain. This deletion is irreversible. Please confirm the impact before you
proceed with clearing graph data operation.

Tip: Only users with superuser role can clear graph. You can consider assigning other
roles to your team to avoid accidental data deletion.

Tip: If you clear graph data by accident, you can reload the data into the database by

clicking on the "start/resume loading" button on the toolbar. The data files are still in

the filesystem, as long as you do not deliberately delete the data files from the
filesystem.

After the clear operation, the graph vertex and edge number statistics will both drop

to 0.

5/13/25, 9:12 PM 3.3

1092

After data has been loaded, you can go to the Explore Graph or Write Queries

pages.

5/13/25, 9:12 PM 3.3

1093

Explore Graph
After data has been loaded, the Explore Graph page allows you to explore the graph

in the following ways:

• Search for vertices in a graph

• Discover nearby vertices

• Find paths between vertices.

• Run GSQL queries

The Graph Exploration panel also provides you with many ways to modify and

augment the visualization of your exploration results, as well as the ability to add

vertices and edges to the graph:

• Graph Exploration Panel

• Augment Visualization Result

The Explore Graph page is vertically divided into three parts, from left to right:

Page layout

5/13/25, 9:12 PM 3.3

1094

The menu options, from top to bottom, are the following:

Set filters, conditions, and other parameters for the selected option from the Inner

Navigation Bar.

The exploration result is displayed in this panel. Below is an example of an

exploration result:

Menu option Functionality

Search vertices: select specific vertices with

conditions.

Expand from vertices: find neighborhood of

the specified vertices.

Find paths: find paths between the selected

source vertex and target vertex.

Find connections: find connecting paths

between a set of vertices.

Run queries: run installed GSQL queries.

The Inner Navigation Bar

The Parameter Panel

The Graph Exploration Panel

5/13/25, 9:12 PM 3.3

1095

You can adjust the results display, take a snapshot of the display, and modify

selected data objects in the result.

The menu buttons, from left to right, are the following:

• Open exploration history: Open a previously saved graph exploration result.

• Save exploration: Save the current visualization result.

If the graph schema is modified after the exploration result is saved, the result cannot
be opened anymore.

• Export: Export the current visualization result as a png file or a zip file containing

CSV files.

• Locate vertices in result: Search the exploration result by vertex id or attribute

value.

• Only show selections: First select one or more objects. Clicking the button will
hide all the objects which are not selected.

• Hide: First select one or more objects. Clicking the button will hide the selected

vertices and edges (or all if none is selected).

5/13/25, 9:12 PM 3.3

1096

• Undo: Undo the last change to the visualization result set (that is, changes to
which objects are included in the result set).

• Redo: Redo the most recent undone change to the visualization result set (that

is, changes to which objects are included in the result set).

Database changes (adding or deleting vertices/edges, editing attributes) cannot be
undone with the Undo feature.
Also, Undo/Redo do not include layout and display change (e.g., positioning of objects
and display of attributes).

• Change settings: Select which attribute values to display with each vertex or

edge type. Enable/disable popup display of all attributes when the cursor hovers

over a vertex or edge.

• Show visual information: Display** **the current visualization result in the form

of a table.

• Edit mode: Control whether to display the switch of the following 4 buttons.

• Add new vertex: Add a new vertex into the visualization result as well as to the
graph database.

• Add new edge: Add a new edge into the visualization result as well as to the

graph database.

• Edit attributes: Change the attributes of the selected object in the visualization

result as well as the graph database.

• Delete selected elements: Delete the selected elements from the visualization
result as well as the graph database.

The Parameter Panel can be hidden by clicking its corresponding button in the

Explore Graph Menu.

5/13/25, 9:12 PM 3.3

1097

Graph Exploration Panel
The Graph Exploration panel displays the result of your Graph Exploration actions.

After you have a subgraph displayed in the Graph Exploration Panel, you can use the

buttons in the Explorer View Menu or the options in the bottom right corner to

customize the display. Additionally, you can make modifications to the graph

database itself in edit mode.

The Graph Exploration panel provides you with multiple ways of customizing the

visualization of your graph exploration results.

Although you can use a mouse scroller to zoom in and zoom out the graph

exploration result, you can also use the two buttons at the bottom-right corner to do

that:

The graph exploration result only reflects a snapshot of the graph data. If the data is

changed due to CRUD operations (maybe in another session), the snapshot is

outdated.

Options in the bottom right corner

Customize visualization

Zoom in/out

Refresh result

5/13/25, 9:12 PM 3.3

1098

You can click the refresh button to get all vertices and edges synced with the

graph database. All vertices and edges that already got removed will be removed

from the exploration panel, and all the attribute values will also get updated.

You can click the change layout button to change layout:

You can export the current visualization result as a png file or a zip file containing

csv files by clicking . When you click the button, a drop-down menu will appear,

as shown below:

Change layout

Export

5/13/25, 9:12 PM 3.3

1099

You can select different export types by clicking on different items. When you

choose to Export PNG , your browser will automatically download a picture named

export.png . Below is an example of an exported PNG file.

You can also choose the Export CSV option, and your browser will download a zip

file named [GraphName]_export_vertices_and_edges.zip . The zip file contains CSV

files that describe the exploration result. Each file corresponds to a vertex or edge

type:

5/13/25, 9:12 PM 3.3

1100

The CSV file for each vertex type contains Vertex ID and Vertex Type , in

addition to the attributes of each vertex. Below is an example:

For edge types, the CSV file contains Edge Type , Source Vertex ID , Source

Vertex Type , Target Vertex ID , Target Vertex Type and any edge attributes.

Below is an example:

Locate vertex

5/13/25, 9:12 PM 3.3

1101

The Locate Vertex In Result feature searches for and then zooms in on vertices

that match the given value for ID and/or attribute. For example, if you type "Mary" in

the Locate Vertices in Result popup window, and have both of the checkboxes

selected, then this feature will look for any vertices where "Mary" is an exact match

for either the ID or any of the attribute values. Those vertices will be selected (and

all other objects will be unselected). The display will zoom in to focus on the

selected objects.

The vertices with the matching ID or attributes will be selected:

Show selected vertices and edges

5/13/25, 9:12 PM 3.3

1102

Click the Show Selections button to hide all the vertices and edges which are not

currently selected. However, if the two endpoints of an edge are selected, the edge

will be selected as well. Also, if nothing is selected, nothing will be hidden.

Click the Hide button to hide the currently selected vertices and edges. If nothing

is selected, all vertices and edges in the Graph Exploration Panel will be hidden.

The Explore Graph page records the whole history of the current session's changes

to the visualization result set. Click the Undo and the Redo buttons to go

back or forward in the history.

Database changes (adding or deleting vertices/edges, editing attributes) cannot be
undone with the Undo feature.
Also, Undo/Redo do not include layout and display changes (e.g., positioning of objects
and display of attributes).

When you find something interesting during exploration and want to save the result

as a picture, you can click the Save Exploration button . In the popup window, you

can give the result a file name and an optional description, then click Save:

Hide vertices and edges

Undo and redo

Save and open graph exploration result

5/13/25, 9:12 PM 3.3

1103

You can open a previously saved exploration result by clicking the Open Exploration

History button and choose one result from the list to open. Opening a saved

exploration result will overwrite your current graph exploration.

To change graph exploration settings by clicking Settings button . Currently, you

can select what attributes to show for each vertex type and edge type, and set

whether to show an object's detailed information in a popup tooltip when the cursor

hovers over it. Click Apply and the new settings will take effect.

Change settings

5/13/25, 9:12 PM 3.3

1104

In the example below, the ID and gender for person vertices are shown. The ID and

the foundYear attributes for company vertices are shown.

5/13/25, 9:12 PM 3.3

1105

You can also configure the text font size of vertex and edge labels and properties.

5/13/25, 9:12 PM 3.3

1106

Other than the above, you can also configure vertex and edge size and color to

augment the visualization in settings. See Augment Visualization Result.

Besides customizing the view of your graph exploration results, you can also enable

the edit mode and and make edits to the graph itself by adding or removing vertices

and edges, as well as changing their attributes.

In order to perform any of the actions in this section, you need to enable edit mode

by clicking on the toggle next to Edit mode. Once you are in the edit mode, the four

buttons that allow you to edit the graph will appear on the right.

In edit mode, click the Add New Vertex button to add a new vertex to the graph

database. The Add New Vertex window will pop up. Choose a vertex type and then

fill in values for the ID and the attributes. Click ADD and the vertex will be inserted

into the TigerGraph database. It will also be shown in the Graph Exploration Panel.

Explorer View Menu

Edit graph

Add new vertex

5/13/25, 9:12 PM 3.3

1107

If you provide a vertex ID that is already used, GraphStudio will ask you whether you
want to overwrite the existing vertex. If you say no, then it will not add or update
anything.

In edit mode, click the Add New Edge button to add a new edge to the graph

database. Next, click the source vertex of the edge in the Graph Exploration Panel,

and then click the target vertex of the edge. Then the Add New Edge panel will pop

up. Choose the edge type from the dropdown menu. Only types that match the two

vertices you selected are shown. (It is possible that there are no eligible edge

types). Fill in values for attributes and click ADD. Your new edge will be inserted into

the TigerGraph database. It will also be shown in the Graph Exploration Panel.

Add new edge

5/13/25, 9:12 PM 3.3

1108

If you select an edge type that already exists between the two vertices, GraphStudio
will ask if you want to overwrite the existing edge. If you say no, nothing will be added
or updated. The current TigerGraph system does not support having multiple edges of
the same type between two specific vertices.

To edit the attributes of one vertex or edge, select one object and then click the Edit

Attributes button in edit mode. The edit attributes panel will pop up.

Edit attributes

5/13/25, 9:12 PM 3.3

1109

When you finish editing, click the Update button to apply the change.

To delete vertices or edges, select the objects you want to delete, and click the

Delete Selected Elements button in edit mode.

"Delete" permanently removes data from the graph database. Deleted vertices and
edges cannot be restored with Undo. To restore them, you must manually add them
back.

If you delete a vertex, all of its outgoing and incoming edges will also be deleted

Delete vertices and edges

5/13/25, 9:12 PM 3.3

1110

Search for Vertices
The first button in the Explore Graph Menu is the "Search Vertices" option . This

option lets you select an initial set of vertices for your exploration. It is also the

default option when you first enter the Explore Graph page. Clicking the button

again will hide the Parameter Panel to increase space for the Graph Exploration

Panel.

Choose a vertex type from the Vertex type dropdown list, and enter the vertex id in

the Vertex id input box, then click the Search button. If there is one vertex that

matches the vertex type and ID, it will be shown in the Graph Exploration panel.

If you don't have a particular vertex ID in mind, you can have GraphStudio pick some

vertices for you. In the Parameter Panel, enter a number of vertices to pick, and

click on the Pick vertices button . The explorer will pick this number of

vertices for each vertex type included in your search.

The Configuration section in the Parameter Panel specifies which types of vertices

you want to include in your selection. By default, all vertex types are selected.

Uncheck some boxes if you want to narrow your selection.

Search for vertices by ID

Let GraphStudio pick vertices

5/13/25, 9:12 PM 3.3

1111

You can control vertex search in finer granularity by creating attribute filters. Click

the filter button to the right of any vertex type. In the pop-up window, you can

create a condition involving attributes of the vertex type. The user experience is the

same as creating data filters when you do data mapping. Here is an example

attribute filter for searching company vertices with foundYear >= 2012 :

Search with attribute filters

5/13/25, 9:12 PM 3.3

1112

Click ADD, then the filter condition is shown below company vertex type:

Click the Pick vertices button again, TigerGraph will search for up to 1

company vertex with a foundYear >= 2012 .

If your graph contains a large number of vertices, searching vertices with attribute
filters can be extremely slow.

5/13/25, 9:12 PM 3.3

1113

If you keep exploring the graph on the Explore Graph page, the previous exploration

result won't be automatically erased. Instead, your new exploration result will be

merged together with the previous visualized graph. The objects from the most

recent exploration will be selected (highlighted with a thick gray border) to

distinguish them from the previous visualized graph.

5/13/25, 9:12 PM 3.3

1114

Expand from Vertices
The second button in the Explore Graph Menu is the "Expand from vertices" option

. "Expand" in this context means find 1-step or multi-step neighbors of the

selected vertices. Clicking the button again will hide the Parameter Panel to increase

space for the Graph Exploration Panel. To expand from vertices, you need to have at

least one selected vertex in the Graph Exploration Panel. If no vertices are visible,

please refer to the previous section "Search Vertices in Graph" to search for some

vertices.

Shortcut: double-clicking on a vertex will expand to up to 200 neighbors of that vertex.

The standard click and shift-click behavior applies for selecting one or multiple

objects:

• Click on a vertex to select it. Any previously selected objects are unselected.

• Shift-click on an unselected object to add it to the selection set.

• Shift-click on a selected object to remove it from the selection set.

A vertex that is selected has a thick gray border around it. To unselect all vertices,

click on a blank area of the panel.

1. Choose vertices To expand from

5/13/25, 9:12 PM 3.3

1115

GraphStudio lets you expand multiple steps from the target vertices, as long as the

resulting number of vertices and edges does not exceed the limit for visualization

(default limit is 5000 vertices and 10000 edges). The conditions for each expansion

step are specified independently.

In the Parameter Panel, set the conditions for each expansion step:

• Maximum number of edges include for each vertex. The effect is that vertices
with more neighbors than this limit will not have all their neighbors included in

the expansion.

• Edge types and the attribute filter for each edge type to include.

• Target vertex types and the attribute filter for each vertex type to include.

2. Set expansion conditions

5/13/25, 9:12 PM 3.3

1116

Initially, the expansion conditions panel for only one expansion step is shown. Click

"Add Expansion Step" to add more expansion steps.

Similarly, you can remove expansion steps by clicking the "Remove Expansion Step"

button.

After setting the conditions for each expansion step, click on the "Expand" button

to perform the expansion. The Graph Exploration Panel will be

updated to include the expansion result. The expansion starting vertices will be

3. Expand

5/13/25, 9:12 PM 3.3

1117

highlighted with a white border. Here is a sample two-step expansion starting from 1

vertex:

5/13/25, 9:12 PM 3.3

1118

Find Paths between Vertices
You can use the Find Paths and the Find Connections option to find paths between

two or more vertices:

• Find paths: find path between two vertices

• Find connections: find paths connecting more than 2 vertices

The third button in the Explore Graph Menu is the "Find paths" option . This

option finds paths between two vertices with your specified conditions. Clicking the

button again will hide the Parameter Panel.

The top section of the Parameter Panel asks for your desired starting vertex and

destination vertex.

There are two ways to provide this information. Each of the two vertices can be

selected by either method.

If you know the ID and vertex type for a vertex, you can choose vertex type from

dropdown list and type vertex id in the input box. The vertex does not need to be

currently displayed in the Graph Exploration Panel.

Find paths between two vertices

Choose Starting Vertex and Destination Vertex

5/13/25, 9:12 PM 3.3

1119

If the vertex you want is already displayed in the Graph Exploration Panel, a more

convenient way is the following:

1. Click on the input box.

2. Click on the desired vertex in the Graph Exploration Panel. Then, GraphStudio

will automatically fill in the values for you.

You can click the swap icon (two green arrows) on the right to switch the starting

vertex and the destination vertex.

GraphStudio provides three types of path searches:

1. One shortest path: search for and highlight the shortest path between the two
vertices.

2. All shortest paths: search for and highlight all shortest paths between the two

vertices.

3. All paths: search for and highlight all valid paths between the two vertices.

Since path-finding queries may have high computational cost if the graph is very

large, a parameter is available to limit the path length.

Set Conditions For Paths

5/13/25, 9:12 PM 3.3

1120

In addition to the search type and the maximal length, you can also specify the valid

vertex types and edge types and their attribute conditions which may be included in

the paths.

After selecting the endpoint vertices and setting the search conditions, click on the

"Find Paths" button to start the search.

Find Paths

5/13/25, 9:12 PM 3.3

1121

The fourth button in the Explore Graph Menu is the "Find connections" option .

Given a set of starting vertices, this feature finds a "connection community" which

is defined as follows:

1. For each pair of vertices in the vertex set, if there is a shortest path no longer
than the maximum path length parameter, include that path in the result.

2. The final result is the union of all of these shortest paths (one path per vertex

pair).

This feature is equivalent to running the "Show One Shortest Path" option for each

pair of vertices in the selected set.

Find connections between multiple vertices

Choose Vertices for Finding Connections

5/13/25, 9:12 PM 3.3

1122

Click on a vertex to select it. Use shift-click to select more than one object. Each

time you select another vertex, it will be added to the list in the Parameter Panel.

Since this query may have high computational cost if the graph is very large, a

parameter is available to limit the path length.

You can also specify the valid vertex types and edge types which may be included

in the connections.

Set Conditions For Connection Finding

5/13/25, 9:12 PM 3.3

1123

After selecting the vertices and setting the search conditions, click on the "Find

Connection Paths" button to start the search.

Find Connections

5/13/25, 9:12 PM 3.3

1124

Run GSQL Queries
If you have written and installed some GSQL queries (see more at Write Queries),

you can run the queries mixed with the graph exploration functionalities mentioned

above.

Click the fifth button in the Explore Graph Menu, which is the "Run queries" option

. In the dropdown list, choose the query you want to run. Input the parameters

and click Run query button . The query execution result

subgraph will be merged with previous graph exploration result and highlighted:

Allowing running GSQL queries mixed with other graph exploration functionalities

enables better data analysis possibilities since you can refer to your previous

exploration result, and keep gaining insights from your data.

5/13/25, 9:12 PM 3.3

1125

Augment Visualization Result
The Graph Exploration panel allows you to augment the visualization of your

exploration results in the following ways:

• Set different colors according to attributes and accumulator values

• Set different vertex radius and edge thickness according to attributes and

accumulator values

By default, each vertex and edge is rendered as the color you selected in Schema

Design page. However, if you want to emphasize some vertices and edges in your

visualization result, you can set a different color for them by creating a set of

conditions, and assign a different color for each condition. Then vertices and edges

satisfying the conditions will be rendered as the newly assigned color.

In the Color section of Settings panel, first choose the vertex or edge type you want

to set colors, then click the add button . A new color configuration entry appears:

Click the Edit color config button , in the pop up window choose red color, and

build a condition specifying @PageRankScore >= 1.0:

Set different colors according to attributes
and accumulator values

5/13/25, 9:12 PM 3.3

1126

Click ADD, and the condition and updated color is shown in the Color settings

section:

Similarly, you can add another color configuration that @PageRankScore between

[0.5, 1) will be green. The final Color settings section will look like:

5/13/25, 9:12 PM 3.3

1127

Click the APPLY button, then the different vertices will be rendered as different

colors based on their page rank score ranges:

Similarly, you can change the color of edges.

If you want to cancel one color configuration, just click the remove button to the

right side of that configuration.

By default, all vertices are of radius 40, and all edges are of thickness 2. You can

configure vertex radius and edge thickness according to their attributes or numeric

accumulator values of GSQL query result. A classical example is page rank. You can

set vertices radius proportional to their page rank values, then the importance of

each vertex is visually apparent according to its size.

Click the Settings button in Exploration View Menu at the top of the page, and

choose the vertex type whose radius you want to configure. Then click the Edit

Set different vertex radius and edge
thickness according to attributes and
accumulator values

5/13/25, 9:12 PM 3.3

1128

button in Radius section. In the popup window you can create the radius

expression:

After click ADD button, the radius expression will be shown in Radius section:

After click APPLY button, the vertices will be rendered in different size according to

the expression value:

5/13/25, 9:12 PM 3.3

1129

Similarly, you can set different thickness for the edges.

If you want to discard the vertex radius or edge thickness configurations, click

Settings, and then click the delete button next to a configuration.

Click ADD, then click APPLY. The size will be changed back to uniform.

5/13/25, 9:12 PM 3.3

1130

The size and color can be configured at same time. Here is the effect of setting both

color and size for page rank vertices:

5/13/25, 9:12 PM 3.3

1131

Build Graph Patterns

5/13/25, 9:12 PM 3.3

1132

Visual Query Builder Overview

In TigerGraph 3.0, we are proudly introducing Visual Query Builder -- a visual way of

building your graph business logic. In the Build Graph Patterns page, you can create

visual patterns in drag-and-drop fashion, which intuitively represent the questions

you want to ask. For these cases, you don't need to write GSQL anymore!

By adding the Visual Query Builder component, GraphStudio becomes a complete

visual SDK for users to build graph applications from end to end without writing a

single line of code!

Currently, Visual Query Builder is still in beta phase. Please expect lots of

improvements and changes coming in the future!

Visual Query Builder

Basic Concepts

5/13/25, 9:12 PM 3.3

1133

A visual pattern is a declarative way of describing a template subgraph structure,

and all the subgraph structures that the visual pattern is homomorphic with are

valid matching results.

Visual patterns are constructed by vertex patterns, edge patterns and widgets.

This is a basic vertex pattern within a visual pattern:

This is a vertex pattern with 2 filters, 1 attachment, 2 ordering, and limit:

This is a vertex pattern that will be output in the pattern execution result. You can

see the glow around the border and the highlight at the label:

5/13/25, 9:12 PM 3.3

1134

This is a basic edge pattern:

This is an edge pattern with 1 filter:

This is an edge pattern that will be output in the pattern execution result:

5/13/25, 9:12 PM 3.3

1135

This is a union widget:

A widget has input vertex patterns and output vertex patterns:

5/13/25, 9:12 PM 3.3

1136

This is the visual pattern matching all the people who are younger than 30 years old

in the year 2019. The filter ((2019 - birthYear) < 30) on the person vertex pattern

provides the matching condition:

5/13/25, 9:12 PM 3.3

1137

This is the visual pattern matching all the departments having at least one male

employee:

This is the visual pattern that matches the hometown of the most people having the

programming skill. The attachment COUNT(DISTINCT p) as cnt annotates the

number of people born in each city that have the programming skill. Then we order

the city vertices by their descending cnt value, and choose the top 1 city:

This is the visual pattern matching all such three persons A, B and C, where A is B's

friend, and A is C's friend, and B is C's manager:

5/13/25, 9:12 PM 3.3

1138

This visual pattern matches all the people that either are born in Redwood City or

attended Stanford University, but didn't work for Google:

5/13/25, 9:12 PM 3.3

1139

Now you understa how the visual patterns look like. Let's walk through all the

concepts in depth.

Working panel is the central component (both visually and logically) of Visual Query

Builder. Your visual patterns are rendered here.

Like other pages in GraphStudio, you can zoom-in, zoom-out and drag the visual

pattern. If you have unsaved changes to the pattern, or containing errors in the

pattern, some warning messages will show at the top left corner of working panel:

If you click the message indicating errors, the Console will switch to Problems tab:

Working Panel

5/13/25, 9:12 PM 3.3

1140

You can click the error messages. For some errors, the vertex patterns, edge

patterns and widgets involved in the error will be marked red to facilitate your

debugging:

The pattern list panel contains three sections:

Pattern List

Graph patterns

5/13/25, 9:12 PM 3.3

1141

The graph patterns section lists all the visual patterns you have created for current

graph. You can click to create new patterns, or click to delete existing ones.

Other than the visual view of the graph pattern, you can optionally add a description

for the pattern. This can help other users to understand what problem you are trying

to solve.

After changing the description, don't forget to confirm the change:

Changing description is considered as a change to the visual pattern, don't forget to

save the pattern in the end.

If you added some parameters in your visual pattern, you need to provide the values

to the parameters when running the pattern.

Description

Pattern parameters

5/13/25, 9:12 PM 3.3

1142

Click to run the pattern.

The toolbar options, from left to right, are the following:

Toolbar option Functionality

Save the graph pattern.

Save the graph pattern as a different pattern

under a new name.

Save as GSQL query: show the GSQL query

generated from the pattern and save. See

more information here.

Console: open/close the console panel.

Toolbar

5/13/25, 9:12 PM 3.3

1143

Configuration panel: open/close the config

panel. By default the config panel is closed.

You can either open the panel by clicking

this button, or double click a vertex pattern

or edge pattern in the visual pattern to open

the config panel.

Render pattern options: config how much

detail is shown on the pattern. See more

information here.

Run: run the visual pattern. If the pattern

doesn't have any parameters, it will run

directly, otherwise the Pattern parameters

section will expand for you to provide the

parameter values.

Undo and redo: undo and redo the changes

on the visual pattern. The whole editing

history of each visual pattern since entering

Build Graph Patterns page is preserved.

Edit: edit the selected vertex pattern or edge

pattern. This is same as double-clicking one

vertex or edge pattern.

Delete: delete selected vertex patterns,

edge patterns and widgets. You can hold

the Shift key to select multiple elements to

delete.

Add a vertex pattern: add a new vertex

pattern into the current visual pattern. See

more information here.

Add an edge pattern: add a new edge

pattern into the current visual pattern. See

more information here.

Pick: a shortcut for adding vertex patterns

and edge patterns into the visual pattern.

See more information here.

Merge: select multiple vertex patterns, and

click this button to merge them together.

This is a fast way to connect multiple

5/13/25, 9:12 PM 3.3

1144

You can edit vertex patterns and edge patterns from config panel.

If you enter editing mode of a vertex pattern and expand the Basic Info section, you

can edit its name, decide whether or not to put it into result, change its vertex type,

provide optional matching conditions by giving a list of ids, or provide a parameter

name.

You can add/drop id in the list:

shorter patterns into a longer one. See more

information here.
Widget: see more information here.

Filter: click this button then click a vertex

pattern or edge pattern, and the config

panel will enter editing mode for the

selected vertex or edge pattern, with the

Filter section expanded.

Attachment: click this button then click a

vertex pattern, and the config panel will

enter editing mode for the selected vertex

pattern, with the Attachment section

expanded.

Order by: click this button then click a vertex

pattern, and the config panel will enter

editing mode for the selected vertex pattern,

with the Order section expanded.

Limit: click this button then click a vertex

pattern, and the config panel will enter

editing mode for the selected vertex pattern,

with the Limit section expanded.

O li k hi b h li k

Configuration Panel

Basic Info for vertex pattern

5/13/25, 9:12 PM 3.3

1145

Or add an input parameter:

If you enter editing mode of an edge pattern and expand the Basic Info section, you

can edit its name, decide whether or not to put it into result, or change its edge type.

You can also specify this edge pattern as a regex match by providing Repeat as

least (a non-negative integer) and Repeat at most (a positive integer). Due to current

GSQL limitations, if you decide to change these numbers, you cannot give the edge

pattern a name or put it into result.

When finished editing, you need to confirm the change. You can also cancel the

change if you made a mistake:

If you want another vertex pattern or edge pattern to refer to current selected vertex or
edge pattern's attributes, you need to give it a name.

If you expand the Filter section, you can add/edit/delete filters for the selected

vertex or edge pattern:

Basic Info for edge pattern

Filter

5/13/25, 9:12 PM 3.3

1146

Click besides the filter expression and enter editing mode of the filter:

5/13/25, 9:12 PM 3.3

1147

You can add multiple filters for each vertex and edge pattern, and they are AND

relationship when executing the pattern. Building the filter is similar with building

5/13/25, 9:12 PM 3.3

1148

attribute filter in Explore Graph page. One thing special here is that you can refer to

attributes on other vertex patterns and edge patterns. Choose **Attribute of vertex

or edge **as expression type, then choose the name of the vertex or edge pattern

whose attribute you want to refer to (see above why we need give a name to vertex

or edge patterns), then choose the attribute you want to refer to.

When finished editing, you need confirm or cancel the change:

If you expand the Attachment section, you can add/edit/delete attachments for the

selected vertex pattern (aggregation on edge patterns is not supported):

Attachment

5/13/25, 9:12 PM 3.3

1149

Click beside one attachment and enter editing mode for the attachment. You can

edit both the attachment expression and attachment name:

5/13/25, 9:12 PM 3.3

1150

When finished editing, you need to confirm or cancel the change:

5/13/25, 9:12 PM 3.3

1151

In attachments, you can either attach a single value or attach the results of an

aggregation function, to all the matched vertex entity results.

Attaching a single value means attaching the given value to all vertex entities within

the matched result. If for example, you choose to attach the integer value 1, then

that value will be attached to all the matched vertex entity results where the

attachment was applied to. If the attachment is applied to an entity that is involved in

multiple matches, then the attached value is non-deterministic.

Attaching the results of an aggregation function means grouping all the matching

results by the vertex entity which match the vertex pattern, and then aggregated

based on the expression.

Take this example:

5/13/25, 9:12 PM 3.3

1152

Name Attachment expression Explanation

singleValueInt 1

Attach the integer number

1 to each matched city

vertex.

singleValueReal 1.5
Attach the real number 1.5
to each matched city vertex.

singleValueString "singleValueString"

Attach the string

"singleValueString" to each

matched city vertex.

singleValueBool true

Attach the boolean value

true to each matched city

vertex.

singleValueDatetime 2021-01-01

Attach the datetime value

2021-01-01 to each

matched city vertex.

singleValueVertex p

Attach one of the vertex ids

of the matched vertices p to

the matched city vertex

connected to vertices p.

singleValueEdge b

Attach one of the edge ids

of the matched edges b_i to

the matched city vertex with

edges b.

singleValueAttribute name

Attach the attribute name of

the matched city vertex to

the matched city vertex

itself.

singleValueAttributeOfVerte

xOrEdge
p.name

Attach one of the name
attribute of the matched

vertices p to the matched

city vertex connected to

vertices p.

countP COUNT(DISTINCT p)

Count number of distinct

person vertices matched to

each city vertex.

5/13/25, 9:12 PM 3.3

1153

Consider we have the following matching result:

countMatched COUNT(*)
Count number of matches

each city vertex involves in.

sumPHeight SUM(p.height)

Sum the height attribute of

all person vertices matched

to each city vertex.

minPBirthyear MIN(p.birthYear)

Get the minimal height

attribute of all person

vertices matched to each

city vertex.

maxPBirthyear MAX(p.birthYear)

Get the maximal height

attribute of all person

vertices matched to each

city vertex.

avgPBirthyear AVG(p.birthYear)

Get the average value of

height attribute of all person

vertices matched to each

city vertex.

collectP COLLECT(p)
Collect all person vertices

matched to each city vertex.

collectPMarried
COLLECT(DISTINCT

p.married)

Collect all distinct person

vertices' married status

matched to each city vertex.

Calculate the average age

5/13/25, 9:12 PM 3.3

1154

We have the following aggregation result table for city vertex san jose:

City vertex Attachment result Explanation

san jose singleValueInt = 1

Just attach the integer

number 1 on the matched

city vertex.

san jose singleValueReal = 1.5

Just attach the real number

1.5 on the matched city

vertex.

5/13/25, 9:12 PM 3.3

1155

san jose
singleValueString =

singleValueString

Just attach the string value

"singleValueString" on the

matched city vertex.

san jose singleValueBool = true

Just attach the boolean

value true on the matched

city vertex.

san jose
singleValueDatetime =

["2020-01-01 00:00:00"]

Just attach the datetime

value 2020-01-01 on the

matched city vertex.

san jose

singleValueVertex =

["Emily"] OR

singleValueVertex =

["Kevin"]

There are two person

vertices connected to city

vertex san jose "Emily" and

"Kevin". The resulting value

stored in singleValueVertex

is non deterministic and

could be either "Emily" or

"Kevin".

san jose

singleValueEdge = [{

"attributes": { "birthday":

"1992-05-23 00:00:00" },

"directed": true, "e_type":

"born_in", "from_id":

"Emily", "from_type":

"person", "to_id": "san

jose", "to_type": "city" }]

OR singleValueEdge = [{

"attributes": { "birthday":

"1992-05-23 00:00:00" },

"directed": true, "e_type":

"born_in", "from_id":

"Emily", "from_type":

"person", "to_id": "san

jose", "to_type": "city" }]

The city vertex san jose is

connected to two born in

edges, one of them

connects the san jose

vertex to the person vertex

"Kevin" and the second

edge connects the san jose

vertex to the person vertex

"Emily". The resulting value

stored in singleValueEdge is

non deterministic and could

be either one of these

edges.

san jose
singleValueAttribute =

redwood city

The city vertex san jose has

the attribute name and the

value of that is attribute is

attached to the san jose

vertex.

The city vertex san jose is

connected to two person

5/13/25, 9:12 PM 3.3

1156

san jose

singleValueAttributeOfVerte

xOrEdge = Emily OR

singleValueAttributeOfVerte

xOrEdge = Kevin

vertices, one of them has

the attribute name =

"Emily" and the other has

the attribute name =

"Kevin". The resulting value

stored in

singleValueAttributeOfVerte

xOrEdge is non

deterministic and could be

either "Emily" or "Kevin".
san jose countP = 2 Kevin and Emily

san jose countMatched = 3

(san jose)←[born_in]-

(Kevin)-

[person_has_skill]→(progra

mming)

(san jose)←[born_in]-

(Kevin)-

[person_has_skill]→(public

speech)

(san jose)←[born_in]-

(Emily)-

[person_has_skill]→(human

resource)

san jose sumPHeight = 511

Kevin.height + Kevin.height

+ Emily.height = 173 + 173 +

165

san jose minPBirthyear = 1991

Min(Kevin.birthYear,

Kevin.birthYear,

Emily.birthYear)

san jose maxPBirthyear = 1992

Max(Kevin.birthYear,

Kevin.birthYear,

Emily.birthYear)

san jose avgPBirthyear = 1991.33333

(Kevin.birthYear +

Kevin.birthYear

Emily.birthYear) / 3

san jose
collectP = [Kevin, Kevin,

Emily]

san jose collectPName = [false]
Both Kevin and Emilyʼs

married status is false.

5/13/25, 9:12 PM 3.3

1157

As you can see above the values of attaching a single value for datetime , vertex

and edge are stored in a list. This is because, we currently do not have an

accumulator to store these data types directly yet.

The data types supported for single value attachments are: integer , real ,

string , bool , datetime , vertex and edge .

If you expand the Order section, you can add/edit/delete ordering for the selected

vertex pattern (ordering on edge patterns is not supported):

j PA 29 6667

2021 - Kevin.birthYear) +

(2021 K i bi hY)

Order

5/13/25, 9:12 PM 3.3

1158

Click beside the ordering and enter editing mode for the ordering. You can edit

both the ordering expression and whether results are in ascending or descending

order:

5/13/25, 9:12 PM 3.3

1159

When finished editing, you need to confirm the change:

5/13/25, 9:12 PM 3.3

1160

You can refer to attachments in ordering expression. You can add multiple

orderings, which follow the multi-key ordering rule (upper ordering dominates).

We support ordering by data of types: integer , real , string and datetime .

However, single value attachments with the type datetime are stored in a list, thus,

we currently do not support ordering based on single value attachments that have

the datetime data type.

If you only want a subset of your matching result, you can use limit. Only the top

limit results will be returned based on your ordering settings. If you don't have

orderings, the result will be randomly picked from all matchings.

If you expand the Limit section, you can add/edit/delete limit for the selected vertex

pattern (limit on edge patterns is not supported):

Toggle use limit checkbox to enable/disable limit. You can also edit the limit number:

Limit

5/13/25, 9:12 PM 3.3

1161

When finished editing, you need confirm or cancel the change:

The console panel toolbar is located on the left side of the console. The toolbar

provides options for you to configure the way content is displayed in the console.

The Console panel shows the graph schema, the result of the last pattern execution

result, and errors the visual pattern has. Each execution of a pattern generates two

types of results: a visualized graph and JSON text. On the left is a toolbar with

buttons for switching between the tabs. The buttons, from top to bottom, are the

following:

The console panel

Console panel

5/13/25, 9:12 PM 3.3

1162

The 'Save as' feature allows users to save the current pattern as a new pattern

under a new name. After clicking the 'Save as' button the user will be asked to input

a unique name for the new pattern. Then, the user will be redirected to the new

pattern, and the pattern the user saved as the new pattern will return to its last

saved state.

For example, let's say that the user saves the following pattern:

Menu option Functionality

Expand/Collapse: expand or collapse the

Console panel.

Graph schema: show the graph schema.

Visualize graph result: show the visual result

of the last run pattern.

View table result: show query result in a

tabular format

View JSON result: show the raw text result

in JSON format of the last run pattern.

Problems: show the errors in the visual

pattern.Graph schema

Save as

5/13/25, 9:12 PM 3.3

1163

The user then continues to make changes and then decides to save this pattern as a

new pattern with a new name, and clicks on the 'Save as' button.

Here is the dialog that prompts the user to enter a name for the new pattern:

After entering the name the user gets redirected to the new pattern:

Here is the previous pattern returned to its last saved state:

5/13/25, 9:12 PM 3.3

1164

The new pattern contains all the history (can undo and redo) of the previous pattern,

whilst the previous pattern loses its history. This imitates the behavior of most text

editors.

You can view the GSQL query generated from your visual pattern and save it. Then

you can access this query from Write Queries page, modify your query, interpret it,

install it and run it.

Save as GSQL query

5/13/25, 9:12 PM 3.3

1165

There are three different rendering options.

By default, Pattern detail and Output glow are checked. All the filters, aggregations,

ordering conditions and limits are rendered, and the vertex and edge patterns that

will be in result will be highlighted with glow:

Render pattern options

5/13/25, 9:12 PM 3.3

1166

If Pattern detail is not checked, add-on marks will indicate that there are filters,

aggregations, ordering conditions and limits on corresponding vertex patterns and

edge patterns:

If Pattern add-on is not checked, the add-ons will be hidden:

5/13/25, 9:12 PM 3.3

1167

If Output glow is not checked, the output indicating glow is hidden:

Click , and a new vertex pattern will be added to the visual pattern. You are in the

editing mode of the newly added vertex pattern.

Add a vertex pattern

5/13/25, 9:12 PM 3.3

1168

Click , then click the source vertex pattern of the edge pattern:

Then click the target vertex pattern of the edge pattern. A new edge pattern will be

added to the visual pattern. You are in the editing mode of the newly added edge

Add an edge pattern

5/13/25, 9:12 PM 3.3

1169

pattern:

Pick is a fast way to build your visual pattern. You can pick from either graph

schema or visual result.

Click , then click one vertex type in the graph schema tab:

A vertex pattern will be added to the visual pattern:

Pick

5/13/25, 9:12 PM 3.3

1170

Click , then click one edge type in the graph schema tab:

An edge pattern together with two vertex patterns will be added to the visual

pattern:

5/13/25, 9:12 PM 3.3

1171

Click , then click one vertex in the visualize graph result tab:

A vertex pattern will be added to the visual pattern. Note that the vertex pattern

contains an id condition because it is picked from an actual vertex entity from the

graph:

5/13/25, 9:12 PM 3.3

1172

You can merge multiple vertex patterns of the same vertex type into one vertex

pattern.

Hold Shift key to select multiple vertex patterns:

Merge

5/13/25, 9:12 PM 3.3

1173

Then click , and you will get a larger visual pattern:

5/13/25, 9:12 PM 3.3

1174

Use pick and merge together and you can create a complicated visual pattern

quickly.

As described in the Basic Concepts, a visual pattern represents a graph pattern

matching problem. In graph theory, graph pattern matching is declarative. However,

graph pattern matching is not the full story. In a lot of cases you need to represent

procedural computation flow. That's why we are introducing widgets.

Click , then click two vertex patterns of the same vertex type:

Widget

Intersect

5/13/25, 9:12 PM 3.3

1175

And an intersection widget is added to the visual pattern:

The output vertex pattern means matching all company vertices located at redwood

city, and belongs to big data industry.

The output company vertex pattern can be part of another larger pattern. You can

think of the input vertex patterns of the widget as constraints of the output vertex

pattern.

5/13/25, 9:12 PM 3.3

1176

Click , then click two vertex patterns of the same vertex type. A union

widget is added to the visual pattern:

The output vertex pattern means matching all company vertices located at redwood

city, or belongs to big data industry.

Click , then click two vertex patterns of the same vertex type. A

subtract widget is added to the visual pattern:

Union

Subtract

5/13/25, 9:12 PM 3.3

1177

The output vertex pattern means matching all company vertices located at redwood

city, but not belong to big data industry.

The Within widget allows you to create a vertex pattern whose matching result is

constrained within the matching result of another vertex pattern.

For example, say you have a vertex pattern for all people who currently work at

company A, and you want to select from them everyone who has bought product B.

You can use the Within widget to select from the vertex pattern with all person

vertices that work at company A, and create a another pattern for people who have

bought product B. The output from the second pattern will be a subset of the

matching result of the first pattern - that is, the output from the second pattern will

be people who work at company A, who bought product B.

Click the Within widget button , and then select a vertex pattern whose

result you want to select from. This creates a within widget on the first vertex

Within

5/13/25, 9:12 PM 3.3

1178

pattern, and you will see a second vertex pattern added to the graph pattern. Below

are two visual examples to select results within a vertex pattern.

In the above example, the graph pattern outputs two bottom patterns which are both

within the top pattern. The output vertex pattern means matching all company

vertices or all city vertices that a person who attends san jose university is

working at or was born in. In other words, a person vertex that attends san jose

university needs either a work_at edge connected to a company vertex, or a

born_in edge connected to a city vertex to be included in the result.

Within widget pattern

Within widget pattern example 2

5/13/25, 9:12 PM 3.3

1179

The output vertex pattern means matching all company vertices and the city

vertices that a person who attends san jose university is working at and was

born in. In other words, a person vertex needs to have both a word_at edge

connected to a company and a born_in edge connected to a city to be included in

the result.

We now support importing visual patterns from a higher version to a lower version.

Here is an example of the dialog that will be shown when an imported solution

contains visual patterns which contain features that are unsupported in the current

version:

Users can choose to either ignore the message and keep the pattern or delete it. If

the user chooses to ignore the message and keep the pattern, the pattern will not be

deleted, but it will not be displayed or accessible to the users.

Now you have a basic idea about all different functionalities of Visual Query Builder.

Let's go to the next page to walk through how to build some visual patterns to solve

your business questions!

Downward import

5/13/25, 9:12 PM 3.3

1180

Visual Pattern Examples

You have learnt all the basic concepts of Visual Query Builder in the previous article.

In this article we will walk you through building several visual patterns step by step,

and then show you more graph analytics questions and how to solve them with

visual patterns.

Clickin the pattern list pattern, input the pattern name, and click:

Click in the toolbar to add a vertex pattern:

Visual Pattern Examples

Example 1. Find all the departments with male
employees .

5/13/25, 9:12 PM 3.3

1181

In the config panel, change the vertex type to be department, and put it in result:

Confirm the change by click :

5/13/25, 9:12 PM 3.3

1182

Click in the toolbar to add another vertex pattern:

Expand the Filter section in the config panel:

5/13/25, 9:12 PM 3.3

1183

Click to add a filter:

Edit the filter to be (gender == "male"):

5/13/25, 9:12 PM 3.3

1184

Confirm the change:

5/13/25, 9:12 PM 3.3

1185

Click in the toolbar, then click the person vertex pattern in the working panel:

Then click department vertex pattern in the working panel to create an edge pattern

between the two vertex patterns:

5/13/25, 9:12 PM 3.3

1186

In the config panel, change the edge type to be work_in:

Apply the change, and drag the person vertex pattern to a better position:

5/13/25, 9:12 PM 3.3

1187

Click in the toolbar to save the pattern, and click in the toolbar to run the

pattern:

You can also try to output the entire matched subgraphs. Click in the toolbar to

enter output toggle mode, then click the person vertex pattern and the work_in edge

pattern:

5/13/25, 9:12 PM 3.3

1188

Click in the toolbar again to exit output toggle mode, then click to run the

pattern:

Create a new visual pattern named FriendsManagerABC.

Click in the console panel to switch to graph schema:

Example 2. Find all such people A, B, C: A and B are
friends, A and C are friends, and B manages C.

5/13/25, 9:12 PM 3.3

1189

Click in the toolbar, then click the friend edge type in the graph schema:

An edge pattern is added into the working panel:

5/13/25, 9:12 PM 3.3

1190

Similarly, use to add another friend edge pattern and a manage edge pattern into

the working panel:

Adjust the vertex patterns' positions:

Hold Shift key and choose the two vertex patterns on the left, then click in the

toolbar to merge them together:

5/13/25, 9:12 PM 3.3

1191

Then, merge the top two vertex patterns:

5/13/25, 9:12 PM 3.3

1192

Then, merge the right two vertex patterns:

5/13/25, 9:12 PM 3.3

1193

Now you have a triangle visual pattern representing the three people relationship!

Now, click in the toolbar and put all the vertex patterns and edge patterns into

result:

5/13/25, 9:12 PM 3.3

1194

Click again to exit output toggle mode, click to save the pattern, and click to

run the pattern:

Example 3. Find the top 2 cities where the most number
of companies of an industry are located in.

5/13/25, 9:12 PM 3.3

1195

Create a new visual pattern named IndustryCenterCity. Click in the console panel

to switch to graph schema.

Use in the toolbar to pick the company_locate_at edge type and belong_to edge

type in graph schema:

Use Shift key to select the two company vertex patterns, and click to merge them

into one. Drag the vertex patterns to make their positions look good:

Click the industry vertex pattern, then click in the toolbar (or double click the

industry vertex pattern), now you are in edit mode:

5/13/25, 9:12 PM 3.3

1196

Change the vertices to be from parameter, and give a parameter name ind. This

annotates the industry as an input vertex set when running the pattern:

Confirm the change, and notice there is an id condition on the industry vertex

pattern:

5/13/25, 9:12 PM 3.3

1197

Click the company vertex pattern, then click in the toolbar, and change the Name

to C:

Confirm the change, and the label of company vertex pattern becomes company as

C:

Click the city vertex pattern, then click in the toolbar:

5/13/25, 9:12 PM 3.3

1198

Expand the Aggregation section in the config panel, and add an aggregation:

Confirm the change:

5/13/25, 9:12 PM 3.3

1199

Expand the Order section in the config panel, and add a descending order of

aggregation result countCompany:

Confirm the change:

5/13/25, 9:12 PM 3.3

1200

Expand the Limit section in the config panel, check the use limit checkbox, and

change limit to 2:

Confirm the change:

Click , then click the city vertex pattern, then click again to exit output toggle

mode, click to save the pattern:

5/13/25, 9:12 PM 3.3

1201

Click . Because the pattern has one input parameter ind, the Pattern parameters

section in the pattern list panel expands:

Click to add one industry vertex, and input "big data" for vertex id, then click

:

5/13/25, 9:12 PM 3.3

1202

Change the industry vertex id to be "internet", and run the pattern again:

Again, you can choose to output everything in the matched subgraphs:

5/13/25, 9:12 PM 3.3

1203

Expand Graph patterns section in the pattern list panel, then create a new visual

pattern named SearchPeople. Create the following visual pattern following similar

steps as above:

Click in the toolbar, and choose Union:

Example 4. Find the people who either were born in
Redwood City or attended Stanford university, but didn't
work for Hooli.

5/13/25, 9:12 PM 3.3

1204

Click the left two person vertex patterns respectively to add the union widget:

Click in the toolbar, and choose Subtract:

5/13/25, 9:12 PM 3.3

1205

Click the output person vertex pattern of the union widget, then click the right

person vertex pattern, a subtract widget is added into the visual pattern:

5/13/25, 9:12 PM 3.3

1206

Put the output person vertex pattern of the subtract widget into result:

Save and run the pattern:

Example 5. Find all the people that were born in a city
with population no more than 100,000, worked for

5/13/25, 9:12 PM 3.3

1207

A snowflake-like visual pattern is commonly used in this type of searching

problems:

First, we get the friends and friends' friends of P. We use the programming skill to

filter these friends, then we find the other skills that these people have. Then we

count the number of people having these skills, and choose the top 5 skills as the

result.

Graphlet, and have research skill.

Example 6. Giving a person P, among all his direct
friends and friends' friends who have programming skill,
what are the top 5 other skills that most of these people
have?

5/13/25, 9:12 PM 3.3

1208

5/13/25, 9:12 PM 3.3

1209

Write Queries
On the Write Queries page, you can write and run custom queries with GSQL.

The Write Query page is horizontally divided into two parts:

• Query Editing Panel

• Result, Log and Visualization Panel

The Query Editing panel is divided into two sub-panels: the left sub-panel is used to

select a query to edit, and the right, larger sub-panel displays the selected query for

editing. Here you can edit, save, delete query and/or its draft, install and run the

query. The query editor features syntax highlighting customized for the GSQL

language. Also, the query editor performs real-time semantic checking.

Above the query editing pane is a toolbar, with the following buttons, from left to

right:

Query Editing Panel

5/13/25, 9:12 PM 3.3

1210

• Expand/Collapse: Expand or collapse the Query Editing panel to or from full
page mode. The icon changes depending on whether the panel is currently

expanded or collapsed.

• Save: Save the current query draft.

• Save as: Save the current query as a new query under a new name.

• Install: Install the query into the database.

• Run: Run the query. If the query is not installed, it will run the query in

interpreted mode. Note there is a performance penalty to run queries in
interpreted mode.

◦ Run Configuration: Set the query runtime configurations.

• Delete: Delete the selected query and its draft.

• Show query endpoint: Show the RESTFul endpoint to execute the query. Only

installed queries can see their RESTFul endpoints.

• Download: Download the query as a .gsql file.

• Discard query draft: Delete the selected query draft.

To create a new query, simply click on the "New GSQL Query" button at the

bottom-right corner of the left sub-panel, and type in the name of the new query in

the popup window:

A query draft will be created with a template:

Query editing panel

Add Or Edit Query

5/13/25, 9:12 PM 3.3

1211

To edit an existing query, click on the query name in the list in the left sub panel:

Once you made some changes to the query code and want to save it as a query

draft, click on the "save" button in the toolbar.

Click the 'Save as' button in the query editing toolbar to save the current query as a

new query under a different name. After saving a query as another query, you will

be redirected to the new query, and the original current will return to its last saved

state.

Save Query Draft

Save as

Run Query in Interpreted Mode

5/13/25, 9:12 PM 3.3

1212

If you have saved the query and there is no errors in the query, you can run the

query in interpreted mode. Click the run query button . Together with the query

execution result, a warning message will appear to notify user of the performance

concerns running the query in interpreted mode. To speed up the query

performance after you are satisfied with the GSQL query developed in interpreted

mode, you can follow the instructions in the next section "Install Query".

If you saved a query, the "install query" button will be enabled. Click it to install

the query. The installation process may take about 1 minute:

After the installation, the run query button changes from to .

Install Query

5/13/25, 9:12 PM 3.3

1213

To run the query, click on the "run" button in the toolbar. If the query has no

parameters, it will run directly and the result will be shown in the Result panel.

If the query requires parameters, the Enter Query Parameters panel will appear.

Enter your parameter values and then click the "Run Query" button

at the bottom of the panel. If there are several parameters,

you might need to scroll the panel to the bottom to find the Run Query button.

The query will be executed, and the results will be shown in the Result Panel.

Run Query

5/13/25, 9:12 PM 3.3

1214

You can set runtime configurations of the GSQL query by clicking the small

button to the right of run query button, then a drop-down menu will appear.

Click the "Run configuration" item, and the Run Configuration panel will be opened.

Run Configuration

5/13/25, 9:12 PM 3.3

1215

You can set GSQL query timeout here. By default it uses the timeout of TigerGraph

configuration (specified by gadmin commands). You can change it by unchecking

the "Use default timeout" label, and then set a new timeout:

Click the submit button to apply your changes.

Choose the query you want to delete and click on the "delete" button . The query

will be deleted permanently. Only installed queries can be deleted by this button. To

delete a query draft, see Delete query draft.

After finishing writing the GSQL queries and installing the queries, you can access

the queries via REST endpoints. By clicking the "show query endpoint" button ,

you can see the format of the endpoint to access this query, so that you can

integrate the query with your applications.

Delete query

Show query endpoint

5/13/25, 9:12 PM 3.3

1216

You can download your query by click , or

download all your queries as a tarball by click

You can delete your query draft by clicking .

If you want to install all queries that you haven't installed yet, you can click "Install

all queries" button in GSQL Queries list. After some verification time, a pop up

window listing all queries to be installed will show:

Click INSTALL button, then the listed queries will be installed:

Download

Delete query draft

Install All Queries

5/13/25, 9:12 PM 3.3

1217

The Result panel shows the result of the last run query. Each query generates up to

three types of result: visualized graph, JSON text, or log messages. On the left is a

toolbar with buttons for changing the panel size or for switching to a different type

of result. The buttons, from top to bottom, are the following:

Viewing graph schema makes it more convenient for developers to refer to the

schema topology logic and easier to write correct GSQL queries.

Menu option Functionality

Expand/Collapse: Expand or collapse the

Result panel.

View schema: Show the graph schema.

Visualize graph result: Show the visual result

of the last run query.

View JSON result: Show the raw text result

in JSON format of the last run query.

View table result: Show result in tabular

format.

View logs: Show the log for the last run

query.

Result Panel

View schema:

5/13/25, 9:12 PM 3.3

1218

If the query execution result contains a graph structure, the result will be visualized

in this panel as a graph. The panel is the same as the Explore Graph panel. Please

refer to the documentation for the Explore Graph panel. The only difference is that

each time you run a query, the previous result will be erased. In Explore Graph the

results are added incrementally.

You can switch to the JSON Result panel to see the result in JSON format.

If there is no graph structure in the result, the result will be displayed in this panel as

a JSON object.

Visualize graph result

View JSON result

5/13/25, 9:12 PM 3.3

1219

You can learn about the JSON format in the GSQL Language documentation, and

integrate it with your applications. In this fashion, the TigerGraph system can serve

as a backend or embedded graph data service.

You can display the query result as a table:

Table rows can be sorted by any column with primitive type values. You can also

download the table as a CSV file by clicking the download button next to the table

name.

If a query ran successfully, the Query Log message will be "query ran successfully"

or something similar. If there was anything wrong when executing your query, such

as invalid parameters or runtime errors, an error message will be shown in the

Query Log panel:

View table result

View logs

5/13/25, 9:12 PM 3.3

1220

If you just want to focus on developing your query, or want to have more space to

view your result, click the Expand button in either the Query Editing panel or the

Result panel.

If you expand the Query Editing panel, it looks like this:

If you expand the Result panel, it looks like this:

Expand Panels

5/13/25, 9:12 PM 3.3

1221

When the panel is expanded, the Expand button becomes the Collapse button .

Clicking it will return the display to the split panel view.

5/13/25, 9:12 PM 3.3

1222

Migrate From Relational Database
Starting from 3.0, you can easily migrate your relational database into TigerGraph

database without having to write a single line of code!

At GraphStudio home page, click the Migrate From Relational Database link to start

the process.

Currently we support PostgreSQL and MySQL. We will support more RDBMS types

in the future.

Step 1. Choose relational database type

5/13/25, 9:12 PM 3.3

1223

Provide the credentials to connect to your relational database. You need to specify

which database you want to migrate from in this step.

GraphStudio will connect to your relational database and retrieve all the table

schemes of the database. You can choose which tables and which attributes of

each table you want to migrate. By default everything will be migrated.

Step 2. Input connection information

Step 3. Choose tables/attributes to be migrated

5/13/25, 9:12 PM 3.3

1224

You can set the migrated graph's name (by default it will be your RDBMS type

concatenated with the database name). You can choose to create index for the

attributes if an index exists in the relational database. You can also choose to only

migrate the top several records of each table (by default the whole dataset will be

migrated).

Step 4. Configurations

5/13/25, 9:12 PM 3.3

1225

The foreign keys will be treated as edge types. This is the fixed migration rule we

are using. In the future we will provide more migration rules for you to choose.

The migration will take a few minutes. After migration finished, a new subgraph will

be created.

The data from RDBMS will be imported to the server's filesystem before being loaded
into TigerGraph database. Please make sure that the server has enough disk space!

Step 5. Start migration

5/13/25, 9:12 PM 3.3

1226

After migration, a popup message will guide you to go to Design Schema page to

verify the graph schema.

You can take a look of the auto-generated schema and make appropriate

modifications.

Verify Migration Result

5/13/25, 9:12 PM 3.3

1227

Then go to Map Data To Graph page and check the auto-generated data mapping.

Then go to Load Data page and load the data into the graph.

5/13/25, 9:12 PM 3.3

1228

Well done, you can play with your data and work on your business logic! Here is an

example of playing with the data in Explore Graph page.

5/13/25, 9:12 PM 3.3

1229

Export And Import Solution

These two features can be found on the GraphStudio Home page. You can return to

the Home page by clicking the logo on the top of the left menu .

Solutions created from "Export Current Solution" from a version released prior to v3.1
cannot be imported into v3.1 due to data storage changes made in v3.1 to support HA
for the application server. Contact support@tigergraph.com for a detailed workaround
if you want to import a solution tarball prior to v3.1.

Click on the "Export Current Solution" link to export the whole solution and

download it as a tarball, including the schema, the loading jobs, and the queries. It

also includes metadata that describes the layout of your schema design as well as

your user icons to preserve the design of your GraphStudio solution.

The exported tarball file includes two folders: graph/ and gui/. The graph/ folder

includes an ExportedGraph.zip file that contains the following files:

• DBImportExport_<graphName>.gsql command file for each graph called
<graphName> in a MultiGraph system. The command file creates the exported

graph, including its local vertex, edge, and tuple types, along with its loading

jobs, data source file objects as well as queries.

• global.gsql - DDL job to create all global vertex and edge types, and data

sources.

Export And Import Solution

Export

5/13/25, 9:12 PM 3.3

1230

• tuple.gsql - DDL job to create all User Defined Tuples.

Note that this ExportedGraph.zip file is identical to what is produced by running the
database export command with the template option.

The gui/ folder includes a folder that contains all user icons and a json file that

describes the layout of the schema in GraphStudio.

ATTENTION:

1. The graph data and data files will not be exported.

2. If a query has been modified since it was last installed, GraphStudio will export the

modified draft instead of the version that has been installed in the TigerGraph

engine.

3. Starting with TigerGraph 3.0, GSQL queries can be run in Interpreted Mode in

GraphStudio without installation. These queries need to be installed to be

exported.

Click on the "Import an Existing Solution" to upload a previously exported tarball of a

solution.

In order to optimize the time required for Import, the imported queries will not be
installed but saved as drafts. You need to install them manually.

Importing a solution will overwrite the current solution. The existing schema, loading
jobs, queries as well as data files will be erased before the new solution is imported.

Import

5/13/25, 9:12 PM 3.3

1231

Keyboard Shortcuts
The page lists the keyboard shortcuts for common actions in GraphStudio.

In order to use these shortcuts, make sure you first select the graph canvas with the

tab key. When the graph canvas is selected, the edges of the canvas will be

highlighted with a blue box:

Action Shortcut

Switch focus Tab

View when the graph canvas is selected

Action Shortcut

Pick a vertex/edge Ctrl + Alt + P

Switch hover over vertex/edge (must have

picked a vertex/edge first)
Ctrl + Alt + W/A/S/D

Edit/show a vertex Ctrl + Alt + C

Windows

Application

Graph Canvas

Mac

Application

5/13/25, 9:12 PM 3.3

1232

In order to use these shortcuts, make sure you first select the graph canvas with the

tab key. When the graph canvas is selected, the edges of the canvas will be

highlighted with a blue box:

Action Shortcut

Switch focus Tab

View when the graph canvas is selected

Action Shortcut

Pick a vertex/edge Ctrl + Option + P

Switch hover over vertex/edge (must have

picked a vertex/edge first)
Ctrl + Option + W/A/S/D

Edit/show a vertex Ctrl + Option + C

Graph Canvas

5/13/25, 9:12 PM 3.3

1233

Known Issues

In v3.2.0, GSQL implements metadata Cross-Region Replication (CRR). Currently,

replication of metadata for GraphStudio on remote cluster is not supported. If you

need to do that, use backup & restore as an alternative. However, GraphStudio can

still be used on remote cluster.

In v3.1.0, objects related to STRING COMPRESS data type would be skipped during

solution import. All the others would be imported successfully.

In v3.1.1, solutions containing the STRING COMPRESS data type would fail to import.

Please update the data type using STRING COMPRESS in your solution before

importing into TG v3.1.0 and TG v3.1.1

Since TigerGraph supports HA for the application server in v3.1, GraphStudio and

Admin Portal data storage has to be updated. The HA enhancement caused a known

compatibility issue during solution import process from GraphStudio: a solution that

is created from "Export Current Solution" from a version released prior to v3.1

cannot be imported into v3.1. A solution exported from v3.1 will work with v3.1 and

can be imported through "Import An Existing Solution". Contact

support@tigergraph.com for a detailed workaround if you want to import a solution

tarball prior to TG3.1.

GraphStudio Metadata is not replicated using Cross-
Region Replication (CRR)

Solution import if STRING COMPRESS data type is

disabled

a = b

Solution import from version lower than v3.1 is not
compatible with v3.1

5/13/25, 9:12 PM 3.3

1234

In v3.1, TigerGraph enhanced the security configuration for cookie by setting a

secure flag when SSL is enabled, which may trigger an issue when using Chrome to

turn off SSL. Due to this security feature, when downgrading from HTTPS to HTTP,

Chrome will not allow setting the same cookie. This will result in user authentication

failure because the cookie fails to be set. To solve this problem, users can clear the

cache from Chrome and refresh the browser. Enabling from HTTP to HTTPS will

work as expected.

GraphStudio v2.4 changes internal loading job generation. Older version data

mappings are deprecated. Please contact TigerGraph support if you need to migrate

them from an earlier version.

Read more at https://stackoverflow.com/questions/307179/what-is-javascripts-

highest-integer-value-that-a-number-can-go-to-without-losin .

In the future, GraphStudio will use BigInt to solve this problem.

Sometimes when you double-click a vertex, the graph exploration result disappears.

This is only a front-end rendering issue. The data is still there.

Workaround : click the change layout button , and choose any layout.

Everything will be rendered.

After upgrading to v3.1, downgrading from HTTPS to
HTTP (turn on/off SSL) will result in user authentication
failure

After upgrading to v2.4, data mappings created in
earlier versions of GraphStudio will disappear.

Integers larger than 2^53 - 1 may lose precision.

Graph Exploration result disappears

5/13/25, 9:12 PM 3.3

https://stackoverflow.com/questions/307179/what-is-javascripts-highest-integer-value-that-a-number-can-go-to-without-losin
https://stackoverflow.com/questions/307179/what-is-javascripts-highest-integer-value-that-a-number-can-go-to-without-losin
https://stackoverflow.com/questions/307179/what-is-javascripts-highest-integer-value-that-a-number-can-go-to-without-losin

1235

When there are edges very close to one another, their click response areas may

overlap, making it hard to select the edge you want. This happens after zoom-in /

zoom-out or connecting to another screen sometimes.

Workaround: click a blank place in the working panel then zoom-in and zoom-out.

The response area will back to normal.

Currently GraphStudio doesn't support fixed binary type attributes in schema. If you

create your graph schema from GSQL with such attributes, GraphStudio will refuse

to work. We will support this feature in future releases.

GraphStudio can only recognize data mapping procedures created through GUI. If

you create loading jobs from GSQL, they won't be shown in GraphStudio.

If you make changes to graph schema, and create/delete/modify global schema and

local schema through GSQL, you need to refresh the browser for the changes to

show up in GraphStudio.

On Explore Graph, Build Graph Pattern and Write Query pages, a refresh button

to retrieve updated data is used in visualization viewer. If your color/size configs use

accumulator as a variable, it will be lost in the new visualization after clicking the

refresh button.

Edge response area is too big

You cannot use fixed binary type attributes

Loading jobs created from GSQL won't be shown

GSQL changes do not auto refresh

Config expression with accumulators will be not
applicable with refresh button

5/13/25, 9:12 PM 3.3

1236

If you find any bugs, please report them to support@tigergraph.com. We really

appreciate it!

Report bugs to us

5/13/25, 9:12 PM 3.3

mailto:support@tigergraph.com.
mailto:support@tigergraph.com.

1237

GraphStudio Patent
and Third Party Notice
v3.0, June 2020

U.S. Pat. No. 9953106, 9977837, 10120956.

Additional Patents pending.

This TigerGraph software program uses some third-party software components that

are licensed under their own terms.

This list of software components uses abbreviations to refer to common licenses,

e.g., "MIT". A dictionary for these abbreviations is provided at the end of this

document.

Third Party Component License

Zoomcharts Copyright (c) 2018 Data Visualization

Software Lab

https://zoomcharts.com/en/legal/

Licensed under OEM license

angular/animations

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/cdk

Copyright (c) 2019 Google LLC

https://github.com/angular/material2

Licensed under MIT

angular/common

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/compiler

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

Copyright (c) 2014-2018 Google, Inc.

5/13/25, 9:12 PM 3.3

https://zoomcharts.com/en/legal/
https://zoomcharts.com/en/legal/
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular
https://github.com/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular

1238

angular/core https://github.com/angular/angular

Licensed under MIT

angular/flex-layout

Copyright (c) 2019 Google LLC

https://github.com/angular/flex-layout

Licensed under MIT

angular/forms

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/http

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/material

Copyright (c) 2019 Google LLC

https://github.com/angular/material2

Licensed under MIT

angular/material-moment-adapter

Copyright (c) 2019 Google LLC

https://github.com/angular/material2

Licensed under MIT

angular/platform-browser

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/platform-browser-dynamic

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/router

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/zone.js

Copyright (c) 2016-2018 Google, Inc.

https://github.com/angular/zone.js

Licensed under MIT

5/13/25, 9:12 PM 3.3

https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/flex-layout
https://github.com/angular/flex-layout
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/zone.js
https://github.com/angular/zone.js

1239

aws-sdk

Copyright (c) 2012-2017 Amazon.com, Inc.

or its affiliates

https://github.com/aws/aws-sdk-js

Licensed under Apache2

cgjs/fs

Copyright (c) 2017 Andrea Giammarchi

https://github.com/cgjs/fs

Licensed under ISC

chalk

Copyright (c) 2017 Sindre Sorhus

https://github.com/chalk/chalk

Licensed under MIT

chart.js

Copyright (c) 2018 Chart.js Contributors

https://github.com/chartjs/Chart.js

Licensed under MIT

codemirror

Copyright (c) 2017 Marijn Haverbeke

marijnh@gmail.com and others

https://github.com/codemirror/CodeMirror

Licensed under MIT

crypto

Copyright (c) 2014 Chris Veness

https://github.com/chrisveness/crypto

Licensed under MIT

CssColorParser.js

Copyright (c) 2012 Dean McNamee

https://github.com/deanm/css-color-parser-

js

Licensed under MIT

d3.js

Copyright (c) 2010-2017 Mike Bostock

https://github.com/d3/d3

Licensed under BSD3

echarts 3.4.0

Copyright (c) 2017 Baidu Inc.

https://github.com/ecomfe/echarts-gl

Licensed under BSD3

Copyright (c) 2011-2017 Jorik Tangelder

5/13/25, 9:12 PM 3.3

https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/cgjs/fs
https://github.com/cgjs/fs
https://github.com/chalk/chalk
https://github.com/chalk/chalk
https://github.com/chartjs/Chart.js
https://github.com/chartjs/Chart.js
mailto:marijnh@gmail.com
mailto:marijnh@gmail.com
https://github.com/codemirror/CodeMirror
https://github.com/codemirror/CodeMirror
https://github.com/chrisveness/crypto
https://github.com/chrisveness/crypto
https://github.com/deanm/css-color-parser-js
https://github.com/deanm/css-color-parser-js
https://github.com/deanm/css-color-parser-js
https://github.com/d3/d3
https://github.com/d3/d3
https://github.com/ecomfe/echarts-gl
https://github.com/ecomfe/echarts-gl

1240

hammerjs https://github.com/hammerjs/hammer.js

Licensed under MIT

jinder/path

Copyright (c) 2015 Joyent, Inc. and other

Node contributors.

https://github.com/jinder/path

Licensed under MIT

js-yaml

Copyright (c) 2011-2015 Vitaly Puzrin

https://github.com/nodeca/js-yaml

Licensed under MIT

jsbn

Copyright (c) 2003-2005 Tom Wu

http://www-cs-

students.stanford.edu/~tjw/jsbn/

Licensed under MIT

jshttp/cookie

Copyright (c) 2012-2014 Roman Shtylman,

2015 Douglas Christopher Wilson

https://github.com/jshttp/cookie

Licensed under MIT

jsrsasign

Copyright (c) 2010-2018 Kenji Urushima

https://github.com/kjur/jsrsasign

Licensed under MIT

koa-body

Copyright (c) 2014 Charlike Mike Reagent

and Daryl Lau

https://github.com/dlau/koa-body

Licensed under MIT

koa-bodyparser

Copyright (c) 2014 YiYu He

heyiyu.deadhorse@gmail.com

https://github.com/koajs/bodyparser

Licensed under MIT

koa-multer

Copyright (c) 2014 Hage Yaapa, 2015

Fangdun Cai

https://github.com/koa-modules/multer

Licensed under MIT

5/13/25, 9:12 PM 3.3

https://github.com/hammerjs/hammer.js
https://github.com/hammerjs/hammer.js
https://github.com/jinder/path
https://github.com/jinder/path
https://github.com/nodeca/js-yaml
https://github.com/nodeca/js-yaml
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www-cs-students.stanford.edu/~tjw/jsbn/
https://github.com/jshttp/cookie
https://github.com/jshttp/cookie
https://github.com/kjur/jsrsasign
https://github.com/kjur/jsrsasign
https://github.com/dlau/koa-body
https://github.com/dlau/koa-body
mailto:heyiyu.deadhorse@gmail.com
mailto:heyiyu.deadhorse@gmail.com
https://github.com/koajs/bodyparser
https://github.com/koajs/bodyparser
https://github.com/koa-modules/multer
https://github.com/koa-modules/multer

1241

koa-router

Copyright (c) 2015 Alex Mingoia

https://github.com/alexmingoia/koa-router

Licensed under MIT

koa-send

Copyright (c) 2013-2019 koa-send

contributors

https://github.com/koajs/send

Licensed under MIT

koa-static

Copyright (c) 2013-2019 koa-static

contributors

https://github.com/koajs/static

Licensed under MIT

koajs

Copyright (c) 2018 Koa contributors

https://github.com/koajs/koa

Licensed under MIT

Leaflet.js

Copyright (c) 2010-2018 Vladimir Agafonkin,

2010-2011, CloudMade

https://github.com/Leaflet/Leaflet/blob/mast

er/LICENSE

Licensed under BSD2

lodash

Copyright (c) 2017 JS Foundation and other

contributors

https://github.com/lodash/lodash

Licensed under MIT

material-design-icons

Copyright (c) 2016 Material Design Authors

https://github.com/google/material-design-

icons

Licensed under Apache2

moment

Copyright (c) 2016 JS Foundation and other

contributors

https://github.com/moment/moment

Licensed under MIT

Copyright (c) 2016 JS Foundation and other

contributors

5/13/25, 9:12 PM 3.3

https://github.com/alexmingoia/koa-router
https://github.com/alexmingoia/koa-router
https://github.com/koajs/send
https://github.com/koajs/send
https://github.com/koajs/static
https://github.com/koajs/static
https://github.com/koajs/koa
https://github.com/koajs/koa
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
https://github.com/lodash/lodash
https://github.com/lodash/lodash
https://github.com/google/material-design-icons
https://github.com/google/material-design-icons
https://github.com/google/material-design-icons
https://github.com/moment/moment
https://github.com/moment/moment

1242

moment timezone https://github.com/moment/moment-

timezone/

Licensed under MIT

mysqljs

Copyright (c) 2012 Felix Geisendorfer

https://github.com/mysqljs/mysql

Licensed under MIT

ng-idle/core

Copyright (c) 2016 Mike Grabski

https://github.com/HackedByChinese/ng2-

idle

Licensed under Apache-2.0

ng-idle/keepalive

Copyright (c) 2016 Mike Grabski

https://github.com/HackedByChinese/ng2-

idle

Licensed under Apache-2.0

ng2-nouislider

Copyright (c) Tomasz Bak

https://github.com/tb/ng2-nouislider

Licensed under MIT

ngx-clipboard

Copyright (c) 2018 Sam Lin

https://github.com/maxisam/ngx-clipboard

Licensed under MIT

ngx-color-picker

Copyright (c) 2017 ZEF Oy

https://github.com/zefoy/ngx-color-picker

Licensed under MIT

ngx-image-cropper

Copyright (c) 2018 Martijn Willekens

https://github.com/Mawi137/ngx-image-

cropper

Licensed under MIT

ngx-translate/core

Copyright (c) 2018 Olivier Combe

https://github.com/ngx-translate/http-loader

Licensed under MIT

5/13/25, 9:12 PM 3.3

https://github.com/moment/moment-timezone/
https://github.com/moment/moment-timezone/
https://github.com/moment/moment-timezone/
https://github.com/mysqljs/mysql
https://github.com/mysqljs/mysql
https://github.com/HackedByChinese/ng2-idle
https://github.com/HackedByChinese/ng2-idle
https://github.com/HackedByChinese/ng2-idle
https://github.com/HackedByChinese/ng2-idle
https://github.com/HackedByChinese/ng2-idle
https://github.com/HackedByChinese/ng2-idle
https://github.com/tb/ng2-nouislider
https://github.com/tb/ng2-nouislider
https://github.com/maxisam/ngx-clipboard
https://github.com/maxisam/ngx-clipboard
https://github.com/maxisam/ngx-clipboard
https://github.com/zefoy/ngx-color-picker
https://github.com/zefoy/ngx-color-picker
https://github.com/Mawi137/ngx-image-cropper
https://github.com/Mawi137/ngx-image-cropper
https://github.com/Mawi137/ngx-image-cropper
https://github.com/ngx-translate/http-loader
https://github.com/ngx-translate/http-loader
https://github.com/ngx-translate/http-loader

1243

ngx-translate/http-loader

Copyright (c) 2018 Olivier Combe

https://github.com/ngx-translate/core

Licensed under MIT

node-cache

Copyright (c) 2019 mpneuried

https://github.com/mpneuried/nodecache

Licensed under MIT

node-ip

Copyright (c) 2012 Fedor Indutny

https://github.com/indutny/node-ip

Licensed under MIT

node-jsonwebtoken

Copyright (c) 2015 Auth0, Inc.

https://github.com/auth0/node-

jsonwebtoken

Licensed under MIT

nouislider

Copyright (c) 2018 Léon Gersen

https://github.com/leongersen/noUiSlider

Licensed under MIT

protobufjs

Copyright (c) 2016 Daniel Wirtz

https://github.com/dcodeIO/protobuf.js

Licensed under BSD3

randomcolor

Copyright (c) 2015 David Merfield

https://github.com/davidmerfield/randomCol

or

Licensed under CC0

reactivex/rxjs

Copyright (c) 2015-2018 Google, Inc.,

Netflix, Inc., Microsoft Corp. and

contributors

https://github.com/reactivex/rxjs

Licensed under Apache2

request

Copyright (c) 2010 Mikeal Rogers

https://github.com/request/request

Licensed under Apache2

5/13/25, 9:12 PM 3.3

https://github.com/ngx-translate/core
https://github.com/ngx-translate/core
https://github.com/mpneuried/nodecache
https://github.com/mpneuried/nodecache
https://github.com/indutny/node-ip
https://github.com/indutny/node-ip
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/leongersen/noUiSlider
https://github.com/leongersen/noUiSlider
https://github.com/dcodeIO/protobuf.js
https://github.com/dcodeIO/protobuf.js
https://github.com/davidmerfield/randomColor
https://github.com/davidmerfield/randomColor
https://github.com/davidmerfield/randomColor
https://github.com/reactivex/rxjs
https://github.com/reactivex/rxjs
https://github.com/request/request
https://github.com/request/request

1244

The following table explains the license abbreviations used in the list of TigerGraph

Third Party Software. A link is provided to an official source for each license. The

resumablejs

Copyright (c) 2011 Steffen Tiedemann

Christensen

https://github.com/23/resumable.js

Licensed under MIT

roboto-fontface

Copyright (c) 2013 Christian Hoffmeister

https://github.com/choffmeister/roboto-

fontface-bower

Licensed under Apache2

roboto-mono-webfont

Copyright (c) 2016 Christian Robertson

https://github.com/Dilatorily/roboto-mono

Licensed under MIT AND Apache2

sqlite3

Copyright (c) 2013 MapBox

https://github.com/mapbox/node-sqlite3

Licensed under BSD3

tslib

Copyright (c) Microsoft Corporation.

https://github.com/Microsoft/tslib

Licensed under Apache2

websockets/ws

Copyright (c) 2011 Einar Otto Stangvik

https://github.com/websockets/ws

Licensed under MIT

winston-daily-rotate-file

Copyright (c) 2015 Charlie Robbins

https://github.com/winstonjs/winston-daily-

rotate-file

Licensed under MIT

winstonjs

Copyright (c) 2010 Charlie Robbins

https://github.com/winstonjs/winston

License Abbreviations

5/13/25, 9:12 PM 3.3

https://github.com/23/resumable.js
https://github.com/23/resumable.js
https://github.com/choffmeister/roboto-fontface-bower
https://github.com/choffmeister/roboto-fontface-bower
https://github.com/choffmeister/roboto-fontface-bower
https://github.com/Dilatorily/roboto-mono
https://github.com/Dilatorily/roboto-mono
https://github.com/mapbox/node-sqlite3
https://github.com/mapbox/node-sqlite3
https://github.com/Microsoft/tslib
https://github.com/Microsoft/tslib
https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/winstonjs/winston-daily-rotate-file
https://github.com/winstonjs/winston-daily-rotate-file
https://github.com/winstonjs/winston-daily-rotate-file
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston

1245

copy of each license is also available from TigerGraph and is included in the

doc/legal folder of the product package.

License Abbreviation License Detail

AGPL3

GNU Affero General Public License version

3

https://www.gnu.org/licenses/agpl-

3.0.en.html

Apache2

Apache License version 2.0

https://www.apache.org/licenses/LICENSE-

2.0

BOOST
Boost Software License

http://www.boost.org/LICENSE_1_0.txt

BSD2

2-Clause BSD (Berkeley Standard

Distribution) License

https://opensource.org/licenses/BSD-2-

Clause

BSD3

3-Clause BSD (Berkeley Standard

Distribution) License

https://opensource.org/licenses/BSD-3-

Clause

CC0

Creative Commons CC0 1.0 Universal

https://creativecommons.org/publicdomain/

zero/1.0/

CURL
Curl License

https://curl.haxx.se/docs/copyright.html

FCGI

FastCGI2 License

https://github.com/FastCGI-

Archives/fcgi2/blob/master/LICENSE.TERMS

GPL2

GNU General Public License version 2.0

https://www.gnu.org/licenses/old-

licenses/gpl-2.0.en.html

5/13/25, 9:12 PM 3.3

https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://curl.haxx.se/docs/copyright.html
https://curl.haxx.se/docs/copyright.html
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

1246

GPL3

GNU General Public License version 3.0

https://www.gnu.org/licenses/gpl-

3.0.en.html

ISC

Internet Systems Consortium

https://www.isc.org/downloads/software-

support-policy/isc-license/

JSON
JSON License

http://www.json.org/license.html

LGPL3

GNU Lesser General Public License version

3.0

https://www.gnu.org/licenses/lgpl-

3.0.en.html

MIT

MIT (Massachusetts Institute of Technology)

License

https://opensource.org/licenses/MIT

MPICH

MPICH License

http://git.mpich.org/mpich.git/blob/HEAD:/C

OPYRIGHT

OPENSSL

OpenSSL License

https://www.openssl.org/source/license.htm

l

Python2

Python 2.7 License

https://www.python.org/download/releases/

2.7/license/

SLI_OFL1.1

SIL Open Font License version 1.1

http://scripts.sil.org/cms/scripts/page.php?

item_id=OFL_web

ZLIB
zlib License

5/13/25, 9:12 PM 3.3

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.isc.org/downloads/software-support-policy/isc-license/
https://www.isc.org/downloads/software-support-policy/isc-license/
https://www.isc.org/downloads/software-support-policy/isc-license/
http://www.json.org/license.html
http://www.json.org/license.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
https://www.openssl.org/source/license.html
https://www.openssl.org/source/license.html
https://www.openssl.org/source/license.html
https://www.python.org/download/releases/2.7/license/
https://www.python.org/download/releases/2.7/license/
https://www.python.org/download/releases/2.7/license/
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
https://www.zlib.net/zlib_license.html

1247

Admin Portal UI Guide
Here are the pages in this section:

• Overview

• Dashboard

• Monitoring

• Management

• Query Output File Download

• Known Issues

5/13/25, 9:12 PM 3.3

1248

Overview
The TigerGraph Admin Portal is a browser-based DevOps tool that provides users

an overview of a running TigerGraph system, from an application and infrastructure

point of view. It also allows the users to configure the TigerGraph system through a

user-friendly interface. This guide serves as an introduction and quick-start manual

for Admin Portal.

Admin Portal is certified on the following browsers:

Not all features are guaranteed to work on other browsers.

Please make sure to enable JavaScript and cookies in your browser settings.

The Admin Portal and GraphStudio share the same port (14240). If you are logged in

to one of the servers for your TigerGraph system, you can use localhost for your

server IP address. The Admin Portal is on the admin page:

If user authentication has been enabled, users need to log in to access the Admin

Portal.

If you are already at GraphStudio, click the Admin button at the right end of

the top menu bar to navigate to Admin Portal.

Browser Chrome Safari Firefox Opera Edge
Inte

Exp

Supported

version
54.0+ 11.1+ 59.0+ 52.0+ 80.0+ 10+

http://<tigergraph_server_ip_address>:14240/admin/

Log On

5/13/25, 9:12 PM 3.3

1249

The Admin Portal has four pages: Dashboard, Monitor, Management, and Others. All

the pages share the same Header, and Navigation Menu.

The layout of the Admin Portal is responsive to screen size. The layout will
automatically adjust for devices with small screens like phones and tablets.

The full-screen version of the Admin Portal is shown below, with the Dashboard

page selected.

The Account icon will open the user menu:

Admin portal

Page Layout

Page Header

5/13/25, 9:12 PM 3.3

1250

You can switch between a dark theme and a light theme. The light theme is shown

below:

5/13/25, 9:12 PM 3.3

1251

To sign out of the Admin Portal, click on the Sign out button in the Account menu.

Clicking on the Help button will take you to the documentation page containing this

guide.

You can navigate to GraphStudio by clicking on .

The bottom of the navigation menu shows the cluster service status.

Cluster service status

5/13/25, 9:12 PM 3.3

1252

Admin Portal has a default session timeout of 1 week. If, during this time, the user

has no interaction with the page, the session will expire and the user will be logged

out automatically. The timeout can be configured with:

$ gadmin config set GUI.ClientIdleTimeSec[timeout]

Session Timeout

5/13/25, 9:12 PM 3.3

1253

Dashboard

The Dashboard page has three main parts: Overall statistics, the time range picker,

and several charts.

Just below the page header, there are four cards showing statistics of your system,

including the number of nodes and the number of graphs. These statistics are

refreshed live. (The default refresh interval is 1 minute).

Dashboard Page

Overall Cluster Statistics

Time Range Picker

5/13/25, 9:12 PM 3.3

1254

The next card lets you set the time range to be used for the statistics in the charts

below.

The leftmost input lets you select the start time of the range.

The next input lets you select the end time of the range. This

input has two options:

1. "Now" means that the charts will be continually updated with the most recent
data.

2. "Custom" lets you select a fixed date. The time range is historical, so the charts

will be static.

The sliding bar on the right lets you fine tune the range. Click and drag an endpoint

to adjust the start or end time.

Changing any of these selections will trigger a request for statistics data and the

chart will be re-rendered accordingly.

Each chart displays some statistic or states information on the vertical axis and time

on the horizontal axis.

There are two chart sections. The first section is GSQL Query Performance. This

lists all of the queries accessible to the current user. If you click on a query name,

the display will expand to show detailed charts about that query. You can expand

only one query panel at a time. The second section is Cluster Monitoring. This lists

all of the machines within the TigerGraph cluster. Similar to the first section, you can

only expand one panel at a time.

Charts

5/13/25, 9:12 PM 3.3

1255

A Query Monitoring Panel includes three charts:

• QPS (number of queries completed per second)

• Timeout (fraction of the query calls which timed out and therefore did not finish)

• Latency (minimum, maximum, and average time to complete a query)

A Machine Monitoring Panel includes 4 charts. The first three charts break down the

information among three processing-focused components (GPE, GSE, RESTPP). The

last chart breaks down information among three components which may have large

storage needs (GStore, Log files, and Apache Kafka).

• Service status: ON or OFF status for the given component

• CPU Usage: percentage of available CPU time used by the given component

• Memory Usage: GB used by the given component

• Disk Usage: GB used by the given component

5/13/25, 9:12 PM 3.3

1256

5/13/25, 9:12 PM 3.3

1257

Monitor
Monitor section in Admin Portal provides functionality for monitoring the TigerGraph

cluster. The current functionality includes log management, where you can view,

search and download the logs.

5/13/25, 9:12 PM 3.3

1258

Logs
The log page contains the search panel, the file directory panel, and the content

panel. The content panel either displays log content or search results.

Note: Error message might show if an ADBLOCK is running.

In the file directory panel, all machines will be listed. Clicking the machine id, all

components of the machine will be listed. When you expand the component, all log

files and folders will be listed.

Open a log file from the file directory

5/13/25, 9:12 PM 3.3

1259

Choose one single log file by clicking on it, and the content will be shown in the

display panel. The title will show the machine id and the path of the opened log file.

To the very right, there is a download button for downloading the selected log

file. Loaded log lines will add to the end of the file (the latest log content) and the

system will keep pulling to update the log.

Note that it displays up to 32 MB of the log file before the latest line of the chosen log
file. If users want to read the entire log file, users need to download the file.

5/13/25, 9:12 PM 3.3

1260

In the search panel, a user needs to provide the following three pieces of

information: pattern, node(s) and component(s). To perform the search operation, a

pattern must be entered and at least one node and one component should be

selected. The search button is on the upper-

right corner. While searching, all input fields will be disabled, and the search button

will change to a progress bar like . Users can

click on collapse button to collapse the search panel for more space to view the

log content. In addition, users can click on expand button to open the search

panel.

If user inputs do not meet the requirements, an error message will show up after

clicking the search button:

Search logs

5/13/25, 9:12 PM 3.3

1261

After the searching process finishes, all results will be listed. The number of results

will be tagged in result tab like .

The title of each search result contains the machine id, the file path and the number

of lines of content which match the pattern. The detailed log line content will also be

shown:

Clicking on one single search result will show the log content in display panel. The

matching log line content will be highlighted.

5/13/25, 9:12 PM 3.3

1262

5/13/25, 9:12 PM 3.3

1263

Management

5/13/25, 9:12 PM 3.3

1264

License

You can go to License page to update TigerGraph license key. If no TigerGraph

license key is provided during TigerGraph installation time, the license page will look

like this:

Click the SELECT FILE button and choose the license text file, then click UPDATE

button. The license detail will be loaded like below:

License Page

5/13/25, 9:12 PM 3.3

1265

Please note that the GraphStudio item under Applications section needs to be

lightened like above. If it looks like the grayed icon here: , it means

GraphStudio is not enabled in the provided license, and you won't be able to use

GraphStudio in this case. You can upgrade your license to enable GraphStudio

access, please contact sales@tigergraph.com for more information.

You can click more details to show more information about the license:

5/13/25, 9:12 PM 3.3

1266

5/13/25, 9:12 PM 3.3

1267

User Management
The User Management page has the following tabs:

• My Profile

• All Users

• User-defined roles

• Role Management

All users can access the My Profile tab to manage themselves.

There are three information cards at the top: Username shows the user's username;

Accessible graph shows how many graphs the user can access, and Password

allows user to change password by clicking the key icon :

My Profile

5/13/25, 9:12 PM 3.3

1268

Below the cards are secret management section. You can create as many secrets

for each graph as you want, but remember to copy the secret value out at the

creation time. Once you refresh the page or go to another page and come back, the

actual secret value will be masked for security. You need to provide an alias for the

secret, and click the green plus sign to add the secret.

When token authentication is enabled, you need to use the secrets to request tokens

and add the tokens in the HTTP request headers to call TigerGraph RESTful

endpoints. Read more at User Access Management.

Both native users and proxy users are displayed in the User section. However, you can
only change the passwords of native users.

The All Users tab displays information on all users. Only users with user or proxy

groups management permission can access this tab. Users with user management

permission(READ_USER , WRITE_USER privileges) can add new users, change other

users' password, delete users.

All Users

5/13/25, 9:12 PM 3.3

1269

Users with proxy groups management permission(READ_PROXYGROUP ,

WRITE_PROXYGROUP privileges) can create proxy groups, change proxy rules of the

groups, and delete proxy groups. To see a list of all privileges, see List of Privileges.

• Click the Add User button to add new users:

• Click the key symbol in the Actions column to change other users'

password:

• Click the delete button in the Actions column to delete a user.

• Click the Proxy Group tab to see all proxy groups:

• Click the Add Group button to add new proxy groups:

• Click the Edit button to edit the proxy rule of an existing proxy group:

• Click to delete a proxy group.

Read more about proxy groups at LDAP.

The User-defined roles tab lists all user-defined roles and allows users with

sufficient privileges to create roles. Users must have the READ_ROLE privilege on at

User-defined roles

5/13/25, 9:12 PM 3.3

1270

least one graph to access this tab. This section describes the procedures to create,

edit, and drop roles, as well as assign roles to users in GraphStudio. To learn more

about roles and privileges in TigerGraphʼs role-based access control system, see

User Access Management.

To create/edit/delete a role, users must also have the WRITE_ROLE privilege on that

graph. See more details in Roles and Privileges.

In the right upper corner, there is a hint button . Click the button and jump to the

official roles and privileges documentation to read more about roles and privileges.

All user-defined roles that you can view will list in a table:

Each row shows one role along with the privileges it contains. For global roles, all

privileges on either the global level or a specific graph will be listed.

Click create role btn in the right upper corner to create a role. You can either

choose to create a global or a local role on a graph.

Create a user-defined role

Create a global role

5/13/25, 9:12 PM 3.3

1271

Select global ratio btn to start creating a global role. The first panel is for the

global privileges, where you can select global level privileges to assign to this role.

Click the button to grant privileges on another graph grant privileges on graph at

the bottom of the pop-up window to reveal the privileges panel for local privileges.

Select a graph first in the dropdown menu, then grant local privileges on that graph.

You can also click the remove button remove btn to remove the graph that you

want to add privileges on.

5/13/25, 9:12 PM 3.3

1272

Select local ratio btn to start creating a local role. Select a graph in the dropdown

that you want to create the role on.

Create a local role

5/13/25, 9:12 PM 3.3

1273

Click the edit button edit in the Actions column to open the edit pop-up. Deselect

a privilege to drop it from the role and select one to add it to the role. When editing a

role, you cannot change a local role to a global role, or vice versa.

Click the delete button in the Actions column delete btn to drop a role.

Edit a user-defined role

Drop a role

5/13/25, 9:12 PM 3.3

1274

In the Role Management tab, users can view the role assignment of users, assign

roles to users, and revoke roles from users. Users must have the READ_ROLE

privilege along with the READ_USER or READ_PROXYGROUP privilege on at least one

graph to access this tab.

Admin Portal does not indicate whether a user belongs a proxy group. You can find out
more from GSQL client.

Admin Portal shows a combination of roles for proxy users. Proxy user which belongs
to a proxy group inherits all the roles from the proxy group plus all the roles the proxy
user has. Therefore, if you want to revoke a role from a proxy user, you need to revoke
the role from the proxy group first. Then you might need to revoke the same role from
the proxy user if the proxy user also has that role.

To assign roles, users need to have WRITE_ROLE privilege. If you only have

READ_ROLE privilege, you can only view the current assignment but can not modify

it.

Role Management

Select a graph

5/13/25, 9:12 PM 3.3

1275

You can use the dropdown menu in the top left corner to select on which graph you

want to assign different roles to different users, you can either choose global to

assign global roles or a specific graph to assign local roles:

select graph 1 select graph 2

You can use the second dropdown menu to select a role that you want to assign to

different users:

With global selected, you can assign all global built-in or user-defined roles. With a
specific graph selected, you can assign all local built-in roles or local user-defined
roles within that graph.

Next to the dropdowns, click the view role details button view role detail btn to

view the information on the selected role.

You can type in the search box to search for users:

Select a role

View role details

Search user

Settings for users

5/13/25, 9:12 PM 3.3

1276

You can sort the users by alphabetic order or number of roles they have:

You can choose to show all users, show the users who have role(s), or show the

users who don't have a role:

Grant/revoke a role

5/13/25, 9:12 PM 3.3

1277

On a small screen, you need to click the Manage to open the assignment panel.

Once youʼve selected a graph and a role, all users will be listed with a checkbox.

You can check the box next to the user to grant the role, or uncheck to revoke the

role.

After modifying your assignment, click save btn to save your changes. You can

also discard your changes by clicking the discard button discard btn

Similarly, you can also click the proxy group button proxy groups%20%281%29 to

switch to proxy groups and manage their roles.

If you have made changes to users through GSQL after opening the user management
page, click the refresh button in the top right corner to reflect the changes in Admin
Portal.

5/13/25, 9:12 PM 3.3

1278

Security

5/13/25, 9:12 PM 3.3

1279

LDAP

You can set up and configure LDAP settings through this page.

When you donʼt have any changes, the DISCARD and APPLY buttons are disabled.

You can clear your changes by clicking the DISCARD button at the bottom right

corner of the page.

LDAP Page

5/13/25, 9:12 PM 3.3

1280

For security reason, password is masked by default:

If you want to see your password, click the button at the end of the input box

Truststore can be updated by uploading files. Click the file upload button next to the

input box, and a drop-down for uploading files will appear. Click the upload file

option to upload the desired file, and you can see the file content in the input box.

If you want to get the default data again, you can click the refresh button on the

upper right corner of the page.

The fields with * in the label are required entries.When users do not fill the required

items and click the APPLY button, the following error message will appear:

5/13/25, 9:12 PM 3.3

1281

If everything is ready, click the APPLY button and a confirmation box will pop up

Click the CANCEL button, the pop-up window will be closed. Click the OK button, it

will prompt the success message. Since configuration modification requires

restarting the server service, a pop-up box will appear to confirm whether to restart

the service. After clicking the OK button, it will take a while for configuration

changes and server restart. You will be notified when all the process is completed.

5/13/25, 9:12 PM 3.3

1282

5/13/25, 9:12 PM 3.3

1283

SSO

You can set up and configure SSO settings on this page.

When you donʼt have any changes, the DISCARD and APPLY buttons are disabled.

You can clear your changes by clicking the DISCARD button at the bottom right

corner of the page.

SSO Page

5/13/25, 9:12 PM 3.3

1284

Service Provider's X509 certificate and Service Provider's private key

1. Can replace input by uploading files.

• Click the file upload button next to the input box, and a drop-down menu for

uploading files will appear. Click the upload file option to upload the desired
file.

2. Can be generated by manual input.

• Click the file upload button next to the input box, and a drop-down for

uploading files will appear. Click the self signed button. There will be a pop-

up box to fill in the information. Items marked with * are required.

5/13/25, 9:12 PM 3.3

1285

If you want to get the default data again, you can click the refresh button in the

upper right corner of the page.

The fields with * in the label are required. When users do not fill the required fields

and click the APPLY button, the following error will appear:

5/13/25, 9:12 PM 3.3

1286

If everything is ready, click the APPLY button and a confirmation box will pop up.

Click the CANCEL button, the pop-up window will be closed. Then click the OK

button, it will prompt the success message. Since any configuration modification

requires restarting the server service, a pop-up box will appear to confirm whether

to restart the service.After clicking the OK button, configuration changes will start.

Users will be notified after server restarting when all the process is completed.

5/13/25, 9:12 PM 3.3

1287

5/13/25, 9:12 PM 3.3

1288

Components

5/13/25, 9:12 PM 3.3

1289

Nginx

You can configure Nginx settings on this page. The following settings can be

configured: SSL configuration, allowed CIDR list (whitelist IP), and response header.

When you donʼt have any changes, the DISCARD and APPLY buttons are disabled.

You can clear your changes by clicking the DISCARD button at the bottom right

corner of the page.

Nginx Page

5/13/25, 9:12 PM 3.3

1290

Allowed CIDR list are separated by ,

The response header can be empty. In addition, you can also add one by clicking

the + on the right side of the response header box, or you can delete the specified

one by clicking-on the right side of a response header .

SSL certificate and SSL key

1. Can update input by uploading files.

SSL for Nginx

5/13/25, 9:12 PM 3.3

1291

• Click the file upload button next to the input box, and a drop-down menu for

uploading files will appear. Click the upload file option to upload the desired
file.

2. Can be generated by manual input.

• Click the file upload button next to the input box, and a drop-down menu for

uploading files will appear. Click the self signed button. There will be a pop-

up box to fill in the information. Items marked with * are required.

If you want to get the default data again, you can click the refresh button on the

upper right corner of the page.

5/13/25, 9:12 PM 3.3

1292

The fields with * in the label are required entries. When users do not fill in the

required items and click the APPLY button, the following error will appear:

If everything is ready, click the APPLY button and a confirmation box will pop up

5/13/25, 9:12 PM 3.3

1293

Click the CANCEL button, the pop-up window will be closed. Click the OK button, it

will prompt the success message.Since configuration change requires restarting the

server service, a pop-up box will appear to confirm whether to restart the service.

After clicking the OK button, it will take a while for the configuration changes and

server restart. You will be notified after all the process is completed.

5/13/25, 9:12 PM 3.3

1294

In v3.1, TigerGraph enhanced the security configuration for cookie by setting a secure
flag when SSL is enabled, which may trigger an issue when using Chrome to turn off
SSL. Due to this security feature, when downgrading from HTTPS to HTTP, Chrome
will not allow setting the same cookie. This will result in user authentication failure
because the cookie fails to be set. To solve this problem, users can clear the cache
from Chrome and refresh the browser. Enabling from HTTP to HTTPS will work as
expected.

After upgrading to v3.1, downgrading from HTTPS to HTTP (turn off SSL) will result
in user authentication failure

5/13/25, 9:12 PM 3.3

1295

RESTPP

You can configure RESTPP settings on this page: Default query timeout.

When you donʼt have any changes, the DISCARD and APPLY buttons are disabled.

You can clear your changes by clicking the DISCARD button at the bottom right

corner of the page.

RESTPP Page

5/13/25, 9:12 PM 3.3

1296

If you want to get the default data again, you can click the refresh button on the

upper right corner of the page.

The fields with * in the label are required entries. When users do not fill in the

required items and click the APPLY button, the following error will appear:

If everything is ready, click the APPLY button and a confirmation box will pop up.

5/13/25, 9:12 PM 3.3

1297

Click the CANCEL button, the pop-up window will be closed. Click the OK button, it

will prompt the success message.Since configuration change requires restarting the

server service, a pop-up box will appear to confirm whether to restart the service.

After clicking the OK button, it will take a while for the configuration changes and

server restart. You will be notified after all the process is completed.

5/13/25, 9:12 PM 3.3

1298

5/13/25, 9:12 PM 3.3

1299

GSQL
Click "GSQL" under "Components" on the left side navigation to get to the GSQL

configuration page. The GSQL page in Admin Portal allows you to change the value

of certain GSQL configuration parameters.

Currently, the following parameters can be changed in Admin Portal

• GSQL.QueryResponseMaxSizeByte

Change the value in the input field of the corresponding configuration, and then

click "Apply", and then click "OK" to confirm the change.

If you are unsure about the changes you made before applying them, you can click

the refresh button on the upper right corner of the page. This will restore the value

of the parameter in the input field to the value that's currently in effect.

Once you confirm, the GSQL server will restart to apply the changes, which will

usually take several seconds. You will be notified after the changes are applied.

GSQL Component page

Change parameter value

5/13/25, 9:12 PM 3.3

1300

Application Server (GUI)

You can configure Application Server (GUI) settings through this page. Application

Server is the backend component powering both GraphStudio and Admin Portal.

Allowed setting includes: Query return size.

When you donʼt have any changes, the DISCARD and APPLY buttons are disabled.

You can clear your changes by clicking the DISCARD button at the bottom right

corner of the page.

Application Server (GUI) Page

5/13/25, 9:12 PM 3.3

1301

If you want to get the default data again, you can click the refresh button in the

upper right corner of the page.

The fields with * in the label are required entries. When users do not fill in the

required items and click the APPLY button, the following error will appear:

If everything is ready, click the APPLY button and a confirmation box will pop up.

5/13/25, 9:12 PM 3.3

1302

Click the CANCEL button, the pop-up window will be closed. Click the OK button, it

will prompt the success message.Since configuration change requires restarting the

server service, a pop-up box will appear to confirm whether to restart the service.

After clicking the OK button, it will take a while for the configuration changes and

server restart. You will be notified after all the process is completed.

5/13/25, 9:12 PM 3.3

1303

5/13/25, 9:12 PM 3.3

1304

Query Output File Download
In a GSQL query, users can print any output from the query to a file. You can

download the query output files from Admin Portal.

Navigate to Admin Portal, and then click "Others" on the left side navigation, and

Click "GSQL Output File". After users print the query result into a file, they can

preview or download the output files through this page.

You can select a specific machine in the cluster to download the output file from. By

default, all machines are selected.

After selecting the machine, you need to provide the absolute file path to the file you

want to download. For example: /home/tigergraph/tigergraph/data/files/v.csv .

GSQL output file download page

Procedure

1. Navigate to GSQL Output File page

2. Select nodes and provide file path

5/13/25, 9:12 PM 3.3

1305

Make sure the file path you provide is allowed by GSQL file output policy. When a

file path is not allowed by the policy, you will not be able to preview or download the

file.

Once you provide a valid file path, you will be able to preview and download the file.

Click to preview the file content (up to 1000 bytes).

Click to download the file.

3. Preview and download file

5/13/25, 9:12 PM 3.3

1306

Known Issues

Since TigerGraph supports HA for the application server in v3.1, GraphStudio and

Admin Portal data storage has to be updated. The HA enhancement caused a known

compatibility issue during solution import process from GraphStudio: a solution that

is created from "Export Current Solution" from a version released prior to v3.1

cannot be imported into v3.1. A solution exported from v3.1 will work with v3.1 and

can be imported through "Import An Existing Solution". Contact

support@tigergraph.com for a detailed workaround if you want to import a solution

tarball prior to TG3.1.

Due to the difference in users' information display compared to GSQL, Admin Portal

doesn't allow users with admin role to a graph to create/edit/delete users or assign a

user with a role to a graph. Superuser can manage users in this case. Users with

Admin role to a local graph can revoke roles to other users for this local graph.

Admin Portal shows a combination of roles for proxy users. Proxy user which

belongs to a proxy group inherits all the roles from the proxy group plus all the roles

the proxy user has. Therefore, if you want to revoke a role from a proxy user, you

need to revoke the role from the proxy group first. Then you might need to revoke

the same role from the proxy user if the proxy user also has that role.

Solution import from version lower than v3.1 is not
compatible with v3.1

Users with Admin role cannot Create/Edit/Delete users

Proxy user's roles might still exist after revoking

After upgrading to v3.1, downgrading from HTTPS to
HTTP (turn on/off SSL) will result in user authentication
failure

5/13/25, 9:12 PM 3.3

1307

In v3.1, TigerGraph enhanced the security configuration for cookie by setting a

secure flag when SSL is enabled, which may trigger an issue when using Chrome to

turn off SSL. Due to this security feature, when downgrading from HTTPS to HTTP,

Chrome will not allow setting the same cookie. This will result in user authentication

failure because the cookie fails to be set. To solve this problem, users can clear the

cache from Chrome and refresh the browser. Enabling from HTTP to HTTPS will

work as expected.

In v3.1, Cluster Monitoring Dashboard on Admin Portal with various metrics is not

highly available, as an exception to the continuous availability feature for Admin

Portal. This is because TS3 component which collects the metrics through TS3 API

is not highly available.

If you find any bugs, please report them to support@tigergraph.com. We really

appreciate it!

Monitoring Dashboard in Admin Portal is not Continuous
Available (Highly Available) in TG3.1

Report bugs to us

5/13/25, 9:12 PM 3.3

mailto:support@tigergraph.com.
mailto:support@tigergraph.com.

1308

Developer's Guides

5/13/25, 9:12 PM 3.3

1309

GSQL Language Reference
The GSQL™ software program is the TigerGraph comprehensive environment for

designing graph schemas, loading and managing data to build a graph, and

querying the graph to perform data analysis. In short, TigerGraph users do most of

their work via the GSQL program. This document presents the syntax and features

of the GSQL language.

This document is a reference manual, not a tutorial. The user should read the GET

STARTED Tutorial prior to using this document. There are also User Guides or

Tutorials for particular aspects of the GSQL environment. This document is best

used when the reader already has some basic familiarity with running GSQL and

then wants a more detailed understanding of a particular topic.

The GSQL Language Reference is divided into two major parts:

• Part 1 describes system basics, defining a graph schema, and loading data.

• Part 2 describes querying.

Each of the two parts also has appendices, with the formal grammar, reference data

models for examples, lists of reserved words, and more.

A handy GSQL Reference Card lists the syntax for the most commonly used GSQL

commands for graph definition and data loading.

In the documentation, code examples are either template code (formally describing

the syntax of part of the language) or actual code examples. Actual code examples

show code that can be run exactly as shown, e.g., copy-and-paste. Template code,

on the other hand, cannot be run exactly as shown because it uses placeholder

names and additional symbols to explain the syntax. It should be clear from context

whether an example is template code or actual code.

Documentation Notation

5/13/25, 9:12 PM 3.3

1310

This guide uses conventional notation for software documentation. In particular,

note the following:

• Long lines

For more convenient display, long statements in this guide may sometimes be
displayed on multiple lines. This is for display purposes only; the actual code

must be entered as a single line (unless the multi-line mode is used). When

necessary, the examples may show a shell prompt before the start of a
statement, to clearly mark where each statement begins.

Example: A SELECT query is grammatically a single statement, so GSQL requires

that it be entered as a single line.

However, the statement is easier to read and to understand when displayed one

clause per line:

• Repeated zero or more times

In template code, it is sometimes desirable to show that a term is repeated an

arbitrary number of times. For example, a vertex definition contains zero or more
user-defined attributes. A loading job contains one or more LOAD statements. In

formal template code, if an asterisk (Kleene star) immediately follows option

brackets, then the bracketed term can be repeated zero or more times. For
example:

means that the VALUES list contains at least one attribute expression. It may be

followed by any number of additional attribute expressions. Each additional attribute

expression must be preceded by a comma.

SELECT *|attribute_name FROM vertex_type_name [WHERE conditions] [ORDER BY

SELECT *|attribute_name
 FROM vertex_type_name
 [WHERE conditions]
 [ORDER BY attribute1,attribute2,...]
 [LIMIT k]

TO VERTEX|EDGE object_name VALUES (id_expr [, attr_expr]*)

Long statement displayed as one line

Long statement displayed on multiple lines but with only one prompt

5/13/25, 9:12 PM 3.3

1311

• Optional content
Square brackets are used to enclose a portion that is optional. Options can be

nested. Square brackets themselves are rarely used as part of the GSQL

language itself.
Example: In the RUN JOB statement, the -n flag is optional. If used, -n is to be

followed by a value.

Sometimes, options are nested, which means that an inner option can only be used

if the outer option is used:

means that first_line_num may be specified if and only if last_line_num is specified

first. These options provide three possible forms for this statement:

• Quotation Marks
When quotation marks are shown, they are to be typed as shown (unless stated

otherwise). A placeholder for a string value will not have quotation marks in the

template code, but if a template is converted to actual code, quotation marks
should be used around string values.

• Choices

The vertical bar | is used to separate the choices, when the syntax requires that

the user choose one out of a set of values. Example: Either the keyword VERTEX
or EDGE is to be used. Also, note the inclusion of quotation marks.

Template:

Possible actual values:

RUN JOB [-n count] job_name

RUN JOB [-n [first_line_num ,] last_line_num] job_name

RUN JOB job_name
RUN JOB -n last_line_num job_name
RUN JOB -n first_line_num , last_line_num job_name

LOAD " file_path " TO VERTEX|EDGE object_type_name VALUES (id_expr, attr_e

5/13/25, 9:12 PM 3.3

1312

The user-defined identifiers are edge_type_ name , vertex_type_name1,

vertex_type_name2, attribute_name and default_value . As explained in the

Create Vertex section, type is one of the attribute data types.

• Placeholder identifiers and values
In template code, any token that is not a keyword, a literal value, or punctuation

is a placeholder identifier or a placeholder value.

Example:

In a very few cases, some option keywords are case-sensitive. For example, in the
command to delete all data from the graph store,
clear graph store -HARD

the option -HARD must be in all capital letters.

• Shell prompts

Most of the examples in this document take place within the GSQL shell. When

clarity is needed, the GSQL shell prompt is represented by a greater-than arrow:
>
When a command is to be issued from the operating system, outside of the

GSQL shell, the prompt is the following: os$

• Keywords

In the GSQL language, keywords are not case sensitive, but user-defined
identifiers are case sensitive. In code examples, keywords are in ALL CAPS to

make clear the distinction between keywords and user-defined identifiers.

LOAD "data/users.csv" TO VERTEX user VALUES ($0, $1, $2)

CREATE UNDIRECTED EDGE edge_type_name (FROM vertex_type_name1 , TO vertex_
attribute_name type [DEFAULT default_value],...)

5/13/25, 9:12 PM 3.3

1313

Part 1 - Data Definition & Loading
This work is licensed under a Creative Commons Attribution 4.0 International

License.

System & Language Basics

Defining a Graph Schema

Modifying a Graph Schema

Creating a Loading Job

Running a Loading Job

5/13/25, 9:12 PM 3.3

1314

System & Language Basics

• Identifiers
Identifiers are user-defined names. An identifier consists of letters, digits, and

the underscore. Identifiers may not begin with a digit. Identifiers are case

sensitive.

• Keywords and Reserved Words

Keywords are words with a predefined semantic meaning in the language.
Keywords are not case sensitive. Reserved words are set aside for use by the

language, either now or in the future. Reserved words may not be reused as

user-defined identifiers. In most cases, a keyword is also a reserved word. For
example, VERTEX is a keyword. It is also a reserved word, so VERTEX may not

be used as an identifier.

• Statements

Each line corresponds to one statement (except in multi-line mode). Usually,

there is no punctuation at the end of a top-level statement. Some statements,
such as CREATE LOADING JOB, are block statements which enclose a set of

statements within themselves. Some punctuation may be needed to separate the

statements within a block.

• Comments
Within a command file, comments are text that is ignored by the language

interpreter.

Single line comments begin with either # or //. A comment may be on the same

line with interpreted code . Text to the left of the comment marker is interpreted,
and text to the right of the marker is ignored.

Multi-line comment blocks begin with /* and end with */

To enter the GSQL shell and work in interactive mode, type gsql from an operating

system shell prompt. A user name, password, and a graph name may also be

provided on the command line.

Language Basics

Running GSQL

5/13/25, 9:12 PM 3.3

1315

If a user name is provided but not a password, the GSQL system will then ask for the

user's password:

If a user name is not given, then GSQL will assume that you are attempting to log in

as the default tigergraph user:

To exit the GSQL shell, type either exit or quit at the GSQL prompt:

GSQL> EXIT or GSQL> QUIT

For added security, you can configure your GSQL client session to automatically

timeout after a period of inactivity. Set the GSQL_CLIENT_IDLE_TIMEOUT_SEC bash

environment variable=<num_sec>. Then every time you start a GSQL session, the

idle timeout will be applied. To disable the timeout, omit <num,_sec>. The default

setting is no timeout. Example, using the Linux export command to set the

environment variable:

gsql [-u username] [-p password] [-g gname]

os$ gsql -u victor
Password for victor : ***
GSQL >

os$ gsql
Password for tigergraph : *****
GSQL >

GSQL Client Session Timeout

GSQL command syntax for entering interactive mode

Login example with user name

Login example without user name

5/13/25, 9:12 PM 3.3

1316

Multiple shell sessions of GSQL may be run at the same time. This feature can be

used to have multiple clients (human or machine) using the system to perform

concurrent operations. A basic locking scheme is used to maintain isolation and

consistency.

In interactive mode, the default behavior is to treat each line as one statement; the

GSQL interpreter will activate as soon as the End-Of-Line character is entered.

Multi-line mode allows the user to enter several lines of text without triggering

immediate execution. This is useful when a statement is very long and the user

would like to split it into multiple lines. It is also useful when defining a JOB, because

jobs typically contain multiple statements.

To enter multi-line mode, use the command BEGIN. The end-of-line character is

now disabled from triggering execution. The shell remains in multi-line mode until

the command END is entered. The END command also triggers the execution of the

multi-line block. In the example below, BEGIN and END are used to allow the

SELECT statement to be split into several lines:

tigergraph@123:~$ export GSQL_CLIENT_IDLE_TIMEOUT_SEC=10
tigergraph@123:~$ gsql
Welcome to TigerGraph Developer Edition, free for non-production, research
GSQL-Dev > Session timeout after 10 seconds idle.
tigergraph@123:~$ export GSQL_CLIENT_IDLE_TIMEOUT_SEC=
tigergraph@123:~$ gsql
Welcome to TigerGraph Developer Edition, free for non-production, research

Multiple Shell Sessions

Multi-line Mode - BEGIN, END, ABORT

Example: BEGIN and END defining a multi-line block

5/13/25, 9:12 PM 3.3

1317

Alternately, the ABORT command exits multi-line mode and discards the multi-line

block.

A command file is a text file containing a series of GSQL statements. Blank lines

and comments are ignored. By convention, GSQL command files end with the suffix

. gsql , but this is not a requirement. Command files are automatically treated as

multi-line mode, so BEGIN and END statements are not needed. Command files may

be run either from within the GSQL shell by prefixing the filename with an @ symbol:

GSQL> @file.gsql

or from the operating system (i.e., a Linux shell) by giving the filename as the

argument after gsql:

os$ gsql file.gsql

Similarly, a single GSQL command can be run by enclosing the command string in

quotation marks and placing it at the end of the GSQL statement. Either single or

double quotation marks. It is recommended to use single quotation marks to

enclose the entire command and double quotation marks to enclose any strings

within the command.

In the example below, the file name_query.gsql contains the multi-line CREATE

QUERY block to define the query namesSimilar.

BEGIN
SELECT member_id, last_name, first_name, date_joined, status
 FROM Member
 WHERE age >= 21
 ORDER BY last_name, first_name
END

gsql [-u username] [-g graphname] ['command_string' | command_file]

Command Files and Inline Commands

Login example with inline command or command file

5/13/25, 9:12 PM 3.3

1318

The help command displays a summary of the available GSQL commands:

GSQL> HELP [BASIC|QUERY]

Note that the HELP command has options for showing more details about certain

categories of commands.

The ls command displays the catalog : all the vertex types, edge types, graphs,

queries, jobs, and session parameters which have been defined by the user.

The --reset option will clear the entire graph data store and erase all related

definitions (graph schema, loading jobs, and queries) from the Dictionary. The data

deletion cannot be undone; use with extreme caution. The REST++, GPE, and GSE

modules will be turned off.

The table below summaries the basic system commands introduced so far.

os$ gsql pagerank_query.gsql
os$ gsql 'INSTALL QUERY namesSimilar'
os$ gsql 'RUN QUERY namesSimilar (0,"michael","jackson",100)'

$ gsql --reset

Resetting the catalog.

Shutdown restpp gse gpe ...
Graph store /home/tigergraph/tigergraph/gstore/0/ has been cleared!
The catalog was reset and the graph store was cleared.

Help and Information

--reset option

Summary

Example using command files and inline commands

5/13/25, 9:12 PM 3.3

1319

Notes on the LS command

Starting with v1.2, the output of the LS command is sensitive to the user and the active
graph:

1. If the user has not set an active graph or specified "USE GLOBAL":

a. If the user is a superuser, then LS displays global vertices, global edges, and

all graph schemas.

b. If the user is not a superuser, then LS displays nothing (null).

2. If the user has set an active graph, then LS displays the schema, jobs, queries, and

other definitions for that particular graph.

Command Description

HELP[BASIC|QUERY]
Display the help menu for all or a subset of

the commands

LS

Display the catalog, which records all the

vertex types, edge types, graphs, queries,

jobs, and session parameters that have

been defined for the current active graph.

See notes below concerning graph- and

role-dependent visibility of the catalog.

BEGIN
Enter multi-line edit mode (only for console

mode within the shell)

END
Finish multi-line edit mode and execute the

multi-line block.

ABORT
Abort multi-line edit mode and discard the

multi-line block.

@file.gsql
Run the gsql statements in the command file

file.gsql from within the GSQL shell.

os$ gsql file.gsql
Run the gsql statements in the command file

file.gsql from an operating system shell.

os$ gsql 'command_string'
Run a single gsql statement from the

operating system shell.

os$ gsql --reset
Clear the graph store and erase the

dictionary.

5/13/25, 9:12 PM 3.3

1320

Session parameters are built-in system variables whose values are valid during the

current session; their values do not endure after the session ends. In interactive

command mode, a session starts and ends when entering and exiting interactive

mode, respectively. When running a command file, the session lasts during the

execution of the command file.

Use the SET command to set the value of a session parameter:

SET session_parameter = value

Session Parameter Meaning and Usage

sys.data_root

The value should be a string, representing

the absolute or relative path to the folder

where data files are stored. After the

parameter has been set, a loading statement

can reference this parameter with

$sys.data_root.

gsql_src_dir

The value should be a string, representing

the absolute or relative path to the root

folder for the gsql system installation. After

the parameter has been set, a loading

statement can reference this parameter with

$gsql_src_dir.

exit_on_error

When this parameter is true (default), if a

semantic error occurs while running a GSQL

command file, the GSQL shell will terminate.

Accepted parameter values: true, false

(case insensitive). If the parameter is set to

false, then a command file which is

syntactically correct will continue running,

even if certain runtime errors in individual

commands occur. Specifically, this affects

these commands:

• CREATE

• INSTALL QUERY

Session Parameters

5/13/25, 9:12 PM 3.3

1321

• RUN JOB

Semantic errors include a reference to a

nonexistent entity or an improper reuse of

an entity.

This session parameter does not affect

GSQL interactive mode; GSQL interactive

mode does not exit on any error.

This session parameter does not affect

syntactic errors: GSQL will always exit on a

syntactic error.

exitOnError.gsql
SET exit_on_error = FALSE

CREATE VERTEX v(PRIMARY_ID id INT, name STRING)
CREATE VERTEX v(PRIMARY_ID id INT, weight FLOAT) #error 1: can't define VE

CREATE UNDIRECTED EDGE e2 (FROM u, TO v) #error 2: vertex type u doesn't e
CREATE UNDIRECTED EDGE e1 (FROM v, TO v)

CREATE GRAPH g(v) #error 3: no graph definition has no edge type
CREATE GRAPH g2(*)

os$ gsql exitOnError.gsql

The vertex type v is created.
Semantic Check Fails: The vertex name v is used by another object! Please
failed to create the vertex type v
Semantic Check Fails: FROM or TO vertex type does not exist!
failed to create the edge type e2
The edge type e1 is created.
Semantic Check Fails: There is no edge type specified! Please specify at l
The graph g could not be created!

Restarting gse gpe restpp ...

Finish restarting services in 11.955 seconds!
The graph g2 is created.

Example of exit_on_error = FALSE

Results

5/13/25, 9:12 PM 3.3

1322

Each attribute of a vertex or edge has an assigned data type. The following types

are currently supported.

Name Default value
Valid input

format (regex)

Range and

precision
Description

INT 0 [-+]?[0-9]+

–2^63 to +2^63

- 1

(-9,223,372,03

6,854,775,808

to

9,223,372,036,

854,775,807)

8-byte signed

integer

UINT 0 [0-9]+

0 to 2^64 - 1

(18,446,744,07

3,709,551,615)

8-byte

unsigned

integer

FLOAT 0.0

[-+] ? [0 - 9]

* \. ? [0 - 9] +

([eE] [-+] ? [

0 - 9] +) ?

+/- 3.4 E

+/-38, ~7 bits

of precision

4-byte single-

precision

floating point

number

Examples:

3.14159,

.0065e14, 7E23

See note

below.

DOUBLE 0.0

[-+] ? [0 - 9]

* \. ? [0 - 9] +

([eE] [-+] ? [

0 - 9] +) ?

+/- 1.7 E

+/-308, ~15

bits of

precision

8-byte double-

precision

floating point

number.

Has the same

input and

output format

as FLOAT, but

the range and

precision are

Attribute Data Types

Primitive Types

5/13/25, 9:12 PM 3.3

1323

For FLOAT and DOUBLE values, the GSQL Loader supports exponential notation as
shown (e.g., 1.25 E-7).

The GSQL Query Language currently only reads values without exponents. It may
display output values with exponential notation, however.

Some numeric expressions may return a non-numeric string result, such as "inf" for
Infinity or "NaN" for Not a Number.

greater. See

note below.

BOOL false

true, false

(case

insensitive), 1,

0

true, false

boolean true

and false,

represented

within GSQL as

true and false ,

and

represented in

input and

output as 1 and

0

STRING Empty string .* UTF-8

character

string. The

string value

can optionally

be enclosed by

single quote

marks or

double quote

marks. Please

see the QUOTE

parameter in

Section "Other

Optional LOAD

Clauses".

Advanced Types

5/13/25, 9:12 PM 3.3

1324

Additionally, GSQL also supports the following complex data types:

• LIST : A list is an ordered collection of elements of the same type.

Name Default value
Supported data

format

Range and

Precision
Description

STRING
COMPRESS

(⚠ suitable

only in limited

circumstances

)

Empty string .* UTF-8

String with a

finite set of

categorical

values. More

compact

storage of

STRING, if

there is a

limited number

of different

values and the

value is rarely

accessed.

Otherwise, it

may use more

memory.

DATETIME UTC time 0

See Section "

Loading

DATETIME

Attribute "

1582-10-15

00:00:00 to

9999-12-31

23:59:59

Date and time

(UTC) as the

number of

seconds

elapsed since

the start of Jan

1, 1970. Time

zones are not

supported.

Displayed in

YYYY-MM-DD

hh:mm:ss

format.

FIXED_BINARY
(n)

N/A N/A

Stream of n

binary-

encoded bytes

Collection Types

5/13/25, 9:12 PM 3.3

1325

◦ Default value: an empty list []

◦ Supported element types: INT , UINT , DOUBLE , FLOAT , STRING , STRING
COMPRESS , DATETIME , and UDT

◦ To declare a list type, use angle brackets <> to enclose the element type,
e.g. LIST<STRING>.

Due to multithreaded GSQL loading, the initial order of elements loaded into a LIST
might be different than the order in which they appeared in the input data.

• SET : A set is an unordered collection of unique elements of the same type.

◦ Default value: an empty set ()

◦ Supported element types: INT , UINT , DOUBLE , FLOAT , STRING , STRING
COMPRESS , DATETIME , and UDT .

◦ To declare a set type, use angle brackets <> to enclose the element type,

e.g. SET<INT>

• MAP : A map is a collection of key-value pairs. It cannot contain duplicate keys

and each key maps to one value.

◦ Default value: an empty map

◦ Supported key types: INT , STRING , STRING COMPRESS , and DATETIME

◦ Supported value types: INT , DOUBLE , STRING , STRING COMPRESS ,
DATETIME , and UDT .

◦ To declare a map type, use <> to enclose the types, with a comma to

separate the key and value types, e.g., MAP<INT, DOUBLE> .

A User-Defined Tuple (UDT) represents an ordered structure of several fields of the

same or different types. The supported field types are listed below. Each field in a

UDT has a fixed size. A STRING field must be given a size in characters, and the

loader will only load the first given number of characters. An INT or UINT field can

optionally be given a size in bytes.

TYPEDEF TUPLE syntax

TYPEDEF TUPLE

5/13/25, 9:12 PM 3.3

1326

A UDT must be defined before being used as a field in a vertex type or edge type.

To define a UDT, use the TYPEDEF TUPLE statement. Below is an example of a

TYPEDEF TUPLE statement:

In the above example, myTuple is the name of the UDT. It contains four fields: an 1-

byte INT field named field1 , a 4-byte UINT field named field2 , a 10-character

STRING field named field3 , and an (8-byte) DOUBLE field named field4 .

TYPEDEF TUPLE "<" fieldName fieldType ["(" fieldSize ")"]
 ("," fieldName fieldType ["(" fieldSize ")"])* ">"

Field type User-specified size Size Range (N is size)

INT Optional
1, 2, 4 (default), or 8

bytes
0 to 2^(N*8) - 1

UINT Optional
1, 2, 4 (default), or 8

bytes

-2^(N*8 - 1) to

2^(N*8 - 1) - 1

FLOAT No 4 bytes -3.4 E-38 to 3.4 E38

DOUBLE No 8 bytes
-1.7 E-308 to 1.7

E308

DATETIME No

1582-10-15

00:00:00 to 9999-

12-31 23:59:59

BOOL No true or false

STRING Required
Any number of

characters

Any string under N

characters

Example: UDT Definition

TYPEDEF TUPLE <field1 INT(1), field2 UINT, field3 STRING(10), field4 D

5/13/25, 9:12 PM 3.3

1327

Defining a Graph Schema
Before data can be loaded into the graph store, the user must define a graph

schema. A graph schema is a "dictionary" that defines the types of entities,

vertices and edges, in the graph and how those types of entities are related to one

another. Each vertex or edge type has a name and a set of attributes (properties)

associated with it. For example, a Book vertex could have title, author, publication

year, genre, and language attributes.

In the figure below, circles represent vertex types, and lines represent edge types.

The labeling text shows the name of each type. This example has four types of

vertices: User, Occupation, Book, and Genre. Also, the example has 3 types of

edges: user_occupation, user_book_rating, and book_genre. Note that this diagram

does not say anything about how many users or books are in the graph database. It

also does not indicate the cardinality of the relationship. For example, it does not

specify whether a User may connect to multiple occupations.

An edge connects two vertices; in TigerGraph terminology these two vertices are

the source vertex and the target vertex . An edge type can be either directed or

undirected. A directed edge has a clear semantic direction, from the source vertex

to the target vertex. For example, if there is an edge type that represents a plane

flight segment, each segment needs to distinguish which airport is the origin

(source vertex) and which airport is the destination (target vertex). In the example

schema below, all of the edges are undirected. A useful test to decide whether an

edge should be directed or undirected is the following: "An edge type is directed if

knowing there is a relationship from A to B does not tell me whether there is a

relationship from B to A." Having nonstop service from Chicago to Shanghai does

not automatically imply there is nonstop service from Shanghai to Chicago.

5/13/25, 9:12 PM 3.3

1328

An expanded schema is shown below, containing all the original vertex and edge

types plus three additional edge types: friend_of, sequel_of, and user_book_read .

Note that friend_of joins a User to a User. The friendship is assumed to be

bidirectional, so the edge type is undirected. Sequel_of joins a Book to a Book but it

is directed, as evidenced by the arrowhead. The Two Towers is the sequel of The

Fellowship of the Ring , but the reverse is not true. User_book_read is added to

illustrate that there may be more than one edge type between a pair of vertex types.

The TigerGraph system user designs a graph schema to fit the source data and the

user's needs and interests. The TigerGraph system user should consider what type

Figure 1 - A schema for a User-Book-Rating graph

Figure 2 - Expanded-User-Book-Rating schema with additional edges

5/13/25, 9:12 PM 3.3

1329

of relationships are of interest and what type of analysis is needed. The TigerGraph

system lets the user modify an existing schema, so the user is not locked into the

initial design decision.

In the first schema diagram above, there are seven entities: four vertex types and

three edge types.You may wonder why it was decided to make Occupation a

separate vertex type instead of an attribute of User. Likewise, why is Genre a vertex

type instead of an attribute of Book? These are examples of design choices.

Occupation and Genre were separated out as vertex types because in graph

analysis, if an attribute will be used as a query variable, it is often easier to work

with as a vertex type.

Once the graph designer has chosen a graph schema, the schema is ready to be

formalized into a series of GSQL statements.

Graph Creation and Modification Privileges

Only superusers and globaldesigners can define global vertex types. global edge
types, and graphs, using CREATE VERTEX / EDGE / GRAPH.
However, once a graph has been created, its admin and designer users can customize
its schema, including adding new local vertex types and local edge types, by using a
SCHEMA_CHANGE JOB, described in the next section.

Available to superuser and globaldesigner roles only.

The CREATE VERTEX statement defines a new global vertex type, with a name and

an attribute list. At a high level of abstraction, the format is

More specifically, the syntax is as follows, assuming that the vertex ID is listed first:

CREATE VERTEX vertex_type_name (id_and_attribute_list) [vertex_options]

CREATE VERTEX

CREATE VERTEX Syntax

5/13/25, 9:12 PM 3.3

1330

Beginning with v2.3, there are two syntaxes for specifying the primary id/key:

Legacy PRIMARY_ID syntax: The legacy syntax remains valid, but there are additional
options and additional flexibility:

1. PRIMARY_ID and WITH primary_id_as attribute

2. PRIMARY KEY syntax. This syntax is modeled after SQL.

The primary_id is a required field whose purpose is to uniquely identify each vertex

instance. GSQL creates a hash index on the primary id with O(1) time complexity. Its

data type may be STRING, INT, or UINT. The syntax for the primary_id_name_type

term is as follows:

NOTE: In default mode, the primary_id field is not one of the attribute fields. The

purpose of this distinction is to minimize storage space for vertices. The functional

consequence of this difference is that a query cannot read the primary_id or use it

as part of an expression.

Example:

CREATE VERTEX vertex_type_name "(" primary_id_name_type
 ["," attribute_name type [DEFAULT default_value]]* ")"
 [WITH [STATS="none"|"outdegree_by_edgetype"][primary_id_as_attribute="

primary_id_name_type := PRIMARY_ID id_name id_type

CREATE VERTEX movie (PRIMARY_ID id UINT, name STRING, year UINT)
 WITH primary_id_as_attribute="true"

Keys and Attributes

PRIMARY_ID and WITH primary_id_as_attribute

PRIMARY KEY

5/13/25, 9:12 PM 3.3

1331

Instead of the legacy PRIMARY_ID syntax, starting with v2.3, GSQL now offers

another option for specifying the primary key. The keyword phrase PRIMARY KEY

may be appended to any one of the attributes in the attribute list, though it is

conventional for it to be the first attribute. Each vertex instance must have a unique

value for the primary key attribute. GSQL creates a hash index on the PRIMARY KEY

attribute with O(1) time complexity. It is recommended that the primary key data type

be STRING, INT, or UINT.

Note the differences between PRIMARY_ID and PRIMARY KEY:

1. "PRIMARY_ID" precedes the (name, type) pair. "PRIMARY KEY" follows the

(name, type) pair.

2. In default mode, a PRIMARY_ID is not an attribute, but the WITH

primary_id_as_attribute="true" clause can be used to make it an attribute.

Alternately, the PRIMARY KEY is always an attribute; the WITH option is

unneeded.

Example:

PRIMARY KEY is not supported in GraphStudio. If you define a vertex type using the
PRIMARY KEY syntax, you will not be able to operate on the graph with that vertex type
or the global schema in GraphStudio.

GSQL supports composite keys - grouping multiple attributes to create a primary

key for a specific vertex. To specify a composite key, use the keyword PRIMARY KEY

followed by the attributes that form the composite key enclosed in parentheses in

the CREATE VERTEX command.

primary_id_name_type := id_name_id_type PRIMARY KEY

CREATE VERTEX movie (id UINT PRIMARY KEY, name STRING, year UINT)

composite_id_name_type := PRIMARY KEY "(" attribute_name ("," attribute_na

Composite keys

5/13/25, 9:12 PM 3.3

1332

Example:

Composite keys are not supported in GraphStudio. If you define a vertex type with
composite keys, you will not be able to operate on the graph with that vertex type or
the global schema in GraphStudio.

The attribute list, enclosed in parentheses, is a list of one or more id definitions and

attribute descriptions separated by commas:

The available attribute types, including user-defined types, are listed in the section

Attribute Data Types.

1. Every attribute data type has a built-in default value (e.g., the default value for

INT type is 0). The DEFAULT default_value option overrides the built-in value.

2. Any number of additional attributes may be listed after the primary_id attribute.
Each attribute has a name, type, and optional default value (for primitive-type,

DATETIME, or STRING COMPRESS attributes only)

Example:

• Create vertex types for the graph schema of Figure 1.

CREATE VERTEX movie (id UINT, title STRING, year UINT, PRIMARY KEY (title,

primary_id_name_type
[, attribute_name type [DEFAULT default_value]]*

CREATE VERTEX User (PRIMARY_ID user_id UINT, name STRING, age UINT, gender
CREATE VERTEX Occupation (PRIMARY_ID occ_id UINT, occ_name STRING)
 WITH STATS="outdegree_by_edgetype"
CREATE VERTEX Book (PRIMARY_ID bookcode UINT, title STRING, pub_year UINT
 WITH STATS="none"
CREATE VERTEX Genre (PRIMARY_ID genre_id STRING, genre_name STRING)

Vertex Attribute List

Vertex definitions for User-Book-Rating graph

5/13/25, 9:12 PM 3.3

1333

Unlike the tables in a relational database, vertex types do not need to have a foreign

key attribute for one vertex type to have a relationship to another vertex type. Such

relationships are handled by edge types.

By default, when the loader stores a vertex and its attributes in the graph store, it

also stores some statistics about the vertex's outdegree – how many connections it

has to other vertices. The optional WITH STATS clause lets the user control how

much information is recorded. Recording the information in the graph store will

speed up queries which need degree information, but it increases the memory

usage. There are two* options. If "outdegree_by_edgetype" is chosen, then each

vertex records a list of degree count values, one value for each type of edge in the

schema. If "none" is chosen, then no degree statistics are recorded with each

vertex. If the WITH STATS clause is not used, the loader acts as if

"outdegree_by_edgetype" were selected.

The graph below has two types of edges between persons: phone_call and text. For

Bobby, the "outdegree_by_edgetype" option records how many phone calls Bobby

made (1) and how many text messages Bobby sent (2). This information can be

retrieved using the built-in vertex function outdegree(). To get the outdegree of a

specific edge type, provide the edgetype name as a string parameter. To get the

total outdegree, omit the parameter.

Figure 3 - Outdegree stats illustration

WITH STATS

5/13/25, 9:12 PM 3.3

1334

Available to superuser and globaldesigner roles only.

The CREATE EDGE statement defines a new global edge type. There are two forms

of the CREATE EDGE statement, one for directed edges and one for undirected

edges. Each edge type must specify that it connects FROM one vertex type TO

another vertex type. Additional pairs of FROM,To vertex types may be added. Then

additional attributes may be added. Each attribute follows the same requirements as

described in the Attribute List subsection for the "CREATE VERTEX" section.

As of v3.0, a single edge type can be defined between multiple pairs of vertex

types, e.g.

WITH STATS option

(case insensitive)
Bobby.outdegree()

Bobby.outdegree("t

ext")

Bobby.outdegree("p

hone_call")

"none" not available not available not available

"outdegree_by_edg

etype"

(default)

3 2 1

CREATE UNDIRECTED EDGE edge_type_name "("
 FROM vertex_type_name "," TO vertex_type_name
 ["|" FROM vertex_type_name, TO vertex_type_name]*
 ["," attribute_name type [DEFAULT default_value]]* ")"

CREATE DIRECTED EDGE edge_type_name "("
 FROM vertex_type_name "," TO vertex_type_name
 ["|" FROM vertex_type_name, TO vertex_type_name]*
 ["," attribute_name type [DEFAULT default_value]]* ")"
 [WITH REVERSE_EDGE="rev_name"]

CREATE EDGE

CREATE UNDIRECTED EDGE

CREATE DIRECTED EDGE

5/13/25, 9:12 PM 3.3

1335

Note that edges do not have a PRIMARY_ID field. Instead, each edge is uniquely

identified by a FROM vertex, a TO vertex, and optionally other attributes. The edge

type may also be a distinguishing characteristic. For example, as shown in Figure 2

above, there are two types of edges between User and Book. Therefore, both types

would have attribute lists which begin (FROM User, To Book,...).

An edge type can be defined which connects FROM and/or TO any of the currently

defined types of vertices. Use the wildcard symbol * to indicate "any vertex type".

For example, the any_edge type below can connect from any vertex to any other

vertex:

Note: If new vertex types are added after a wildcard edge type is defined, the new
vertex types are NOT included in the wildcard. That is, "*" is an alias for the vertex
types that existed at the point in time that the CREATE EDGE statement is executed.

If a CREATE DIRECTED EDGE statement includes the WITH REVERSE_EDGE="

rev_name " optional clause, then an additional directed edge type called " rev_name

" is automatically created, with the FROM and TO vertices swapped. Moreover,

whenever a new edge is created, a reverse edge is also created. The reverse edge

will have the same attributes, and whenever the principal edge is updated, the

corresponding reverse edge is also updated.

In a TigerGraph system, reverse edges provide the most efficient way to perform

graph queries and searches that need to look "backwards". For example, referring

CREATE DIRECTED EDGE member_of (FROM Person, TO Org | FROM Org, TO Org,
 joined DATETIME)

CREATE DIRECTED EDGE any_edge (FROM *, TO *, label STRING)

Creating an Edge from or to Any Vertex Type

WITH REVERSE_EDGE

Wildcard edge type

5/13/25, 9:12 PM 3.3

1336

to the schema of Figure 2, the query "What is the sequel of Book X, if it has one?" is

a forward search, usingsequel_of edges. However, the query "Is Book X a sequel? If

so, what Book came before X?" requires examining reverse edges.

Example:

Create undirected edges for the three edge types in Figure 1.

The user_occupation and book_genre edges have no attributes. A

user_book_rating edge symbolizes that a user has assigned a rating to a book.

Therefore it includes an additional attribute rating . In this case the rating

attribute is defined to be an integer, but it could just as easily have been set to be a

float attribute.

Example :

Create the additional edges depicted in Figure 2.

Every time the GSQL loader creates a sequel_of edge, it will also automatically

create a preceded_by edge, pointing in the opposite direction.

User-defined tuple types defined in a query cannot be used outside of its query or

across queries. To use a user-defined tuple or an accumulator that uses a user-

defined tuple across queries (such as for the return type of a subquery), the tuple

CREATE UNDIRECTED EDGE user_occupation (FROM User, TO Occupation)
CREATE UNDIRECTED EDGE book_genre (FROM Book, TO Genre)
CREATE UNDIRECTED EDGE user_book_rating (FROM User, TO Book, rating UINT,

CREATE UNDIRECTED EDGE friend_of (FROM User, TO User, on_date UINT)
CREATE UNDIRECTED EDGE user_book_read (FROM User, To Book, on_date UINT)
CREATE DIRECTED EDGE sequel_of (FROM Book, TO Book) WITH REVERSE_EDGE="pre

Catalog-level TYPEDEF

Edge definitions for User-Book-Rating graph

Additional Edge definitions for Expanded-User-Book-Rating graph

5/13/25, 9:12 PM 3.3

1337

and the accumulator type must be defined on the catalog level as part of the

schema. User-defined types at the catalog level can only be used for query return

value types, and cannot be used as an attribute data type.

TYPEDEF statements can be used outside of a query to define tuple types, GroupBy

accumulator types, and heap accumulator types. Once defined, all graphs in the

database have access to these user-defined types, and subqueries can be defined

to return the user-defined types.

The example below defines a tuple type myTuple and a heap accumulator type

myHeap , so that the subquery subquery1 can return a value of myHeap type to its

outer query query1 .

// Define the heap accumulator at the catalog level
TYPEDEF tuple<name string, friends int> myTuple
TYPEDEF HeapAccum<myTuple>(3, friends DESC) myHeap

CREATE QUERY subquery1() FOR GRAPH socialNet RETURNS (myHeap){
myHeap @@heap;
SumAccum<int> @friends;
Start = {person.*};
Start = select s from Start:s-(friend:e)-:t
 accum s.@friends += 1
 post-accum @@heap += myTuple(s.id,s.@friends);
RETURN @@heap;

}

CREATE QUERY query1() FOR GRAPH socialNet {
PRINT subquery1();

}

Example:

Special Options

Sharing a Compression Dictionary

5/13/25, 9:12 PM 3.3

1338

The STRING COMPRESS data type achieves compression by mapping each unique

attribute value to a small integer. The mapping table ("this string" = "this integer") is

called the dictionary. If two such attributes have the same or similar sets of possible

values, then it is desirable to have them share one dictionary because it uses less

storage space.

When a STRING COMPRESS attribute is declared in a vertex or edge, the user can

optionally provide a name for the dictionary. Any attributes which share the same

dictionary name will share the same dictionary. For example, v1.attr1, v1.attr2, and

e.attr1 below share the same dictionary named "e1".

User-defined indexes (or secondary indexes. as they are called commonly called in

the database industry) are a valuable feature that enhances the performance of a

database system. Indexes allow users to perform fast lookups on non-key columns

or attributes without a full-fledged scan.

The TigerGraph database allows users to define on vertex attributes. User has the

flexibility to create indexes in an empty graph initially or to add indexes later when

the database is running. If the index is added on an existing vertex, index data is

built in the background.

Indexes can be created on vertices on a single attribute of the following data types

only: STRING, UINT, INT, DATETIME, and STRING COMPRESS. Indexes will be used

to optimize queries with all predicate types. However, if a predicate uses an in-built

function, then index will not be used to optimize the query. Also, built-in queries are

not optimized using indexes.

Indexes are very important for data retrieval performance. However, adding indexes
will affect write performance. For this reason, users should be judicious about adding

CREATE VERTEX v1 (PRIMARY_ID main_id STRING, att1 STRING COMPRESS e1, att2
CREATE UNDIRECTED EDGE e (FROM v1, TO v2, att1 STRING COMPRESS e1)

CREATE INDEX

Shared STRING COMPRESS dictionaries

5/13/25, 9:12 PM 3.3

1339

indexes. Users should review the querying patterns to decide where Indexes can help.

Users can create and drop indexes using ALTER VERTEX command as shown below.

Example:

ALTER VERTEX User ADD INDEX user_country_index ON (country);

Available to superuser and globaldesigner roles only.

Multiple Graph support

If the optional MultiGraph service is enabled, CREATE GRAPH can be invoked multiple
times to define multiple graphs, and vertex types and edge types may be re-used
(shared) among multiple graphs. There is an option to assign an admin use for the new
graph.

After all the required vertex and edge types are created, the CREATE GRAPH

command defines a graph schema, which contains the given vertex types and edge

types, and prepares the graph store to accept data. The vertex types and edge

types may be listed in any order.

Syntax:

CREATE GLOBAL SCHEMA_CHANGE job <job-name>
{
 ALTER VERTEX object_type_name ADD INDEX index_type_name ON (attribute_na
 ALTER VERTEX vertex_type_name DROP INDEX index_type_name;
};

CREATE GRAPH

CREATE GRAPH syntax

5/13/25, 9:12 PM 3.3

1340

The optional WITH ADMIN clause sets the named user to be the admin for the new

graph.

As a convenience, executing CREATE GRAPH will set the new graph to be the

working graph.

Instead of providing a list of specific vertex types and edge types, it is also possible

to define a graph type that includes all the available vertex types and edge types. It

is also legal to create a graph with an empty domain. A SCHEMA_CHANGE can be

used later to add vertex and edge types.

Examples :

Create graph Book_rating for the edge and vertex types defined for Figure 1:

The following code example shows the full set of statements to define the expanded

user-book-rating graph:

CREATE GRAPH graph_name (vertex_or_edge_type, vertex_or_edge_type...)
 [WITH ADMIN username]
// Replace graph_name with the name you want to name the graph with
// Replace vertex_or_edge_type with the vertex and edge types you
// want to include in the graph

CREATE GRAPH everythingGraph (*)
CREATE GRAPH emptyGraph ()

CREATE GRAPH Book_rating (*)

Examples of CREATE GRAPH with all vertex & edge types and with an empty domain.

Graph definition for User-Book-Rating graph

Full definition for the Expanded User-Book-Rating graph

5/13/25, 9:12 PM 3.3

1341

CREATE GRAPH ... AS creates a tag-based graph of an existing graph. Tag-based

graphs include vertices with specific tags from their base graphs, and have their

own access control. Users can be granted roles on a tag-based graph and their

roles will give them privileges that only apply to the resources in the tag-based

graph.

This command can only be run on the base graph and requires the user to have the

schema-editing privilege on the base graph.

The syntax for creating tag-based graphs is the same as creating a regular graph

except that a base graph must be specified with the AS clause after the CREATE

GRAPH command, and the definition of the graph must include at least one tagged

vertex type. Edges are not tagged in a tag-based graph, but edges with either a

CREATE VERTEX User (PRIMARY_ID user_id UINT, name STRING, age UINT, gender
CREATE VERTEX Occupation (PRIMARY_ID occ_id UINT, occ_name STRING)
 WITH STATS="outdegree_by_edgetype"
CREATE VERTEX Book (PRIMARY_ID bookcode UINT, title STRING, pub_year UINT
 WITH STATS="none"
CREATE VERTEX Genre (PRIMARY_ID genre_id STRING, genre_name STRING)
CREATE UNDIRECTED EDGE user_occupation (FROM User, TO Occupation)
CREATE UNDIRECTED EDGE book_genre (FROM Book, TO Genre)
CREATE UNDIRECTED EDGE user_book_rating (FROM User, TO Book, rating UINT,
CREATE UNDIRECTED EDGE friend_of (FROM User, TO User, on_date UINT)
CREATE UNDIRECTED EDGE user_book_read (FROM User, To Book, on_date UINT)
CREATE DIRECTED EDGE sequel_of (FROM Book, TO Book) WITH REVERSE_EDGE="pre
CREATE GRAPH Book_rating (*)

<create_tag_graph> :=
 CREATE GRAPH <tag_graph_name> AS <base_graph_name>
 ("(" <tagged_element_name> ("," <tagged_element_name>)* ")" | ":" <ta

<tagged_element_name> := <tagged_vertex_name> | <edge_name>

<tagged_vertex_name> := <vertex_name> [":" <tag_expr>]

<tag_expr> := <tag> ("&" <tag_expr>)*

CREATE GRAPH ... AS (Beta)

Synopsis

5/13/25, 9:12 PM 3.3

1342

source or a target outside of the tag-based graph are not visible to users of the tag-

based graph.

Use the ampersand operator (&) to express vertices with multiple tags:

Use a colon to specify tags directly after the graph name to include everything in the

base graph that has the specified tags:

New requirement for MultiGraph support. Applies even if only one graph exists.

Before a user can make use of a graph, first the user must be granted a role on that

graph by an admin user of that graph or by a superuser. (Superusers are

automatically granted the admin role on every graph). Second, for each GSQL

session, the user must set a working graph. The USE GRAPH command sets or

changes the user's working graph, for the current session.

For more about roles and privileges, see the document Managing User Privileges

and Authentication.

CREATE GRAPH mixedNet AS socialNet(person:public&vip, post:public&tech&dum
friend, posted, liked)

CREATE GRAPH publicNet2 AS socialNet:public

USE GRAPH gname

Include vertices with multiple tags

Include everything in the base graph with specified tags

USE GRAPH

USE GRAPH syntax

5/13/25, 9:12 PM 3.3

1343

Instead of the USE GRAPH command, gsql can be invoked with the -g

<graph_name> option.

Available to superuser and globaldesigner roles only. The effect of this command takes
into account shared domains.

The DROP GRAPH deletes the logical definition of the named graph. Furthermore, it

will also delete all local vertex or edge types. Local vertex and edge types are

created by an ADD VERTEX/EDGE statement within a SCHEMA_CHANGE JOB and

so belong only to that graph. Any shared types are unaffected. To delete only

selected vertex types or edge types, see DROP VERTEX | EDGE in the Section

"Modifying a Graph Schema".

Available only to superusers.

The DROP ALL statement clears the graph store (i.e. deletes all data) and removes

all definitions from the catalog: vertex types, edge types, graph types, jobs, and

queries.

DROP ALL , along with all DROP operations, is nonreversible.

DROP GRAPH gname

DROP GRAPH

DROP ALL

SHOW - View Parts of the Catalog

DROP GRAPH syntax

5/13/25, 9:12 PM 3.3

1344

The SHOW command can be used to show certain aspects of the graph, instead of

manually filtering through the entire graph schema when using the ls command. You

can either type the exact identifier or use regular expression / Linux globbing to

search.

This feature supports the ? and * from linux globbing operations, and also regular

expression matching. Usage of the feature is limited to the scope of the graph the

user is currently in - if you are using a global graph, you will not be able to see

vertices that are not included in your current graph.

Regular expression searching will not work with escaping characters.

To use regular expressions, you will need to use the -r flag after the part of the

schema you wish to show. If you wish to dive deeper into regular expressions, visit

"Java Patterns" . The following are a few examples of what is supported by the

SHOW command.

SHOW <VERTEX> | <EDGE> | <JOB> | <QUERY> | <GRAPH> [<name> | <glob> | -r

Linux Globbing examples
SHOW VERTEX us* //shows all vertices that start with the letter
SHOW VERTEX co?*y //shows the vertex that starts with co and ends
SHOW VERTEX ????? //shows all vertices that are 5 letters long

Regular Expression Examples
SHOW VERTEX -r "skil{2}" //match the pattern "skill"
SHOW EDGE -r "test[1][13579]*" //match pattern that only contains odd n
SHOW JOB -r "[a-zA-Z]*" //match all jobs that contain only letters

5/13/25, 9:12 PM 3.3

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

1345

Modifying a Graph Schema
After a graph schema has been created , it can be modified. Data already stored in

the graph and which is not logically part of the change will be retained. For example,

if you had 100 Book vertices and then added an attribute to the Book schema, you

would still have 100 Books, with default values for the new attribute. If you dropped

a Book attribute, you still would have all your books, but one attribute would be

gone.

To safely update the graph schema, the user should follow this procedure:

• Create a SCHEMA_CHANGE JOB, which defines a sequence of ADD, ALTER
and/or DROP statements.

• Run the SCHEMA_CHANGE JOB (i.e. RUN SCHEMA_CHANGE JOB job_name), which

will do the following:

◦ Attempt the schema change.

◦ If the change is successful, invalidate any loading job or query definitions

which are incompatible with the new schema.

◦ if the change is unsuccessful, report the failure and return to the state before
the attempt.

A schema change will invalidate any loading jobs or query jobs which relate to an
altered part of the schema. Specifically:

• A loading job becomes invalid if it refers to a vertex or and an edge which has

been dropped (deleted) or altered .

• A query becomes invalid if it refers to a vertex, and edge, or an attribute which has

been dropped .

Invalid loading jobs are dropped, and invalid queries are uninstalled. After the schema
update, the user will need to create and install new load and query jobs based on the
new schema.

Jobs and queries for unaltered parts of the schema will still be available and do not

need to be reinstalled. However, even though these jobs are valid (e.g., they can be

run), the user may wish to examine whether they still perform the preferred

operations (e.g., do you want to run them?)

5/13/25, 9:12 PM 3.3

1346

Load or query operations which begin before the schema change will be completed
based on the pre-change schema. Load or query operations which begin after the
schema change, and which have not been invalidated, will be completed based on the
post-change schema.

Only a superuser or globaldesigner can add, alter, or drop global vertex types or

global edge types, which are those that are created using CREATE VERTEX or

CREATE ... EDGE. This rule applies even if the vertex or edge type is used in only

one graph. To make these changes, the user uses a GLOBAL SCHEMA_CHANGE

JOB.

An admin or designer user can add, alter, or drop local vertex types or local edge

types which are created in the context of that graph. Local vertex and edge types

are created using an ADD statement inside a SCHEMA_CHANGE JOB. To alter or

drop any of these local types, the admin user uses a regular SCHEMA_CHANGE

JOB.

Local graphs can define vertex and edge types independently of the vertex and edge
types in other graph. That is, the same name can be used in different graphs for
(different) vertex or edge types.

It is even permitted for a local graph and the global graph to use the same name for
their own vertex or edge types, as long as the global vertex/edge type is not used
within the local graph.

The two types of schema change jobs are described below.

The CREATE SCHEMA_CHANGE JOB block defines a sequence of ADD, ALTER, and

DROP statements for changing a particular graph. It does not perform the schema

change.

Global vs. Local Schema Changes

CREATE SCHEMA_CHANGE JOB (local)

5/13/25, 9:12 PM 3.3

1347

One use of CREATE SCHEMA_CHANGE JOB is to define an additional vertex type

and edge type to be the structure for a secondary index. For example, if you wanted

to index the postalCode attribute of the User vertex, you could create a

postalCode_idx (PRIMARY_ID id string, code string) vertex type and hasPostalCode

(FROM User, TO postalCode_idx) edge type. Then create an index structure having

one edge from each User to a postalCode_idx vertex.

By its nature, a SCHEMA_CHANGE JOB may contain multiple statements. If the job
block is used in the interactive GSQL shell, then the BEGIN and END commands should
be used to permit the SCHEMA_CHANGE JOB to be entered on several lines. if the job
is stored in a command file to be read in batch mode, then BEGIN and END are not
needed.

Remember to include a semicolon at the end of each DROP, ALTER, or ADD statement
within the JOB block.

If a SCHEMA_CHANGE JOB defines a new edge type which connects to a new vertex
type, the ADD VERTEX statement should precede the related ADD EDGE statement.
However, the ADD EDGE and ADD VERTEX statements can be in the same
SCHEMA_CHANGE JOB.

The ADD statement defines a new type of vertex or edge and automatically adds it

to a graph schema. The syntax for the ADD VERTEX | EDGE statement is analogous

to that of the CREATE VERTEX | EDGE | GRAPH statements. It may only be used

within a SCHEMA_CHANGE JOB.

CREATE SCHEMA_CHANGE JOB job_name FOR GRAPH graph_name {
 [sequence of DROP, ALTER, and ADD statements, each line ending with a
}

ADD VERTEX v_type_name (PRIMARY_ID id type [',' attribute_list]) [WITH STA
ADD UNDIRECTED EDGE e_type_name (FROM v_type_name',' TO v_type_name [',' e
ADD DIRECTED EDGE e_type_name (FROM v_type_name',' TO v_type_name [',' edg
 [WITH REVERSE_EDGE '=' "rev_name"];

ADD VERTEX | EDGE (local)

CREATE SCHEMA_CHANGE JOB syntax

ADD VERTEX / UNDIRECTED EDGE / DIRECTED EDGE

5/13/25, 9:12 PM 3.3

1348

The ALTER statement adds attributes to or removes attributes from an existing

vertex type or edge type. It may only be used within a SCHEMA_CHANGE JOB . The

basic format is as follows:

ALTER ... ADD can add attributes to vertex or edge types.

Added attributes are appended to the end of the schema. The new attributes may

include DEFAULT fields. To add attributes to a vertex type, the syntax is as follows:

For example:

To add to an edge's endpoint vertex types or attributes, the syntax is as follows:

ALTER VERTEX|EDGE object_type_name ADD|DROP (attribute_list);

ALTER VERTEX ... ADD

ALTER VERTEX vertex_type_name ADD
 ATTRIBUTE (attribute_name type [DEFAULT default_value]
 [',' attribute_name type [DEFAULT default_value]]*);

ALTER VERTEX Company ADD ATTRIBUTE (industry
STRING, marketcap DOUBLE)

ALTER EDGE... ADD

ALTER EDGE edge_type_name ADD
 [ATTRIBUTE (attribute_name type [DEFAULT default_value]
 [',' attribute_name type [DEFAULT default_value]]*)];

ALTER VERTEX | EDGE

ALTER ... ADD

ALTER VERTEX / EDGE

5/13/25, 9:12 PM 3.3

1349

ALTER EDGE ... ADD PAIR adds one or more edge pairs, which refer to the FROM

and TO vertex types of an edge type. To add an edge pair, put the vertex type

names in parentheses after keywords FROM and TO .

Syntax

Example

In the example below, the first statement in the schema change job will add an edge

pair (FROM person, TO company) to the edge type visit . The second example

adds two edge pairs to the edge type has_pet ; the edge type can now connect

both person and dog vertices, as well as person and bird vertices.

The syntax for ALTER ... DROP is analogous to that of ALTER ... ADD.

The statement ALTER VERTEX WITH TAGGABLE is used to mark a vertex type as

taggable or untaggable. Vertex types are untaggable by default. When a vertex type

is marked as taggable, the vertex type can be used to create a tag-based graph.

ALTER EDGE edgeType ADD PAIR
"(" FROM vertexType, TO vertexType (| FROM vertexType, TO vertexType)* ")”

CREATE SCHEMA_CHANGE JOB job2 FOR GRAPH example_graph {
 ALTER EDGE visit ADD PAIR (FROM person, TO company);
 ALTER EDGE has_pet ADD PAIR (FROM person, TO dog | FROM person, TO bird)
}

ALTER VERTEX|EDGE object_type_name DROP ATTRIBUTE (
 attribute_name [',' attribute_name]*);

ALTER EDGE .. ADD PAIR

ALTER ... DROP

ALTER VERTEX ... WITH (Beta)

ALTER ... DROP

5/13/25, 9:12 PM 3.3

1350

Additionally, users with the tag-access privilege can tag vertices whose vertex type

is marked as taggable.

The DROP statement removes the specified vertex type or edge type from the

database dictionary. The DROP statement should only be used when graph

operations are not in progress.

For tuples that are defined within a graph schema, you can drop them by using the

following command.

ADD TAG defines a tag for the graph. Tags can be used to create tag-based graphs,

allowing for finer grain access control.

ALTER VERTEX v_type_name WITH TAGGABLE = ("true" | "false")

DROP VERTEX v_type_name [',' v_type_name]*
DROP EDGE e_type_name [',' e_type_name]*

DROP TUPLE tuple_name [',' tuple_name]*

ADD TAG <tag_name> [DESCRIPTION <tag_description>]

DROP VERTEX | EDGE (local)

DROP TUPLE

ADD TAG

ALTER VERTEX WITH TAGGABLE

drop vertex / edge

drop tuple

Syntax for ADD TAG

5/13/25, 9:12 PM 3.3

1351

DROP TAG drops a tag or multiple tags from the schema, and deletes the tag from

each vertex to which it is attached. DROP TAG cannot be run if the tag to be dropped

is used in the definition of a tag-based graph; the graph must be dropped first.

RUN SCHEMA_CHANGE JOB job_name performs the schema change job. After the

schema has been changed, the GSQL system checks all existing GSQL queries. If an

existing GSQL query uses a dropped vertex, edge, or attribute, the query becomes

invalid, and GSQL will show the message "Query query_name becomes invalid after

schema update, please update it.".

Below is an example. The schema change job add_reviews adds a Review vertex

type and two edge types to connect reviews to users and books, respectively.

To drop (remove) a schema change job, run DROP JOB schema_change_job name

from the GSQL shell. The specific schema change job will be removed from GSQL.

Refer to the Creating a Loading Job page for more information about dropping jobs.

DROP TAG <tag_name> ["," <tag_name>]*

USE GRAPH Book_rating
CREATE SCHEMA_CHANGE JOB add_reviews FOR GRAPH Book_rating {
 ADD VERTEX Review (PRIMARY_ID id UINT, review_date DATETIME, url STRIN
 ADD UNDIRECTED EDGE wrote_review (FROM User, TO Review);
 ADD UNDIRECTED EDGE review_of_book (FROM Review, TO Book);
}
RUN SCHEMA_CHANGE JOB add_reviews

DROP TAG

RUN SCHEMA_CHANGE JOB

DROP SCHEMA_CHANGE JOB

Syntax for DROP TAG

SCHEMA_CHANGE JOB example

5/13/25, 9:12 PM 3.3

1352

The USE GLOBAL command changes a superuser's mode to Global mode. In global
mode, a superuser can define or modify global vertex and edge types, as well as
specifying which graphs use those global types. For example, the user should run USE
GLOBAL before creating or running a GLOBAL SCHEMA_CHANGE JOB.

The CREATE GLOBAL SCHEMA_CHANGE JOB block defines a sequence of ADD , ALTER ,

and DROP statements that modify either the attributes or the graph membership of

global vertex or edge types. Unlike the non-global schema change job, the header

does not include a graph name. However, the ADD / ALTER / DROP statements in the

body do mention graphs.

Although both global and local schema change jobs have ADD and DROP

statements, they have different meanings. The table below outlines the differences.

GSQL > USE GRAPH Book_rating
GSQL > DROP JOB local_schema_change123
The job local_schema_change_change123 is dropped!

CREATE GLOBAL SCHEMA_CHANGE JOB job_name {
 [sequence of global DROP, ALTER, and ADD statements, each line ending
}

Local Global

ADD

Defines a new local

vertex/edge type;

adds it to the graph's

domain

Adds one or more existing

global

vertex/edge types to a

graph's domain.

Deletes a local vertex/edge

type

Removes one or more

existing global

USE GLOBAL

CREATE GLOBAL SCHEMA_CHANGE JOB

CREATE GLOBAL SCHEMA_CHANGE JOB syntax

5/13/25, 9:12 PM 3.3

1353

Remember to include a semicolon at the end of each DROP , ALTER , or ADD
statement within the JOB block.

The ADD statement adds existing global vertex or edge types to one of the graphs.

The ALTER statement is used to add attributes to or remove attributes from an existing
global vertex type or edge type. The ALTER VERTEX / EDGE syntax for global schema
changes is the same as that for local schema change jobs.

The ALTER statement is used to add attributes to or remove attributes from an

existing vertex type or edge type. It can also be used to add or remove source

(FROM) vertex types or destination (TO) vertex types of an edge type. It may only

be used within a SCHEMA_CHANGE JOB. The basic format is as follows:

DROP and its vertex/edge

instances

vertex/edge types from a

graph's domain.

ALTER
Adds or drops attributes

from a local

vertex/edge type.

Adds or drops attributes

from a global vertex/edge

type, which may affect

several graphs.

ADD VERTEX v_type_name [',' v_type_name...] TO GRAPH gname;
ADD EDGE e_type_name [',' e_type_name...] TO GRAPH gname;

ALTER VERTEX|EDGE object_type_name ADD|DROP (attribute_list);

ADD VERTEX | EDGE (global)

ALTER VERTEX | EDGE

ADD VERTEX / UNDIRECTED EDGE / DIRECTED EDGE (Global)

ALTER VERTEX / EDGE

5/13/25, 9:12 PM 3.3

1354

Added attributes are appended to the end of the schema. The new attributes may

include DEFAULT fields. To add attributes to a vertex type, the syntax is as follows:

For example:

To add to an edge's endpoint vertex types or attributes, the syntax is as follows:

For example:

ALTER EDGE ... ADD PAIR adds one or more edge pairs, which refer to the FROM

and TO vertex types of an edge type. To add an edge pair, put the vertex type

names in parentheses after keywords FROM and TO .

ALTER VERTEX ... ADD

ALTER VERTEX vertex_type_name ADD
 ATTRIBUTE (attribute_name type [DEFAULT default_value]
 [',' attribute_name type [DEFAULT default_value]]*);

ALTER VERTEX Company ADD ATTRIBUTE (industry
STRING, marketcap DOUBLE)

ALTER EDGE... ADD

ALTER EDGE edge_type_name ADD
 [FROM (vertex_type_name [','vertex_type_name])]
 [TO (vertex_type_name [','vertex_type_name])]
 [ATTRIBUTE (attribute_name type [DEFAULT default_value]
 [',' attribute_name type [DEFAULT default_value]]*)];

ALTER EDGE Like ADD TO (Animal) ATTRIBUTE (suggested_by STRING)

ALTER ... ADD

ALTER EDGE .. ADD PAIR

5/13/25, 9:12 PM 3.3

1355

Syntax

Example

In the example below, the first statement in the schema change job will add an edge

pair (FROM person, TO company) to the edge type visit . The second example

adds two edge pairs to the edge type has_pet ; the edge type can now connect

both person and dog vertices, as well as person and bird vertices.

The syntax for ALTER ... DROP is analogous to that of ALTER ... ADD .

The statement ALTER VERTEX WITH TAGGABLE is used to mark a vertex type as

taggable or untaggable. Vertex types are untaggable by default. When a vertex type

is marked as taggable, the vertex type can be used to create a tag-based graph.

Additionally, users with the tag-access privilege can tag vertices whose vertex type

is marked as taggable.

ALTER EDGE edgeType ADD PAIR
"(" FROM vertexType, TO vertexType (| FROM vertexType, TO vertexType)* ")”

CREATE GLOBAL SCHEMA_CHANGE JOB job2 FOR GRAPH example_graph {
 ALTER EDGE visit ADD PAIR (FROM person, TO company);
 ALTER EDGE has_pet ADD PAIR (FROM person, TO dog | FROM person, TO bird)
}

ALTER VERTEX|EDGE object_type_name DROP ATTRIBUTE (
 attribute_name [',' attribute_name]*);

ALTER VERTEX v_type_name WITH TAGGABLE = ("true" | "false")

ALTER ... DROP

ALTER VERTEX ... WITH (Beta)

ALTER ... DROP

ALTER VERTEX WITH TAGGABLE

5/13/25, 9:12 PM 3.3

1356

The DROP statement removes specified global vertex or edge types from one of the
graphs. The command does not delete any data.

RUN GLOBAL SCHEMA_CHANGE JOB job_name performs the global schema change
job. After the schema has been changed, the GSQL system checks all existing GSQL
queries. If an existing GSQL query uses a dropped vertex, edge, or attribute, the query
becomes invalid, and GSQL will show the message "Query query_name becomes
invalid after schema update, please update it.".

Below is an example. The schema change alter_friendship_make_library drops the

on_date attribute from the friend_of edge and adds Book type to the library graph.

Global schema change jobs can be dropped by using the DROP JOB command.

Refer to the Creating a Loading Job page for more information about dropping jobs.

DROP VERTEX v_type_name [',' v_type_name...] FROM GRAPH gname;
DROP EDGE e_type_name [',' e_type_name...] FROM GRAPH gname;

USE GLOBAL
CREATE GRAPH library()
CREATE GLOBAL SCHEMA_CHANGE JOB alter_friendship_make_library {
 ALTER EDGE friend_of DROP ATTRIBUTE (on_date);
 ADD VERTEX Book TO GRAPH library;
}
RUN GLOBAL SCHEMA_CHANGE JOB alter_friendship_make_library

DROP VERTEX | EDGE (global)

RUN GLOBAL SCHEMA_CHANGE JOB

DROP GLOBAL SCHEMA_CHANGE JOB

drop vertex / edge

GLOBAL SCHEMA_CHANGE JOB example

5/13/25, 9:12 PM 3.3

1357

The DROP ALL command clears all graph data, all graph schemas, all loading jobs,

and all queries. It should only be used when the intent is to erase an entire database

design and to start over.

This command is only available to superusers and only when they are in global

mode.

USE GLOBAL
DROP JOB alter_friendship_make_library

DROP ALL

DROP GLOBAL SCHEMA_CHANGE JOB example

5/13/25, 9:12 PM 3.3

1358

Creating a Loading Job
After a graph schema has been created, the system is ready to load data into the

graph store. The GSQL language offers easy-to-understand and easy-to-use

commands for data loading which perform many of the same data conversion,

mapping, filtering, and merging operations that are found in enterprise ETL (Extract,

Transform, and Load) systems.

The GSQL system can read structured or semistructured data from text files. The

loading language syntax is geared towards tabular or JSON data, but conditional

clauses and data manipulation functions allow for reading data that is structured in a

more complex or irregular way. For tabular data, each line in the data file contains a

series of data values, separated by commas, tabs, spaces, or any other designated

ASCII characters (only single character separators are supported). A line should

contain only data values and separators, without extra whitespace. From a tabular

view, each line of data is a row, and each row consists of a series of column values.

Loading data is a two-step process. First, a loading job is defined. Next, the job is

executed with a RUN LOADING JOB statement. These two statements, and the

components of the loading job, are detailed below.

The structure of a loading job will be presented hierarchically, top-down:

CREATE LOADING JOB, which may contain a set of DEFINE and LOAD statements

• DEFINE statements

• LOAD statements, which can have several clauses

All blank spaces are meaningful in string fields in CSV and JSON. Either pre-process
your data files to remove extra spaces, or use GSQL's token processing functions
gsql_trim , gsql_ltrim , and gsql_rtrim (Built-in Loader Token Functions).

Loading job capabilities

5/13/25, 9:12 PM 3.3

1359

TigerGraph's syntax for defining and running loading jobs offers several

advantages:

• The TigerGraph platform can handle concurrent loading jobs, which can greatly

increase throughput.

• The data file locations can be specified at compile time or at run time. Run-time
settings override compile-time settings.

• A loading job definition can include several input files. When running the job, the

user can choose to run only part of the job by specifying only some of the input

files.

• Loading jobs can be monitored, aborted, and restarted.

Among its several duties, the RESTPP component manages loading jobs. There can

be multiple RESTPP-LOADER subcomponents, each of which can handle a loading

job independently. The maximum number of concurrent loading jobs is set by the

configuration parameter FileLoader.ReplicaNumber .

Furthermore, if the TigerGraph graph is distributed (partitioned) across multiple

machine nodes, each machine's RESTPP-LOADER(s) can be put into action. Each

RESTPP-LOADER only reads local input data files, but the resulting graph data can

be stored on any machine in the cluster.

To maximize loading performance in a cluster, use at least two loaders per machine,
and assign each loader approximately the same amount of data.

A concurrent-capable loading job can logically be separated into parts according to

each file variable. When a concurrent-capable loading job is compiled, a RESTPP

endpoint is generated for the loading job, which you can call to load data into your

graph as an alternative to RUN LOADING JOB .

Example loading jobs and data files for the book_rating schema defined earlier in the
document are available in the $(gadmin config get
System.AppRoot)/document/examples folder in your TigerGraph platform installation.

Concurrent Loading

5/13/25, 9:12 PM 3.3

1360

The CREATE LOADING JOB statement is used to define a block of DEFINE, LOAD,

and DELETE statements for loading data to or removing data from a particular graph.

The sequence of statements is enclosed in curly braces. Each statement in the

block, including the last one, should end with a semicolon.

LOAD or DELETE Statements

****A loading job may contain either LOAD or DELETE statements but not both.
A loading job that includes both will be rejected when the CREATE statement is
executed.

CREATE LOADING JOB syntax

CREATE LOADING JOB job_name FOR GRAPH graph_name {
 [zero or more DEFINE statements;]
 [zero or more LOAD statements;] | [zero or more DELETE statements;]
}

Loading Job Example

CREATE LOADING JOB job1 FOR GRAPH graph1 {
 # File path specified at complile time
 DEFINE FILENAME file1 = "/data/v1.csv";
 DEFINE FILENAME file2;

 LOAD file1 TO VERTEX v1 VALUES ($0, $1, $2);
 LOAD file2 TO EDGE e2 VALUES ($0, $1);
}

Run-time specification will override path specified at compile time
RUN LOADING JOB job1 USING file1="m1:/data/v1_1.csv", file2="m2:/data/

CREATE LOADING JOB

Example:

5/13/25, 9:12 PM 3.3

1361

To drop (remove) a job, run DROP JOB job_name . The job will be removed from

GSQL. To drop all jobs, run either of the following commands:

The scope of ALL depends on the user's current scope. If the user has set a working
graph, then DROP ALL removes all the jobs for that graph. If a superuser has set their
scope to be global, then DROP ALL removes all jobs across all graph spaces.

A DEFINE statement is used to define a local variable or expression to be used by

the subsequent LOAD statements in the loading job.

The DEFINE FILENAME statement defines a filename variable. The variable can then

be used later in the JOB block by a LOAD statement to identify its data source.

Every concurrent loading job must have at least one DEFINE FILENAME statement.

The filevar _ _is optionally followed by a filepath_string , which tells the job

where to find input data. As the name suggests, _filepath_string _is a string value.

Therefore, it should start and end with double quotes.

filepath_string

DROP JOB ALL
DROP JOB *

DEFINE FILENAME filevar ["=" filepath_string];
filepath_string = (path | " all :" path | " any :" path | mach_aliases "
mach_aliases = name["|"name]*

DROP JOB statement

DEFINE statements

DEFINE FILENAME

5/13/25, 9:12 PM 3.3

1362

There are four options for _filepath_string _:

• path _: _either an absolute path or relative path for either a file or a folder on the

machine where the job is run. If it is a folder, then the loader will attempt to load

each non-hidden file in the folder.

If this path is not valid when CREATE LOADING JOB is executed, GSQL will report an
error.

An absolute path may begin with the session variable $sys.data_root.

Then, when running this loading job, first set a value for the parameter, and then run

the job:

As the name implies, session parameters only retain their value for the duration of

the current GSQL session. If the user exits GSQL, the settings are lost.

• "all:" path : If the path is prefixed with all: , then the loading job will attempt

to run on every machine in the cluster which has a RESTPP component, and

each machine will look locally for data at path. If the path is invalid on any of the

path examples

"/data/graph.csv"

Example: using sys.data_root in a loading job

CREATE LOADING JOB filePathEx FOR GRAPH gsql_demo {
 LOAD "$sys.data_root/persons.csv" TO ...
}

Example: Setting sys.data_root session parameter

SET sys.data_root="/data/mydata"
RUN JOB filePathEx

5/13/25, 9:12 PM 3.3

1363

machines, the job will be aborted. Also, the session parameter $sys.data_root

may not be used.

• "any:" path : If the path is prefixed with any: , then the loading job will
attempt to run on every machine in the cluster which has a RESTPP component,

and each machine will look locally for data at the specified path. **If the path is

invalid on any of the machines, those machines where the path is not valid are
skipped. **Also, the session parameter $sys.data_root may not be used.

• A list of machine-specific paths: A machine_alias is a name such as m1, m2,
etc. which is defined when the cluster configuration is set. For this option, the

_filepath_string _may include a list of paths, separated by commas. If several

machines have the same path, the paths can be grouped together by using a list
of machine aliases, with the vertical bar "|" as a separator. The loading job will

run on whichever machines are named; each RESTPP-LOADER will work on its

local files.

The DEFINE HEADER statement defines a sequence of column names for an input

data file. The first column name maps to the first column, the second column name

maps to the second column, etc.

ALL:path examples

"ALL:/data/graph.csv"

ANY:path examples

"ANY:/data/graph.csv"

machine-specific path example

"m1:/data1.csv, m2|m3|m5:/data/data2.csv"

DEFINE HEADER

5/13/25, 9:12 PM 3.3

1364

The DEFINE INPUT_LINE_FILTER statement defines a named Boolean expression

whose value depends on column attributes from a row of input data. When

combined with a USING reject_line_rule clause in a LOAD statement, the filter

determines whether an input line is ignored or not.

A LOAD statement describes how to parse a data line into column values (tokens),

and then describes how the values should be used to create a new vertex or edge

instance. One LOAD statement can be used to generate multiple vertices or edges,

each vertex or edge having its own destination clause, as shown below. Additionally,

two or more LOAD statements may refer to the same input data file. In this case, the

GSQL loader will merge their operations so that both of their operations are

executed in a single pass through the data file.

The LOAD statement has many options. This reference guide provides examples of

key features and options. The Knowledge Base and FAQs_** **_and the tutorials,

such as GSQL 101, provide additional solution- and application-oriented examples.

Different LOAD statement types have different rules for the USING clause; see the

USING clause section below for specifics.

DEFINE HEADER header_name = " column_name "[," column_name "]*;

DEFINE INPUT_LINE_FILTER filter_name = boolean_expression_using_column_var

DEFINE INPUT_LINE_FILTER

LOAD statement

Syntax

5/13/25, 9:12 PM 3.3

1365

filevar _ _must have been previously defined in a DEFINE FILENAME statement.

filepath_string _ _must satisfy the same rules given above in the DEFINE

FILENAME section.

A Destination clause** **describes how the tokens from a data source should be

used to construct one of three types of data objects: a vertex, an edge, or a row in a

temporary table (TEMP_TABLE). The destination clause formats for the three types

are very similar, but we show them separately for clarity:

For the TO VERTEX and TO EDGE destination clauses, the following rules for its

parameters apply:

• The _ vertex_type_name _or _ edge_type_name _must match the name of a
vertex or edge type previously defined in a CREATE VERTEX or CREATE
UNDIRECTED|DIRECTED EDGE statement.

LOAD [filepath_string|filevar|TEMP_TABLE table_name]
 Destination_Clause [, Destination_Clause]*
 [TAGS clause]
 [USING clause];

Vertex Destination Clause

TO VERTEX vertex_type_name VALUES (id_expr [, attr_expr]*)
 [WHERE conditions] [OPTION (options)]

Edge Destination Clause

TO EDGE edge_type_name VALUES (source_id_expr [source_type_expr],
 target_id_expr [target_type_expr]
 [, attr_expr]*)
 [WHERE conditions] [OPTION (options)]

Destination clause

5/13/25, 9:12 PM 3.3

1366

• The values in the value list_(id_expr , attr_expr1 , attr_expr2 ,...) _are

assigned to the id(s) and attributes of a new vertex or edge instance, in the
same order in which they are listed in the CREATE statement.

• _ id_expr _obeys the same attribute rules as attr_expr , except that _only

attr_expr _can use the reducer function, which is introduced later.

• For edge clauses, the source_id_expr and target_id_expr can each

optionally be followed by a source_type_expr and target_type_expr ,
respectively. The source_type_expr and target_type_expr must evaluate to

one of the allowed endpoint vertex types for the given edge type. By specifying

the vertex type, this tells the loader what id types to expect. This may be

important when the edge type is defined to accept more than one type of
source/target vertex.

The TO TEMP_TABLE clause defines a new, temporary data structure. Its unique

characteristics will be described in a separate subsection. For now, we focus on TO

VERTEX and TO EDGE .

For fast loading of edge data, referential integrity checking is disabled by default.

For an edge to be valid, it must refer to endpoint vertices that exist. To support fast,
out-of-order loading,** if one or both of the endpoint vertices do not yet exist, the
loader will create vertices with the necessary IDs and default attribute values.** Due to
the loader's UPSERT semantics, if the vertex data is loaded later, it will be automatically
merged with the dummy vertices. The user can disable this feature and perform regular
referential integrity checking by setting the VERTEX_MUST_EXIST=true option.

Suppose we have the following vertex and edge types:

TEMP_TABLE Destination Clause

TO TEMP_TABLE table_name (id_name [, attr_name]*)
 VALUES (id_expr [, attr_expr]*)
 [WHERE conditions] [OPTION (options)]

Examples

5/13/25, 9:12 PM 3.3

1367

A Visit edge can connect two Person vertices or a Person to a Company . A

Person has a string ID, while a Company has an INT ID. Then suppose the Visit

edge source data comes from a single CSV file, containing both variants of edges.

Note that the 2nd column ($1) contains either Person or Company , and that the 3rd

column ($2) contains either a string or an integer.

Using the optional target_type_expr field, we can load both variants of the Visit

edge with a single clause.

Known issue: you must include a USING clause when loading data into edge types
with different FROM-TO vertex pairs, even if all options are default.

A LOAD statement processes each line of an input file, splitting each line (according

to the SEPARATOR character, see Section "Other Optional LOAD Clauses" for more

details) into a sequence of tokens. Each destination clause provides a token-to-

attribute mapping which defines how to construct a new vertex, an edge, or a temp

table row instance (e.g., one data object). The tokens can also be thought of as the

column values in a table. There are two ways to refer to a column, by position or by

name. Assuming a column has a name, either method may be used, and both

methods may be used within one expression.

CREATE VERTEX Person (pid STRING PRIMARY KEY, birthdate DATETIME)
CREATE VERTEX Company (cid INT PRIMARY KEY, industry STRING)
CREATE DIRECTED EDGE Visit (FROM Person, TO Person
 | FROM Person, TO Company, year INT)

Sam,Person,Joe,2012
Sam,Company,4057,2017
Chris,Company,9401,2016
Pat,Person,Taylor,2020

LOAD file1 TO EDGE Visit VALUES ($0, $2 $1, $3) USING separator=",";

Attributes and Attribute Expressions

5/13/25, 9:12 PM 3.3

1368

By Position: The columns (tokens) are numbered from left to right, starting with $0.

The next column is $1, and so on.

By Name: Columns can be named, either through a header line in the input file, or

through a DEFINE HEADER statement. If a header line is used, then the first line of

the input file should be structured like a data line, using the same separator

characters, except that each column contains a column name string instead of a

data value. Names are enclosed in double quotes, e.g. $"age" .

**Data file name: **$sys.file_name refers to the current input data file.

In a simple case, a token value is copied directly to an attribute. For example, in the

following LOAD statement,

• The PRIMARY_ID of a person vertex comes from column $0 of the file

"xx/yy/a.csv".

• The next attribute of a person vertex comes from column $1 .

• The next attribute of a person vertex is given the value "xx/y/a.csv" (the
filename itself).

Users do not need to explicitly define a primary ID. Given the attributes, one will be
selected as the primary key.

A basic principle in the GSQL Loader is cumulative loading. Cumulative loading

means that a particular data object might be written to (i.e., loaded) multiple times,

and the result of the multiple loads may depend on the full sequence of writes. This

usually means that If a data line provides a valid data object, and the WHERE clause

and OPTION clause are satisfied, then the data object is loaded.

Example: using $sys.file_name in an attribute expression

LOAD "xx/yy/a.csv" TO VERTEX person VALUES ($0, $1, $sys.file_name)

Cumulative Loading

5/13/25, 9:12 PM 3.3

1369

• Valid input: For each input data line, each destination clause constructs one or

more new data objects. To be a **valid data object, **it must have an ID value of
the correct type, have correctly typed attribute values, and satisfy the optional

WHERE clause. If the data object is not valid, the object is rejected (skipped) and

counted as an error in the log file. The rules for invalid attributes values are
summarized below:

1. UINT : Any non-digit character. (Out-of-range values cause overflow instead of

rejection)

2. INT : Any non-digit or non-sign character. (Out-of-range values cause overflow
instead of rejection)

3. FLOAT and DOUBLE : Any wrong format

4. STRING , STRING COMPRESS , FIXED_BINARY : N/A

5. DATETIME : Wrong format, invalid date time, or out of range.

6. BOOL : Any value not listed later.

7. Complex type: Depends on the field type or element type. Any invalid field (in

UDT), element (in LIST or SET), key or value (in MAP) causes rejection.

• **New data objects: **If a valid data object has a new ID value, then the data

object is added to the graph store. Any attributes which are missing are

assigned the default value for that data type or for that attribute.

• Overwriting existing data objects: If a valid data object has a ID value for an
existing object, then the new object overwrites the existing data object, with the

following clarifications and exceptions:

1. The attribute values of the new object overwrite the attribute values of the
existing data object.

2. Missing tokens: If a token is missing from the input line so that the generated

attribute is missing, then that attribute retains its previous value.

A STRING token is never considered missing; if there are no characters, then the string
is the empty string

• Skipping an attribute: A LOAD statement can specify that a particular attribute

should not be loaded by using the special character _ (underscore) as its

attribute expression (attr_expr). For example,

5/13/25, 9:12 PM 3.3

1370

means to skip the next-to-last attribute. This technique is used when it is known that

the input data file does not contain data for every attribute.

1. If the load operation is creating a new vertex or edge, then the skipped attribute

will be assigned the default value.

2. If the load operation is overwriting an existing vertex or edge, then the skipped

attribute will retain its existing value.

An attribute expression may use column tokens (e.g., $0), literals (constant

numeric or string values), any of the built-in loader token functions, or a user-

defined token function. Attribute expressions may **not **contain mathematical or

boolean operators (such as + , * , AND). The rules for attribute expressions are

the same as those for id expressions, but an attribute expression can additionally

use a reducer function:

• _id_expr _:= $column_number | $"column_name" | constant | $sys.file_name |

token_function_name(_id_expr _[, _id_expr _]*)

• _attr_expr _:= _id_expr _| REDUCE(reducer_function_name(id __expr _))

Note that token functions can be nested, that is, a token function can be used as an

input parameter for another token function. The built-in loader token/reducer

functions and user-defined token functions are described in the section "Built-In

Loader Token Functions".

The subsections below describe details about loading particular data types.

A floating point value has the basic format

LOAD TO VERTEX person VALUES ($0, $1, _, $2)

[sign][digits].[digits](e|E)[sign][digits]

More Complex Attribute Expressions

Loading a DOUBLE or FLOAT Attribute

5/13/25, 9:12 PM 3.3

1371

In the first case, the decimal point and following digits are required. In the second

case, some digits are required (looking like an integer), and the following decimal

point and digits are optional.

In both cases, the leading sign ("+" or "-") is optional. The exponent, using "e" or

"E", is optional. Commas and extra spaces are not allowed.

When loading data into a DATETIME attribute, the GSQL loader will automatically

read a string representation of DateTime information and convert it to internal

DateTime representation. The loader accepts any of the following string formats:

• %Y-%m-%d %H:%M:%S (e.g., 2011-02-03 01:02:03)

• %Y/%m/%d %H:%M:%S (e.g., 2011/02/03 01:02:03)

• %Y-%m-%dT%H:%M:%S.000z (e.g., 2011-02-03T01:02:03.123z, 123 will be ignored)

• %Y-%m-%d (only date, no time, e.g., 2011-02-03)

• %Y/%m/%d (only date, no time, e.g., 2011/02/03)

• Any integer value (Unix Epoch time, where Jan 1, 1970 at 00:00:00 is integer 0)

Format notation:

• %Y is a 4-digit year. A 2-digit year is not a valid value.

Examples of valid and invalid floating point values

Valid floating point values
-198256.03
+16.
-.00036
7.14285e15
9.99E-22

Invalid floating point values
-198,256.03
9.99 E-22

Loading a DATETIME Attribute

5/13/25, 9:12 PM 3.3

1372

• %m and %d represent month (1 to 12) and day (1 to 31), respectively. Leading

zeroes are optional.

• %H , %M , %S are hours (0 to 23), minutes (0 to 59) and seconds (0 to 59),
respectively. Leading zeroes are optional.

When loading data, the loader checks whether the values of year, month, day, hour,

minute, second are out of the valid range. If any invalid value is present, e.g. '2010-

13-05' or '2004-04-31 00:00:00', the attribute is invalid and the object (vertex or

edge) is not created.

When loading data from CSV files the following values are accepted for BOOL

attributes :

• True: TRUE , True , true , 1

• False: FALSE , False , false , 0

When loading data from JSON documents, the valid BOOL values are true and

false .

To load a UDT attribute, state the name of the UDT type, followed by the list of

attribute expressions for the UDT's fields, in parentheses. See the example below.

Load UDT example

Loading a BOOL Attribute

Loading a User-Defined Type (UDT) Attribute

5/13/25, 9:12 PM 3.3

1373

There are three methods to load a LIST or a SET .

The first method is to load multiple rows of data that share the same ID values and

append the individual attribute values to form a collection of values. The collections

are formed incrementally by reading one value from each eligible data line and

appending the new value into the collection. When the loading job processes a line,

it checks to see whether a vertex or edge with that id value(s) already exists or not.

If the id value(s) is new, then a new vertex or edge is created with a new list/set

containing the single value. If the id(s) has been used before, then the value from

the new line is appended to the existing list/set. Below shows an example:

TYPEDEF TUPLE <f1 INT (1), f2 UINT, f3 STRING (10), f4 DOUBLE > myTupl
CREATE VERTEX v_udt (id STRING PRIMARY KEY, att_udt myTuple)
CREATE GRAPH test_graph (v_udt)
CREATE LOADING JOB load_udt FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f TO VERTEX v_udt VALUES ($0, myTuple($1, $2, $3, $4));
 # $1 is loaded as f1, $2 is loaded as f2, and so on
}
RUN LOADING JOB load_udt USING f="./udt.csv"

Example: Cumulative loading of multiple rows to a SET/LIST

CREATE VERTEX test_vertex (PRIMARY_ID id STRING, iset SET<INT>, ilist
CREATE UNDIRECTED EDGE test_edge(FROM test_vertex, TO test_vertex)
CREATE GRAPH test_set_list (*)

CREATE LOADING JOB load_set_list FOR GRAPH test_set_list {
 DEFINE FILENAME f;
 LOAD f TO VERTEX test_vertex VALUES ($0, $1, $1);
}
RUN LOADING JOB load_set_list USING f="./list_set_vertex.csv"

list_set_vertex.csv

29B
list_set_vertex.csv

Loading a LIST or SET Attribute

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo4YqNCqRpwWi2Sr7-%2F-LNo6Ne6CKR3YNRGb0Rs%2Flist_set_vertex.csv?alt=media&token=5ccdda22-5f94-4f4b-b585-ac2b6b652bb1

1374

The job load_set_list will load two test_vertex vertices because there are two

unique id values in the data file. Vertex 1 has attribute values with iset = [10,20]

and ilist = [10,20,20] . Vertex 3 has values iset = [30,40] and ilist = [30,

30, 40] . Note that a set doesn't contain duplicate values, while a list can contain

duplicate values.

Because GSQL loading is multi-threaded, the order of values loaded into a LIST might
not match the input order.

If the input file contains multiple columns which should be all added to the LIST or

SET, then a second method is available. Use the LIST() or SET() function as in the

example below:

The third method is to use the SPLIT() function to read a compound token and

split it into a collection of elements, to form a LIST or SET collection. The

SPLIT() function takes two arguments: the column index and the element

list_set_vertex.csv

1,10
3,30
1,20
3,30
3,40
1,20

Example: loading multiple columns to a SET/LIST

CREATE VERTEX v_set (PRIMARY_ID id STRING, nick_names SET<STRING>)
CREATE VERTEX v_list (PRIMARY_ID id STRING, lucky_nums LIST<INT>)
CREATE GRAPH test_graph (*)
CREATE LOADING JOB load_set_list FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f TO VERTEX v_set VALUES ($0, SET($1,$2,$3));
 LOAD f TO VERTEX v_list VALUES ($0, LIST($2,$4));
}

5/13/25, 9:12 PM 3.3

1375

separator. The element separator should be distinct from the separator throughout

the whole file. Below shows an example:

The SPLIT() function cannot be used for UDT type elements.

There are three methods to load a MAP .

The first method is to load multiple rows of data that share the same id values. The

maps are formed incrementally by reading one key-value pair from each eligible

data line. When the loading job processes a line, it checks to see whether a vertex

or edge with that id value(s) already exists or not. If the id value(s) is new, then a

new vertex or edge is created with a new map containing the single key-value pair.

Example: SET/LIST loading by SPLIT() example

CREATE VERTEX test_vertex (PRIMARY_ID id STRING, ustrset SET<STRING>,
CREATE UNDIRECTED EDGE test_edge(FROM test_vertex, TO test_vertex)
CREATE GRAPH test_split (*)

CREATE LOADING JOB set_list_job FOR GRAPH test_split {
 DEFINE FILENAME f;
 LOAD f TO VERTEX test_vertex VALUES ($0, SPLIT($1,"|") , SPLIT($2,"#
}
RUN LOADING JOB set_list_job USING f="./split_list_set.csv"

split_list_set.csv

54B
split_list_set.csv

split_list_set.csv

vid,names,numbers
v1,mike|tom|jack, 1 # 2 # 3
v2,john, 5 # 4 # 8

Loading a MAP Attribute

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo6ZPlpsRlaILWUFRF%2F-LNo6x5rqXVX0aBq9lba%2Fsplit_list_set.csv?alt=media&token=83f45453-aacb-48f8-bdd3-a54ef9e2e788

1376

If the id(s) has been used before, then the loading job checks whether the key exists

in the map or not. If the key doesn't exist in the map, the new key-value pair is

inserted. Otherwise, the value will be replaced by the new value.

The loading order might not be the same as the order in the raw data. If a data file
contains multiple lines with the same id and same key but different values, loading
them together results in a nondeterministic final value for that key.

Method 1: Below is the syntax to load a MAP by the first method: Use an arrow (->)

to separate the map's key and value.

Method 2: The second method is to use the MAP() function. If there are multiple

key-value pairs among multiple columns, MAP() can load them together. Below is

an example:

Method 3: The third method is to use the SPLIT() function. Similar to the SPLIT()

in loading LIST or SET , the SPLIT() function can be used when the key-value

pair is in one column and separated by a key-value separator, or multiple key-value

Loading a MAP by method 1: -> separator

CREATE VERTEX v_map (PRIMARY_ID id STRING, att_map MAP<INT, STRING>)
CREATE GRAPH test_graph (*)
CREATE LOADING JOB load_map FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f TO VERTEX v_map VALUES ($0, ($1 -> $2));
}

Loading a MAP by method 2: MAP() function

CREATE VERTEX v_map (PRIMARY_ID id STRING, att_map MAP<INT, STRING>)
CREATE GRAPH test_graph (*)
CREATE LOADING JOB load_map FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f TO VERTEX v_map VALUES ($0, MAP(($1 -> $2), ($3 -> $4))
}

5/13/25, 9:12 PM 3.3

1377

pairs are in one column and separated by element separators and key-value

separators. SPLIT() here has three parameters: The first is the column index, the

second is the key-value separator, and the third is the element separator. The third

parameter is optional. If one row of raw data only has one key-value pair, the third

parameter can be skipped. Below are the examples without and with the given

element separator.

one_key_value.csv

42B
one_key_value.csv

example data with one key-value pair per line

vid,key_value
v1,1:mike
v2,2:tom
v1,3:lucy

multi_key_value.csv

67B
multi_key_value.csv

example data with multiple key-value pairs per line

vid,key_value_list
v1,1:mike#4:lin
v2,2:tom
v1,3:lucy#1:john#6:jack

Loading a MAP by method 3: SPLIT() function

CREATE VERTEX v_map (PRIMARY_ID id STRING, att_map MAP<INT, STRING>)
CREATE GRAPH test_graph (*)
CREATE LOADING JOB load_map FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f TO VERTEX v_map VALUES ($0, SPLIT($1, ":", "#"));
}

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo74es9hPaw35no45-%2F-LNo7JgUGDM2KOtmYGaJ%2Fone_key_value.csv?alt=media&token=f373a090-5046-4668-b646-7d1dcce7cef1
https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo7QGdudjqPAQBejmG%2F-LNo7dzH3qXMvAoSjkTq%2Fmulti_key_value.csv?alt=media&token=1399a4cb-a3ed-47d5-91d9-34bdcb19395d

1378

The SPLIT() function cannot be used for UDT type elements.

Loading a Composite Key for a vertex works no differently than normal loading.

Simply load all the attributes as you would for a vertex with a single-attribute

primary key. The primary key will automatically be constructed from the appropriate

attributes.

When loading to an edge where either TO_VERTEX or FROM_VERTEX contains a

composite key, the composite set of attributes must be enclosed in parentheses.

See the example below.

Example: loading composite key to vertex and edge

#schema setup
CREATE VERTEX compositePerson (id uint, name string, PRIMARY KEY (name
CREATE VERTEX compositeMovie (id uint, title string, country string, y
CREATE DIRECTED EDGE compositeRoles (from compositePerson,to composite
CREATE GRAPH MyGraph(*)

#loading job
CREATE LOADING JOB composite_load FOR GRAPH MyGraph {
 LOAD "$sys.data_root/movies.csv" TO VERTEX compositeMovie VALUES
 ($"id", $"title", $"country" ,$"year") USING header ="true", se

 LOAD "$sys.data_root/persons.csv" TO VERTEX compositePerson VALUES
 ($"id",$"name") USING header = "true", separator =",";

 LOAD "$sys.data_root/compositeroles.csv" TO EDGE compositeRoles VALU
 (($"personName", $"personId"),($"movieTitle",$"movieYear",$"mov
 USING header="true", separator = ",";
}

Loading Composite Key Attributes

Loading Wildcard Type Edges

5/13/25, 9:12 PM 3.3

1379

If an edge has been defined using a wildcard vertex type, a vertex type name must

be specified, following the vertex id, in a LOAD statement for the edge. An example

is shown below:

Token functions are functions which operate on tokens. Some may be used to

construct attribute expressions and some may be used for conditional expressions

in the WHERE clause.

To use a token function, replace the attribute in the destination clause of the LOAD

statement with the function call. The arguments of the function can be a column

from the FILE object.

Example: explicit vertex typing for an untyped edge

#schema setup
CREATE VERTEX user(PRIMARY_ID id UINT)
CREATE VERTEX product(PRIMARY_ID id UINT)
CREATE VERTEX picture(PRIMARY_ID id UINT)
CREATE UNDIRECTED EDGE purchase (FROM *, TO *)
CREATE GRAPH test_graph(*)

#loading job
CREATE LOADING JOB test2 FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f
 TO EDGE purchase VALUES ($0 user, $1 product),
 TO EDGE purchase VALUES ($0 user, $2 picture);
 }

CREATE LOADING JOB loadOrders {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX order VALUES(gsql_trim($"id"), $"date");
}

Token Functions

Example

5/13/25, 9:12 PM 3.3

1380

The following token functions can be used in an id or attribute expression

Function Output type Description

gsql_reverse(_in_string _) string

Returns a string with the

characters in the reverse

order of the input string

in_string.

gsql_concat(_string1,

string2,...,stringN _)
string

Returns a string which is the

concatenation of all the

input strings.

gsql_uuid_v4() string Returns a version-4 UUID.

gsql_split_by_space(

_in_string _)
string

Returns a modified version

of in_string, in which each

space character is replaced

with ASCII 30 (decimal).

gsql_substring(str,

beginIndex [, length])
string

Returns the substring

beginning at beginIndex,

having the given length.

gsql_find(str, _substr _) int

Returns the start index of

the substring within the

string. If it is not found, then

return -1.

gsql_length(_str _) int
Returns the length of the

string.

gsql_replace(str, oldToken,

newToken [, max])
string

Returns the string resulting

from replacing all matchings

of oldToken with newToken

in the original string. If a

_max _count is provided,

there can only be up to that

many replacements.

string

Returns the string resulting

from replacing all substrings

in the input string that

Built-in token functions for attribute expressions

5/13/25, 9:12 PM 3.3

1381

gsql_regex_replace(str,

regex, replaceSubstr)

match the given regex token

with the substitute string.

gsql_regex_match(str, regex

)
bool

Returns true if the given

string token matches the

given regex token and false

otherwise.

gsql_to_bool(_in_string _) bool

Returns true if the _in_string

_is either "t" or "true", with

case insensitive checking.

Returns false otherwise.

gsql_to_uint(_in_string _) uint

If in_string is the string

representation of an

unsigned int, the function

returns that integer.

If in_string is the string

representation of a

nonnegative float, the

function returns that

number cast as an int.

gsql_to_int(_in_string _) int

If in_string is the string

representation of an int, the

function returns that integer.

If in_string is the string

representation of a float, the

function returns that

number cast as an int.

gsql_ts_to_epoch_seconds(

_timestamp _)
uint

Converts a timestamp in

canonical string format to

Unix epoch time, which is

the int number of seconds

since Jan. 1, 1970. Refer to

the timestamp input format

note below.

gsql_current_time_epoch(0)
uint

Returns the current time in

Unix epoch seconds. *By

convention, the input

parameter should be 0, but

it is ignored.

flatten(column_to_be_split,

group_separator, 1)

5/13/25, 9:12 PM 3.3

1382

flatten(column_to_be_split,

group_separator,

sub_field_separator,

number_of_sub_fields_in_on

e_group)

See the section

"TEMP_TABLE and Flatten

Functions" below.

flatten_ json_array (

$"array_name")

flatten_ json_array (

$"array_name",

$"sub_obj_1", $"sub_obj_2",

..., $"sub_obj_n")

See the section

"TEMP_TABLE and Flatten

Functions" below.

split(column_to_be_split,

element_separator)

split(column_to_be_split,

key_value_separator,

element _separator)

See the section "Loading a

LIST or SET Attribute"

above.

See the section "Loading a

MAP Attribute" above.

gsql_upper(_in_string _) string
Returns the input string in

upper-case.

gsql_lower(_in_string _) string
Returns the input string in

lower-case.

gsql_trim(_in_string _) string

Trims whitespace from the

beginning and end of the

input string.

gsql_ltrim(in_string)

gsql_rtrim(in_string)
string

Trims white space from

either the beginning or the

end of the input string (Left

or right).

gsql_year(timestamp) int

Returns 4-digit year from

timestamp. Refer to

timestamp input format note

below.

gsql_month(timestamp) int

Returns month (1-12) from

timestamp. Refer to

timestamp input format note

below.

gsql_day(timestamp) int

Returns day (1-31) from

timestamp. Refer to

5/13/25, 9:12 PM 3.3

1383

The timestamp parameter should be in one of the following formats:
"%Y-%m-%d %H:%M:%S"
"%Y/%m/%d %H:%M:%S"
"%Y-%m-%dT%H:%M:%S.000z" // text after the dot . is ignored

Users can write their own token functions in C++ and install them in the GSQL

system. To learn how to add a user-defined token function, see Add a User-Defined

Token Function.

A reducer function aggregates multiple values of a non-id attribute into one attribute

value of a single vertex or edge. Reducer functions are computed incrementally; that

is, each time a new input token is applied, a new resulting value is computed.

To reduce and load aggregate data to an attribute, the attribute expression has the

form

timestamp input format note

below.

gsql_year_epoch(epoch) int

Returns 4-digit year from

Unix epoch time, which is

the int number of seconds

since Jan. 1, 1970.

gsql_month_epoch(epoch) int

Returns month (1-12) from

Unix epoch time, which is

the int number of seconds

since Jan. 1, 1970.

gsql_day_epoch(epoch) int

Returns day (1-31) from Unix

epoch time, which is the int

number of seconds since

Jan. 1, 1970.

Timestamp Input Format

User-defined token functions

Reducer Functions

5/13/25, 9:12 PM 3.3

1384

where _reducer_function _is one of the functions in the table below. _input_expr

_can include non-reducer functions, but reducer functions cannot be nested.

Each reducer function is overloaded so that one function can be used for several

different data types. For primitive data types, the output type is the same as the

_input_expr _type. For LIST, SET, and MAP containers, the _input_expr _type is one

of the allowed element types for these containers (see "Complex Types" in the

Attribute Data Types section). The output is the entire container.

REDUCE(reducer_function (input_expr))

Function name
Data type of arg: Description of function's

return value

max(_arg _)
INT, UINT, FLOAT, DOUBLE: maximum of all

_arg _values cumulatively received

min(_arg _)
INT, UINT, FLOAT, DOUBLE: minimum of all

_arg _values cumulatively received

add(_arg _)

INT, UINT, FLOAT, DOUBLE: sum of all arg

values cumulatively received

STRING: concatenation of all arg values

cumulatively received

LIST, SET element: list/set of all arg values

cumulatively received

MAP (key -> value) pair: key-value

dictionary of all key-value pair arg values

cumulatively received

and(_arg _)

BOOL: AND of all arg values cumulatively

received

INT, UINT: bitwise AND of all arg values

cumulatively received

or(_arg _)

BOOL: OR of all arg values cumulatively

received

INT, UINT: bitwise OR of all arg values

cumulatively received

overwrite(_arg _)
non-container: arg

LIST, SET: new list/set containing only arg

5/13/25, 9:12 PM 3.3

1385

Each function supports a certain set of attribute types. Calling a reducer function with
an incompatible type crashes the service. In order to prevent that, use the WHERE

clause (introduced below) together with IS NUMERIC or other operators, functions,
predicates for type checking if necessary.

The WHERE clause is an optional clause. The WHERE clause's condition is a boolean

expression. The expression may use column token variables, token functions, and

operators which are described below. The expression is evaluated for each input

data line. If the condition is true, then the vertex or edge instance is loaded into the

graph store. If the condition is false, then this instance is skipped. Note that all

attribute values are treated as string values in the expression, so the type

conversion functions to_int() and to_float() , which are described below, are

provided to enable numerical conditions.

The GSQL Loader language supports most of the standard arithmetic, relational, and

boolean operators found in C++. Standard operator precedence applies, and

parentheses provide the usual override of precedence.

• **Arithmetic Operators: +, -, *, /, ^ **
****Numeric operators can be used to express complex operations between

numeric types. Just as in ordinary mathematical expressions, parentheses can

be used to define a group and to modify the order of precedence.

Because computers necessarily can only store approximations for most DOUBLE and
FLOAT type values, it is not recommended to test these data types for exact equality
or inequality. Instead, one should allow for an acceptable amount of error. The
following example checks if $0 = 5 , with an error of 0.00001 permitted:

ignore if exists(arg)

Any: If an attribute value already exists,

return(retain) the existing value Otherwise

WHERE Clause

Operators in the WHERE Clause

5/13/25, 9:12 PM 3.3

1386

• **Relational Operators: <, >, ==, !=, <=, >= **

****Comparisons can be performed between two numeric values or between
two string values. \

• Predicate Operators:

◦ **AND, OR, NOT **operators are the same as in SQL. They can be used to

combine multiple conditions together.

E.g., _$0 < "abc" AND $1 > "abc" _selects the rows with the first token less

than "abc" and the second token greater than "abc".
E.g., _NOT $1 < "abc" _selects the rows with the second token greater than

or equal to "abc". \

◦ **IS NUMERIC

_token _IS NUMERIC **returns true if **token **is in numeric format.
Numeric format include integers, decimal notation, and exponential notation.

Specifically, IS NUMERIC is true if token matches the following regular

expression: (+/-) ? [0-9] + (.[0-9]) ? [0-9] * ((e/E)(+/-) ? [0-9] +) ? . Any

leading space and trailing space is skipped, but no other spaces are allowed.
E.g., _$0 IS NUMERIC _checks whether the first token is in numeric format. \

◦ **IS EMPTY

_token _IS EMPTY **returns true if **token **is an empty string.

E.g., _$1 IS EMPTY _checks whether the second token is empty. \

◦ **IN
****_token _IN (_set_of_values _) **returns true if **token **is equal to one

member of a set of specified values. The values may be string or numeric

types.
E.g., _$2 IN ("abc", "def", "lhm") _tests whether the third token equals one of

the three strings in the given set.

E.g., _to_int($3) IN (10, 1, 12, 13, 19) _tests whether the fourth token equals

one of the specified five numbers. \

◦ **BETWEEN ... AND
_token _BETWEEN _lowerVal _AND _upperVal **_returns true if **token **is

within the specified range, inclusive of the endpoints. The values may be

string or numeric types.
E.g., _$4 BETWEEN "abc" AND "def" _checks whether the fifth token is

greater than or equal to "abc" and also less than or equal to "def"

WHERE to_float($0) BETWEEN 5-0.00001 AND 5+0.00001

5/13/25, 9:12 PM 3.3

1387

E.g., _to_float($5) BETWEEN 1 AND 100.5 _checks whether the sixth token is

greater than or equal to 1.0 and less than or equal to 100.5.

The GSQL loading language provides several built-in functions for the WHERE

clause.

Function name Output type Description of function

to_int(_main_string _) int
Converts _main_string _to

an integer value.

to_float(_main_string _) float
Converts _main_string _to a

float value.

concat(_string1, string2 _) string

Returns a string which is the

concatenation of _string1

_and _string2 _.

token_len(_main_string _) int
Returns the length of

main_string.

gsql_is_not_empty_string(

_main_string _)
bool

Returns true if _main_string

_is empty after removing

white space. Returns false

otherwise.

gsql_token_equal(_string1,

string2 _)
bool

Returns true if _string1 _is

exactly the same (case

sensitive) as _string2 _.

Returns false otherwise.

gsql_token_ignore_case_eq

ual(_string1, string2 _)
bool

Returns true if _string1 _is

exactly the same (case

insensitive) as _string2 _.

Returns false otherwise.

gsql_is_true(_main_string _) bool

Returns true if _main_string

_is either "t" or "true" (case

insensitive). Returns false

otherwise.

Token functions in the WHERE clause

5/13/25, 9:12 PM 3.3

1388

The token functions in the WHERE clause and those token functions used for attribute
expression are different. They cannot be used exchangeably.

There are no supported options for the OPTION clause at this time.

The TAGS clause specifies the tags to be applied to the vertices loaded by the

LOAD statement.

If a LOAD statement has a TAGS clause, it will tag the vertices with the tags

specified in the TAGS clause. Before vertices can be loaded and tagged with a

LOAD statement, the vertex type must first be marked as taggable, and the tags

must be defined.

Users have two options when it comes to how to merge tags if the target vertices

exist in the graph:

• BY OR : Add the new tags to the existing set of tags.

• BY OVERWRITE : Overwrite existing tags with the new tags.

gsql_is_false(_main_string
bool

Returns true if _main_string

_is either "f" or "false" (case

TAGS "(" tag_name (, tag_name)* ")" BY [OR | OVERWRITE]

Other Optional LOAD Clauses

OPTION clause

TAGS clause (Beta)

USING clause

5/13/25, 9:12 PM 3.3

1389

A USING clause contains one or more optional parameter value pairs:

If multiple LOAD statements use the same source (the same file path, the same
TEMP_TABLE, or the same file variable), the USING clauses in these LOAD statements
must be the same. Therefore, we recommend that if multiple destination clauses share
the same source, put all of these destination clauses into the same LOAD statement.

USING parameter=value [,parameter=value]*

Parameter Meaning of Value Allowed Values

SEPARATOR

specifies the special

character that separates

tokens (columns) in the data

file

any single ASCII character.

Default is comma ","

"\t" for tab "\xy" for

ASCII decimal code xy

EOL the end-of-line character

any ASCII sequence

Default = "\n" (system-

defined newline character

or character sequence)

QUOTE

(See note below)

specifies explicit boundary

markers for string tokens,

either single or double

quotation marks. See more

details below.

"single" for '

"double" for "

HEADER

whether the data file's first

line is a header line.

The header assigns names

to the columns.

The LOAD statement must

refer to an actual file with a

valid header.

"true", "false"

Default is "false"

USER_DEFINED_HEADER

specifies the name of the

header variable, when a

header has been defined in

the loading job, rather than

in the data file

the variable name in the

preceding DEFINE HEADER

statement

5/13/25, 9:12 PM 3.3

1390

The parser will not treat separator characters found within a pair of quotation marks

as a separator. For example, if the parsing conditions are QUOTE="double",

SEPARATOR="," , the comma in "Leonard,Euler" will not separate Leonard and

Euler into separate tokens. \

• If QUOTE is not declared, quotation marks are treated as ordinary characters.

• If QUOTE is declared, but a string does not contain a matching pair of quotation

marks, then the string is treated as if QUOTE is not declared.

• Only the string inside the first pair of quote (from left to right) marks are loaded.

For example QUOTE="double", the string a"b"c"d"e will be loaded as b.

• There is no escape character in the loader, so the only way to include quotation
marks within a string is for the string body to use one type of quote (single or

double) and to declare the other type as the string boundary marker.

REJECT_LINE_RULE

if the filter expression

evaluates to true, then do

not use this input data line.

name of filter from a

preceding DEFINE

INPUT_LINE_FILTER

statement

JSON_FILE

(See Loading JSON Data

section below)

whether each line is a json

object (see Section "JSON

Loader" below for more

details)

"true", "false"

Default is "false"

NEW_VERTEX_ONLY

If true, treat vertices as

insert-only. If the input data

refers to a vertex which

already exists, do not

update it.

If false, upsert vertices.

"true", "false"

Default is "false"

VERTEX_MUST_EXIST

(See VERTEX_MUST_EXIST

section below)

If true, only insert or update

an edge If both endpoint

vertices already exist. If

false, always insert new

edges, creating endpoint

vertices as needed, using

given id and default values

"true", "false"

Default is "false"

QUOTE parameter

5/13/25, 9:12 PM 3.3

1391

Previously, ill-formatted strings such as **a"a,b"ac,d **would be parsed as a,b,d
ignoring a,a,c. The expected input string should be a,"a,b",ac,d. In v2.4, incorrectly
formatted strings such as this example will be parsed normally, giving you this result:
a"a,b"ac and d.

When the USING option JSON_FILE="true" is used, the loader loads JSON objects

instead of tabular data. A JSON object is an unordered set of key/value pairs, where

each value may itself be an array or object, leading to nested structures. A colon

separates each key from its value, and a comma separates items in a collection. A

more complete description of JSON format is available at www.json.org . The

JSON loader requires that each input line has exactly one JSON object. Instead of

using column values as tokens, the JSON loader uses JSON values as tokens, that

is, the second part of each JSON key/value pair. In a GSQL loading job, a JSON field

is identified by a dollar sign $ followed by the colon-separated sequence of nested

key names to reach the value from the top level. For example, given the JSON object

{"abc":{"def": "this_value"}} , the identifier $"abc":"def" is used to access

"this_value" . The double quotes are mandatory.

An example is shown below:

To specify an end-of-line character other than the standard one, use the EOL option,

as shown below.

USING JSON_FILE test schema and loading job

CREATE VERTEX encoding (PRIMARY_ID id STRING, length FLOAT default 10)
CREATE UNDIRECTED EDGE encoding_edge (FROM encoding, TO encoding)
CREATE GRAPH encoding_graph (*)

CREATE LOADING JOB json_load FOR GRAPH encoding_graph {
 LOAD "encoding.json" TO VERTEX encoding
 VALUES ($"encoding", $"indent":"length") USING JSON_FILE="true";
}
RUN JOB json_load

Loading JSON Data

5/13/25, 9:12 PM 3.3

http://www.json.org/
http://www.json.org/

1392

In the above data encoding.json, the order of fields are not fixed and some fields are

missing. The JSON loader ignores the order and accesses the fields by the nested

key names. The missing fields are loaded with default values. The result vertices

are:

TigerGraph can load data from Parquet files if they are stored in AWS S3 buckets.

For more details on how to set up S3 data sources and loading jobs, read the AWS

S3 Loader User Guide. In the background TigerGraph uses the JSON loading

JSON loading using EOL

CREATE LOADING JOB json_load2 FOR GRAPH companyGraph {

 LOAD "/tmp/data.json"
 TO VERTEX company VALUES($"company":"name":"value",$"company":"nam
 TO VERTEX members VALUES($"members",$"members") USING JSON_FILE="t
}

encoding.json - Download

267B
encoding.json

encoding.json

{"encoding": "UTF-7","plug-ins":["c"],"indent" : { "length" : 30, "use
{"encoding":"UTF-1","indent":{"use_space": "dontloadme"}, "plug-ins" :
{"plug-ins":["C","c++"],"indent":{"length" : 3, "use_space": false},"e

id attr1

"UTF-7" 30

"UTF-1" 0

"UTF-6" 3

Loading Parquet Data

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNqKbTOU-JA7bZGITQx%2F-LNqKl2uZxxA6XunSGXx%2Fencoding.json?alt=media&token=9ac6937c-9ee0-45d2-a09b-cc3d737ff9e2

1393

functionality to read data from Parquet files, so the JSON specific information in the

previous section applies.

In order to load Parquet data, you need to:

1. Specify "file.reader.type": "parquet" in the S3 file configuration file or

argument

2. Specify JSON_FILE="true" in the USING clause of the LOAD statements

3. Refer to JSON keys (≈ Parquet "column names") instead of column numbers

You will probably want to add USING EOF="true" to your RUN LOADING JOB

statement to explicitly indicate to the loading job to stop after consuming all data

from the Parquet source, not to expect further entries.

An example of a Parquet loading setup is shown below:

Normally, if vertices do not exist when loading data to edges, a vertex will be

created for the connecting edge, using default values for all attributes. Using the

VERTEX_MUST_EXIST="true" option will load data only if the vertices on both sides

of an edge already exist, therefore no longer creating extra vertices.

CREATE DATA_SOURCE S3 s3ds = "{\"file.reader.settings.fs.s3a.access.key\":

CREATE LOADING JOB parquet_load FOR GRAPH companyGraph {

 DEFINE FILENAME f = "$s3ds:{\"file.uris\": \"s3://mybucket/mydata.parq

 LOAD f
 TO VERTEX members VALUES($"members", $"members") USING JSON_FILE="tr
}

RUN LOADING JOB parquet_load USING EOF="true"

VERTEX_MUST_EXIST Parameter

5/13/25, 9:12 PM 3.3

1394

The keyword TEMP_TABLE triggers the use of a temporary data table which is used

to store data generated by one LOAD statement, for use by a later LOAD statement.

Earlier we introduced the syntax for loading data to a TEMP_TABLE :

This clause is designed to be used in conjunction with the flatten or

flatten_json_array function in one of the attr_expr expressions. The flatten

function splits a multi-value field into a set of records. Those records can first be

stored in a temporary table, and then the temporary table can be loaded into

vertices and/or edges. Only one flatten function is allowed in one temp table

destination clause.

There are two versions of the flatten function: One parses single-level groups and

the other parses two-level groups. There are also two versions of the

flatten_ json_array function: One splits an array of primitive values, and the other

splits an array of JSON objects.

flatten(column_to_be_split, separator, 1) is used to parse a one-level group

into individual elements. An example is shown below:

CREATE LOADING JOB load_edge FOR GRAPH MyGraph {
 DEFINE FILENAME f;
 LOAD f
 TO EDGE MyEdge VALUES ($1, $2, $3,) USING VERTEX_MUST_EXIST="true"
}

TEMP_TABLE Destination Clause

TO TEMP_TABLE table_name (id_name [, attr_name]*) VALUES (id_expr [, a
 [WHERE conditions] [OPTION (options)]

book1.dat

TEMP_TABLE and Flatten Functions

One-Level Flatten Function

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo7klxBO8lIHs12YSF%2F-LNo8CDF9M7asuJwE_7J%2Fbook1.dat?alt=media&token=a9f739fc-7afc-45e7-8fcf-3c6befa6c81a

1395

The following loading job contains two LOAD statements. The first one loads input

data to Book vertices and to a TEMP_TABLE . The second one loads the TEMP_TABLE

data to Genre vertices and book_genre edges.

Line 5 says that the third column ($2) of each input line should be split into

separate tokens, with comma (,) as the separator. Each token will have its own row

in table t1 . The first column is labeled bookcode with value $0 and the second

column is genre with one of the $2 tokens. The contents of TEMP_TABLE t1 are

shown below:

book1.dat

140B

book1.dat

101|"Harry Potter and the Philosopher's Stone"|"fiction,fantasy,young
102|"The Three-Body Problem"|"fiction,science fiction,Chinese"

One-level Flatten Function loading (load_book_flatten1.gsql)

CREATE LOADING JOB load_books_flatten1 FOR GRAPH Book_rating {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX Book VALUES ($0, $1, _),
 TO TEMP_TABLE t1(bookcode,genre) VALUES ($0, flatten($2,",",1))
 USING QUOTE="double", SEPARATOR="|";

 LOAD TEMP_TABLE t1
 TO VERTEX Genre VALUES($"genre", $"genre"),
 TO EDGE book_genre VALUES($"bookcode", $"genre");
}
RUN LOADING JOB load_books_flatten1 USING f="../data/book1.dat"

bookcode genre

101 fiction

101 fantasy

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo7klxBO8lIHs12YSF%2F-LNo8CDF9M7asuJwE_7J%2Fbook1.dat?alt=media&token=a9f739fc-7afc-45e7-8fcf-3c6befa6c81a

1396

Then, lines 8 to 10 say to read TEMP_TABLE t1 and to do the following for each row:

• Create a Genre vertex for each new value of genre .

• Create a book_genre edge from bookcode to genre . In this case, each row of

TEMP_TABLE t1 generates one book_genre edge.

The final graph will contain two Book vertices (101 and 102), five Genre vertices,

and six book_genre edges.

101 young_adult

102 fiction

102 science_fiction

102 Chinese

List of all book_genre edges after loading

5/13/25, 9:12 PM 3.3

1397

5/13/25, 9:12 PM 3.3

1398

{
 "results": [{"@@edgeSet": [
 {
 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "101",
 "to_id": "fiction",
 "attributes": {},
 "e_type": "book_genre"
 },
 {
 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "101",
 "to_id": "fantasy",
 "attributes": {},
 "e_type": "book_genre"
 },
 {
 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "102",
 "to_id": "sciencevfiction",
 "attributes": {},
 "e_type": "book_genre"
 },
 {
 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "101",
 "to_id": "young adult",
 "attributes": {},
 "e_type": "book_genre"
 },
 {
 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "102",
 "to_id": "fiction",
 "attributes": {},
 "e_type": "book_genre"
 },
 {

5/13/25, 9:12 PM 3.3

1399

flatten(_column_to_be_split, group_separator, sub_field_separator,

number_of_sub_fields_in_one_group _) is used for parse a two-level group into

individual elements. Each token in the main group may itself be a group, so there are

two separators: one for the top level and one for the second level. An example is

shown below.

The flatten function now has four parameters instead of three. The additional

parameter is used to record the genre_name in the Genre vertices.

 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "102",
 "to_id": "Chinese",
 "attributes": {},
 "e_type": "book_genre"
 }
]}]
}

book2.dat

101|"Harry Potter and the Philosopher's Stone"|"FIC:fiction,FTS:fantas
102|"The Three-Body Problem"|"FIC:fiction,SF:science fiction,CHN:Chine

Two-level Flatten Function loading (book_flatten2_load.gsql)

Two-Level Flatten Function

5/13/25, 9:12 PM 3.3

1400

In this example, in the genres column ($2), there are multiple groups, and each

group has two sub-fields, genre_id and genre_name. After running the loading job,

the file book2.dat will be loaded into the TEMP_TABLE t2 as shown below.

flatten_ json_array($" _array_name _") parses a JSON array of primitive (string,

numberic, or bool) values, where "array_name" is the name of the array. Each value

in the array creates a record. Below is an example:

CREATE LOADING JOB load_books_flatten2 FOR GRAPH Book_rating {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX Book VALUES ($0, $1, _),
 TO TEMP_TABLE t2(bookcode,genre_id,genre_name) VALUES ($0, flatt
 USING QUOTE="double", SEPARATOR="|";

 LOAD TEMP_TABLE t2
 TO VERTEX Genre VALUES($"genre_id", $"genre_name"),
 TO EDGE book_genre VALUES($"bookcode", $"genre_id");
}
RUN LOADING JOB load_books_flatten2 USING f="book2.dat"

bookcode genre_id

101 FIC fiction

101 FTS fantasy

101 YA young adult

102 FIC fiction

102 SF science fiction

102 CHN Chinese

flatten_ json_array_values loading

Flatten a JSON Array of Primitive Values

5/13/25, 9:12 PM 3.3

1401

The above data and loading job creates the following temporary table:

flatten_ json_array (_$"array_name", $"sub_obj_1", $"sub_obj_2", ..., $"sub_obj_n" _)

parses a JSON array of JSON objects. "array_name" is the name of the array, and

the following parameters _$"sub_obj_1", $"sub_obj_2", ..., $"sub_obj_n" _are the field

key names in each object in the array. See complete example below:

CREATE VERTEX encoding (PRIMARY_ID id STRING, length FLOAT default 10)
CREATE UNDIRECTED EDGE encoding_edge (FROM encoding, TO encoding)
CREATE GRAPH encoding_graph (*)

CREATE LOADING JOB json_flatten FOR GRAPH encoding_graph {
 LOAD "encoding2.json" TO TEMP_TABLE t2 (name, length)
 VALUES (flatten_json_array($"plug-ins"), $"indent":"length") USING
 LOAD TEMP_TABLE t2
 TO VERTEX encoding VALUES ($"name", $"length");
}
RUN LOADING JOB json_flatten

encoding2.json - Download

95B
encoding2.json

encoding2.json

{"plug-ins" : ["C", "c++"],"encoding" : "UTF-6","indent" : { "length"

id length

C 3

c++ 3

Flatten a JSON Array of JSON Objects

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNqKbTOU-JA7bZGITQx%2F-LNqKzCTaP0_IS8JT229%2Fencoding2.json?alt=media&token=57ba2960-9f2b-40e7-bdd9-1bd418811b12

1402

When splitting a JSON array of JSON objects, the primitive values are skipped and

only JSON objects are processed. As in the example above, the 4th line's "plug-ins"

field will not generate any record because its "plug-ins" array doesn't contain any

JSON object. Any field which does not exist in the object will be loaded with default

value. The above example generates the temporary table shown below:

encoding3.json - Download

594B
encoding3.json

encoding3.json

{"encoding":"UTF-1","indent":{"use_space": "dontloadme"}, "plug-ins" :
{"encoding": "UTF-8", "plug-ins" : [{"lang": "pascal", "score":"1.0",
{"encoding": "UTF-7", "plug-ins" : [{"lang":"java", "score":2.22}, {"
{"plug-ins" : ["C", "c++"],"encoding" : "UTF-6","indent" : { "length"

json_flatten_array_test.gsql

CREATE VERTEX encoding3 (PRIMARY_ID id STRING, score FLOAT default -1.
CREATE UNDIRECTED EDGE encoding3_edge (FROM encoding3, TO encoding3)
CREATE GRAPH encoding_graph (*)

CREATE LOADING JOB json_flatten_array FOR GRAPH encoding_graph {
 LOAD "encoding3.json" TO TEMP_TABLE t3 (name, score, prop_age, inden
 VALUES (flatten_json_array($"plug-ins", $"lang", $"score", $"prop"
 USING JSON_FILE="true";
 LOAD TEMP_TABLE t3
 TO VERTEX encoding3 VALUES ($"name", $"score", $"prop_age", $"inde
}
RUN LOADING JOB json_flatten_array

id score age length

"golang" default "noidea" default

"pascal" 1.0 "old" 12

"c++" 2.0 default 12

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNqKbTOU-JA7bZGITQx%2F-LNqLLFUyvmLDZUeliPz%2Fencoding3.json?alt=media&token=b88f3cac-02fb-4136-a3b5-92bd08fd7953

1403

**flatten_ json_array() **can also be used to split a column of a tabular file, where

the column contains JSON arrays. An example is given below:

The second column in the csv file is a JSON array which we want to split.

flatten_ json_array() can be used in this case without the USING JSON_FILE="true"

clause:

"java" 2.22 default 30

"python" 3.0 default 30

"go" 4.0 "new" 30

encoding.csv

336B
encoding.csv

encoding.csv

golang|{"prop":{"age":"noidea"}}
pascal|{"score":"1.0", "prop":{"age":"old"}}
c++|{"score":2.0, "indent":{"length":12, "use_space": true}}
java|{"score":2.22, "prop":{"age":"new"}, "indent":{"use_space":"true"
python|{ "prop":{"compiled":"false"}, "indent":{"length":4}, "score":3
go|{"score":4.0, "prop":{"age":"new"}}

json_flatten_cvs.gsql

Flatten a JSON Array in a CSV file

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo8JTdS5aX7hpufdyJ%2F-LNo8ZGkDgCWTDv3Eue6%2Fencoding.csv?alt=media&token=5d34364d-8447-4608-9a82-e4576158c2dd

1404

The above example generates the temporary table shown below:

flatten_ json_array in csv

flatten_ json_array() does not work if the separator appears also within the json array
column. For example, if the separator is comma, the csv loader will erroneously divide
the json array into multiple columns. Therefore, it is recommended that the csv file use
a special column separator, such as "|" in the above example .

In addition to loading data, a LOADING JOB can be used to perform the opposite

operation: deleting vertices and edges, using the DELETE statement. DELETE cannot

CREATE VERTEX encoding3 (PRIMARY_ID id STRING, score FLOAT default -1.
CREATE UNDIRECTED EDGE encoding3_edge (FROM encoding3, TO encoding3)
CREATE GRAPH encoding_graph (*)

CREATE LOADING JOB json_flatten_cvs FOR GRAPH encoding_graph {
 LOAD "encoding.csv" TO TEMP_TABLE t4 (name, score, prop_age, indent_
 VALUES ($0,flatten_json_array($1, $"score", $"prop":"age", $"inden
 USING SEPARATOR="|";
 LOAD TEMP_TABLE t4
 TO VERTEX encoding3 VALUES ($"name", $"score", $"prop_age", $"inde
}
RUN LOADING JOB json_flatten_cvs

id score age length

golang -1 (default) noidea -1 (default)

pascal 1 old -1 (default)

c++ 2 unknown (default) 12

java 2.22 new 2

python 3 unknown (default) 4

go 4 new -1 (default)

DELETE statement

5/13/25, 9:12 PM 3.3

1405

be used in offline loading. Just as a LOAD statement uses the tokens from each

input line to set the id and attribute values of a vertex or edge to be created, a

DELETE statement uses the tokens from each input line to specify the id value of the

item(s) to be deleted.

In the v2.0 syntax, there is now a " FROM (filepath_string | filevar) " clause just
before the WHERE clause.

There are four variations of the DELETE statement. The syntax of the four cases is

shown below.

An example using book_rating data is shown below:

DELETE VERTEX | EDGE Syntax

CREATE LOADING JOB abc FOR GRAPH graph_name {
 DEFINE FILENAME f;
 # 1. Delete each vertex which has the given vertex type and primary
 DELETE VERTEX vertex_type_name (PRIMARY_ID id_expr) FROM f
 [WHERE condition] [USING options];

 # 2. Delete each edge which has the given edge type, source vertex i
 DELETE EDGE edge_type_name (FROM id_expr, TO id_expr) FROM f
 [WHERE condition] [USING options];

 # 3. Delete all edges which have the given edge type and source vert
 DELETE EDGE edge_type_name (FROM id_expr) FROM f
 [WHERE condition] [USING options];

 # 4. Delete all edges which have the given source vertex id. (Edge t
 DELETE EDGE * (FROM id_expr vertex_type_name) FROM f [WHERE conditio
 [USING options];
}

DELETE example

5/13/25, 9:12 PM 3.3

1406

There is a separate DELETE statement in the GSQL Query Language. The query delete
statement can leverage the query language's ability to explore the graph and to use
complex conditions to determine which items to delete. In contrast, the loading job
delete statement requires that the id values of the items to be deleted must be
specified in advance in an input file.

Delete all user occupation edges if the user is in the new files, th
CREATE LOADING JOB clean_user_occupation FOR GRAPH Book_rating {
 DEFINE FILENAME f;
 DELETE EDGE user_occupation (FROM $0) FROM f;
}
CREATE LOADING JOB load_user_occupation FOR GRAPH Book_rating {
 DEFINE FILENAME f;
 LOAD f TO EDGE user_occupation VALUES ($0,$1);
}
RUN LOADING JOB clean_user_occupation USING f="./data/user_occupation_
RUN LOADING JOB load_user_occupation USING f="./data/user_occupation_u

5/13/25, 9:12 PM 3.3

1407

Add a User-defined Token Function
In GSQL's Data Definition and Loading (DDL) language, users can define their own

token functions if the built-in token functions do not meet their needs. This guide

describes the procedures to define token functions.

All user-defined token functions are kept in a file named tokenbank.cpp . Use the

GET TokenBank command in GSQL to download the current UDF file to any location

on your machine. The path after the keyword TO specifies the path where the file

will be output to.

The file and the directories will be created if they do not exist, and the file must end

with the file extension .hpp . An example is shown below:

If you only supply a directory but not a filename, the file will be created with the

default filename TokenBank.cpp .

Define the token function in the file you just downloaded. The function should be a

C++ function. The function can either return a value that is used for an attribute

expression or used in a WHERE clause as a condition expression. Depending on the

return type of the function, the signature of the function must match the allowed

format.

GSQL > GET TokenBank TO "/home/tigergraph/TokenBank.cpp"
GET TokenBank successfully.

Procedure

Step 1: Download the current TokenBank.cpp file

Step 2: Define token function in C++

5/13/25, 9:12 PM 3.3

1408

If your token function is used to return an attribute expression, the signature of the

function must follow the format specified in the table below depending on the

attribute type.

Attribute type Function signature Function return type

STRING or STRING
COMPRESS

extern "C" void funcName
(const char* const
iToken[], uint32_t
iTokenLen[], uint32_t
iTokenNum,
char* const oToken,
uint32_t& oTokenLen)

void . The value of

oToken will be returned in

GSQL

BOOL

extern "C" bool funcName
(const char* const
iToken[], uint32_t
iTokenLen[], uint32_t
iTokenNum)

bool

UINT

extern "C" uint64_t
funcName (const char*
const iToken[], uint32_t
iTokenLen[], uint32_t
iTokenNum)

uint64_t

INT

extern "C" int64_t
funcName (const char*
const iToken[], uint32_t
iTokenLen[], uint32_t
iTokenNum)

int64_t

FLOAT

extern "C" float
funcName (const char*
const iToken[], uint32_t
iTokenLen[], uint32_t
iTokenNum)

float

DOUBLE

extern "C" double
funcName (const char*
const iToken[], uint32_t
iTokenLen[], uint32_t
iTokenNum)

double

5/13/25, 9:12 PM 3.3

1409

The parameters iToken , iTokenLen , and iTokenNum must be named exactly as

such, and are used to describe the input tokens:

• iToken is an array of the string tokens,

• iTokenLen is an array of the lengths of the string tokens

• iTokenNum is the number of tokens.

For token functions for attribute types STRING or STRING COMPRESS , the return type

for the C++ function is void . Use the parameter oToken to store the string you

want returned, and in GSQL the token function will return the string stored in

oToken :

• oToken is the returned string value

• oTokenLen is the length of the return string

Note that the input tokens are always in string (char*) format. If necessary, convert

them to other types inside the function.

The built-in token function gsql_concat is used as an example below. It takes

multiple token parameters and returns a string.

User-defined token functions (described above) can also be used to construct the

boolean conditional expression in the WHERE clause. However, there are some

restrictions in the WHERE clause:

extern "C" void gsql_concat(const char* const iToken[], uint32_t iTokenLen
 int k = 0;
 for (int i=0; i < iTokenNum; i++) {
 for (int j =0; j < iTokenLen[i]; j++) {
 oToken[k++] = iToken[i][j];
 }
 }
 oTokenLen = k;
}

Example

User-defined Token Functions for WHERE Clause

5/13/25, 9:12 PM 3.3

1410

In the clause " WHERE conditions ",

• The only user-defined token functions allowed are those that return a boolean

value.

• If a user-defined token function is used in a WHERE clause, then it must constitute

the entire condition; it cannot be combined with another function or operator to

produce a subsequent value. However, the arguments of the UDF can include

other functions.

The source code for the built-in token function gsql_token_equal is used as an

example for how to write a user-defined token function.

After defining the token functions, use the PUT TokenBank command to upload the

functions. The path after the keyword FROM is the absolute path to the

TokenBank.cpp file. An example is shown below:

extern "C" bool gsql_token_equal(const char* const iToken[], uint32_t iTok
 if (iTokenNum != 2) {
 return false;
 }
 if (iTokenLen[0] != iTokenLen[1]) {
 return false;
 }
 for (int i =0; i < iTokenLen[0]; i++) {
 if (iToken[0][i] != iToken[1][i]) {
 return false;
 }
 }
 return true;
}

GSQL > PUT TokenBank FROM "/home/tigergraph/TokenBank.cpp"
PUT TokenBank successfully.

Step 3: Upload the TokenBank.cpp file

5/13/25, 9:12 PM 3.3

1411

Running a Loading Job

There are two aspects to clearing the system: flushing the data and clearing the

schema definitions in the catalog. Two different commands are available.

Available only to superusers.

The CLEAR GRAPH STORE command flushes all the data out of the graph store

(database). By default, the system will ask the user to confirm that you really want

to discard all the graph data. To force the clear operation and bypass the

confirmation question, use the -HARD option, e.g.,

Clearing the graph store does not affect the schema.

1. Use the -HARD option with extreme caution. There is no undo option. -HARD must

be in all capital letters.

2. CLEAR GRAPH STORE stops all the TigerGraph servers (GPE, GSE, RESTPP, Kafka,

and Zookeeper).

3. Loading jobs and queries are aborted.

DROP ALL clears both the data and the schema.

CLEAR GRAPH STORE -HARD

Clearing and Initializing the Graph Store

CLEAR GRAPH STORE

Running a Loading Job

5/13/25, 9:12 PM 3.3

1412

Running a loading job executes a previously installed loading job. The job reads

lines from an input source, parses each line into data tokens, and applies loading

rules and conditions to create new vertex and edge instances to store in the graph

data store. The input sources could be defined in the load job or could be provided

when running the job. Additionally, loading jobs can also be run by submitted an

HTTP request to the REST++ server.

Note that the keyword LOADING is included. This makes it more clear to users and

to GSQL that the job is a loading job and not some other type of job (such as a

SCHEMA_CHANGE JOB).

When a concurrent loading job is submitted, it is assigned a job ID number, which is

displayed on the GSQL console. The user can use this job ID to refer to the job, for

a status update, to abort the job, or to re-start the job. These operations are

described later in this section.

By default, the command will print several lines of status information while the

loading is running.

If the -noprint option is included, the output will omit the progress and summary

details, but it will still display the job id and the location of the log file.

RUN LOADING JOB syntax for concurrent loading

RUN LOADING JOB [-noprint] [-dryrun] [-n [i],j] jobname [
 USING filevar [="filepath_string"][, filevar [="filepath_string"]]
 [, CONCURRENCY="cnum"][,BATCH_SIZE="bnum"]
]

RUN LOADING JOB

Options

-noprint

Example of minimal output when -noprint option is used

5/13/25, 9:12 PM 3.3

1413

If -dryrun is used, the system will read the data files and process the data as

instructed by the job, but will NOT load any data into the graph. This option can be a

useful diagnostic tool.

The -n option limits the loading job to processing only a range of lines of each

input data file. The -n flag accepts one or two arguments. For example, -n 50

means read lines 1 to 50.

-n 10, 50 means read lines 10 to 50. The special symbol $ is interpreted as "last

line", so -n 10,$ means reads from line 10 to the end.

Below are the parameters available for the RUN QUERY command introduced by the

USING clause.

The optional USING clause may contain a list of file variables. Each file variable may

optionally be assigned a filepath_string, obeying the same format as in the CREATE

LOADING JOB. This list of file variables determines which parts of a loading job are

run and what data files are used.

• When a loading job is compiled, it generates one RESTPP endpoint for each
filevar and filepath_string. As a consequence, a loading job can be run in parts.

When RUN LOADING JOB is executed, only those endpoints whose filevar or file

identifier (" __GSQL_FILENAME_n__") is mentioned in the USING clause will be
used. However, if the USING clause is omitted, then the entire loading job will be

run.

Kick off the following job:
 JobName: load_videoE, jobid: gsql_demo_m1.1525091090494
 Loading log: '/usr/local/tigergraph/logs/restpp/restpp_loader_logs/gsql_

-dryrun

-n [i], j

Parameters

filevar list

5/13/25, 9:12 PM 3.3

1414

• If a filepath_string is given, it overrides the filepath_string defined in the loading

job. If a particular filevar is not assigned a filepath_string either in the loading job

or in the RUN LOADING JOB statement, then an error is reported and the job

exits.

The CONCURRENCY parameter sets the maximum number of concurrent requests that

the loading job may send to the GPE. The default is 256.

The BATCH_SIZE parameter sets the number of data lines included in each

concurrent request sent to the GPE. The default is 8192.

Another way to run a loading job is through the POST /ddl/{graph_name} endpoint

of the REST++ server. Since the REST++ server has more direct access to the graph

processing engine, this can execute more quickly than a RUN LOADING JOB

statement in GSQL. For details on how to use the endpoint, please see Run a loading

job.

Starting with v2.0, there are now commands to check loading job status, abort a

loading job and, restart a loading job.

When a loading job starts, the GSQL server assigns it a job id and displays it for the

user to see. The job id format is typically the name of the graph, followed by the

machine alias, following by a code number, e.g., gsql_demo_m1.1525091090494

CONCURRENCY

BATCH_SIZE

Running Loading Jobs as REST Requests

Inspecting and Managing Loading Jobs

Job ID and Status

5/13/25, 9:12 PM 3.3

1415

By default, an active loading job will display periodic updates of its progress. There

are two ways to inhibit these automatic output displays:

1. Run the loading job with the -noprint option.

2. After the loading job has started, enter CTRL+C. This will abort the output

display process, but the loading job will continue.

The command SHOW LOADING JOB shows the current status of either a specified

loading job or all current jobs:

Kick off the following job, i.e.
 JobName: load_test1, jobid: demo_graph_m1.1523663024967
 Loading log: '/home/tigergraph/tigergraph/logs/restpp/restpp_loader_logs

Job "demo_graph_m1.1523663024967" loading status

[RUNNING] m1 (Finished: 3 / Total: 4)
 [LOADING] /data/output/company.data
 [=============] 20%, 200 kl/s
 [LOADED]
 +---+
FILENAME	LOADED LINES	AVG SPEED	DURATION
/data/output/movie.dat	100	100 l/s	1.00 s
/data/output/person.dat	100	100 l/s	1.00 s
/data/output/roles.dat	200	200 l/s	1.00 s
+---+			
[RUNNING] m2 (Finished: 1 / Total: 2)			
[LOADING] /data/output/company.data			
[==========================] 60%, 200 kl/s			
[LOADED]			
+---+			
FILENAME	LOADED LINES	AVG SPEED	DURATION
/data/output/movie.dat	100	100 l/s	1.00 s
 +---+

SHOW LOADING STATUS job_id|ALL

SHOW LOADING STATUS

Example of SHOW LOADING STATUS output

SHOW LOADING JOB syntax

5/13/25, 9:12 PM 3.3

1416

The display format is the same as that displayed during the periodic progress

updates of the RUN LOADING JOB command. If you do not know the job id, but you

know the job name and possibly the machine, then the ALL option is a handy way to

see a list of active job ids.

The command ABORT LOADING JOB aborts either a specified load job or all active

loading jobs:

The output will show a summary of aborted loading jobs.

ABORT LOADING JOB job_id|ALL

gsql -g demo_graph "abort loading job all"

Job "demo_graph_m1.1519111662589" loading status
[ABORT_SUCCESS] m1
[SUMMARY] Finished: 0 / Total: 2
 +---
 | FILENAME | LOADED LINES | AVG SPEED | DURATION
 | /home/tigergraph/data.csv | 23901701 | 174 kl/s | 136.83 s
 |/home/tigergraph/data1.csv | 0 | 0 l/s | 0.00 s
 +---

Job "demo_graph_m2.1519111662615" loading status
[ABORT_SUCCESS] m2
[SUMMARY] Finished: 0 / Total: 2
 +---
 | FILENAME | LOADED LINES | AVG SPEED | DURATION
 | /home/tigergraph/data.csv | 23860559 | 175 kl/s | 136.23 s
 |/home/tigergraph/data1.csv | 0 | 0 l/s | 0.00 s
 +---

ABORT LOADING JOB

RESUME LOADING JOB

ABORT LOADING JOB syntax

ABORT LOADING JOB example

5/13/25, 9:12 PM 3.3

1417

The command RESUME LOADING JOB will restart a previously-run job which ended

for some reason before completion.

If the job is finished, this command will do nothing. The RESUME command should

pick up where the previous run ended; that is, it should not load the same data

twice.

Every loading job creates a log file. When the job starts, it will display the location of

the log file. Typically, the file is located at

<TigerGraph.root.dir>/logs/restpp/restpp_loader_logs/<graph_name>/<job_id>.log

This file contains the following information which most users will find useful:

• A list of all the parameter and option settings for the loading job

• A copy of the status information that is printed

• Statistics report on the number of lines successfully read and parsed

The statistics report include how many objects of each type is created, and how

many lines are invalid due to different reasons. This report also shows which lines

cause the errors. Here is the list of statistics shown in the report. There are two

types of statistics. One is file level (the number of lines), and the other is data object

level (the number of objects). If an file level error occurs, e.g., a line does not have

enough columns, this line of data is skipped for all LOAD statements in this loading

job. If an object level error or failed condition occurs, only the corresponding object

RESUME LOADING JOB job_id

gsql -g demo_graph "RESUME LOADING JOB demo_graph_m1.1519111662589"
[RESUME_SUCCESS] m1
[MESSAGE] The current job got resummed

Verifying and Debugging a Loading Job

RESUME LOADING JOB syntax

RESUME LOADING JOB example

5/13/25, 9:12 PM 3.3

1418

is not created, i.e., all other objects in the same loading job are still created if no

object level error or failed condition for each corresponding object.

Note that failing a WHERE clause is not necessarily a bad result. If the user's intent

for the WHERE clause is to select only certain lines, then it is natural for some lines

to pass and some lines to fail.

Below is an example.

File level statistics Explanation

Valid lines The number of valid lines in the source file

Reject lines
The number of lines which are rejected by

reject_line_rules

Invalid Json format
The number of lines with invalid JSON

format

Not enough token The number of lines with missing column(s)

Oversize token

The number of lines with oversize token(s).

Please increase "OutputTokenBufferSize" in

the

tigergraph/app/<VERSION_NUM>/dev/gdk/gs
ql/config file.

Object level statistics Explanation

Valid Object
The number of objects which have been

loaded successfully

No ID found
The number of objects in which

PRIMARY_ID is empty

Invalid Attributes
The number of invalid objects caused by

wrong data format for the attribute type

Invalid primary id
The number of invalid objects caused by

wrong data format for the PRIMARY_ID type

incorrect fixed binary length

The number of invalid objects caused by the

mismatch of the length of the data to the

type defined in the schema

5/13/25, 9:12 PM 3.3

1419

The above loading job and data generate the following report

There are a total of 7 data lines. The report shows that

• Six of the lines are valid data lines

• One line (Line 7) does not have enough tokens.

CREATE VERTEX movie (PRIMARY_ID id UINT, title STRING, country STRING COMP
CREATE DIRECTED EDGE sequel_of (FROM movie, TO movie)
CREATE GRAPH movie_graph(*)
CREATE LOADING JOB load_movie FOR GRAPH movie_graph{
 DEFINE FILENAME f
 LOAD f TO VERTEX movie VALUES ($0, $1, $2, $3) WHERE to_int($3) < 2000;
}
RUN LOADING JOB load_movie USING f="movie.dat"

0,abc,USA,-1990
1,abc,CHN,1990
2,abc,CHN,1990
3,abc,FRA,2015
4,abc,FRA,2005
5,abc,USA,1990
6,abc,1990

--------------------Statistics------------------------------
Valid lines: 6
Reject lines: 0
Invalid Json format: 0
Not enough token: 1 [ERROR] (e.g. 7)
Oversize token: 0

Vertex: movie
Valid Object: 3
No ID found: 0
Invalid Attributes: 1 [ERROR] (e.g. 1:year)
Invalid primary id: 0
Incorrect fixed
binary length: 0
Passed condition lines: 4
Failed condition lines: 2 (e.g. 4,5)

movie.dat

load_output.log (tail)

5/13/25, 9:12 PM 3.3

1420

Of the 6 valid lines,

• Three of the 6 valid lines generate valid movie vertices.

• One line has an invalid attribute (Line 1: year)

• Two lines (Lines 4 and 5) do not pass the WHERE clause.

5/13/25, 9:12 PM 3.3

1421

Appendix

5/13/25, 9:12 PM 3.3

1422

DDL Keywords & Reserved Words

The following words are reserved for use by the Data Definition Language. That is, a

graph schema or loading job may not use any of these words for the name of a

vertex type, edge type, graph name, tag, or attribute.

There is a separate list for Reserved Words in the Query Language.

The compiler will reject the use of a reserved word as well as any word beginning

with a reserved prefix as a user-defined identifier.

• v3.1: Added reserved prefix gsql_sys_

• gsql_sys_

GSQL Reserved Words

History

Reserved prefixes:

Reserved word list:

5/13/25, 9:12 PM 3.3

1423

ACCUM ADD ADMIN ALL
ALLOCATE ALTER AND ANY
AS ASC AVG BAG
BATCH BETWEEN BIGINT BLOB
BOOL BOOLEAN BOTH BREAK
BY CALL CASCADE CASE
CATCH CHAR CHARACTER CHECK
CLOB COALESCE COMPRESS CONST
CONSTRAINT CONTINUE COUNT CREATE
CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP CURSOR
DATA_SOURCE DATETIME DATETIME_ADD DATETIME_SUB
DECIMAL DECLARE DEFAULT DELETE
DESC DISTRIBUTED DO DOUBLE
DROP EDGE ELSE ELSEIF
END ESCAPE EXCEPTION EXISTS
EXPRFUNCTIONS EXPRUTIL FALSE FILE
FILENAME FILTER FIXED_BINARY FLATTEN_JSON_A
FLOAT FOR FOREACH FROM
GLOBAL GRAPH GROUP GROUPBYACCUM
HAVING HEADER HEAPACCUM IF
IGNORE IN INDEX INPUT_LINE_FIL
INSERT INT INT16 INT32
INT32_T INT64_T INT8 INTEGER
INTERPRET INTERSECT INTO IS
ISEMPTY JOB JOIN JSONARRAY
JSONOBJECT KAFKA KEY LEADING
LIKE LIMIT LIST LOAD
LOADACCUM LOG LONG MAP
NOT NOW NULL OFFSET
ON OR ORDER PINNED
POST_ACCUM PRIMARY PRIMARY_ID PRINT
PROXY QUERY QUIT RAISE
RANGE REDUCE REPLACE RETURN
RETURNS S3 SAMPLE SELECT
SELECTVERTEX SET STATIC STRING
SUM TARGET TEMP_TABLE THEN
TO TOKEN TOKENBANK TOKEN_LEN
TO_CSV TO_DATETIME TO_FLOAT TO_INT
TRAILING TRIM TRUE TRY
TUPLE TYPEDEF UINT UINT16
UINT32 UINT32_T UINT64_T UINT8
UINT8_T UNION UPDATE UPSERT
USING VALUES VERTEX WHEN
WHERE WHILE

5/13/25, 9:12 PM 3.3

1424

These keywords in the language are non-reserved, so users may use them for user-

defined identifiers.

• v3.1: Added DESCRIPTION, TAG , TAGS

ABORT API APPROX_COUNT ATTRIBUTE
BEGIN CHANGE CLEAR CONCAT
DATA DATASRC DECRYPT DEFAULT
DEFINE DESCRIPTION DIRECTED EMPTY
EXIT EXPORT EXPR_FUNC EXPR_UTIL
EXTERN FILENAMEVAR FLATTEN FLATTENJSON
GENERATEDATA GET GRANT HELP
ICON IMPORT INSTALL JSON
LOADING LOCAL LS MAX
MIN MINUS NUMERIC OPTION
OVERWRITE PAIR PASSWORD PUT
RECOMPILE REJECT_LINE_RULE RESUME REVOKE
ROLE RUN SCHEMA_CHANGE SCHEMA
SECONDARY_ID SECRET SEPARATOR SHOW
SPLIT STATS STATUS STORE
SUBSTR SYNTAX TAG TAGS
TEMPLATE TK TOFLOAT TOINT
TOKEN_BANK TOKENLEN UNDIRECTED USE
USER USERS VAL VECTOR
VERSION VOID WITH

GSQL Non-Reserved Keywords

History

Non-reserved keyword list:

5/13/25, 9:12 PM 3.3

1425

GSQL Start-to-End
Process and Data Flow
The figures below illustrates the sequence of steps and the dependencies to

progress from no graph to a loaded graph and a query result, for TigerGraph

platform version 0.8 and higher. Note that online and offline follow the same flow.

5/13/25, 9:12 PM 3.3

1426

5/13/25, 9:12 PM 3.3

1427

Figure B1: Complete GSQL Workflow

5/13/25, 9:12 PM 3.3

1428

Part 2 - Querying
This work is licensed under a Creative Commons Attribution 4.0 International

License.

Table of Contents

Introduction

CREATE/INTERPRET/INSTALL/RUN QUERY

Distributed Query Mode

Data Types

Accumulators

Operators and Expressions

Operators and Expressions

Declaration and Assignment Statements

SELECT Statement

Data Modification Statements

Output Statements and FILE Objects

5/13/25, 9:12 PM 3.3

1429

Exception Statements

5/13/25, 9:12 PM 3.3

1430

Introduction
The GSQL ® Query Language is a language for the exploration and analysis of large

scale graphs. The high-level language makes it easy to perform powerful graph

traversal queries in the TigerGraph system. By combining features familiar to

database users and programmers with highly expressive new capabilities, the GSQL

query language offers both easy authoring and powerful execution. A GSQL query

contains one or more SELECT statements, where each SELECT statement describes

a traversal over a set of vertices and edges in the graph or describes a selection of

a subset of vertices. By combining multiple SELECT statements, the user can map

out query patterns to answer a virtually unlimited set of real-life data questions.

This document focuses on the formal specification for the GSQL Query Language. It

includes example queries that demonstrate the language, each of which works on

one of the following six graphs: workNet , socialNet , friendNet , computerNet ,

minimalNet , and investmentNet . Their schemas are shown below. Appendix D

lists the full command and data files to create and load these graphs with small sets

of data (~10 to 20 vertices). The data sets are small so that you can understand the

result of each query example. The tarball file gsql_ref_examples_2.0.tar.gz

(linked below) contains all of the graph schemas, data files, and queries.

gsql_ref_examples_2.0.tar.gz

66KB
gsql_ref_examples_2.0.tar.gz

CREATE VERTEX person(PRIMARY_ID personId UINT, id STRING, gender STRING) W
CREATE UNDIRECTED EDGE friend(FROM person, TO person)
CREATE VERTEX post(PRIMARY_ID postId UINT, subject STRING, postTime DATETI
CREATE DIRECTED EDGE posted(FROM person, TO post)
CREATE DIRECTED EDGE liked(FROM person, TO post, actionTime DATETIME)

Schemas for Example Graphs

Graph Schema: socialNet

Graph Schema: workNet

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNeAzZnzivCPIivP44u%2F-LNeBS5efd0sgQSn_pFO%2Fgsql_ref_examples_2.0.tar.gz?alt=media&token=09f55e93-31a6-4e21-a108-317edd080a97

1431

CREATE VERTEX person(PRIMARY_ID personId STRING, id STRING, locationId STR
CREATE VERTEX company(PRIMARY_ID clientId STRING, id STRING, country STRIN
CREATE UNDIRECTED EDGE worksFor(FROM person, TO company, startYear INT, st

CREATE VERTEX person(PRIMARY_ID personId UINT, id STRING)
CREATE UNDIRECTED EDGE friend(FROM person, TO person)
CREATE UNDIRECTED EDGE coworker(FROM person, TO person)

CREATE VERTEX computer(PRIMARY_ID compID STRING, id STRING)
CREATE DIRECTED EDGE connected(FROM computer, TO computer, connectionSpeed

CREATE VERTEX testV(PRIMARY_ID id STRING)
CREATE UNDIRECTED EDGE testE(FROM testV, TO testV)

TYPEDEF TUPLE < age UINT (4), mothersName STRING(20) > SECRET_INFO
CREATE VERTEX person(PRIMARY_ID personId STRING, portfolio MAP<STRING, DOU
CREATE VERTEX stockOrder(PRIMARY_ID orderId STRING, ticker STRING, orderSi
CREATE UNDIRECTED EDGE makeOrder(FROM person, TO stockOrder, orderTime DAT

Graph Schema: friendNet

Graph Schema: computerNet

Graph Schema: minimalNet

Graph Schema: investmentNet

5/13/25, 9:12 PM 3.3

1432

CREATE/INTERPRET/INSTALL/RUN
QUERY

Query Privileges

Users with the querywriter role or greater (designer , admin , globaldesigner,
and superuser) can create, install, and drop queries.

Any user with the queryreader role or greater for a given graph can run the queries
for that graph.

To implement fine-grained control over which queries can be executed by which sets
of users:

1. Group your queries into your desired privilege groups.

2. Define a graph for each privilege group. These graphs can all have the same

domain if you wish.

3. Create your queries, assigning each to its appropriate privilege group.

EBNF for CREATE QUERY

5/13/25, 9:12 PM 3.3

1433

A GSQL query is a sequence of data retrieval-and-computation statements

executed as a single operation. Users can write queries to explore a data graph

however they like, to read and make computations on the graph data along the way,

to update the graph, and to deliver resulting data. A query is analogous to a user-

defined procedure or function: it can have one or more input parameters, and it can

produce output in two ways: by returning a value or by printing. A query can be run

in one of three ways:

createQuery := CREATE [OR REPLACE] [DISTRIBUTED] QUERY queryName
 "(" [parameterList] ")"
 [FOR GRAPH graphName]
 [RETURNS "(" baseType | accumType ")"]
 [API "(" stringLiteral ")"]
 [SYNTAX syntaxName]
 "{" queryBody "}"

interpretQuery := INTERPRET QUERY "(" ")"
 [FOR GRAPH graphName]
 [SYNTAX syntaxName]
 "{" queryBody "}"

parameterValueList := parameterValue ["," parameterValue]*
parameterValue := parameterConstant
 | "[" parameterValue ["," parameterValue]* "]" // BAG or
 | "(" stringLiteral "," stringLiteral ")" // generi
parameterConstant := numeric | stringLiteral | TRUE | FALSE
parameterList := parameterType paramName ["=" constant]
 ["," parameterType paramName ["=" constant]]*

syntaxName := name

queryBody := [typedefs] [declStmts] [declExceptStmts] queryBodyStmts
typedefs := (typedef ";")+
declStmts := (declStmt ";")+
declStmt := baseDeclStmt | accumDeclStmt | fileDeclStmt
declExceptStmts := (declExceptStmt ";")+
queryBodyStmts := (queryBodyStmt ";")+

installQuery := INSTALL QUERY [installOptions] ("*" | ALL |queryName [","
runQuery := RUN QUERY [runOptions] queryName "(" parameterValueList ")"

showQuery := SHOW QUERY queryName
dropQuery := DROP QUERY ("*" | ALL | queryName ["," queryName]*)

5/13/25, 9:12 PM 3.3

1434

1. Define and run an unnamed query immediately:

a. INTERPRET QUERY : execute the query's statements

Alternately, there is also a built-in REST++ endpoint to interpret a query string:

POST /gsqlserver/interpreted_query
See the RESTPP API User Guide for details.

2. Define a named query and then run it.

a. CREATE QUERY : define the functionality of the query

b. INTERPRET QUERY : execute the query with input values

3. Define a named query, compile it to optimize performance, and then run it.

a. CREATE QUERY : define the functionality of the query

b. INSTALL QUERY : compile the query

c. RUN QUERY : execute the query with input values

There are some limitations to Interpreted Mode. See the section on INTERPRET

QUERY and the appendix section Interpreted GSQL Limitations.

CREATE QUERY defines the functionality of a query on a given graph schema.

A query has a name, a parameter list, the name of the graph being queried, an

optional RETURNS type (see Section " RETURN Statement" for more details), optional

specifiers for the output API and the language syntax version, and a body. The body

consists of an optional sequence of typedefs , followed by an optional sequence of

createQuery := CREATE [OR REPLACE] [DISTRIBUTED] QUERY queryName
 "(" [parameterList] ")"
 [FOR GRAPH graphName]
 [RETURNS "(" baseType | accumType ")"]
 [API "(" stringLiteral ")"]
 [SYNTAX syntaxName]
 "{" queryBody "}"

queryBody := [typedefs] [declStmts] [declExceptStmts] queryBodyStmts

CREATE QUERY

5/13/25, 9:12 PM 3.3

1435

declarations, then followed by one or more statements. The body defines the

behavior of the query.

Dynamic Query Support

As of TigerGraph 3.0+, FOR GRAPH graphName is optional, as long as the graph has
been specified already, either when entering gsql:
GSQL -g graphName [<gsql_command>]
or once inside the GSQL shell, by using the USE GRAPH graphName command.
This is one aspect of Dynamic Querying.

If the optional keywords OR REPLACE are included, then this query definition, if

error-free, will replace a previous definition with the same query name. The new

query will not be installed. That is,

CREATE OR REPLACE QUERY name

acts like

DROP QUERY name

CREATE QUERY name

However, if there are any errors in this query definition, then the previous query

definition will be maintained. If the OR REPLACE option is not used, then GSQL will

reject a CREATE QUERY command that uses an existing name.

The DISTRIBUTED option applies only to installations where the graph has been

distributed across a cluster. If specified, the query will run with a different execution

model which may give better performance for queries that traverse a large portion

of the cluster. For details, see Distributed Query Mode.

Typedefs allow the definition of custom types for use within the body. The

declarations support the definition of accumulators (see Chapter "Accumulators"

for more details) and global/local variables. All accumulators and global variables

must be declared before any statements. There are various types of statements that

can be used within the body. Typically, the core statement(s) in the body of a query

is one or more SELECT , UPDATE , INSERT , DELETE statements. The language

supports conditional statements such as an IF statement as well as looping

constructs such as WHILE and FOREACH . It also supports calling functions,

assigning variables, printing, and modifying the graph data.

5/13/25, 9:12 PM 3.3

1436

The query body may include calls to other queries. That is, the other queries are

treated as subquery functions. See the subsection on "Queries as Functions".

This table lists the supported data types for input parameters and return values.

CREATE QUERY createQueryEx (STRING uid) FOR GRAPH socialNet RETURNS (int)
 SYNTAX v2 {
 # declaration statements
 users = {person.*};
 # body statements
 posts = SELECT p
 FROM users:u-(posted)->:p
 WHERE u.id == uid;
 PRINT posts;
 RETURN posts.size();
}

Type Supported Data Types

Parameter Types

• Any base type (except EDGE or

JSONOBJECT): INT, UINT, FLOAT,
DOUBLE, STRING, BOOL, STRING,
DATETIME, VERTEX, JSONARRAY

• SET<baseType> , BAG<baseType>

◦ Edge and JSONOBJECT

Return Types

• any baseType (including EDGE): INT,

UINT, FLOAT, DOUBLE, STRING, BOOL,

STRING, VERTEX, EDGE, JSONOBJECT,

JSONARRAY

• any accumulator type, except

GroupByAccum

API (JSON output format) Currently, the only option is "v2" (default)

SYNTAX

v1 (default) or v2 (pattern matching). See

the SELECT Statement section for an outline

Query parameter and return types

Example of a CREATE QUERY statement

5/13/25, 9:12 PM 3.3

1437

You can specify default values for parameters of primitive types when creating a

query. Primitive types include:

• INT

• UINT

• FLOAT

• DOUBLE

• STRING

• BOOL

• STRING

• DATETIME

To specify the default value for a parameter, use the assignment operator (=) after

the parameter name and specify the default value:

TigerGraph 3.0+ supports Dynamic Querying. This means the query can be written

and installed as a saved procedure without referencing a particular graph. Schema

of the differences See Pattern Matching for

CREATE QUERY createQueryEx (STRING uid = "Tom") FOR GRAPH socialNet RETURN
 SYNTAX v2 {
 # declaration statements
 users = {person.*};
 # body statements
 posts = SELECT p
 FROM users:u-(posted)->:p
 WHERE u.id == uid;
 PRINT posts;
 RETURN posts.size();
}

Default parameter values

Dynamic querying

Example of a CREATE QUERY command with a default parameter value

5/13/25, 9:12 PM 3.3

1438

details -- the name of the graph, vertex types, edge types, and attributes -- can all

be parameterized and only need to be specified at run time.

Here are the ingredients for a dynamic query:

• Graph name: When creating a query, FOR GRAPH graphName is optional, as long
as the graph has been specified already, either when entering gsql:

GSQL -g graphName [<gsql_command>]
or once inside the GSQL shell, by using the USE GRAPH graphName command.

• Vertex type and edge type in SELECT statements. Typically, the FROM clause

mentions the name of specific vertex types and edge types. String or string set
parameters can be used for edge and target types instead.

• Attribute names. The getAttr and setAttr functions, which take attribute name

and data type as string parameters, can be used to parameterize attribute

access.

• INSERT statements: If you are using INSERT to add data to your graph, you
need to specify what type of vertex or edge you want to add. This can also be

parameterized.

Here is a simple example to demonstrate how to apply Dynamic GSQL Query

techniques. Here is the PageRank algorithm from our GSQL Graph Algorithm library.

Here is it written with schema information embedded statically in the query:

• graph name = social

• vertex type = Page

• edge type = Link

• vertex attribute = Score

5/13/25, 9:12 PM 3.3

1439

Here is the same algorithm written in Dynamic Querying style:

CREATE QUERY pageRank (FLOAT maxChange=0.00, INT maxIter=25,
 FLOAT damping=0.85) //parameters
 FOR GRAPH gsql_demo
{
 MaxAccum<float> @@maxDiff = 9999;
 SumAccum<float> @rcvd_score = 0;
 SumAccum<float> @score = 1;

 Start = {Page.*};
 WHILE @@maxDiff > maxChange LIMIT maxIter DO
 @@maxDiff = 0;
 V = SELECT s
 FROM Start:s -(Linkto:e)- Page:t //hardcoded types
 ACCUM t.@rcvd_score += s.@score/(s.outdegree("Linkto")) //Param
 POST-ACCUM s.@score = (1.0-damping) + damping * s.@rcvd_score,
 s.@rcvd_score = 0,
 @@maxDiff += abs(s.@score - s.@score');
 END;

 V = SELECT s FROM Start:s
 POST-ACCUM s.Score = s.@score; //hardcoded attribute
}
RUN QUERY pageRank(_,_,_)

5/13/25, 9:12 PM 3.3

1440

A statement is a standalone instruction that expresses an action to be carried out.

The most common statements are data manipulation language (DML) statements.

DML statements include the SELECT , UPDATE , INSERT INTO , DELETE FROM , and

DELETE statements.

A GSQL query has two levels of statements. The upper-level statement type is

called query-body-level statement, or query-body statement for short. This

statement type is part of either the top-level block or a query-body control flow

block. For example, each of the statements at the top level directly under CREATE

QUERY is a query-body statement. If one of the statements is a CASE statement with

several THEN blocks, each of the statements in the THEN blocks is also a query-

body statement. Each query-body statement ends with a semicolon.

CREATE QUERY pageRankDyn (FLOAT maxChange=0.00, INT maxIter=25,
 FLOAT damping=0.85,
 STRING vType, STRING eType, STRING attr) //parameterized schema
//no graph name
{
 MaxAccum<float> @@maxDiff = 9999;
 SumAccum<float> @rcvd_score = 0;
 SumAccum<float> @score = 1;

 Start = {vType};
 WHILE @@maxDiff > maxChange LIMIT maxIter DO
 @@maxDiff = 0;
 V = SELECT s
 FROM Start:s -(eType:e)- vType:t //parameterized
 ACCUM t.@rcvd_score += s.@score/(s.outdegree(eType)) //param
 POST-ACCUM s.@score = (1.0-damping) + damping * s.@rcvd_score,
 s.@rcvd_score = 0,
 @@maxDiff += abs(s.@score - s.@score');
 END;

 V = SELECT s FROM Start:s
 POST-ACCUM s.setAttr(attr, s.@score); //parameterized
}
RUN QUERY pageRankDyn(_,_,_,"Page", "Link", "Score")

Statement types

5/13/25, 9:12 PM 3.3

1441

The lower-level statement type is called DML-sub-level statement or DML-sub

statement for short. This statement type is used inside certain query-body DML

statements, to define particular data manipulation actions. DML-sub-statements are

comma-separated. There is no comma or semicolon after the last DML-sub-

statement in a block. For example, one of the top-level statements is a SELECT

statement, each of the statements in its ACCUM clause is a DML-sub-statement. If

one of those DML-sub-statements is a CASE statement, each of the statement in

the THEN blocks is a DML-sub-statement.

There is some overlap in the types. For example, an assignment statement can be

used either at the query-body level or the DML-sub-level.

5/13/25, 9:12 PM 3.3

1442

Guidelines for understanding statement type hierarchy:

queryBodyStmts := (queryBodyStmt ";")+

queryBodyStmt := assignStmt // Assignment
 | vSetVarDeclStmt // Declaration
 | gAccumAssignStmt // Assignment
 | gAccumAccumStmt // Assignment
 | lAccumAccumStmt // Assignment
 | funcCallStmt // Function Call
 | selectStmt // Select
 | queryBodyCaseStmt // Control Flow
 | queryBodyIfStmt // Control Flow
 | queryBodyWhileStmt // Control Flow
 | queryBodyForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | updateStmt // Data Modification
 | insertStmt // Data Modification
 | queryBodyDeleteStmt // Data Modification
 | printStmt // Output
 | printlnStmt // Output
 | logStmt // Output
 | returnStmt // Output
 | raiseStmt // Exception
 | tryStmt // Exception

DMLSubStmtList := DMLSubStmt ["," DMLSubStmt]*

DMLSubStmt := assignStmt // Assignment
 | funcCallStmt // Function Call
 | gAccumAccumStmt // Assignment
 | lAccumAccumStmt // Assignment
 | attrAccumStmt // Assignment
 | vAccumFuncCall // Function Call
 | localVarDeclStmt // Declaration
 | DMLSubCaseStmt // Control Flow
 | DMLSubIfStmt // Control Flow
 | DMLSubWhileStmt // Control Flow
 | DMLSubForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | insertStmt // Data Modification
 | DMLSubDeleteStmt // Data Modification
 | printlnStmt // Output
 | logStmt // Output

5/13/25, 9:12 PM 3.3

1443

• Top-level statements are Query-Body type (each statement ending with a

semicolon).

• The statements within a DML statement are DML-sub statements (comma-

separated list).

• The blocks within a Control Flow statement have the same type as the entire

Control Flow statement itself.

Here is a descriptive list of query-body statements:

Each statement's operation type is either ControlFlow, DML, or other.
Each statement's syntax type is either queryBodyStmt or DMLSubStmt.

CREATE QUERY stmtTypes (parameterList) FOR GRAPH g [
other queryBodyStmt1;
ControlFlow queryBodyStmt2 # ControlFlow inside top level.

other queryBodyStmt2.1; # subStmts in ControlFlow are queryBo
ControlFlow queryBodyStmt2.2 # ControlFlow inside ControlFlow insi

other queryBodyStmt2.2.1;
other queryBodyStmt2.2.2;

END;
DML queryBodyStmt2.3 # DML inside ControlFlow inside top-level

other DMLSubStmt2.3.1, # switch to DMLSubStmt
other DMLSubStmt2.3.2

;
END;
DML queryBodyStmt3 # DML inside top level.

other DMLSubStmt3.1, # All subStmts in DML must be DMLSubStmt
ControlFlow DMLSubStmt3.2 # ControlFlow inside DML inside top leve

other DMLSubStmt3.2.1,
other DMLSubStmt3.2.2

,
DML DMLsubStmt3.3

other DMLSubStmt3.3.1,
other DMLSubStmt3.3.2

;
other queryBodyStmt4;

EBNF term Common Name Description

assignStmt Assignment Statement
See "Declaration and

Assignment Statements"

Schematic illustration of relationship between queryBodyStmt and DMLSubStmt

5/13/25, 9:12 PM 3.3

1444

vSetVarDeclStmt
Vertex Set Variable

Declaration Statement

See "Declaration and

Assignment Statements"

gAccumAssignStmt
Global Accumulator

Assignment Statement

See "Declaration and

Assignment Statements"

gAccumAccumStmt
Global Accumulator

Accumulation Statement

See "Declaration and

Assignment Statements"

lAccumAccumStmt
Local Accumulator

Accumulation Statement

See "Declaration and

Assignment Statements"

funcCallStmt
Functional Call or Query Call

Statement

See "Declaration and

Assignment Statements"

selectStmt SELECT Statement See "SELECT Statement"

queryBodyCaseStmt
query-body CASE

statement

See "Control Flow

Statements"

queryBodyIfStmt query-body IF statement
See "Control Flow

Statements"

queryBodyWhileStmt
query-body WHILE

statement

See "Control Flow

Statements"

queryBodyForEachStmt
query-body FOREACH

statement

See "Control Flow

Statements"

updateStmt UPDATE Statement
See "Data Modification

Statements"

insertStmt INSERT INTO statement
See "Data Modification

Statements"

queryBodyDeleteStmt
Query-body DELETE

Statement

See "Data Modification

Statements"

printStmt PRINT Statement See "Output Statements"

logStmt LOG Statement See Output Statements"

returnStmt RETURN Statement See "Output Statements"

raiseStmt PRINT Statement
See "Exception

Statements"

5/13/25, 9:12 PM 3.3

1445

Here is a descriptive list of DML-sub-statements:

EBNF term Common Name Description

assignStmt Assignment Statement
See "Declaration and

Assignment Statements"

funcCallStmt Functional Call Statement
See "Declaration and

Assignment Statements"

gAccumAccumStmt
Global Accumulator

Accumulation Statement

See "Declaration and

Assignment Statements"

lAccumAccumStmt
Local Accumulator

Accumulation Statement

See "Declaration and

Assignment Statements"

attrAccumStmt
Attribute Accumulation

Statement

See "Declaration and

Assignment Statements"

vAccumFuncCall

Vertex-attached

Accumulator Function Call

Statement

See "Declaration and

Assignment Statements"

localVarDeclStmt
Local Variable Declaration

Statement
See "SELECT Statement"

insertStmt INSERT INTO Statement
See "Control Flow

Statements"

DMLSubDeleteStmt
DML-sub DELETE

Statement

See "Data Modification

Statements"

DMLSubcaseStmt DML-sub CASE statement
See "Data Modification

Statements"

DMLSubIfStmt DML-sub IF statement
See "Data Modification

Statements"

DMLSubForEachStmt
DML-sub FOREACH

statement

See "Data Modification

Statements"

DMLSubWhileStmt DML-sub WHILE statement
See "Data Modification

Statements"

logStmt LOG Statement See "Output Statements"

5/13/25, 9:12 PM 3.3

1446

INTERPRET QUERY runs a query by translating it line-by-line. This is in contrast to the

2-step flow: (1) INSTALL to pre-translate and optimize a query, then (2) RUN to

execute the installed query. The basic trade-off between INTERPRET QUERY and

INSTALL/RUN QUERY is as follows:

• INTERPRET :

◦ Starts running immediately but may take longer to finish than running an

installed query.

◦ Suitable for ad hoc exploration of a graph or when developing and

debugging an application, and rapid experimentation is desired.

◦ Supports most but not all of the features of the full GSQL query language.
See the Appendix section Interpreted GSQL Limitations.

• INSTALL / RUN :

◦ Takes up to a minute to INSTALL .

◦ Runs faster than INTERPRET , from only a few percent faster to twice as fast.

◦ Should always be used for production environments with fixed queries.

There are two GSQL syntax options for Interpreted GSQL: Immediate mode and

Saved-query mode. In addition there is also a predefined RESTful endpoint for

running interpreted GSQL: POST /gsqlserver/interpreted_query . The query body

is sent as the payload of the request. The syntax is like the Immediate query option,

except that it is possible to provide parameters, using the query string of the

endpoint's request URL. The example below shows a parameterized query using the

POST /gsqlserver/interpreted_query endpoint. For more details, see the RESTPP

API User Guide.

curl --user tigergraph:tigergraph -X POST 'localhost:14240/gsqlserver/inte
 INTERPRET QUERY (int a) FOR GRAPH gsql_demo {
 PRINT a;
 }
'

INTERPRET QUERY

Interpreted GSQL REST Endpoint with Immediate Query

5/13/25, 9:12 PM 3.3

1447

This syntax is similar in concept to SQL queries. Queries are not named, do not

accept parameters, and are not saved after being run. Syntax differences from

compiled GSQL:

• The keyword CREATE is replaced with INTERPRET .

• The query is executed immediately by the INTERPRET statement. The INSTALL
and RUN statements are not used.

• Parameters are not accepted.

Compare the example below to the example in the Create Query section:

• No query name, no parameters, no RETURN statement.

• Because no parameter is allowed, the parameter uid is set within the query.

interpretQuery := INTERPRET QUERY "(" ")"
 [FOR GRAPH graphName]
 [SYNTAX syntaxName]
 "{" queryBody "}"

INTERPRET QUERY () FOR GRAPH socialNet {
 # declaration statements
 STRING uid = "Jane.Doe";
 users = {person.*};
 # body statements
 posts = SELECT p
 FROM users:u-(posted)->:p
 WHERE u.id == uid;
 PRINT posts, posts.size();
}

Immediate mode: define and interpret

Interpret a created query

interpret-anonymous-query syntax

Example of Immediate Mode for INTERPRET QUERY

interpret-saved-query syntax

5/13/25, 9:12 PM 3.3

1448

This syntax is like RUN query, except

1. The keyword RUN is replaced with INTERPRET .

2. Some options may not be supported.

INSTALL QUERY installs a query or multiple queries on a graph. Installing a query

compiles the procedures described by the query as well as generates a REST

endpoint for running the query.

Installing a query allows the query to be run through the RUN QUERY command as

well as through its REST endpoint, both offering stronger performance as compared

to running the query through the INTERPRET QUERY command. The INSTALL QUERY

command will install the queries specified, with query names separated by a

comma.

If a query calls a subquery, the query can only be installed after one of the following

conditions is met:

• The subquery has already been installed

• The subquery is being installed in the same INSTALL QUERY command as the

query itself

If a subquery that was previously installed is dropped from the graph, all installed

queries that call the subquery will be disabled. To re-enable a disabled query, all its

subqueries need to be installed with the same parameters and return type.

runQuery := (RUN | INTERPRET) QUERY [runOptions] queryName "(" parameterVa

INTERPRET QUERY createQueryEx ("Jane.Doe")

installQuery := INSTALL QUERY [installOptions] ("*" | ALL | queryName [",

INSTALL QUERY

Example of Interpret-Only Mode for INTERPRET QUERY

5/13/25, 9:12 PM 3.3

1449

When a single INSTALL QUERY command installs multiple queries, each query is

installed independently. If one query fails to be installed, it will not affect the

installation of other queries.

To install a query, the user needs to have the WRITE_QUERY privilege on the graph

where the query is to be installed or on the global scope.

Users can also install all uninstalled queries on a graph with INSTALL QUERY , using

either of the following commands:

• INSTALL QUERY *

• INSTALL QUERY ALL

Installing takes several seconds for each query. The current version does not support
concurrent installation and running of queries. Other concurrent graph operations will
be delayed until the installation finishes.

Concurrent INSTALL QUERY commands are allowed as long as only one INSTALL
QUERY command is running on a single graph. Concurrent INSTALL QUERY commands
are not allowed on a single graph.

The following options are available:

Option Effect

-FORCE

Reinstall the query even if the system

indicates the query is already installed.

This is useful for overwriting an installation

that is corrupted or otherwise outdated,

without having to drop and then recreate the

query. If this option is not used, the GSQL

shell will refuse to re-install a query that is

already installed.

If you have a distributed database

deployment, installing the query in

Distributed Query Mode can increase

performance for single queries - using a

Options for INSTALL QUERY

5/13/25, 9:12 PM 3.3

1450

INSTALL QUERY -OPTIMIZE

Users can run INSTALL QUERY -OPTIMIZE to optimize all installed queries. The

names of the individual queries are not needed. This operation optimizes all

previously installed queries, reducing their run times by about 20%. Optimize a

query if query run time is more important to you than query installation time.

The RUN QUERY command runs an installed query. To run a query with the RUN

QUERY command, specify the query name, followed by the query parameters

enclosed in parentheses. Running a query executes all statements in the query body

and produces output as specified by the output statements in the query.

You can also run an installed query through REST requests - see Run an installed

query.

-DISTRIBUTED single worker from each available machine

to yield results. Certain cases may benefit

more from this option than others -- more

detailed information is available on the next

page: Distributed Query Mode .

runQuery := (RUN | INTERPRET) QUERY [runOptions] queryName
 "(" parameterValueList | parameterValueJSON ")"

runOptions := ("-av" | "-d")*
parameterValueList := parameterValue ["," parameterValue]*
parmeterValueJSON ::= '{"'parameterName'":' parameterValue(', "'parameterN

Optimize installed queries

RUN QUERY

Syntax

RUN QUERY syntax

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/dev/gsql-ref/querying/distributed-query-mode
https://docs.tigergraph.com/dev/gsql-ref/querying/distributed-query-mode

1451

There are two ways of passing parameters to a query in a RUN QUERY command:

• Pass parameters as an ordered list separated by commas

• Pass parameters by name in JSON

To pass parameters to a query with a list, the parameters must be put in the same

order as they were in the query definition. Each value passed in will correspond to

the parameter at the same index when the query was created.

To use the default value for a parameter, use the _ character for the value of the

parameter. You can also omit parameters to use their default value. However, if you

omit one parameter, you also have to omit all parameters that come after that

parameter.

For example, if we have the following query definition:

To run the query with default values for the parameter name, use _ in the place of

the second parameter value:

CREATE QUERY greetPerson(INT age = 3, STRING name = "John",
 DATETIME birthday = to_datetime("2019-02-19 19:19:19"))
{
 PRINT age, name, birthday;
}

Query parameters

Parameter list

5/13/25, 9:12 PM 3.3

1452

To use the default values for both the second and the third parameters, you can

omit both parameters and only provide a value for the first parameter.

To pass query parameters by name with a JSON object, map the parameter names

to their values in a JSON object enclosed in parentheses. Parameters that are not

named in the JSON object will keep their default values for the execution of the

query.

GSQL > RUN QUERY greetPerson (21, _, "2020-02-02 20:02:20")
Below is the query output
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{
 "birthday": "2020-02-02 20:02:20",
 "name": "John",
 "age": 21
 }]
}

GSQL > RUN QUERY greetPerson(21)
Below is the query output
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{
 "birthday": "2019-02-19 19:19:19",
 "name": "John",
 "age": 21
 }]
}

Parameter JSON object

5/13/25, 9:12 PM 3.3

1453

For example, if we have the following query:

Supplying the parameters with a JSON object will look like the following. The

parameter birthday is not named in the parameter JSON object and therefore

takes the default value:

This subsection describes how to format the complex type parameter values when

executing a query by RUN QUERY . More details about all parameter types are

described in Section "Query Parameter Types".

CREATE QUERY greetPerson(INT age = 3, STRING name = "John",
 DATETIME birthday = to_datetime("2019-02-19 19:19:19"))
{
 PRINT age, name, birthday;
}

RUN QUERY greetPerson({"name": "Emma", "age": 21})

Parameter type Syntax Example

DATETIME
Use a string formatted as

"YYYY-MM-DD HH-MM-SS"
"2019-02-19 19:19:19"

Set or bag of primitives

Use square brackets to

enclose the collection of

values.

A set of integers: [1,5,10]

VERTEX<type>

If the vertex type is

specified in the query

definition, then the vertex

argument is vertex_id

The vertex type is person
and the desired ID is

person2 .

"person2"

VERTEX

If the type is not defined in

the query definition, then

the argument must provide

both the id and type in

A vertex with ID "person1"
and type="person :

Complex type parameter passing

Parameter list

5/13/25, 9:12 PM 3.3

1454

(type not pre-specified) parentheses:(vertex_id,

vertex_type)

("person1","person")

Set or bag of

VERTEX<type>

Same as a SET or BAG of

primitives, where the

primitive type is vertex_id.

["person3", "person4"]

Set or bag of VERTEX

(type not pre-specified)

Same as a SET or BAG of

vertices, with vertex type

not pre-specified. Square

brackets enclose a comma-

separated list of vertex (id,

type) pairs. Mixed types are

permitted.

[("person1","person"),
("11","post")]

Parameter type Syntax Example

DATETIME
Use a string formatted as

"YYYY-MM-DD HH-MM-SS"
"2019-02-19 19:19:19"

Set or bag of primitives

Use a JSON array

containing the primitive

values

["a", "list", "of",
"args"]

VERTEX<type>

Use a JSON object

containing a field "id" for

the vertex ID and a field

"type" for the type of the

vertex

{"id": "person1",

"type": "person"}

VERTEX (type not

specified)

Use a JSON object

containing a field "id" for

the vertex ID

{"id": "person1"}

Set or bag of

VERTEX<type>

Use a JSON array

containing a list of JSON

VERTEX<type> object

[{"id": "person1"},
{"id": "person2"}]

Set or bag of vertices of

unspecified types

Use a JSON array

containing a list of JSON

VERTEX

[{"id": "person1",

"type": "person"},{"id":
"person2",

"type": "person"}]

Parameter JSON object

5/13/25, 9:12 PM 3.3

1455

Some queries run with all or almost all vertices in a SELECT statement s, e.g.

PageRank algorithm. In this case, the graph processing engine can run much more

efficiently in all-vertex mode. In the all-vertex mode, all vertices are always selected,

and the following actions become ineffective:

• Filtering with selected vertices or vertex types. The source vertex set must be all

vertices.

• Filtering with the WHERE clause.

• Filtering with the HAVING clause.

• Assigning designated vertex or designated type of vertexes. E.g. X = {

vertex_type .*}

To run the query in all-vertex mode, use the -av option in shell mode or include

__GQUERY__USING_ALL_ACTIVE_MODE=true in the query string of an HTTP request.

Typically, the GSQL RUN QUERY command runs in the foreground and does not

produce output until the query completes, which is inconvenient in the case of long-

running queries. Starting with TigerGraph 3.1, you can run queries in Detached

Mode to enable background execution of long-running queries.

Queries executed in Detached mode are still subject to the system timeout limit. The

default timeout limit is 16 seconds and can be set using the GSQL-TIMEOUT header.

GSQL > RUN QUERY -av test()

In a curl URL call. Note the use of both single and double underscores
curl -X GET 'http://localhost:9000/query/graphname/queryname?__GQUERY__USI

Options

All-vertex mode -av option

Detached mode -async option

5/13/25, 9:12 PM 3.3

1456

To run a query in Detached Mode from the command line, use the -async option for

the RUN QUERY command:

You will receive a JSON response immediately containing a query ID (request_id):

To run queries in Detached Mode via RESTPP endpoint call, use the GSQL-ASYNC

header and set its value to true. If the query takes parameters, put them in the query

string:

To check the status and results of the queries executed in Detached Mode, use the

/query_status and the /query_result RESTPP endpoints.

The standard output of GSQL queries is in industry-standard JSON format. A JSON

object is an unordered set of key-value pairs, enclosed in curly braces. Among the

acceptable data types for a JSON value are array and object. A JSON array is an

ordered list of values, enclosed in square brackets. Since values can be objects or

arrays, JSON supports hierarchical, nested structures. Strings are enclosed in

double quotation marks. We also use the term field to refer to a key (or a key-value

pair) of a given object.

At the top level of the JSON structure are four required fields ("version", "error",

"message", and "results") and one dependent field ("code"). If a query is

successful, the value of "error" will be "false", the "message" value will be empty,

GSQL > RUN QUERY -async <queryName>

{
 "error": false,
 "message": "The query is successfully submitted. Please check query stat
 "request_id": "<RequestID>"
}

$ curl -s -H "GSQL-ASYNC:true" GET "http://localhost:9000/query/<graphName

GSQL Query output format

5/13/25, 9:12 PM 3.3

1457

and the "results" value will be the intended output of the query. If an error or

exception occurred during query execution, the "error" value will be "true", the

"message" value will be a string message describing the error condition, and the

"results" field will be empty. Also, the "code" field will contain an error code.

Beginning with version 2 (v2) of the output specification, an additional top-level field

is required: "version" . The "version" value is an object with the following fields:

Other top-level objects, such as "code" may appear in certain circumstances. Note

that the top-level objects are enclosed in curly braces, meaning that they form an

unordered set. They may appear in any order.

Below is an example of the output of a successful query:

Field Description

api

String specifying the output API version.

Values are specified as follows:

• "v1": Output API used in TigerGraph

platform v0.8 through v1.0.

NOTE: "v1" support is no longer

available as of TigerGraph v3.0.

• "v2" (default): Output API introduced in

TigerGraph platform v1.1 This is the

latest API.

edition String indicating the edition of the product.

schema

Integer representing which version of the

user's graph schema is currently in use.

When a CREATE GRAPH statement is

executed, the version is initialized to 0. Each

time a SCHEMA_CHANGE JOB is run, the

schema value is incremented by 1 (e.g., 1, 2,

etc.).

Top Level JSON of a Valid Query - Example

5/13/25, 9:12 PM 3.3

1458

The value of the "results" key-value pair is a sequential list of the data objects

specified by the PRINT statements of the query. The list order follows the order of

PRINT execution. The detailed format of the PRINT statement results is described in

Output Statements and FILE Objects.

The following REST response misspells the name of the endpoint

and generates the following output:

The following GSQL statement can be used to set the JSON output API

configuration.

{
 "version": {"edition": "developer","api": "v2","schema": "1"},
 "error": false,
 "message": "",
 "results": [
 {results_of_PRINT_statement_1},
 ...,
 {results_of_PRINT_statement_N}
]
}

curl -X GET "http://localhost:9000/eco"

{
 "version": {"edition":"developer","api":"v2","schema":0},
 "error": true,
 "message": "Endpoint is not found from url = /eco, please use GET /endpo
 "code": "REST-1000"
}

SET json_api = <version_string>

Changing the default output API

GET echo/ Request and Response

5/13/25, 9:12 PM 3.3

1459

This statement sets a persistent system parameter. Each version of the TigerGraph

platform is pre-configured to what was the latest output API that at the time of

release. For example, platform version 1.1 is configured so that each query will

produce v2 output by default.

As of TigerGraph v3.0, the only supported JSON API is "v2".

To show the GSQL text of a query, run SHOW QUERY query_name . The query_name

argument can use * or ? wildcards from Linux globbing, or it can be a regular

expression when preceded by -r . See SHOW: View Parts of the Catalog

Additionally, the ls GSQL command lists all created queries and identifies which

queries have been installed.

To drop a query, run DROP QUERY query_name . The query will be uninstalled (if it

has been installed) and removed from the dictionary. The GSQL language will

refuse to drop an installed query if another query is installed which calls query Q.

That is, all calling queries must be dropped before or at the same time that their

called subqueries are dropped.

To drop all queries, either of the following commands can be used:

DROP QUERY ALL

DROP QUERY *

showQuery := SHOW QUERY queryName

dropQuery := DROP QUERY ("*" | ALL | queryName ["," queryName]*)

SHOW QUERY

DROP QUERY

5/13/25, 9:12 PM 3.3

1460

The scope of ALL depends on the user's current scope. If the user has set a working
graph, then DROP ALL removes all the jobs for that graph. If a superuser has set their
scope to be global, then DROP ALL removes all jobs across all graph spaces.

5/13/25, 9:12 PM 3.3

1461

Distributed Query Mode

In a distributed graph (where the data are spread across multiple machines), the

default execution plan is as follows:

• One machine will be selected as the execution hub, regardless of the number or

the distribution of starting point vertices.

• All the computation work for the query will take place at the execution hub. The

vertex and edge data from other machines will be copied to the hub machine for

processing.

TigerGraph Enterprise Edition offers a Distributed Query mode which provides a

more optimized execution plan for queries which are likely to start at several

machines and continue their traversal across several machines.

• A set of machines representing one full copy of the entire graph will participate
in the query. If the cluster has a replication factor of 2 (so there are two copies

of each piece of data), then half the machines will participate.

• The query executes in parallel across all the machines which have source vertex

data for a given hop in the query. That is, each SELECT statement defines a 1-
hop traversal from a set of source vertices to a set of target vertices. Unlike the

default mode where all the needed data are brought to one machine, in

Distributed Query mode, the computation moves across the cluster, following

the traversal pattern of the query.

• The output results will be gathered at one machine.

To invoke Distributed Query Mode, insert the keyword DISTRIBUTED before QUERY

in the query definition:

Introduction

Invoke Distributed Query Mode

5/13/25, 9:12 PM 3.3

1462

The basic trade-off between distributed query mode and default mode is greater

parallelism for the given query vs. using more system resources, which reduces the

potential for concurrency with other operations. Each machine has a certain number

of workers available for concurrent execution of queries. A query in default mode

uses only one worker out of the whole system. (This one worker will have multiple

threads for processing edge traversals in parallel.) However, a query in distributed

mode uses one query worker per machine. This means this query can run faster, but

it leaves fewer workers for other queries running concurrently.

In general, Distributed Query Mode is likely to improve the performance of a query if

the query:

• Starts at a very large set of starting point vertices.

• Performs many hops.

For example, algorithms that compute a value for every vertex or one value for the

entire graph should use Distributed Query Mode. This includes PageRank,

Centrality, and Connected Component algorithms.

For applications where the same query (queries with the same logic but different input
parameters) will be run many times in production, the application designer is
encouraged to try both modes during development and choose the one which works
better for their use case and data.

createQuery :=
 CREATE [OR REPLACE][DISTRIBUTED] QUERY queryName "(" [parameterList] "
 FOR GRAPH graphName
 [RETURNS "(" baseType | accumType ")"]
 [API "(" stringLiteral ")"]
 [SYNTAX syntaxName]
 "{" queryBody "}"

Guidelines for Selecting Distributed Query
Mode

5/13/25, 9:12 PM 3.3

1463

The following GSQL features are not supported in Distributed Query Mode:

• Functions

◦ Evaluate()

• Accumulator nesting limitations

◦ Accumulator methods are not supported if the accumulator is nested inside

another accumulator

Unsupported Features

5/13/25, 9:12 PM 3.3

1464

Data Types
This section describes the data types that are native to and are supported by the

GSQL Query Language. Most of the data objects used in queries come from one of

three sources:

• The query's input parameters

• The vertices, edges, and their attributes which are encountered when traversing

the graph

• The variables defined within the query to assist in the computational work of the

query

This section covers the following subset of the EBNF language definitions:

EBNF for Data Types

5/13/25, 9:12 PM 3.3

1465

lowercase := [a-z]
uppercase := [A-Z]
letter := lowercase | uppercase
digit := [0-9]
integer := ["-"]digit+
real := ["-"]("."digit+) | ["-"](digit+"."digit*)
numeric := integer | real
stringLiteral := '"' [~["] | '\\' ('"' | '\\')]* '"'

name := (letter | "_") [letter | digit | "_"]* // Can be a single "_" or
graphName := name
queryName := name
paramName := name
vertexType := name
edgeType := name
accumName := name
vertexSetName := name
attrName := name
varName := name
tupleType := name
fieldName :=name
funcName := name

type := baseType | tupleType | accumType | STRING COMPRESS

baseType := INT
 | UINT
 | FLOAT
 | DOUBLE
 | STRING
 | BOOL
 | VERTEX ["<" vertexType ">"]
 | EDGE
 | JSONOBJECT
 | JSONARRAY
 | DATETIME

filePath := paramName | stringLiteral

typedef := TYPEDEF TUPLE "<" tupleFields ">" tupleType

tupleFields := (baseType fieldName) | (fieldName baseType)
 ["," (baseType fieldName) | (fieldName baseType)]*

parameterType := baseType
 | [SET | BAG] "<" baseType ">"
 | FILE

5/13/25, 9:12 PM 3.3

1466

An identifier is the name for an instance of a language element. In the GSQL query

language, identifiers are used to name elements such as a query, a variable, or a

user-defined function. In the EBNF syntax, an identifier is referred as name . It can

be a sequence of letters, digits, or underscores ("_"). Other punctuation

characters are not supported. The initial character can only be a letter or an

underscore.

Different types of data can be used in different contexts. The EBNF syntax defines

several classes of data types. The most basic is called base type (baseType). The

other independent types are FILE and STRING COMPRESS . The remaining types are

either compound data types built from the independent data types, or supersets of

other types. The table below gives an overview of their definitions and their uses.

name := (letter | "_") [letter | digit | "_"]*

EBNF term Description Use Case

baseType

INT , UINT , FLOAT ,

DOUBLE , STRING , BOOL ,

DATETIME, VERTEX ,

EDGE ,

JSONOBJECT , or

JSONARRAY

• Global variable

• Query return value

tupleType Sequence of base types • User-defined tuple

accumType
Family of specialized data

objects which support

accumulation operations

• Accumulate and

aggregate data, when

traversing a set of

vertices or edges

(Details are in the Query

Identifiers

Overview of Types

name (identifier)

5/13/25, 9:12 PM 3.3

1467

The query language supports the following base types, which can be declared and

assigned anywhere within their scope. Any of these base types may be used when

defining a global variable, a local variable, a query return value, a parameter, part of

a tuple, or an element of a container accumulator. Accumulators are described in

detail in a later section.

Lang Spec -

Accumulators chapter.)

FILE FILE object
• Global sequential data

object, linked to a text

file

parameterType

baseType (except EDGE or

JSONOBJECT), a set or bag

of baseType , or FILE
object

• Query parameter

STRING COMPRESS

(⚠ suitable only in limited

circumstances)

STRING COMPRESS

• more compact storage

of STRING, if there is a

limited number of

different values and

the value is rarely

accessed. Otherwise, it

may use more memory.

elementType
baseType , STRING
COMPRESS , or identifier

• Element for most types

of container

accumulators:

SetAccum , BagAccum ,

GroupByAccum , key of a

MapAccum element

type
baseType , STRING
COMPRESS , identifier, or

accumType

• Element of a

ListAccum , value of a

MapAccum element

• Local variable

Base Types

EBNF

5/13/25, 9:12 PM 3.3

1468

The default value of each base type is shown in the table below. The default value is

the initial value of a base type variable (see Section "Variable Types" for more

details), or the default return value for some functions (see Section "Operators,

Functions, and Expressions" for more details).

The first seven types (INT , UINT , FLOAT , DOUBLE , BOOL , STRING , and

DATETIME) are the same ones mentioned in the "Attribute Data Types" section of

GSQL Language Reference, Part 1.

baseType := INT
 | UINT
 | FLOAT
 | DOUBLE
 | STRING
 | BOOL
 | VERTEX ["<" vertexType ">"]
 | EDGE
 | JSONOBJECT
 | JSONARRAY
 | DATETIME

Type Default value Literal

INT 0 A signed integer: -3

UINT 0 An unsigned integer: 5

FLOAT 0 A decimal: 3.14159

DOUBLE 0
A decimal with greater

precision than FLOAT

BOOL false TRUE or FALSE

STRING ""
Characters enclosed by

double quotes: "Hello"

DATETIME 1970-01-01 00:00:00
No literal. Can be converted

from a correctly formatted

string with to_datetime() .

VERTEX "Unknown" No literal.

EDGE No edge: {} No literal.

5/13/25, 9:12 PM 3.3

1469

FLOAT and DOUBLE input values must be in fixed point d.dddd ** **format, where d
is a digit. Output values will be printed in either fixed point for exponential notation,
whichever is more compact.

The GSQL Loader can read FLOAT and DOUBLE values with exponential notation (e.g.,
1.25 E-7).

VERTEX is considered a base type in the GSQL query language. Both query

parameters and variables in a query body can be of type VERTEX .

A graph schema defines specific vertex types. Each vertex type has its own set of

attributes. The parameter or variable type can be restricted by giving the vertex type

in angle brackets <> after the keyword VERTEX . A vertex variable declared without

a specifier is called a generic vertex variable.

All vertices have a built-in attribute type . The built-in attribute is of type string. You

can access it with the dot (.) operator.

For example, if you declare a vertex variable VERTEX<person> personVertex , then

personVertex.type returns "person" .

JSONOBJECT An empty object: {}

No literal. Can be converted

from a correctly formatted

string with

parse_json_object() .

JSONARRAY An empty array: []

No literal. Can be converted

from a correctly formatted

string with

parse json array() .

VERTEX anyVertex;
VERTEX<person> owner;

Vertex

Vertex types

5/13/25, 9:12 PM 3.3

1470

EDGE is considered a base type in the GSQL query language. Both query

parameters and variables in a query body can be of type EDGE .

A graph schema defines specific edge types. Each edge type has its own set of

attributes. The parameter or variable type can be restricted by giving the edge type

in angle brackets <> after the keyword EDGE . An edge variable declared without a

specifier is called a generic edge variable.

All edges have a built-in attribute type . The built-in attribute is of type string. You

can access it with the dot (.) operator.

For example, if you define an edge variable EDGE<friendship> friendEdge , then

friendEdge.type returns "Friendship" .

The following table maps vertex or edge attribute types in the Data Definition

Language (DDL) to GSQL query language types. If an attribute of a vertex or edge is

referenced in a GSQL query, they will be automatically converted to their

corresponding data type in the GSQL query language.

EDGE anyEdge;
EDGE<friendship> friendEdge;

DDL GSQL Query

INT INT

UINT UINT

FLOAT FLOAT

DOUBLE DOUBLE

Edge

Edge types

Vertex and Edge Attribute Types

5/13/25, 9:12 PM 3.3

1471

In the GSQL query language, one cannot declare a variable of SET (vertex sets are

an exception), LIST , or MAP types. However, one can still use SET and LIST

literals to update the value of a vertex attribute of type SET or LIST , insert a vertex

or edge with attributes of type SET or LIST , and initialize an accumulator.

Currently, GSQL query language syntax does not support MAP literals.

These two base types allow users to pass a complex data object or to write output

in a customized format. These types follow the industry-standard definition of JSON

. A JSONOBJECT instance's external representation (as input and output) is a

string, starting and ending with curly braces ({}) which enclose an unordered list

of key-value_** _pairs. A JSONARRAY is represented as a string, starting and

ending with square brackets ([])which enclose an ordered list of values. Since a

_value **_can be an object or an array, JSON supports hierarchical, nested data

structures.

BOOL BOOL

STRING STRING

STRING COMPRESS STRING

SET< type > SetAccum< type >

LIST< type > ListAccum< type >

MAP <key_type, value_type> MapAccum <key_type, value_type>

DATETIME DATETIME

// Elements within a set or a list need to be of the same type
set_literal := "(" expr ("," expr)* ")"
list_literal := "[" expr ("," expr)* "]"
expr := INT | UINT | FLOAT | DOUBLE | BOOL | STRING | UDT | DATETIME

SET and LIST literals

JSONOBJECT and JSONARRAY

5/13/25, 9:12 PM 3.3

https://www.json.org/
https://www.json.org/
https://www.json.org/

1472

More details are introduced in the Section JSONOBJECT and JSONARRAY

Functions.

A JSONOBJECT or JSONARRAY value is immutable. No operator is allowed to modify its
value.

A tuple is a user-defined data structure consisting of a fixed sequence of base type

variables. Tuple types can be created and named using a TYPEDEF statement.

Tuples must be defined first, before any other statements in a query.

A tuple can also be defined in a graph schema and then can be used as a vertex or

edge attribute type. A tuple type that has been defined in the graph schema does

not need to be re-defined in a query.

The vertex type person contains two complex attributes:

• secretInfo of type SECRET_INFO , which a user-defined tuple

• portfolio of type MAP<STRING, DOUBLE>

typedef := TYPEDEF TUPLE "<" tupleFields ">" tupleType

tupleFields := (baseType fieldName) | (fieldName baseType)
 ["," (baseType fieldName) | (fieldName baseType)]*

TYPEDEF TUPLE <age UINT (4), mothersName STRING(20) > SECRET_INFO
CREATE VERTEX person(PRIMARY_ID personId STRING, portfolio MAP<STRING, DOU
CREATE VERTEX stockOrder(PRIMARY_ID orderId STRING, ticker STRING, orderSi
CREATE UNDIRECTED EDGE makeOrder(FROM person, TO stockOrder, orderTime DAT
CREATE GRAPH investmentNet (*)

Tuple

ENBF for tuples

investmentNet schema

5/13/25, 9:12 PM 3.3

1473

The query below reads both the SECRET_INFO tuple and the portfolio MAP. The

tuple type does not need to redefine SECRET_INFO . To read and save the map, we

define a MapAccum with the same types for key and value as the portfolio

attribute. In addition, the query creates a new tuple type, ORDER_RECORD .

CREATE QUERY tupleEx(VERTEX<person> p) FOR GRAPH investmentNet{
 #TYPEDEF TUPLE <UINT age, STRING mothersName> SECRET_INFO; # alrea
 TYPEDEF TUPLE <STRING ticker, FLOAT price, DATETIME orderTime> ORDER_REC

 SetAccum<SECRET_INFO> @@info;
 ListAccum<ORDER_RECORD> @@orderRecords;
 MapAccum<STRING, DOUBLE> @@portf; # corresponds to MAP<STRING, DOU

 INIT = {p};

 # Get person p's secret_info and portfolio
 X = SELECT v FROM INIT:v
 ACCUM @@portf += v.portfolio, @@info += v.secretInfo;

 # Search person p's orders to record ticker, price, and order time.
 # Note that the tuple gathers info from both edges and vertices.
 orders = SELECT t
 FROM INIT:s -(makeOrder:e)->stockOrder:t
 ACCUM @@orderRecords += ORDER_RECORD(t.ticker, t.price, e.orderTime)

 PRINT @@portf, @@info;
 PRINT @@orderRecords;
}

tupleEx query

tupleEx.json

5/13/25, 9:12 PM 3.3

1474

GSQL > RUN QUERY tupleEx("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@info": [{
 "mothersName": "JAMES",
 "age": 25
 }],
 "@@portf": {
 "AAPL": 3142.24,
 "MS": 5000,
 "G": 6112.23
 }
 },
 {"@@orderRecords": [
 {
 "ticker": "AAPL",
 "orderTime": "2017-03-03 18:42:28",
 "price": 34.42
 },
 {
 "ticker": "B",
 "orderTime": "2017-03-03 18:42:30",
 "price": 202.32001
 },
 {
 "ticker": "A",
 "orderTime": "2017-03-03 18:42:29",
 "price": 50.55
 }
]}
]
}

STRING COMPRESS

5/13/25, 9:12 PM 3.3

1475

STRING COMPRESS is an integer type encoded by the system to represent string

values. STRING COMPRESS uses less memory than STRING . The STRING COMPRESS

type is designed to act like STRING : data are loaded and printed just as string data,

and most functions and operators which take STRING input can also take STRING

COMPRESS input. The difference is in how the data are stored internally. A STRING

COMPRESS value can be obtained from a STRING_SET COMPRESS or STRING_LIST

COMPRESS attribute or from converting a STRING value.

Using STRING COMPRESS instead of STRING is a trade-off: smaller storage vs. slower
access times. The storage space will only be smaller if (1) the original strings are long,
and (2) there are only a small number of different strings. Performance will always be
slower; the slowdown is greater if the STRING COMPRESS attributes are accessed more
often.

We recommend performing comparison tests for both performance and memory usage
before settling on STRING COMPRESS .

STRING COMPRESS type is beneficial for sets of string values when the same values

are used multiple times. In practice, STRING COMPRESS are most useful for container

accumulators like ListAccum<STRING COMPRESS> or SetAccum<STRING COMPRESS> .

An accumulator containing STRING COMPRESS stores the dictionary when it is

assigned an attribute value or from another accumulator containing STRING

COMPRESS . An accumulator containing STRING COMPRESS can store multiple

dictionaries. A STRING value can be converted to a STRING COMPRESS value only if

the value is in the dictionaries. If the STRING value is not in the dictionaries, the

original string value is saved. A STRING COMPRESS value can be automatically

converted to a STRING value.

When a STRING COMPRESS value is output (e.g. by a PRINT statement), it is shown

as a STRING .

STRING COMPRESS is not a base type.

STRING COMPRESS example

5/13/25, 9:12 PM 3.3

1476

CREATE QUERY stringCompressEx(VERTEX<person> m1) FOR GRAPH workNet {
 ListAccum<STRING COMPRESS> @@strCompressList, @@strCompressList2;
 SetAccum<STRING COMPRESS> @@strCompressSet, @@strCompressSet2;
 ListAccum<STRING> @@strList, @@strList2;
 SetAccum<STRING> @@strSet, @@strSet2;

 S = {m1};

 S = SELECT s
 FROM S:s
 ACCUM @@strSet += s.interestSet,
 @@strList += s.interestList,
 @@strCompressSet += s.interestSet, # use the dictionary from
 @@strCompressList += s.interestList; # use the dictionary from

 @@strCompressList2 += @@strCompressList; # @@strCompressList2 gets the
 @@strCompressList2 += "xyz"; # "xyz" is not in the dictionary, so stor

 @@strCompressSet2 += @@strCompressSet;
 @@strCompressSet2 += @@strSet;

 @@strList2 += @@strCompressList; # string compress integer values are d
 @@strSet2 += @@strCompressSet;

 PRINT @@strSet, @@strList, @@strCompressSet, @@strCompressList;
 PRINT @@strSet2, @@strList2, @@strCompressSet2, @@strCompressList2;
}

stringCompressEx.json Results

5/13/25, 9:12 PM 3.3

1477

5/13/25, 9:12 PM 3.3

1478

GSQL > RUN QUERY stringCompressEx("person12")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@strCompressList": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
],
 "@@strSet": ["teaching", "engineering", "music"],
 "@@strCompressSet": ["music", "engineering", "teaching"],
 "@@strList": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
]
 },
 {
 "@@strSet2": ["music", "engineering", "teaching"],
 "@@strCompressList2": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching",
 "xyz"
],
 "@@strList2": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
],
 "@@strCompressSet2": ["teaching", "engineering", "music"]
 }
]

5/13/25, 9:12 PM 3.3

1479

A FILE object is a sequential data storage object, associated with a text file on the

local machine.

When referring to a FILE object, we always capitalize the word FILE to distinguish it
from ordinary files.

When a FILE object is declared, associated with a particular text file, any existing

content in the text file will be erased. During the execution of the query, content

written to the FILE will be appended to the FILE . When the query where the

FILE was declared finishes running, the FILE contents are saved to the text file.

A FILE object can be passed as a parameter to another query. When a query

receives a FILE object as a parameter, it can append data to that FILE , as can

every other query which receives this FILE object as a parameter.

Input parameters to a query can be base type (except EDGE , JSONARRAY , or

JSONOBJECT). A parameter can also be a SET or BAG which uses base type

(except EDGE , JSONARRAY , or JSONOBJECT) as the element type. A FILE object

can also be a parameter. Within the query, SET and BAG are converted to

SetAccum and BagAccum , respectively.

A query parameter is immutable. It cannot be assigned a new value within the query.

The FILE object is a special case. It is passed by reference, meaning that the
receiving query gets a link to the original FILE object. The receiving query can write
to the FILE object.

}

FILE Object

Query Parameter Types

EBNF

5/13/25, 9:12 PM 3.3

1480

parameterType := INT
 | UINT
 | FLOAT
 | DOUBLE
 | STRING
 | BOOL
 | VERTEX ["<" vertexType ">"]
 | DATETIME
 | [SET | BAG] "<" baseType ">"
 | FILE

(SET<VERTEX<person> p1, BAG<INT> ids, FILE f1)

Examples of collection type parameters

5/13/25, 9:12 PM 3.3

1481

Accumulators
Accumulators are special types of variables that accumulate information about the

graph during its traversal and exploration. Because they are a unique and important

feature of the GSQL query language, we devote a separate section for their

introduction, but additional detail on their usage will be covered in other sections,

the "SELECT Statement" section in particular. This section covers the following

subset of the EBNF language definitions:

accumDeclStmt :=
 accumType localAccumName ["=" constant]
 ["," localAccumName ["=" constant]]*
 | [STATIC] accumType globalAccumName ["=" constant]
 ["," globalAccumName ["=" constant]]*
localAccumName := "@"accumName;
globalAccumName := "@@"accumName;

accumType := "SumAccum" "<" (INT | FLOAT | DOUBLE | STRING | STRING COMPR
 | "MaxAccum" "<" (INT | FLOAT | DOUBLE) ">"
 | "MinAccum" "<" (INT | FLOAT | DOUBLE) ">"
 | "AvgAccum"
 | "OrAccum"
 | "AndAccum"
 | "BitwiseOrAccum"
 | "BitwiseAndAccum"
 | "ListAccum" "<" type ">"
 | "SetAccum" "<" elementType ">"
 | "BagAccum" "<" elementType ">"
 | "MapAccum" "<" elementType "," (baseType | accumType | tupleType
 | "HeapAccum" "<" tupleType ">" "(" simpleSize "," fieldName [ASC |
 ["," fieldName [ASC | DESC]]* ")
 | "GroupByAccum" "<" elementType fieldName ["," elementType fieldNa

 accumType fieldName ["," accumType fieldName]
 | "ArrayAccum" "<" accumName ">"

elementType := baseType | tupleType | STRING COMPRESS

gAccumAccumStmt := globalAccumName "+=" expr

accumClause := ACCUM DMLSubStmtList

postAccumClause := "POST-ACCUM" DMLSubStmtList

EBNF

5/13/25, 9:12 PM 3.3

1482

There are a number of different types of accumulators, each providing specific

accumulation functions. Accumulators are declared to have one of two types of

association: global or vertex-attached.

More technically, accumulators are mutable mutex variables shared among all the

graph computation threads exploring the graph within a given query. To improve

performance, the graph processing engine employs multithreaded processing.

Modification of accumulators is coordinated at run-time so the accumulation

operator works correctly (i.e., mutually exclusively) across all threads. This is

particularly relevant in the ACCUM clause. During traversal of the graph, the

selected set of edges or vertices is partitioned among a group of threads. These

threads have shared mutually exclusive access to the accumulators.

Global accumulators can be declared anywhere in the query. Vertex-attached

accumulators can be declared anywhere in the query except for in a FOREACH loop

or WHILE loop. Accumulators are block-scoped and can only be accessed in the

block where they are declared.

The name of a vertex-attached accumulator begins with a single @ . The name of a

global accumulator begins with @@ . Additionally, a global accumulator may be

declared to be static.

accumDeclStmt :=
 accumType localAccumName ["=" expr]
 ["," localAccumName ["=" expr]]*
 | [STATIC] accumType globalAccumName ["=" expr]
 ["," globalAccumName ["=" expr]]*
localAccumName := "@"accumName;
globalAccumName := "@@"accumName;

Declaration of Accumulators

Vertex-attached Accumulators

EBNF for Accumulator Declaration

5/13/25, 9:12 PM 3.3

1483

Vertex-attached accumulators are mutable state variables that are attached to each

vertex in the graph for the duration of the query's lifetime. They act as run-time

attributes of a vertex. They are shared, mutual exclusively, among all of the query's

processes.

Vertex-attached accumulators can be set to a value with the = operator. Additionally,

an accumulate operator += can be used to update the state of the accumulator; the

function of += depends on the accumulator type.

In the example below, there are two accumulators attached to each vertex. The

initial value of an accumulator of a given type is predefined, however it can be

changed at declaration as in the accumulator @weight below. All vertex-attached

accumulator names have a single leading at-sign "@".

If there is a graph with 10 vertices, then there is an instance of @neighbors and

@weight for each vertex (hence 10 of each, and 20 total accumulator instances).

These are accessed via the dot operator on a vertex variable or a vertex alias (e.g.,

v.@neighbor). The accumulator operator += only impacts the accumulator for the

specific vertex being referenced. A statement such as v1.@neighbors += 1 will only

impact v1 's @neighbors and not the @neighbors for other vertices.

Vertex-attached accumulators can only be accessed or updated (via = or +=) in an

ACCUM or POST-ACCUM clause within a SELECT block. The only exception to this

rule is that vertex-attached accumulators can be referenced in a PRINT statement,

as the PRINT has access to all information attached to a vertex set.

Edge-attached accumulators are not supported.

SumAccum<int> @neighbors;
MaxAccum<float> @weight = 2.8;

Global Accumulators

Vertex-Attached Accumulators

5/13/25, 9:12 PM 3.3

1484

A global accumulator is a single mutable accumulator that can be accessed or

updated within a query. The names of global accumulators start with a double at-

sign "@@".

Global accumulators can only be assigned (using the = operator) outside a SELECT

block (i.e., not within an ACCUM or POST-ACCUM clause). Global accumulators can

be accessed or updated via the accumulate operator += anywhere within a query,

including inside a SELECT block.

It is important to note that the accumulation operation for global accumulators in an

ACCUM clause executes once for each process. That is, if the FROM clause uses an

edge-induced selection (introduced in Section "SELECT Statement"), the ACCUM

clause executes one process for each edge in the selected edge set. If the FROM

clause uses a vertex-induced selection (introduced in Section "SELECT Statement"),

the ACCUM clause executes one process for each vertex in the selected vertex set.

Since global accumulators are shared in a mutually exclusive manner among

processes, they behave very differently than a non-accumulator variable (see

Section "Variable Types" for more details) in an ACCUM clause. Take the following

code example. The global accumulator@@globalRelationshipCount is accumulated

for every worksFor edge traversed since it is shared among processes. Conversely,

relationshipCount appears to have only been incremented once. This is because a

non-accumulator variable is not shared among processes. Each process has its own

separate unshared copy of relationshipCount and increments the original value by

one. (E.g., each process increments relationshipCount from 0 to 1.) There is no

accumulation and the final value is one.

SumAccum<int> @@totalNeighbors;
MaxAccum<float> @@entropy = 1.0;

Global Accumulators

Global Variable vs Global Accumulator

5/13/25, 9:12 PM 3.3

1485

A static global accumulator retains its value after the execution of a query. To

declare a static global accumulator, include the STATIC keyword at the beginning of

the declaration statement. For example, if a static global accumulator is incremented

by 1 each time a query is executed, then its value is equal to the number of times the

query has been run, since the query was installed. Each static global accumulator

belongs to the particular query in which it is declared; it cannot be shared among

#Count the total number of employment relationships for all companies
CREATE QUERY countEmploymentRelationships() FOR GRAPH workNet {

 INT localRelationshipCount;
 SumAccum<INT> @@globalRelationshipCount;

 start = {company.*};

 companies = SELECT s FROM start:s -(worksFor)-> :t
 ACCUM @@globalRelationshipCount += 1,
 localRelationshipCount = localRelationshipCount + 1;

 PRINT localRelationshipCount;
 PRINT @@globalRelationshipCount;
}

GSQL > RUN QUERY countEmploymentRelationships()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"localRelationshipCount": 1},
 {"@@globalRelationshipCount": 17}
]
}

Static Global Accumulators

countEmploymentRelationship.json Results

5/13/25, 9:12 PM 3.3

1486

different queries. The value only persists in the context of running the same query

multiple times. The value will reset to the default value when the GPE is restarted.

CREATE QUERY staticAccumEx(INT x) FOR GRAPH minimalNet {
 STATIC ListAccum<INT> @@testList;
 @@testList += x;
 PRINT @@testList;
}

GSQL > RUN QUERY staticAccumEx(3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@testList": [
 3,
 -5,
 3
]}]
}
GSQL > RUN QUERY staticAccumEx(-5)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@testList": [
 3,
 -5,
 3,
 -5
]}]
}

Static Global Accumulators example

staticAccumEx.json Result

5/13/25, 9:12 PM 3.3

1487

There is no command to deallocate a static global accumulator. If a static global

accumulator is a collection accumulator and is no longer needed, it should be

cleared to minimize memory usage.

The following are the accumulator types we currently support. Each type of

accumulator supports one or more data types.

The accumulators fall into two major groups :

• Scalar Accumulators store a single value:

◦ SumAccum

◦ MinAccum, MaxAccum

◦ AvgAccum

◦ AndAccum, OrAccum

accumType := "SumAccum" "<" (INT | FLOAT | DOUBLE | STRING | STRING COMPR
 | "MaxAccum" "<" (INT | FLOAT | DOUBLE) ">"

 | "MinAccum" "<" (INT | FLOAT | DOUBLE) ">"
 | "AvgAccum"

 | "OrAccum"
 | "AndAccum"

 | "BitwiseOrAccum"
 | "BitwiseAndAccum"

 | "ListAccum" "<" type ">"
 | "SetAccum" "<" elementType ">"
 | "BagAccum" "<" elementType ">"

 | "MapAccum" "<" elementType "," (baseType | accumType | tupleType
 | "HeapAccum" "<" tupleType ">" "(" simpleSize "," fieleName [ASC |
 ["," fieldName [ASC | DESC]]* ")"

 | "GroupByAccum" "<" elementType fieldName ["," elementType fie
 accumType fieldName ["," accumType fieldNa

 | "ArrayAccum" "<" accumName ">"

elementType := baseType | tupleType | STRING COMPRESS

gAccumAccumStmt := globaAccumName "+=" expr

Accumulator Types

EBNF for Accumulator Types

5/13/25, 9:12 PM 3.3

1488

◦ BitwiseAndAccum, BitwiseOrAccum

• Collection Accumulators store a set of values:

◦ ListAccum

◦ SetAccum

◦ BagAccum

◦ MapAccum

◦ ArrayAccum

◦ HeapAccum

◦ GroupByAccum

The details of each accumulator type are summarized in the table below. The

Accumulation Operation column explains how the accumulator accumName is

updated when the statement accumName += newVal is executed. Following the

table are example queries for each accumulator type.

Table Ac1: Accumulator Types and Their Accumulation Behavior

Accumulator Type (Case

Sensitive)
Default Initial Value

Accumulation operation

(result of accumName +=
newVal)

SumAccum<INT> 0 accumName plus newVal

SumAccum<FLOAT or

DOUBLE>
0.0 accumName plus newVal

SumAccum<STRING> empty string
String concatenation of

accumName and newVal

MaxAccum<INT> INT_MIN
The greater of newVal and

accumName

MaxAccum<FLOAT or

DOUBLE>

FLOAT_MIN or

DOUBLE_MIN

The greater of newVal and

accumName

MaxAccum<STRING> empty string

The greater of newVal and

accumName , according to

UTF-8 lexicographical

ordering

5/13/25, 9:12 PM 3.3

1489

MaxAccum<VERTEX> the vertex with internal id 0

The vertex with the greater

internal id , either newVal or

accumName

MaxAccum<tupleTyple>
default for each field of the

tuple

The greater of newVal and

accumName. tupleType is a

user-defined sequence of

baseTypes. Ordering is

hierarchical, using the

leftmost field of the tuple

first, then the next field, and

so on.

MinAccum<INT> INT_MAX
The lesser of newVal and

accumName

MinAccum<FLOAT or

DOUBLE>

FLOAT_MAX or

DOUBLE_MAX

The lesser of newVal and

accumName

MinAccum<STRING> empty string

The lesser of newVal and

accumName , according to

UTF-8 lexicographical

ordering

MinAccum<VERTEX> unknown

The vertex with the lesser

internal id, either newVal or

accumName

MinAccum<tupleType>
default for each field of the

tuple

The lesser of newVal and

accumName. tupleType is a

user-defined sequence of

baseTypes. Ordering is

hierarchical, using the

leftmost field of the tuple

first, then the next field, and

so on.

AvgAccum 0.0 (double precision)

Double precision average of

newVal and all previous

values accumulated

toaccumName

AndAccum True
Boolean AND of newVal and

accumName

OrAccum False
Boolean OR of newVal and

accumName

5/13/25, 9:12 PM 3.3

1490

BitwiseAndAccum
-1 (INT) = 64-bit sequence

of 1s

Bitwise AND of newVal and

accumName

BitwiseOrAccum
0 (INT) = 64-bit sequence

of 0s

Bitwise OR of newVal and

accumName

ListAccum< type >

(ordered collection of

elements)

empty list

List with newVal appended

to end of accumName.

newVal can be a single

value or a list. If

accumName is [2, 4, 6],

then accumName += 4

produces accumName

equal to [2, 4, 6, 4]

SetAccum< type >

(unordered collection of

elements, duplicate items

not allowed)

empty set

Set union of newVal and

accumName . newVal can

be a single value or a

set/bag.If accumName is (

2, 4, 6), then accumName

+= 4

produces accumName

equal to (2, 4, 6)

BagAccum<type >

(unordered collection of

elements, duplicate items

allowed)

empty bag

Bag union of newVal and

accumName . newVal can

be a single value or a

set/bag.If accumName is (

2, 4, 6), then accumName

+= 4

would result in accumName

equal to (2, 4, 4, 6)

MapAccum< type, type >

(unordered collection of

(key,value) pairs)

empty map

Add or update a key:value

pair to the accumName

map. If accumName is [

("red",3), ("green",4),

("blue",2)], then

accumName += ("black"->

5)

produces accumName

equal to [("red",3),

("green",4),("blue",2),

("black",5)]

5/13/25, 9:12 PM 3.3

1491

The SumAccum type computes and stores the cumulative sum of numeric values or

the cumulative concatenation of text values. The output of a SumAccum is a single

numeric or string value. SumAccum variables operate on values of type INT, UINT,

FLOAT, DOUBLE, or STRING only.

The += operator updates the accumulator's state. For INT, FLOAT, and DOUBLE

types, += arg performs a numeric addition, while for the STRING value type +=

arg concatenates arg to the current value of the SumAccum.

ArrayAccum< accumType > empty list
See the ArrayAccum section

below for details.

HeapAccum< tuple >

(heapSize, sortKey [,

sortKey_i]*)

(sorted collection of tuples)

empty heap

Insert newVal into the

accumName heap,

maintaining the heap in

sorted order, according to

the sortKey(s) and size limit

declared for this

HeapAccum

SumAccum

SumAccum Example

5/13/25, 9:12 PM 3.3

1492

SumAccum Example
CREATE QUERY sumAccumEx() FOR GRAPH minimalNet {

 SumAccum<INT> @@intAccum;
 SumAccum<FLOAT> @@floatAccum;
 SumAccum<DOUBLE> @@doubleAccum;
 SumAccum<STRING> @@stringAccum;

 @@intAccum = 1;
 @@intAccum += 1;

 @@floatAccum = @@intAccum;
 @@floatAccum = @@floatAccum / 3;

 @@doubleAccum = @@floatAccum * 8;
 @@doubleAccum += -1;

 @@stringAccum = "Hello ";
 @@stringAccum += "World";

 PRINT @@intAccum;
 PRINT @@floatAccum;
 PRINT @@doubleAccum;
 PRINT @@stringAccum;
}

GSQL > RUN QUERY sumAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@intAccum": 2},
 {"@@floatAccum": 0.66667},
 {"@@doubleAccum": 4.33333},
 {"@@stringAccum": "Hello World"}
]
}

sumAccumEx.json Result

5/13/25, 9:12 PM 3.3

1493

The MinAccum and MaxAccum types calculate and store the cumulative minimum or

the cumulative maximum of a series of values. The output of a MinAccum or a

MaxAccum is a single value of the type that was passed in. MinAccum and

MaxAccum variables operate on values of type INT, UINT, FLOAT, DOUBLE, STRING,

TUPLE , and VERTEX (with optional specific vertex type) only.

For MinAccum , += arg checks if the current value held is less than arg and stores

the smaller of the two. MaxAccum behaves the same, with the exception that it

checks for and stores the greater instead of the lesser of the two.

MinAccum and MaxAccum Example
CREATE QUERY minMaxAccumEx() FOR GRAPH minimalNet {

 MinAccum<INT> @@minAccum;
 MaxAccum<FLOAT> @@maxAccum;

 @@minAccum += 40;
 @@minAccum += 20;
 @@minAccum += -10;

 @@maxAccum += -1.1;
 @@maxAccum += 2.5;
 @@maxAccum += 2.8;

 PRINT @@minAccum;
 PRINT @@maxAccum;
}

MinAccum / MaxAccum

MinAccum and MaxAccum Example

minMaxAccumEx.json Result

5/13/25, 9:12 PM 3.3

1494

String minimum and maximum values are based on their UTF-8 codes, which is a

multilingual superset of the ASCII codes. Within ASCII, a < z, uppercase is less than

lowercase, and digits are less than alphabetic characters.

MinAccum and MaxAccum operating on VERTEX type have a special comparison.

They do not compare vertex ids, but TigerGraph internal ids, which might not be in

the same order as the external ids. Comparing internal ids is much faster, so

MinAccum/MaxAccum<VERTEX> provides an efficient way to compare and select

vertices. This is helpful for some graph algorithms that require the vertices to be

numbered and sortable. For example, the following query returns one post from

each person. The returned vertex is not necessarily the vertex with the

alphabetically largest id.

GSQL > RUN QUERY minMaxAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@minAccum": -10},
 {"@@maxAccum": 2.8}
]
}

Output one random post vertex from each person
CREATE QUERY minMaxAccumVertex() FOR GRAPH socialNet api("v2") {

 MaxAccum<VERTEX> @maxVertex;
 allUser = {person.*};
 allUser = SELECT src
 FROM allUser:src -(posted)-> post:tgt
 ACCUM src.@maxVertex += tgt
 ORDER BY src.id;
 PRINT allUser[allUser.@maxVertex]; // api v2
}

MaxAccum<VERTEX> example

5/13/25, 9:12 PM 3.3

1495

minMaxAccuxVertex.json Result

5/13/25, 9:12 PM 3.3

1496

5/13/25, 9:12 PM 3.3

1497

GSQL > RUN QUERY minMaxAccumVertex()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"allUser": [
 {
 "v_id": "person1",
 "attributes": {"allUser.@maxVertex": "0"},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"allUser.@maxVertex": "1"},
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {"allUser.@maxVertex": "2"},
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {"allUser.@maxVertex": "3"},
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"allUser.@maxVertex": "11"},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"allUser.@maxVertex": "10"},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"allUser.@maxVertex": "9"},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"allUser.@maxVertex": "7"},

5/13/25, 9:12 PM 3.3

1498

Tuple data types are treated as hierarchical structures, where the first field used for

ordering is the leftmost one. When a tuple is used as an element of a MinAccum or

MaxAccum , tuple fields can be directly accessed from the accumulator. For

example, if we have the following tuple type and MaxAccum :

Then the weight field of the tuple can be accessed directly from the MacAccum

through the doc operator(.):

The AvgAccum type calculates and stores the cumulative mean of a series of

numeric values. Internally, its state information includes the sum value of all inputs

and a count of how many input values it has accumulated. The output is the mean

value; the sum and the count values are not accessible to the user. The data type of

an AvgAccum variable is not declared; all AvgAccum accumulators accept inputs of

type INT, UINT, FLOAT, and DOUBLE. The output is always DOUBLE type.

The += arg operation updates the AvgAccum variable's state to be the mean of all

the previous arguments along with the current argument; The = arg operation

clears all the previously accumulated state and sets the new state to be arg with a

count of one.

 "v_type": "person"
 }
]}]
}

TYPEDEF TUPLE <FLOAT weight> EDGE_WEIGHT
MinAccum<EDGE_WEIGHT> @@AccTest;

@@AccTest.weight // Will return the weight field value for the EDGE_WEIGHT
 // type tuple stored in the MaxAccum

AvgAccum

AvgAccum Example

5/13/25, 9:12 PM 3.3

1499

The AndAccum and OrAccum types calculate and store the cumulative result of a

series of boolean operations. The output of an AndAccum or an OrAccum is a single

boolean value (True or False). AndAccum and OrAccum variables operate on

boolean values only. The data type does not need to be declared.

For AndAccum, += arg updates the state to be the logical AND between the current

boolean state and arg. OrAccum behaves the same, with the exception that it stores

AvgAccum Example
CREATE QUERY avgAccumEx() FOR GRAPH minimalNet {

 AvgAccum @@averageAccum;

 @@averageAccum += 10;
 @@averageAccum += 5.5; # avg = (10+5.5) / 2.0
 @@averageAccum += -1; # avg = (10+5.5-1) / 3.0

 PRINT @@averageAccum; # 4.8333...

 @@averageAccum = 99; # reset
 @@averageAccum += 101; # avg = (99 + 101) / 2

 PRINT @@averageAccum; # 100
}

GSQL > RUN QUERY avgAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@averageAccum": 4.83333},
 {"@@averageAccum": 100}
]
}

AndAccum / OrAccum

avgAccumEx.json Result

5/13/25, 9:12 PM 3.3

1500

the result of a logical OR operation.

AndAccum and OrAccum Example
CREATE QUERY andOrAccumEx() FOR GRAPH minimalNet {
 # T = True
 # F = False

 AndAccum @@andAccumVar; # (default value = T)
 OrAccum @@orAccumVar; # (default value = F)

 @@andAccumVar += True; # T and T = T
 @@andAccumVar += False; # T and F = F
 @@andAccumVar += True; # F and T = F

 PRINT @@andAccumVar;

 @@orAccumVar += False; # F or F == F
 @@orAccumVar += True; # F or T == T
 @@orAccumVar += False; # T or F == T

 PRINT @@orAccumVar;
}

GSQL > RUN QUERY andOrAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@andAccumVar": false},
 {"@@orAccumVar": true}
]
}

BitwiseAndAccum / BitwiseOrAccum

AndAccum and OrAccum Example

andOrAccumEx.json Result

5/13/25, 9:12 PM 3.3

1501

The BitwiseAndAccum and BitwiseOrAccum types calculate and store the

cumulative result of a series of bitwise boolean operations and store the resulting bit

sequences. BitwiseAndAccum and BitwiseOrAccum operator on INT only. The data

type does not need to be declared.

Fundamental for understanding and using bitwise operations is the knowledge that

integers are stored in base-2 representation as a 64-bit sequence of 1s and 0s.

"Bitwise" means that each bit is treated as a separate boolean value, with 1

representing true and 0 representing false. Hence, an integer is equivalent to a

sequence of boolean values. Computing the Bitwise AND of two numbers A and B

means to compute the bit sequence C where the j th bit of C, denoted C j , is equal

to (A j AND B j).

For BitwiseAndAccum, += arg updates the accumulator's state to be the Bitwise

AND of the current state and arg . BitwiseOrAccum behaves the same, with the

exception that it computes a Bitwise OR.

Bitwise Operations and Negative Integers

Most computer systems represent negative integers using "2's complement" format,
where the uppermost bit has special significance. Operations that affect the uppermost
bit are crossing the boundary between positive and negative numbers, and vice versa.

BitwiseAndAccum and BitwiseOrAccum Example

5/13/25, 9:12 PM 3.3

1502

BitwiseAndAccum and BitwiseOrAccum Example
CREATE QUERY bitwiseAccumEx() FOR GRAPH minimalNet {

 BitwiseAndAccum @@bwAndAccumVar; # default value = 64-bits of 1 = -1 (IN
 BitwiseOrAccum @@bwOrAccumVar; # default value = 64-bits of 0 = 0 (INT

 # 11110000 = 240
 # 00001111 = 15
 # 10101010 = 170
 # 01010101 = 85

 # BitwiseAndAccum
 @@bwAndAccumVar += 170; # 11111111 & 10101010 -> 10101010
 @@bwAndAccumVar += 85; # 10101010 & 01010101 -> 00000000
 PRINT @@bwAndAccumVar; # 0

 @@bwAndAccumVar = 15; # reset to 00001111
 @@bwAndAccumVar += 85; # 00001111 & 01010101 -> 00000101
 PRINT @@bwAndAccumVar; # 5

 # BitwiseOrAccum
 @@bwOrAccumVar += 170; # 00000000 | 10101010 -> 10101010
 @@bwOrAccumVar += 85; # 10101010 | 01010101 -> 11111111 = 255
 PRINT @@bwOrAccumVar; # 255

 @@bwOrAccumVar = 15; # reset to 00001111
 @@bwOrAccumVar += 85; # 00001111 | 01010101 -> 01011111 = 95
 PRINT @@bwOrAccumVar; # 95
}

bitwiseAccumEx.json Result

5/13/25, 9:12 PM 3.3

1503

The ListAccum type maintains a sequential collection of elements. The output of a

ListAccum is a list of values in the order the elements were added. The element type

can be any base type, tuple, or STRING COMPRESS. Additionally, a ListAccum can

contain a nested collection of type ListAccum. Nesting of ListAccums is limited to a

depth of three.

The += arg operation appends arg to the end of the list. In this case, arg may be

either a single element or another ListAccum.

ListAccum supports two additional operations:

• @list1 + @list2 creates a new ListAccum, which contains the elements of @list1

followed by the elements of @list2. The two ListAccums must have identical

data types.

Change in "+" definition

The pre-v2.0 definition of the ListAccum "+" operator (@list + arg: Add arg to each
member of @list) is no longer supported.

GSQL > RUN QUERY bitwiseAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@bwAndAccumVar": 0},
 {"@@bwAndAccumVar": 5},
 {"@@bwOrAccumVar": 255},
 {"@@bwOrAccumVar": 95}
]
}

ListAccum

5/13/25, 9:12 PM 3.3

1504

• @list1 * @list2 (STRING data only) generates a new list of strings consisting of

all permutations of an element of the first list followed by an element of the
second list.

ListAccum also supports the following class functions.

Functions that modify the ListAccum (mutator functions) can be used only under the
following conditions:

• Mutator functions of global accumulators may only be used at the query-body

level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-

ACCUM clause.

Function (T is the

element type)
Return type Accessor / Mutator Description

.size() INT Accessor

Returns the number

of elements in the

list.

.contains(T val) BOOL Accessor

Returns true/false if

the list does/doesn't

contain the value .

.get(INT idx) T Accessor

Returns the value at

the given index

position in the list.

The index begins at

0. If the index is out

of bound (including

any negative value),

the default value of

the element type is

returned.

.clear() VOID Mutator

Clears the list so it

becomes empty

with size 0.

.update (INT index,

T value)
VOID Mutator

Assigns value to the

list element at

position index.

5/13/25, 9:12 PM 3.3

1505

ListAccum Example

5/13/25, 9:12 PM 3.3

1506

5/13/25, 9:12 PM 3.3

1507

ListAccum Example
CREATE QUERY listAccumEx() FOR GRAPH minimalNet {

 ListAccum<INT> @@intListAccum;
 ListAccum<STRING> @@stringListAccum;
 ListAccum<STRING> @@stringMultiplyListAccum;
 ListAccum<STRING> @@stringAdditionAccum;
 ListAccum<STRING> @@letterListAccum;
 ListAccum<ListAccum<STRING>> @@nestedListAccum;

 @@intListAccum = [1,3,5];
 @@intListAccum += [7,9];
 @@intListAccum += 11;
 @@intListAccum += 13;
 @@intListAccum += 15;

 PRINT @@intListAccum;
 PRINT @@intListAccum.get(0), @@intListAccum.get(1);
 PRINT @@intListAccum.get(8); # Out of bound: default value of int: 0

 #Other built-in functions
 PRINT @@intListAccum.size();
 PRINT @@intListAccum.contains(2);
 PRINT @@intListAccum.contains(3);

 @@stringListAccum += "Hello";
 @@stringListAccum += "World";

 PRINT @@stringListAccum; // ["Hello","World"]

 @@letterListAccum += "a";
 @@letterListAccum += "b";

 # ListA + ListB produces a new list equivalent to ListB appended to List
 # Ex: [a,b,c] + [d,e,f] => [a,b,c,d,e,f]
 @@stringAdditionAccum = @@stringListAccum + @@letterListAccum;

 PRINT @@stringAdditionAccum;

 #Multiplication produces a list of all list-to-list element combinations
 # Ex: [a,b] * [c,d] = [ac, ad, bc, bd]
 @@stringMultiplyListAccum = @@stringListAccum * @@letterListAccum;

 PRINT @@stringMultiplyListAccum;

 #Two dimensional list (3 dimensions is possible as well)
 @@nestedListAccum += [["foo", "bar"], ["Big", "Bang", "Theory"], ["Strin

5/13/25, 9:12 PM 3.3

1508

 PRINT @@nestedListAccum;
 PRINT @@nestedListAccum.get(0);
 PRINT @@nestedListAccum.get(0).get(1);
}

GSQL > RUN QUERY listAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@intListAccum": [1, 3, 5, 7, 9, 11, 13, 15]},
 {
 "@@intListAccum.get(0)": 1,
 "@@intListAccum.get(1)": 3
 },
 {"@@intListAccum.get(8)": 0},
 {"@@intListAccum.size()": 8},
 {"@@intListAccum.contains(2)": false},
 {"@@intListAccum.contains(3)": true},
 {"@@stringListAccum": ["Hello", "World"]},
 {"@@stringAdditionAccum": ["Hello", "World", "a", "b"]},
 {"@@stringMultiplyListAccum": ["Helloa", "Worlda", "Hellob", "Worldb"
 {"@@nestedListAccum": [
 ["foo", "bar"],
 ["Big", "Bang", "Theory"],
 ["String", "Theory"]
]},
 {"@@nestedListAccum.get(0)": ["foo", "bar"]},
 {"@@nestedListAccum.get(0).get(1)": "bar"}
]
}

listAccumEx.json Result

Example for update function on a global ListAccum

5/13/25, 9:12 PM 3.3

1509

CREATE QUERY listAccumUpdateEx() FOR GRAPH workNet {

 # Global ListAccum
 ListAccum<INT> @@intListAccum;
 ListAccum<STRING> @@stringListAccum;
 ListAccum<BOOL> @@passFail;

 @@intListAccum += [0,2,4,6,8];
 @@stringListAccum += ["apple","banana","carrot","daikon"];

 # Global update at Query-Body Level
 @@passFail += @@intListAccum.update(1,-99);
 @@passFail += @@intListAccum.update(@@intListAccum.size()-1,40); // las
 @@passFail += @@stringListAccum.update(0,"zero"); // first element
 @@passFail += @@stringListAccum.update(4,"four"); // FAIL: out-of-range

 PRINT @@intListAccum, @@stringListAccum, @@passFail;
}

GSQL > RUN QUERY listAccumUpdateEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@passFail": [true, true, true, false],
 "@@intListAccum": [0, -99, 4, 6, 40],
 "@@stringListAccum": ["zero", "banana", "carrot", "daikon"]
 }]
}

Results in listAcccumUpdateEx.json

Example for update function on a vertex-attached ListAccum

5/13/25, 9:12 PM 3.3

1510

CREATE QUERY listAccumUpdateEx2(SET<VERTEX<person>> seed) FOR GRAPH workNe

 # Each person has an LIST<INT> of skills and a LIST<STRING COMPRESS> of
 # This function copies their lists into ListAccums, and then udpates the
 # int with -99 and updates the last string with "fizz".
 ListAccum<INT> @intList;
 ListAccum<STRING COMPRESS> @stringList;
 ListAccum<STRING> @@intFails, @@strFails;

 S0 (person) = seed;
 S1 = SELECT s
 FROM S0:s
 ACCUM
 s.@intList = s.skillList,
 s.@stringList = s.interestList
 POST-ACCUM
 INT len = s.@intList.size(),
 IF NOT s.@intList.update(len-1,-99) THEN
 @@intFails += s.id END,
 INT len2 = s.@stringList.size(),
 IF NOT s.@stringList.update(len2-1,"fizz") THEN
 @@strFails += s.id END
 ;
 PRINT S1[S1.skillList, S1.interestList, S1.@intList, S1.@stringList]; //
 PRINT @@intFails, @@strFails;
}

Results for listAccumUpdateEx2

5/13/25, 9:12 PM 3.3

1511

The SetAccum type maintains a collection of unique elements. The output of a

SetAccum is a list of elements in arbitrary order. A SetAccum instance can contain

GSQL > RUN QUERY listAccumUpdateEx2(["person1","person5"])
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"S1": [
 {
 "v_id": "person1",
 "attributes": {
 "S1.@stringList": ["management","fizz"],
 "S1.interestList": ["management", "financial"],
 "S1.skillList": [1, 2, 3],
 "S1.@intList": [1, 2, -99]
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "S1.@stringList": ["sport", "financial", "fizz"],
 "S1.interestList": ["sport", "financial", "engineering"],
 "S1.skillList": [8, 2, 5],
 "S1.@intList": [8, 2, -99]
 },
 "v_type": "person"
 }
]},
 {
 "@@strFails": [],
 "@@intFails": []
 }
]
}

SetAccum

5/13/25, 9:12 PM 3.3

1512

values of one type. The element type can be any base type, tuple, or STRING

COMPRESS.

For SetAccum, the += arg operation adds a non-duplicate element or set of

elements to the set. If an element is already represented in the set, then the

SetAccum state does not change.

SetAccum also can be used with the three canonical set operators: UNION,

INTERSECT, and MINUS (see Section "Set/Bag Expression and Operators" for more

details).

SetAccum also supports the following class functions.

Functions that modify the SetAccum (mutator functions) can be used only under the
following conditions:

• Mutator functions of global accumulators may only be used at the query-body

level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-

ACCUM clause.

Function (T is the

element type)
Return type Accessor / Mutator Description

size() INT Accessor

Returns the number

of elements in the

set.

contains(T value) BOOL Accessor

Returns true/false if

the set

does/doesn't

contain the value.

remove(T value) VOID Mutator
Removes value from

the set.

clear() VOID Mutator

Clears the set so it

becomes empty

with size 0.

SetAccum Example

5/13/25, 9:12 PM 3.3

1513

SetAccum Example
CREATE QUERY setAccumEx() FOR GRAPH minimalNet {

 SetAccum<INT> @@intSetAccum;
 SetAccum<STRING> @@stringSetAccum;

 @@intSetAccum += 5;
 @@intSetAccum.clear();

 @@intSetAccum += 4;
 @@intSetAccum += 11;
 @@intSetAccum += 1;
 @@intSetAccum += 11; # Sets do not store duplicates

 @@intSetAccum += (1,2,3,4); # Can create simple sets this way
 PRINT @@intSetAccum;
 @@intSetAccum.remove(2);
 PRINT @@intSetAccum AS RemovedVal2; # Demostrate remove.

 PRINT @@intSetAccum.contains(3);

 @@stringSetAccum += "Hello";
 @@stringSetAccum += "Hello";
 @@stringSetAccum += "There";
 @@stringSetAccum += "World";
 PRINT @@stringSetAccum;

 PRINT @@stringSetAccum.contains("Hello");
 PRINT @@stringSetAccum.size();
}

setAccumEx.json Result

5/13/25, 9:12 PM 3.3

1514

The BagAccum type maintains a collection of elements with duplicated elements

allowed. The output of a BagAccum is a list of elements in arbitrary order. A

BagAccum instance can contain values of one type. The element type can be any

base type, tuple, or STRING COMPRESS.

For BagAccum, the += arg operation adds an element or bag of elements to the bag.

BagAccum also supports the + operator:

• @bag1 + @bag2 creates a new BagAccum, which contains the elements of
@bag1 and the elements of @bag2. The two BagAccums must have identical

data types.

BagAccum also supports the following class functions.

Functions which modify the BagAccum (mutator functions) can be used only under the
following conditions:

• Mutator functions of global accumulators may only be used at the query-body

level.

GSQL > RUN QUERY setAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@intSetAccum": [3, 2, 1, 11, 4]},
 {"@@intSetAccum.contains(3)": true},
 {"@@stringSetAccum": ["World", "There", "Hello"]},
 {"@@stringSetAccum.contains(Hello)": true},
 {"@@stringSetAccum.size()": 3}
]
}

BagAccum

5/13/25, 9:12 PM 3.3

1515

• Mutator functions of vertex-attached accumulators may only be used in a POST-

ACCUM clause.

Function (T is the

element type)
Return type Accessor / Mutator Description

size() INT Accessor

Returns the number

of elements in the

bag.

contains(T value) BOOL Accessor

Returns true/false if

the bag

does/doesn't

contain the value .

clear() VOID Mutator

Clears the bag so it

becomes empty

with size 0.

remove(T value) VOID Mutator

Removes one

instance of value

from the bag.

removeAll(T value

)
VOID Mutator

Removes all

instances of the

given value from the

bag.

BagAccum Example

5/13/25, 9:12 PM 3.3

1516

BagAccum Example
CREATE QUERY bagAccumEx() FOR GRAPH minimalNet {

 #Unordered collection
 BagAccum<INT> @@intBagAccum;
 BagAccum<STRING> @@stringBagAccum;

 @@intBagAccum += 5;
 @@intBagAccum.clear();

 @@intBagAccum += 4;
 @@intBagAccum += 11;
 @@intBagAccum += 1;
 @@intBagAccum += 11; #Bag accums can store duplicates
 @@intBagAccum += (1,2,3,4);
 PRINT @@intBagAccum;

 PRINT @@intBagAccum.size();
 PRINT @@intBagAccum.contains(4);

 @@stringBagAccum += "Hello";
 @@stringBagAccum += "Hello";
 @@stringBagAccum += "There";
 @@stringBagAccum += "World";
 PRINT @@stringBagAccum.contains("Hello");
 @@stringBagAccum.remove("Hello"); #Remove one matching element
 @@stringBagAccum.removeAll("There"); #Remove all matching elements
 PRINT @@stringBagAccum;
}

bagAccumEx.json Result

5/13/25, 9:12 PM 3.3

1517

The MapAccum type maintains a collection of (key -> value) pairs. The output of a

MapAccum is a set of key and value pairs in which the keys are unique.

The key type of a MapAccum can be all base types or tuples. If the key type is

VERTEX, then only the vertex's id is stored and displayed.

The value type of a MapAccum can be all base types, tuples, or any type of

accumulator, except for HeapAccum.

For MapAccum, the += (key->val) operation adds a key-value element to the

collection if key is not yet used in the MapAccum. If the MapAccum already contains

key , then val is accumulated to the current value, where the accumulation operation

depends on the data type of val . (Strings would get concatenated, lists would be

appended, numerical values would be added, etc.)

MapAccum also supports the + operator:

• @map1 + @map2 creates a new MapAccum, which contains the (key,value)

pairs of @map2 added to the (key,value) pairs of @map1. The two MapAccums

must have identical data types.

GSQL > RUN QUERY bagAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@intBagAccum": [2, 3, 1, 1, 11, 11, 4, 4]},
 {"@@intBagAccum.size()": 8},
 {"@@intBagAccum.contains(4)": true},
 {"@@stringBagAccum.contains(Hello)": true},
 {"@@stringBagAccum": ["World", "Hello"]}
]
}

MapAccum

5/13/25, 9:12 PM 3.3

1518

MapAccum also supports the following class functions.

Functions that modify the MapAccum (mutator functions) can be used only under the
following conditions:

• Mutator functions of global accumulators may only be used at the query-body

level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-

ACCUM clause.

Function (KEY is the

key type)
Return type Accessor / Mutator Description

size() INT Accessor

Returns the number

of elements in the

map.

containsKey(KEY

key)
BOOL Accessor

Returns true/false if

the map

does/doesn't

contain key .

get(KEY key) value type Accessor

Returns the value

which the map

associates with key

. If the map doesn't

containkey , then

the return value is

undefined.

clear() VOID Mutator

Clears the map so it

becomes empty

with size 0.

MapAccum Example

5/13/25, 9:12 PM 3.3

1519

5/13/25, 9:12 PM 3.3

1520

#MapAccum Example
CREATE QUERY mapAccumEx() FOR GRAPH minimalNet {

 #Map(Key, Value)
 # Keys can be INT or STRING only
 MapAccum<STRING, INT> @@intMapAccum;
 MapAccum<INT, STRING> @@stringMapAccum;
 MapAccum<INT, MapAccum<STRING, STRING>> @@nestedMapAccum;

 @@intMapAccum += ("foo" -> 1);
 @@intMapAccum.clear();

 @@intMapAccum += ("foo" -> 3);
 @@intMapAccum += ("bar" -> 2);
 @@intMapAccum += ("baz" -> 2);
 @@intMapAccum += ("baz" -> 1); #add 1 to existing value

 PRINT @@intMapAccum.containsKey("baz");
 PRINT @@intMapAccum.get("bar");
 PRINT @@intMapAccum.get("root");

 @@stringMapAccum += (1 -> "apple");
 @@stringMapAccum += (2 -> "pear");
 @@stringMapAccum += (3 -> "banana");
 @@stringMapAccum += (4 -> "a");
 @@stringMapAccum += (4 -> "b"); #append "b" to existing value
 @@stringMapAccum += (4 -> "c"); #append "c" to existing value

 PRINT @@intMapAccum;
 PRINT @@stringMapAccum;

 #Checking and getting keys
 if @@stringMapAccum.containsKey(1) THEN
 PRINT @@stringMapAccum.get(1);
 END;

 #Map nesting
 @@nestedMapAccum += (1 -> ("foo" -> "bar"));
 @@nestedMapAccum += (1 -> ("flip" -> "top"));
 @@nestedMapAccum += (2 -> ("fizz" -> "pop"));
 @@nestedMapAccum += (1 -> ("foo" -> "s"));

 PRINT @@nestedMapAccum;

 if @@nestedMapAccum.containsKey(1) THEN
 if @@nestedMapAccum.get(1).containsKey("foo") THEN
 PRINT @@nestedMapAccum.get(1).get("foo");
 END;

5/13/25, 9:12 PM 3.3

1521

The ArrayAccum type maintains an array of accumulators. An array is a fixed-length

sequence of elements, with direct access to elements by position. The ArrayAccum

 END;
}

GSQL > RUN QUERY mapAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@intMapAccum.containsKey(baz)": true},
 {"@@intMapAccum.get(bar)": 2},
 {"@@intMapAccum.get(root)": 0},
 {"@@intMapAccum": {
 "bar": 2,
 "foo": 3,
 "baz": 3
 }},
 {"@@stringMapAccum": {
 "1": "apple",
 "2": "pear",
 "3": "banana",
 "4": "abc"
 }},
 {"@@stringMapAccum.get(1)": "apple"},
 {"@@nestedMapAccum": {
 "1": {
 "foo": "bars",
 "flip": "top"
 },
 "2": {"fizz": "pop"}
 }},
 {"@@nestedMapAccum.get(1).get(foo)": "bars"}
]
}

ArrayAccum

mapAccumEx.json Result

5/13/25, 9:12 PM 3.3

1522

has these particular characteristics:

• The elements are accumulators, not primitive or base data types. All
accumulators, except HeapAccum, MapAccum, and GroupByAccum, can be

used.

• An ArrayAccum instance can be multidimensional. There is no limit to the

number of dimensions.

• The size can be set at run-time (dynamically).

• There are operators which update the entire array efficiently.

When an ArrayAccum is declared, the instance name should be followed by a pair of

brackets for each dimension. The brackets may either contain an integer constant

to set the size of the array, or they may be empty. In that case, the size must be set

with the reallocate function before the ArrayAccum can be used.

Because each element of an ArrayAccum itself is an accumulator, the operators =,

+=, and + can be used in two contexts: accumulator-level and element-level.

If @A is an ArrayAccum of length 6, then @A[0] and @A[5] refer to its first and last

elements, respectively. Referring to an ArrayAccum element is like referring to an

accumulator of that type. For example, given the following definitions:

then @@Sums[0], @@Sums[1], and @@Sums[2] each refer to an individual

SumAccum<INT>, and @@Lists[0] and @@Lists[1] each refer to a

ListAccum<STRING>, supporting all the operations for those accumulator and data

types.

ArrayAccum<SetAccum<STRING>> @@names[10];
ArrayAccum<SetAccum<INT>> @@ids[][]; // 2-dimensional, size to be determi

ArrayAccum<SumAccum<INT>> @@Sums[3];
ArrayAccum<ListAccum<STRING>> @@Lists[2];

Element-level operations

ArrayAccum declaration example

5/13/25, 9:12 PM 3.3

1523

The operators =, +=, and + have special meanings when applied to an ArrayAccum

as a whole. There operations efficiently update an entire ArrayAccum. All of the

ArrayAccums must have the same element type.

ArrayAccum also supports the following class functions.

Functions that modify the ArrayAccum (mutator functions) can be used only under the
following conditions:

@@Sums[1] = 1;
@@Sums[1] += 2; // value is now 3
@@Lists[0] = "cat";
@@Lists[0] += "egory"; // value is now "category"

Operator Description Example

=

Sets the ArrayAccum on the

left equal to the ArrayAccum

on the right. The two

ArrayAccums must have the

same element type, but the

left-side ArrayAccum will

change its size and

dimensions to match the

one on the right side.

@A = @B;

+

Performs element-by-

element addition of two

ArrayAccums of the same

type and size. The result is

a new ArrayAccum of the

same size.

@C = @A + @B;

// @A and @B must be the

same size

+=

Performs element-by-

element accumulation (+=)

from the right-side

ArrayAccum to the left-side

ArrayAccum. They must be

the same type and size.

@A += @B;

// @A and @B must be the

same size

Accumulator-level operations

5/13/25, 9:12 PM 3.3

1524

• Mutator functions of global accumulators may only be used at the query-body

level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-

ACCUM clause.

Function Return type Accessor / Mutator Description

size() INT Accessor

Returns the total

number of elements

in the (multi-

dimensional) array.

For example, the

size of an

ArrayAccum

declared as @A[3]

[4] is 12.

reallocate(INT, ...) VOID Mutator

Discards the

previous

ArrayAccum

instance and

creates a new

ArrayAccum, with

the size(s) given. An

N-dimensional

ArrayAccum

requires N integer

parameters. The

reallocate function

cannot be used to

change the number

of dimensions.

Example of ArrayAccum Element-level Operations

5/13/25, 9:12 PM 3.3

1525

5/13/25, 9:12 PM 3.3

1526

CREATE QUERY ArrayAccumElem() FOR GRAPH minimalNet {

ArrayAccum<SumAccum<DOUBLE>> @@aaSumD[2][2]; # 2D Sum Double
ArrayAccum<SumAccum<STRING>> @@aaSumS[2][2]; # 2D Sum String
ArrayAccum<MaxAccum<INT>> @@aaMax[2];
ArrayAccum<MinAccum<UINT>> @@aaMin[2];
ArrayAccum<AvgAccum> @@aaAvg[2];
ArrayAccum<AndAccum<BOOL>> @@aaAnd[2];
ArrayAccum<OrAccum<BOOL>> @@aaOr[2];
ArrayAccum<BitwiseAndAccum> @@aaBitAnd[2];
ArrayAccum<BitwiseOrAccum> @@aaBitOr[2];
ArrayAccum<ListAccum<INT>> @@aaList[2][2]; # 2D List
ArrayAccum<SetAccum<FLOAT>> @@aaSetF[2];
ArrayAccum<BagAccum<DATETIME>> @@aaBagT[2];

for test data
ListAccum<STRING> @@words;
BOOL toggle = false;
@@words += "1st"; @@words += "2nd"; @@words += "3rd"; @@words += "4th"

Int: a[0] += 1, 2; a[1] += 3, 4
Bool: alternate true/false
Float: a[0] += 1.111, 2.222; a[1] += 3.333, 4.444
2D Doub: a[0][0] += 1.111, 2.222; a[0][1] += 5.555, 6.666;
a[1][0] += 3.333, 4.444; a[0][1] += 7.777, 8.888;

FOREACH i IN RANGE [0,1] DO
FOREACH n IN RANGE [1, 2] DO

toggle = NOT toggle;
@@aaMax[i] += i*2 + n;
@@aaMin[i] += i*2 + n;
@@aaAvg[i] += i*2 + n;
@@aaAnd[i] += toggle;
@@aaOr[i] += toggle;
@@aaBitAnd[i] += i*2 + n;
@@aaBitOr[i] += i*2 + n;
@@aaSetF[i] += (i*2 + n)/0.9;
@@aaBagT[i] += epoch_to_datetime(i*2 + n);

FOREACH j IN RANGE [0,1] DO
@@aaSumD[i][j] += (j*4 + i*2 + n)/0.9;
@@aaSumS[i][j] += @@words.get((j*2 + i + n)%4);
@@aaList[i][j] += j*4 +i*2 + n ;

END;
END;

END;

PRINT @@aaSumD; PRINT @@aaSumS;

5/13/25, 9:12 PM 3.3

1527

PRINT @@aaMax; PRINT @@aaMin; PRINT @@aaAvg;
PRINT @@aaAnd; PRINT @@aaOr;
PRINT @@aaBitAnd; PRINT @@aaBitOr;
PRINT @@aaList; PRINT @@aaSetF; PRINT @@aaBagT;

}

ArrayAccumElem.json Results

5/13/25, 9:12 PM 3.3

1528

GSQL > RUN QUERY ArrayAccumElem()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@aaSumD": [
 [3.33333, 12.22222],
 [7.77778, 16.66667]
]},
 {"@@aaSumS": [
 ["2nd3rd", "4th1st"],
 ["3rd4th", "1st2nd"]
]},
 {"@@aaMax": [2, 4]},
 {"@@aaMin": [1, 3]},
 {"@@aaAvg": [1.5, 3.5]},
 {"@@aaAnd": [false, false]},
 {"@@aaOr": [true, true]},
 {"@@aaBitAnd": [0, 0]},
 {"@@aaBitOr": [3, 7]},
 {"@@aaList": [
 [
 [1, 2],
 [5, 6]
],
 [
 [3, 4],
 [7, 8]
]
]},
 {"@@aaSetF": [
 [2.22222, 1.11111],
 [4.44444, 3.33333]
]},
 {"@@aaBagT": [
 [2, 1],
 [4, 3]
]}
]
}

Example of Operations between Whole ArrayAccums

5/13/25, 9:12 PM 3.3

1529

CREATE QUERY ArrayAccumOp3(INT lenA) FOR GRAPH minimalNet {

ArrayAccum<SumAccum<INT>> @@arrayA[5]; // Original size
ArrayAccum<SumAccum<INT>> @@arrayB[2];
ArrayAccum<SumAccum<INT>> @@arrayC[][]; // No size
STRING msg;
@@arrayA.reallocate(lenA); # Set/Change size dynamically
@@arrayB.reallocate(lenA+1);
@@arrayC.reallocate(lenA, lenA+1);

// Initialize arrays
FOREACH i IN RANGE[0,lenA-1] DO

@@arrayA[i] += i*i;
FOREACH j IN RANGE[0,lenA] DO

@@arrayC[i][j] += j*10 + i;
END;

END;
FOREACH i IN RANGE[0,lenA] DO

@@arrayB[i] += 100-i;
END;
msg = "Initial Values";
PRINT msg, @@arrayA, @@arrayB, @@arrayC;

 msg = "Test 1: A = C, C = B"; // = operator
 @@arrayA = @@arrayC; // change dimensions: 1D <- 2D
 @@arrayC = @@arrayB; // change dimensions: 2D <- 1D
 PRINT msg, @@arrayA, @@arrayC;

 msg = "Test 2: B += C"; // += operator
 @@arrayB += @@arrayC; // B and C must have same size & dim
 PRINT msg, @@arrayB, @@arrayC;

 msg = "Test 3: A = B + C"; // + operator
 @@arrayA = @@arrayB + @@arrayC; // B & C must have same size & dim
 PRINT msg, @@arrayA; // A changes size & dim
}

ArrayAccumOp3.json Results

5/13/25, 9:12 PM 3.3

1530

GSQL > RUN QUERY ArrayAccumOp3(3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "msg": "Initial Values",
 "@@arrayC": [

[0, 10, 20, 30],
 [1, 11, 21, 31],
 [2, 12, 22, 32]
],
 "@@arrayB": [100, 99, 98, 97],
 "@@arrayA": [0, 1, 4]
 },
 {
 "msg": "Test 1: A = C, C = B",
 "@@arrayC": [100, 99, 98, 97],
 "@@arrayA": [

[0, 10, 20, 30],
 [1, 11, 21, 31],
 [2, 12, 22, 32]
]
 },
 {
 "msg": "Test 2: B += C",
 "@@arrayC": [100, 99, 98, 97],
 "@@arrayB": [200, 198,196, 194]
 },
 {
 "msg": "Test 3: A = B + C",
 "@@arrayA": [300, 297, 294, 291]
 }
]
}

Example for Vertex-Attached ArrayAccum

5/13/25, 9:12 PM 3.3

1531

CREATE QUERY arrayAccumLocal() FOR GRAPH socialNet api("v2") {
Count each person's edges by type
friend/liked/posted edges are type 0/1/2, respectively
ArrayAccum<SumAccum<INT>> @edgesByType[3];
Persons = {person.*};

Persons = SELECT s
FROM Persons:s -(:e)-> :t
ACCUM CASE e.type

WHEN "friend" THEN s.@edgesByType[0] += 1
WHEN "liked" THEN s.@edgesByType[1] += 1
WHEN "posted" THEN s.@edgesByType[2] += 1
END

ORDER BY s.id;

#PRINT Persons.@edgesByType; // api v1
 PRINT Persons[Persons.@edgesByType]; // api v2
}

Results for Query ArrayAccumLocal

5/13/25, 9:12 PM 3.3

1532

5/13/25, 9:12 PM 3.3

1533

GSQL > RUN QUERY arrayAccumLocal()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Persons": [
 {
 "v_id": "person1",
 "attributes": {"Persons.@edgesByType": [2, 1, 1]},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"Persons.@edgesByType": [2, 2, 1]},
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {"Persons.@edgesByType": [2, 1, 1]},
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {"Persons.@edgesByType": [3, 1, 1]},
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"Persons.@edgesByType": [2, 1, 2]},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"Persons.@edgesByType": [2, 1, 2]},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"Persons.@edgesByType": [2, 1, 2]},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"Persons.@edgesByType": [3, 1, 2]},

5/13/25, 9:12 PM 3.3

1534

The HeapAccum type maintains a sorted collection of tuples and enforces a

maximum number of tuples in the collection. The output of a HeapAccum is a sorted

collection of tuple elements. The += arg operation adds a tuple to the collection in

sorted order. If the HeapAccum is already at maximum capacity when the +=

operator is applied, then the tuple which is last in the sorted order is dropped from

the HeapAccum. Sorting of tuples is performed on one or more defined tuple fields

ordered either ascending or descending. Sorting precedence is performed based on

defined tuple fields from left to right.

The declaration of a HeapAccum is more complex than for most other accumulators,

because the user must define a custom tuple type, set the maximum capacity of the

HeapAccum, and specify how the HeapAccum should be sorted. The declaration

syntax is outlined in the figure below:

First, the HeapAccum declaration must be preceded by a TYPEDEF statement which

defines the tuple type. At least one of the fields (field_1, ..., field_n) must be of a data

type that can be sorted.

In the declaration of the HeapAccum itself, the keyword "HeapAccum" is followed by

the tuple type in angle brackets < >. This is followed by a parenthesized list of two

or more parameters. The first parameter is the maximum number of tuples that the

HeapAccum may store. This parameter must be a positive integer. The subsequent

parameters are a subset of the tuple's field, which are used as sort keys. The sort

key hierarchy is from left to right, with the leftmost key being the primary sort key.

 "v_type": "person"
 }
]}]
}

TYPEDEF TUPLE<type field_1,.., type field_n> tupleType;
...
HeapAccum<tupleType>(capacity, field_a [ASC|DESC],... , field_z [ASC|DESC]

HeapAccum

HeapAccum declaration syntax

5/13/25, 9:12 PM 3.3

1535

The keywords ASC and DESC indicate Ascending (lowest value first) or Descending

(highest value first) sort order. Ascending order is the default.

HeapAccum also supports the following class functions.

Functions that modify the HeapAccum (mutator functions) can be used only under the
following conditions:

• Mutator functions of global accumulators may only be used at the query-body

level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-

ACCUM clause.

Function Return type Accessor / Mutator Description

size() INT Accessor

Returns the number

of elements in the

heap.

top() tupleType Accessor

Returns the top

tuple. If this heap is

empty, returns a

tuple with each

element equal to the

default value.

pop() tupleType Mutator

Returns the top

tuple and removes it

from the heap. If

this heap is empty,

returns a tuple with

each element equal

to the default value.

resize(INT) VOID Mutator

Changes the

maximum capacity

of the heap.

clear() VOID Mutator

Clears the heap so

it becomes empty

with size 0.

HeapAccum Example

5/13/25, 9:12 PM 3.3

1536

#HeapAccum Example
CREATE QUERY heapAccumEx() FOR GRAPH minimalNet {
 TYPEDEF tuple<STRING firstName, STRING lastName, INT score> testResults;

 #Heap with max size of 4 sorted decending by score then ascending last n
 HeapAccum<testResults>(4, score DESC, lastName ASC) @@topTestResults;

 PRINT @@topTestResults.top();

 @@topTestResults += testResults("Bruce", "Wayne", 80);
 @@topTestResults += testResults("Peter", "Parker", 80);
 @@topTestResults += testResults("Tony", "Stark", 100);
 @@topTestResults += testResults("Bruce", "Banner", 95);
 @@topTestResults += testResults("Jean", "Summers", 95);
 @@topTestResults += testResults("Clark", "Kent", 80);

 #Show element with the highest sorted position
 PRINT @@topTestResults.top();
 PRINT @@topTestResults.top().firstName, @@topTestResults.top().lastName,

 PRINT @@topTestResults;

 #Increase the size of the heap to add more elements
 @@topTestResults.resize(5);

 #Find the size of the current heap
 PRINT @@topTestResults.size();

 @@topTestResults += testResults("Bruce", "Wayne", 80);
 @@topTestResults += testResults("Peter", "Parker", 80);

 PRINT @@topTestResults;

 #Resizing smaller WILL REMOVE excess elements from the HeapAccum
 @@topTestResults.resize(3);
 PRINT @@topTestResults;

 #Increasing capacity will not restore dropped elements
 @@topTestResults.resize(5);
 PRINT @@topTestResults;

 #Removes all elements from the HeapAccum
 @@topTestResults.clear();
 PRINT @@topTestResults.size();
}

heapAccumEx.json Results

5/13/25, 9:12 PM 3.3

1537

5/13/25, 9:12 PM 3.3

1538

GSQL > RUN QUERY heapAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@topTestResults.top()": {
 "firstName": "",
 "lastName": "",
 "score": 0
 }},
 {"@@topTestResults.top()": {
 "firstName": "Tony",
 "lastName": "Stark",
 "score": 100
 }},
 {
 "@@topTestResults.top().firstName": "Tony",
 "@@topTestResults.top().lastName": "Stark",
 "@@topTestResults.top().score": 100
 },
 {"@@topTestResults": [
 {
 "firstName": "Tony",
 "lastName": "Stark",
 "score": 100
 },
 {
 "firstName": "Bruce",
 "lastName": "Banner",
 "score": 95
 },
 {
 "firstName": "Jean",
 "lastName": "Summers",
 "score": 95
 },
 {
 "firstName": "Clark",
 "lastName": "Kent",
 "score": 80
 }
]},
 {"@@topTestResults.size()": 4},

5/13/25, 9:12 PM 3.3

1539

The GroupByAccum is a compound accumulator, an accumulator of accumulators.

At the top level, it is a MapAccum where both the key and the value can have

multiple fields. Moreover, each of the value fields is an accumulator type.

In the EBNF above, the type terms form the key set, and the accumType terms form

the map's value. Since they are accumulators, they perform a grouping. Like a

MapAccum, if we try to store a (key->value) whose key has already been used, then

the new value will accumulate to the data which is already stored. In this case, each

field of the multiple-field value has its own accumulation function. One way to think

about GroupByAccum is that each unique key is a group ID.

In GroupByAccum, the key types can be base type, tuple, or STRING COMPRESS.

The accumulators are used for aggregating group values. Each accumulator type

can be any type including HeapAccum. Each base type and each accumulator type

must be followed an alias. Below is an example declaration.

 {"@@topTestResults": [
 {
 "firstName": "Tony",
 "lastName": "Stark",
 "score": 100
 },
 {
 "firstName": "Bruce",
 "lastName": "Banner",
 "score": 95
 },
 {
 "firstName": "Jean",
 "lastName": "Summers",
 "score": 95
 },
 {
 "firstName": "Clark",
 "lastName": "Kent",
 "score": 80
 },
 {
 "firstName": "Peter",
 "lastName": "Parker",
 "score": 80
 }
]},
 {"@@topTestResults": [
 {
 "firstName": "Tony",
 "lastName": "Stark",
 "score": 100
 },
 {
 "firstName": "Bruce",
 "lastName": "Banner",
 "score": 95
 },
 {
 "firstName": "Jean",
 "lastName": "Summers",
 "score": 95
 }
]},
 {"@@topTestResults": [
 {
 "firstName": "Tony",
 "lastName": "Stark",

"score": 100

GroupByAccum<type [, type]* , accumType [, accumType]* >

GroupByAccum

GroupByAccum syntax

5/13/25, 9:12 PM 3.3

1540

To add new data to this GroupByAccum, the data should be formatted as (key1,

key2 -> value1, value2) .

GroupByAccum also supports the following class functions.

Functions that modify the GroupByAccum (mutator functions) can be used only under
the following conditions:

• Mutator functions of global accumulators may only be used at the query-body

level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-

ACCUM clause.

 score : 100
 },
 {
 "firstName": "Bruce",
 "lastName": "Banner",
 "score": 95
 },
 {
 "firstName": "Jean",
 "lastName": "Summers",
 "score": 95
 }
]},
 {"@@topTestResults.size()": 0}
]
}

Typedef tuple <id int, name string, age int> myTuple;
Typedef HeapAccum <myTuple> (2, name desc, age desc, id asc) myHeap;
GroupByAccum<INT a, STRING b,
 MaxAccum<INT> maxa,
 ListAccum<ListAccum<INT>> lists,
 myHeap h> @@group;

Function

(KEY1..KEYn are the

key types)

Return type Accessor / Mutator Description

size() INT Accessor

Returns the number

of elements in the

heap.

get(KEY1

key_value1 , KEY2

key_value2 ...)

element type(s) of

the accumulator(s)
Accessor

Returns the values

from each

accumulator in the

group associating

with the given

key(s). If the key(s)

doesn't exist, return

the default value(s)

of the accumulator

type(s).

5/13/25, 9:12 PM 3.3

1541

containsKey(KEY1

key_value1 , KEY2

key_value2...)

BOOL Accessor

Returns true/false if

the accumulator

contains the key(s)

clear() VOID Mutator

Clears the heap so

it becomes empty

with size 0.

GroupByAccum Example

5/13/25, 9:12 PM 3.3

1542

#GroupByAccum Example
CREATE QUERY groupByAccumEx () FOR GRAPH socialNet {
 ##declare HeapAccum type and tuple used in the HeapAccum
 Typedef tuple <id int, name string, age int> myTuple;
 Typedef HeapAccum <myTuple> (2, name desc, age desc, id asc) myHeap;
 ## declaration, first two primitive type are group by keys; the rest acc
 GroupByAccum<INT a, STRING b, MaxAccum<INT> maxa, ListAccum<ListAccum<IN
 GroupByAccum<STRING gender, MapAccum<VERTEX<person>, DATETIME> m> @@grou
 GroupByAccum<INT age, myHeap h> @@group4;
 # nested GroupByAccum
 GroupByAccum<INT a, MaxAccum<INT> maxa, GroupByAccum<INT a, MaxAccum<INT
 Start = { person.* };

 ## usage of global GroupByAccum
 @@group += (1, "a" -> 1, [1]);
 @@group += (1, "a" -> 2, [2]);
 @@group += (2, "b" -> 1, [4]);

 @@group3 += (2 -> 1, (2 -> 0));
 @@group3 += (2 -> 1, (2 -> 5));
 @@group3 += (2 -> 5, (3 -> 3));
 PRINT @@group, @@group.get(1, "a"), @@group.get(1, "a").lists, @@group.

 ## HeapAccum inside GroupByAccum
 @@group4 += (29->myTuple(1,"aaa", 18));
 @@group4 += (29->myTuple(2,"bbb", 19));
 @@group4 += (29->myTuple(3,"ccc", 20));
 PRINT @@group4;

 ## two kinds of foreach
 FOREACH g IN @@group DO
 PRINT g.a, g.b, g.maxa, g.lists;
 END;
 FOREACH (g1,g2,g3,g4) IN @@group DO
 PRINT g1,g2,g3,g4;
 END;

 S = SELECT v
 FROM Start:v - (liked:e) - post:t
 ACCUM @@group2 += (v.gender -> (v -> e.actionTime));

 PRINT @@group2, @@group2.get("Male").m, @@group2.get("Female").m;
}

Result for Query groupByAccum

5/13/25, 9:12 PM 3.3

1543

5/13/25, 9:12 PM 3.3

1544

GSQL > RUN QUERY groupByAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@group.get(1,a).lists": [
 [1],
 [2]
],
 "@@group3": [{
 "a": 2,
 "heap": [
 {
 "a": 3,
 "maxa": 3
 },
 {
 "a": 2,
 "maxa": 5
 }
],
 "maxa": 5
 }],
 "@@group.containsKey(1,c)": false,
 "@@group.get(1,a)": {
 "lists": [
 [1],
 [2]
],
 "maxa": 2
 },
 "@@group": [
 {
 "a": 2,
 "b": "b",
 "lists": [[4]],
 "maxa": 1
 },
 {
 "a": 1,
 "b": "a",
 "lists": [

5/13/25, 9:12 PM 3.3

1545

Certain collection accumulators may be nested. That is, an accumulator may contain

a collection of elements where the elements themselves are accumulators. For

example:

Only ListAccum, ArrayAccum, MapAccum, and GroupByAccum can contain other

accumulators. However, not all combinations of collection accumulators are allowed.

The following constraints apply:

1. ListAccum: ListAccum is the only accumulator type that can be nested within
ListAccum, up to a depth of 3:

 [1],
 [2]
],
 "maxa": 2
 }
]
 },
 {
 "g.b": "b",
 "g.maxa": 1,
 "g.lists": [[4]],
 "g.a": 2
 },
 {
 "g.b": "a",
 "g.maxa": 2,
 "g.lists": [
 [1],
 [2]
],
 "g.a": 1
 },
 {
 "g1": 2,
 "g2": "b",
 "g3": 1,
 "g4": [[4]]
 },
 {
 "g1": 1,
 "g2": "a",
 "g3": 2,
 "g4": [
 [1],
 [2]
]
 },
 {
 "@@group2.get(Male).m": {
 "person3": 1263618953,
 "person1": 1263209520,
 "person8": 1263180365,
 "person7": 1263295325,
 "person6": 1263468185
 },
 "@@group2": [
 {
 "gender": "Male",

"m": {

ListAccum<ListAccum<INT>> @@matrix; # a 2-dimensional jagged array of inte

Nested Accumulators

5/13/25, 9:12 PM 3.3

1546

2. MapAccum: All accumulator types, except for HeapAccum, can be nested within

MapAccum as the value type. For example,

3. GroupByAccum: All accumulator types, except for HeapAccum, can be nested

within GroupByAccum as the accumulator type. For example:

4. ArrayAccum: Unlike the other accumulators in this list, where nesting is optional,

nesting is mandatory for ArrayAccum. See the ArrayAccum section above.

It is legal to define nested ListAccums to form a multi-dimensional array. Note the

declaration statements and the nested [bracket] notation in the example below:

 m : {
 "person3": 1263618953,
 "person1": 1263209520,
 "person8": 1263180365,
 "person7": 1263295325,
 "person6": 1263468185
 }
 },
 {
 "gender": "Female",
 "m": {
 "person4": 1263352565,
 "person2": 2526519281,
 "person5": 1263330725
 }
 }
],
 "@@group2.get(Female).m": {
 "person4": 1263352565,
 "person2": 2526519281,
 "person5": 1263330725
 }
 }
]
}

ListAccum<ListAccum<INT>>
ListAccum<ListAccum<ListAccum<INT>>>
ListAccum<SetAccum<INT>> # illegal

MapAccum<STRING, ListAccum<INT>>
MapAccum<INT, MapAccum<INT, STRING>>
MapAccum<VERTEX, SumAccum<INT>>
MapAccum<STRING, SetAccum<VERTEX>>
MapAccum<STRING, GroupByAccum<VERTEX a, MaxAccum<INT> maxs>>
MapAccum<SetAccum<INT>, INT> # illegal

GroupByAccum<INT a, STRING b, MaxAccum<INT> maxs, ListAccum<ListAccum<INT>

5/13/25, 9:12 PM 3.3

1547

CREATE QUERY nestedAccumEx() FOR GRAPH minimalNet {
 ListAccum<ListAccum<INT>> @@_2d_list;
 ListAccum<ListAccum<ListAccum<INT>>> @@_3d_list;
 ListAccum<INT> @@_1d_list;
 SumAccum <INT> @@sum = 4;

 @@_1d_list += 1;
 @@_1d_list += 2;
 // add 1D-list to 2D-list as element
 @@_2d_list += @@_1d_list;

 // add 1D-enum-list to 2D-list as element
 @@_2d_list += [@@sum, 5, 6];
 // combine 2D-enum-list and 2d-list
 @@_2d_list += [[7, 8, 9], [10, 11], [12]];

 // add an empty 1D-list
 @@_1d_list.clear();
 @@_2d_list += @@_1d_list;

 // combine two 2D-list
 @@_2d_list += @@_2d_list;

 PRINT @@_2d_list;

 // test 3D-list
 @@_3d_list += @@_2d_list;
 @@_3d_list += [[7, 8, 9], [10, 11], [12]];
 PRINT @@_3d_list;
}

nestedAccumEx.json Results

5/13/25, 9:12 PM 3.3

1548

GSQL > RUN QUERY nestedAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@_2d_list": [
 [1,2],
 [4,5,6],
 [7,8,9],
 [10,11],
 [12],
 [],
 [1,2],
 [4,5,6],
 [7,8,9],
 [10,11],
 [12],
 []
]},
 {"@@_3d_list": [
 [
 [1,2],
 [4,5,6],
 [7,8,9],
 [10,11],
 [12],
 [],
 [1,2],
 [4,5,6],
 [7,8,9],
 [10,11],
 [12],
 []
],
 [
 [7,8,9],
 [10,11],
 [12]
]
]}
]
}

5/13/25, 9:12 PM 3.3

1549

Operators and Expressions
An expression is a combination of fixed values, variables, operators, function calls,

and groupings that specify a computation, resulting in a data value. This section of

the specification describes the literals (fixed values), operators, and functions

available in the GSQL query language. It covers the subset of the EBNF definitions

shown below. However, more so than in other sections of the specification, syntax

alone is not an adequate description. The semantics (functionality) of the particular

operators and functions are an essential complement to the syntax.

EBNF for Operations, Functions, and Expressions

5/13/25, 9:12 PM 3.3

1550

5/13/25, 9:12 PM 3.3

1551

constant := numeric | stringLiteral | TRUE | FALSE | GSQL_UINT_MAX
 | GSQL_INT_MAX | GSQL_INT_MIN | TO_DATETIME "(" stringLiteral ")

mathOperator := "*" | "/" | "%" | "+" | "-" | "<<" | ">>" | "&" | "|"

condition := expr
 | expr comparisonOperator expr
 | expr [NOT] IN setBagExpr
 | expr IS [NOT] NULL
 | expr BETWEEN expr AND expr
 | "(" condition ")"
 | NOT condition
 | condition (AND | OR) condition
 | (TRUE | FALSE)
 | expr [NOT] LIKE expr [ESCAPE escape_char]

comparisonOperator := "<" | "<=" | ">" | ">=" | "==" | "!="

aggregator := COUNT | MAX | MIN | AVG | SUM

expr := name
 | globalAccumName

| name ".type"
| name "." name
| name "." localAccumName ["\'"]
| name "." name "." name "(" [argList] ")"

 | name "." name "(" [argList] ")" ["." FILTER "(" condition ")"]
| name ["<" type ["," type]* ">"] "(" argList] ")"
| name "." localAccumName ("." name "(" [argList] ")")+ ["." name]
| globalAccumName ("."name "(" [argList] ")")+ ["."name]
| COALESCE "(" [argList] ")"
| aggregator "(" [DISTINCT] setBagExpr ")"
| ISEMPTY "(" setBagExpr ")"
| expr mathOperator expr
| "-" expr
| "(" expr ")"
| "(" argList "->" argList ")" // key value pair for MapAccum
| "[" argList "]" // a list
| constant
| setBagExpr
| name "(" argList ")" // function call or a tuple object

setBagExpr := name
 | globalAccumName
 | name "." name

 | name "." localAccumName
 | name "." localAccumName ("." name "(" [argList] ")")+
 | name "." name "(" [argList] ")" ["." FILTER "(" condition "

5/13/25, 9:12 PM 3.3

1552

Each primitive data type supports constant values:

GSL_UINT_MAX = 2 ^ 64 - 1 = 18446744073709551615

GSQL_INT_MAX = 2 ^ 63 - 1 = 9223372036854775807

GSQL_INT_MIN = -2 ^ 63 = -9223372036854775808

 | globalAccumName ("." name "(" [argList] ")")+
 | setBagExpr (UNION | INTERSECT | MINUS) setBagExpr
 | "(" argList ")"
 | "(" setBagExpr ")"

argList := expr ["," expr]*

constant := numeric | stringLiteral | TRUE | FALSE | GSQL_UINT_MAX
 | GSQL_INT_MAX | GSQL_INT_MIN | TO_DATETIME "(" stringLiteral ")

Data Type Constant Examples

Numeric types (INT ,

UINT , FLOAT , DOUBLE)
numeric

123

-5

45.67

2.0e-0.5

UINT GSQL_UINT_MAX

INT
GSQL_INT_MAX
GSQL_INT_MIN

boolean
TRUE
FALSE

string stringLiteral
"atoz@com"
"0.25"

Constants

5/13/25, 9:12 PM 3.3

1553

An operator is a keyword token that performs a specific computational function to

return a resulting value, using the adjacent expressions (its operands) as input

values. An operator is similar to a function in that both compute a result from inputs,

but syntactically they are different. The most familiar operators are the mathematical

operators for addition + and subtraction - .

Tip: The operators listed in this section are designed to behave like the operators in
MySQL.

We support the following standard mathematical operators and meanings. The latter

four ("<<" | ">>" | "&" | "|") are for bitwise operations. See the section below: "Bit

Operators".

Operator precedences are shown in the following list, from the highest precedence

to the lowest. Operators that are shown together on a line have the same

precedence:

mathOperator := "*" | "/" | "%" | "+" | "-" | "<<" | ">>" | "&" | "|"

*, /, %
-, +
<<, >>
&
|
==, >=, >, <=, <, !=

Operators

Mathematical Operators and Expressions

Operator Precedence, highest to lowest

Example 1. Math Operators + - * /

5/13/25, 9:12 PM 3.3

1554

CREATE QUERY mathOperators() FOR GRAPH minimalNet api("v2")
{
 int x,y;
 int z1,z2,z3,z4,z5;
 float f1,f2,f3,f4;

 x = 7;
 y = 3;

 z1 = x * y; # z = 21
 z2 = x - y; # z = 4
 z3 = x + y; # z = 10
 z4 = x / y; # z = 2
 z5 = x / 4.0; # z = 1
 f1 = x / y; # v = 2
 f2 = x / 4.0; # v = 1.75
 f3 = x % 3; # v = 1
 f4 = x % y; # z = 1

 PRINT x,y;
 PRINT z1 AS xTIMESy, z2 AS xMINUSy, z3 AS xPLUSy, z4 AS xDIVy, z5 AS x
 PRINT f1 AS xDIVy, f2 AS xDIV4f, f3 AS xMOD3, f4 AS xMODy;
}

mathOperators.json Results

5/13/25, 9:12 PM 3.3

1555

We support the standard Boolean operators and standard order of precedence:

AND, OR, NOT

Bit operators (<<, >>, &, and |) operate on integers and return an integer.

GSQL > RUN QUERY mathOperators()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "x": 7,
 "y": 3
 },
 {
 "xTIMESy": 21,
 "xPLUSy": 10,
 "xMINUSy": 4,
 "xDIVy": 2,
 "xDIV4f": 1
 },
 {
 "xMODy": 1,
 "xMOD3": 1,
 "xDIVy": 2,
 "xDIV4f": 1.75
 }
]
}

Boolean Operators

Bit Operators

Bit Operators

5/13/25, 9:12 PM 3.3

1556

Operator + can be used for concatenating strings.

The fields of the tuple can be accessed using the dot operator.

A condition is an expression that evaluates to a boolean value of either true or false.

One type of condition uses the familiar comparison operators. A comparison

operator compares two numeric or string values.

CREATE QUERY bitOperationTest() FOR GRAPH minimalNet{
 PRINT 80 >> 2; # 20
 PRINT 80 << 2; # 320
 PRINT 2 + 80 >> 4; # 5
 PRINT 2 | 3 ; # 3
 PRINT 2 & 3 ; # 2
 PRINT 2 | 3 + 2; # 7
 PRINT 2 & 3 - 2; # 0
}

comparisonOperator := "<" | "<=" | ">" | ">=" | "==" | "!="

condition := expr
 | expr comparisonOperator expr
 | expr [NOT] IN setBagExpr
 | expr IS [NOT] NULL
 | expr BETWEEN expr AND expr
 | "(" condition ")"
 | NOT condition
 | condition (AND | OR) condition
 | (TRUE | FALSE)
 | expr [NOT] LIKE expr [ESCAPE escape_char]

String Operators

Tuple Fields

Comparison Operators and Conditions

5/13/25, 9:12 PM 3.3

1557

Strings are compared based on standard lexicographical ordering:

(space) < (digit) < (uppercase_letter) < (lowercase_letter).

The comparison operators treat the STRING COMPRESS type as though it is STRING
type.

The expression expr1 BETWEEN expr2 AND expr3 is true if the value expr1 is in the

range from expr2 to expr3, including the endpoint values. Each expression must be

numeric.

" expr1 BETWEEN expr2 AND expr3 " is equivalent to " expr1 <= expr3 AND expr1 >=

expr2".

IS NULL and IS NOT NULL can be used for checking whether an optional parameter

is given any value.

CREATE QUERY mathOperatorBetween() FOR GRAPH minimalNet
{
 int x;
 bool b;
 x = 1;
 b = (x BETWEEN 0 AND 100); PRINT b; # True
 b = (x BETWEEN 1 AND 2); PRINT b; # True
 b = (x BETWEEN 0 AND 1); PRINT b; # True
}

BETWEEN expr AND expr

IS NULL, IS NOT NULL

BETWEEN AND example

IS NULL example

5/13/25, 9:12 PM 3.3

1558

Every attribute value stored in GSQL is a valid value, so IS NULL and IS NOT NULL is
only effective for query parameters.

CREATE QUERY parameterIsNULL (INT p) FOR GRAPH minimalNet {
 IF p IS NULL THEN
 PRINT "p is null";
 ELSE
 PRINT "p is not null";
 END;
}

GSQL > RUN QUERY parameterIsNULL(_)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"p is null": "p is null"}]
}
GSQL > RUN QUERY parameterIsNULL(3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"p is not null": "p is not null"}]
}

expr [NOT] LIKE expr [ESCAPE escape_char]

LIKE

parameterIsNULL.json Results

5/13/25, 9:12 PM 3.3

1559

The LIKE operator is used for string pattern matching and can only be used in

WHERE clauses. The expression string1 LIKE string_pattern evaluates to

boolean true if string1 matches the pattern in string_pattern ; otherwise, it is

false.

Both operands must be strings. Additionally, while string1 can be a function call

(e.g. lower(string_variable) , string_pattern must be a string literal or a

parameter. A string_pattern can contain characters as well as the following

wildcard and other special symbols, in order to express a pattern

(<char_list> indicates a placeholder):

Character or syntax Description Example

%
Matches zero or more

characters.

%abc% matches any string

which contains the

sequence "abc" .

_ (underscore)
Matches any single

character.

_abc_e matches any 6-

character string where the

2nd to 4th characters are

"abc" and the last

character is "e" .

[<char_list>]

Matches any character in a

char list. A char list is a

concatenated character set,

with no separators.

[Tiger] matches either T ,

i , g , e , or r .

[^<char_list>]
Matches any character NOT

in a char list.

[^qxz] matches any

character other than q ,

x , or z .

[!<char_list>]
Matches any character NOT

in a char list.

α-β

(Special syntax within a

char list) matches a

character in the range from

α to β. A char list can have

multiple ranges.

[a-mA-M0-3] matches a

letter from a to m, upper or

lower case, or a digit from 0

to 3.

\\
(Special syntax within a

char list) matches the

character \

5/13/25, 9:12 PM 3.3

1560

The optional ESCAPE escape_char clause is used to define an escape character.

When escape_char occurs in string_pattern , then the next character is

interpreted literally, instead of as a pattern matching operator. For example, if we

want to specify the pattern "any string ending with the '%' character", we could

use

"%\%" ESCAPE "\"

The first "%" has its usual pattern-matching meaning "zero or more characters".

"\%" means a literal percentage character, because it starts with the escape

character "\" .

\\]

(Special syntax within a

char list) matches the

character]
No special treatment is

needed for [inside a char

list.

%[\\]!] matches any

string which ends with

either] or !

CREATE QUERY printAPosts(/* Parameters here */) FOR GRAPH socialNet {
 /* Write query logic here */
 posts = {post.*};

aPosts = SELECT v FROM posts:v
 WHERE v.subject LIKE "%a%"; // Return all posts that has
 // character "a" in its subje

PRINT aPosts;
}

ESCAPE escape_char

Example

Example query using LIKE operator

5/13/25, 9:12 PM 3.3

1561

Results
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"aPosts": [
 {
 "v_id": "2",
 "attributes": {
 "postTime": "2011-02-03 01:02:42",
 "subject": "query languages"
 },
 "v_type": "post"
 },
 {
 "v_id": "8",
 "attributes": {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },
 "v_type": "post"
 }
]}]
}

5/13/25, 9:12 PM 3.3

1562

Attributes on vertices or edges are defined in the graph schema. Additionally, each

vertex and edge has a built-in STRING attribute called type which represents the

user-defined type of that edge or vertex. These attributes, including type, can be

accessed for a particular edge or vertex with the dot operator:

DYNAMIC Query Support

The name of the attribute can be parameterized using the getAttr and setAttr vertex
functions, described later in this section. This allows you to write dynamic query

procedures where the attribute names are specified when you run the query.

For example, the following code snippet shows two different SELECT statements

which produce equivalent results. The first uses the dot operator on the vertex

variable v to access the "subject" attribute, which is defined in the graph schema.

The FROM clause in the first SELECT statement necessitates that any target vertices

will be of type "post" (also defined in the graph schema). The second SELECT

schema checks that the vertex variable v's type is a "post" vertex by using the dot

operator to access the built-in type attribute.

name ".type" // read only. Returns vertexType or edgeType of name
name "." attrName // read/write. Accesses attribute called attrName

CREATE QUERY coffeeRelatedPosts() FOR GRAPH socialNet
{
 allVertices = {ANY};
 results = SELECT v FROM allVertices:s -(:e)-> post:v WHERE v.subject =
 PRINT results;
 results = SELECT v FROM allVertices:s -(:e)-> :v WHERE v.type == "post
 PRINT results;
}

Vertex, Edge, and Accumulator Attributes

Accessing attributes

Accessing attributes with a known name.

Accessing vertex variable attributes

5/13/25, 9:12 PM 3.3

1563

This section describes functions that apply to all or most accumulators. Other

accumulator functions for each accumulator type are illustrated in the "Accumulator

Type" section.

The tick operator (') can be used to read the value of an accumulator as it was at

the start an ACCUM clause, before any changes that took place within the ACCUM

clause. It can only be used in the POST-ACCUM clause. A typical use is to compare

GSQL > RUN QUERY coffeeRelatedPosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"results": [{
 "v_id": "4",
 "attributes": {
 "postTime": "2011-02-07 05:02:51",
 "subject": "coffee"
 },
 "v_type": "post"
 }]},
 {"results": [{
 "v_id": "4",
 "attributes": {
 "postTime": "2011-02-07 05:02:51",
 "subject": "coffee"
 },
 "v_type": "post"
 }]}
]
}

Accumulator Functions

Previous value of accumulator

Results for Query coffeeRelatedPosts

5/13/25, 9:12 PM 3.3

1564

the value of the accumulator before and after the ACCUM clause. The PageRank

algorithm provides a good example:

In the last line, we compute @@max_diff as the absolute value of the difference

between the post-ACCUM score (s.@score) and the pre-ACCUM score

(s.@score').

SELECT blocks take an input vertex set and perform various selection and filtering

operations to produce an output set. Therefore, set/bag expressions and their

operators are a useful and powerful part of the GSQL query language. A set/bag

expression can use either SetAccum or BagAccum.

v = SELECT s
 FROM start:s - (e_type:e) -> :t
 ACCUM t.@received_score += s.@score/(s.outdegree(e_type))
 POST-ACCUM s.@score = (1.0 - damping) + damping * s.@received_score,
 s.@received_score = 0,
 @@max_diff += abs(s.@score - s.@score');

setBagExpr := name
 | globalAccumName
 | name "." name

 | name "." localAccumName
 | name "." localAccumName ("." name "(" [argList] ")")+
 | name "." name "(" [argList] ")" ["." FILTER "(" condition "
 | globalAccumName ("." name "(" [argList] ")")+
 | setBagExpr (UNION | INTERSECT | MINUS) setBagExpr
 | "(" argList ")"
 | "(" setBagExpr ")"

Set/Bag Expression and Operators

Set/Bag Expression Operators - UNION, INTERSECT,
MINUS

EBNF

5/13/25, 9:12 PM 3.3

1565

The operators are straightforward, when two operands are both sets, the result

expression is a set. When at least one operand is a bag, the result expression is a

bag. If one operand is a bag and the other is a set, the operator treats the set

operant as a bag containing one of each value.

Demonstrate Set & Bag operators
CREATE QUERY setOperatorsEx() FOR GRAPH minimalNet {
 SetAccum<INT> @@setA, @@setB, @@AunionB, @@AintsctB, @@AminusB;
 BagAccum<INT> @@bagD, @@bagE, @@DunionE, @@DintsctE, @@DminusE;
 BagAccum<INT> @@DminusA, @@DunionA, @@AunionBbag;

 BOOL x;

 @@setA = (1,2,3,4); PRINT @@setA;
 @@setB = (2,4,6,8); PRINT @@setB;

 @@AunionB = @@setA UNION @@setB ; PRINT @@AunionB; // (1, 2, 3, 4
 @@AintsctB = @@setA INTERSECT @@setB; PRINT @@AintsctB; // (2, 4)
 @@AminusB = @@setA MINUS @@setB ; PRINT @@AminusB; // C = (1, 3)

 @@bagD = (1,2,2,3); PRINT @@bagD;
 @@bagE = (2,3,5,7); PRINT @@bagE;

 @@DunionE = @@bagD UNION @@bagE; PRINT @@DunionE; // (1, 2, 2, 2,
 @@DintsctE = @@bagD INTERSECT @@bagE; PRINT @@DintsctE; // (2, 3)
 @@DminusE = @@bagD MINUS @@bagE; PRINT @@DminusE; // (1, 2)
 @@DminusA = @@bagD MINUS @@setA; PRINT @@DminusA; // (2)
 @@DunionA = @@bagD UNION @@setA; PRINT @@DunionA; // (1, 1, 2, 2,
 // because bag U
 @@AunionBbag = @@setA UNION @@setB; PRINT @@AunionBbag; // (1, 2, 3, 4
 // because set U
}

Set/Bag Operator Examples

setOperatorsEx Query Results

5/13/25, 9:12 PM 3.3

1566

The result of these operators is another set or bag, so these operations can be

nested and chained to form more complex expressions, such as

For example , suppose setBagExpr_A is ("a", "b", "c")

The IN and NOT IN operators support all base types on the left-hand side, and any

set/bag expression on the right-hand side. The base type must be the same as the

GSQL > RUN QUERY setOperatorsEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@setA": [4, 3, 2, 1]},
 {"@@setB": [8, 6, 4, 2]},
 {"@@AunionB": [4, 3, 2, 1, 8, 6]},
 {"@@AintsctB": [4, 2]},
 {"@@AminusB": [3, 1]},
 {"@@bagD": [1, 2, 2, 3]},
 {"@@bagE": [2, 7, 3, 5]},
 {"@@DunionE": [1, 2, 2, 2, 3, 3, 7, 5]},
 {"@@DintsctE": [2, 3]},
 {"@@DminusE": [1, 2]},
 {"@@DminusA": [2]},
 {"@@DunionA": [1, 1, 2, 2, 2, 3, 3, 4]},
 {"@@AunionBbag": [6, 8, 1, 2, 3, 4]}
]
}

(setBagExpr_A INTERSECT (setBagExpr_B UNION setBagExpr_C)) MINUS setBagEx

"a" IN setBagExpr_A => true
"d" IN setBagExpr_A => false
"a" NOT IN setBagExpr_A => false
"d" NOT IN setBagExpr_A => true

Set/Bag Expression Membership Operators

5/13/25, 9:12 PM 3.3

1567

accumulator's element type. IN and NOT IN return a BOOL value.

The following example uses NOT IN to exclude neighbors that are on a blocked list.

A query defined with a RETURNS header following its CREATE statement is called a

subquery. A subquery acts as a callable function in GSQL. They take parameters,

perform a set of actions, and return a value at the end. A subquery must end with a

return statement to pass its output value to a query. Exactly one type is allowed in

CREATE QUERY friendsNotInblockedlist (VERTEX<person> seed, SET<VERTEX<pers
 Start = {seed};
 Result = SELECT v
 FROM Start:s-(friend:e)-person:v
 WHERE v NOT IN blockedList;
 PRINT Result;
}

GSQL > RUN QUERY friendsNotInblockedlist("person1", ["person2"])
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "person8",
 "attributes": {
 "gender": "Male",
 "id": "person8"
 },
 "v_type": "person"
 }]}]
}

Subqueries

Set Membership example

Results for Query friendsNotInblockedlist

5/13/25, 9:12 PM 3.3

1568

the RETURNS header, and thus the RETURN statement can only return one

expression.

A subquery must be created before the query that calls the subquery. A subquery

must be installed either before or in the same INSTALL QUERY command with the

query that calls the subquery.

A subquery parameter can only be one of the following types:

• Primitives: INT , UINT , FLOAT , DOUBLE , STRING , BOOL

• VERTEX

• A set or bag of primitive or VERTEX elements

A subquery's return value can be any base type or accumulator type with the

following exceptions.

• If the return type is a user-defined tuple type, a HeapAccum type, or a

GroupByAccum type, the user-defined types must be defined at the catalog
level.

CREATE QUERY <query_name>() FOR GRAPH <graph_name> // Parameters are optio
RETURNS (INT) /* A subquery has a RETURNS header specifying
 its return type */
{
 // ...
 // Query body goes here
 // ...
 RETURN <return_value> /* The return statement of a subquery. Return
 value must be the same type as specified in
 the RETURNS header */
}

Parameter types

Return types

Main Components of a Subquery

5/13/25, 9:12 PM 3.3

1569

• If the return type is a BagAccum . SetAccum , or ListAccum with a tuple as its

element, the tuple does not need to be defined at the catalog level and can be

anonymous.

Recursion is supported for subqueries and a subquery can call itself. Here is an

example of a recursive subquery: The following subquery takes a set of persons as

starting points, and returns all the friends within a given distance.

While recursive subqueries may look simpler in writing, they are usually not as efficient
as iterative subqueries in GSQL.

Subqeury

CREATE QUERY subFindFriendsInDistance(SET<VERTEX> seeds, INT distance)
FOR GRAPH friendNet RETURNS (SET<VERTEX>)
{

IF distance <= 0 THEN // Base case
// When distance is 0, return the seed vertices themselves
 RETURN seeds;
ELSE

 seed_vs = seeds; // Initialize starting vertices
 // Select 1-hop neighbors from the starting points

 next_vs = SELECT v FROM seed_vs -(friendship:e)- :v;
// Find the (distance-1)-hop neighbors of the 1-hop neighbors
// and return the union of the starting vertices and neighbors

 RETURN seeds UNION subFindFriendsInDistance(next_vs, distance -
 END;
}

Query

Recursive subqueries

Example

5/13/25, 9:12 PM 3.3

1570

Test cases: Starting from person1 , search to a distance of 1 and a distance of

2.

CREATE QUERY findFriendsInDistance(Vertex<person> p, INT distance) FOR

seed = {p};
 //PRINT All Persons;

PRINT subFindFriendsInDistance(seed, distance) AS friends;
}

Results

GSQL> RUN QUERY findFriendsInDistance("person1", 1)
[
 {
 "friends": [
 "person4",
 "person3",
 "person2",
 "person1"
]
 }
]
GSQL> RUN QUERY findFriendsInDistance("person1", 2)
[
 {
 "friends": [
 "person4",
 "person9",
 "person3",
 "person2",
 "person6",
 "person8",
 "person1"
]
 }
]

Examples of Expressions

5/13/25, 9:12 PM 3.3

1571

Below is a list of examples of expressions. Note that (argList) is a set/bag

expression, while [argList] is a list expression.

Expression Examples

5/13/25, 9:12 PM 3.3

1572

5/13/25, 9:12 PM 3.3

1573

#Show various types of expressions
CREATE QUERY expressionEx() FOR GRAPH workNet {
 TYPEDEF tuple<STRING countryName, STRING companyName> companyInfo;

 ListAccum<STRING> @companyNames;
 SumAccum<INT> @companyCount;
 SumAccum<INT> @numberOfRelationships;
 ListAccum<companyInfo> @info;
 MapAccum< STRING,ListAccum<STRING> > @@companyEmployeeRelationships;
 SumAccum<INT> @@totalRelationshipCount;

 ListAccum<INT> @@valueList;
 SetAccum<INT> @@valueSet;

 SumAccum<INT> @@a;
 SumAccum<INT> @@b;

 #expr := constant
 @@a = 10;

 #expr := ["@@"] name
 @@b = @@a;

 #expr := expr mathOperator expr
 @@b = @@a + 5;

 #expr := "(" expr ")"
 @@b = (@@a + 5);

 #expr := "-" expr
 @@b = -(@@a + 5);

 PRINT @@a, @@b;

 #expr := "[" argList "]" // a list
 @@valueList = [1,2,3,4,5];
 @@valueList += [24,80];

 #expr := "(" argList ")" // setBagExpr
 @@valueSet += (1,2,3,4,5);

 #expr := (COUNT | ISEMPTY | MAX | MIN | AVG | SUM) "(" setBagExpr ")"
 PRINT MAX(@@valueList);
 PRINT AVG(@@valueList);

 seed = {ANY};

 company1 = SELECT t FROM seed:s -(worksFor)-> :t WHERE (s.id == "company

5/13/25, 9:12 PM 3.3

1574

 company2 = SELECT t FROM seed:s -(worksFor)-> :t WHERE (s.id == "company

 #expr := setBagExpr
 worksForBoth = company1 INTERSECT company2;
 PRINT worksForBoth;

 #expr := name "." "type"
 employees = SELECT s FROM seed:s WHERE (s.type == "person");

 employees = SELECT s FROM employees:s -(worksFor)-> :t

 ACCUM
 #expr := name "." ["@"] name
 s.@companyNames += t.id,

 #expr := name "."name "(" [argList] ")" ["."FILTER "(" condition ")
 s.@numberOfRelationships += s.outdegree(),

 #expr := name ["<" type ["," type"]* ">"] "(" [argList] ")"
 s.@info += companyInfo(t.country, t.id)

 POST-ACCUM
 #expr := name "."localAccumName ("."name "(" [argList] ")")+ ["."name
 s.@companyCount += s.@companyNames.size(),

 #expr := name "."localAccumName ["\'"]
 @@totalRelationshipCount += s.@companyCount,

 FOREACH comp IN s.@companyNames DO
 #expr := "(" argList "->" argList ")"
 @@companyEmployeeRelationships += (s.id -> comp)
 END;

 PRINT employees;
 PRINT @@totalRelationshipCount;
 PRINT @@companyEmployeeRelationships;

 #expr := globalAccumName ("."name "(" [argList] ")")+ ["."name]
 PRINT @@companyEmployeeRelationships.size();
}

expressionEx.json Results

5/13/25, 9:12 PM 3.3

1575

5/13/25, 9:12 PM 3.3

1576

GSQL > RUN QUERY expressionEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@a": 10,
 "@@b": -15
 },
 {"max(@@valueList)": 80},
 {"avg(@@valueList)": 17},
 {"worksForBoth": [
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "@companyCount": 0,
 "@numberOfRelationships": 0,
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "@info": [],
 "id": "person2",
 "@companyNames": []
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "@companyCount": 0,
 "@numberOfRelationships": 0,
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "@info": [],
 "id": "person1",
 "@companyNames": []
 },
 "v_type": "person"

5/13/25, 9:12 PM 3.3

1577

 }
]},
 {"employees": [
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "interestSet": ["football"],
 "@info": [{ "companyName": "company2", "countryName": "chn" }],
 "id": "person4",
 "@companyNames": ["company2"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person12",
 "attributes": {
 "interestList": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2, 2, 2],
 "locationId": "jp",
 "interestSet": ["teaching", "engineering", "music"],
 "@info": [{ "companyName": "company4", "countryName": "us" }],
 "id": "person12",
 "@companyNames": ["company4"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "interestList": ["teaching"],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [6, 1, 4],

"skillList": [4, 1, 6],

5/13/25, 9:12 PM 3.3

1578

 skillList : [4, 1, 6],
 "locationId": "jp",
 "interestSet": ["teaching"],
 "@info": [{ "companyName": "company1", "countryName": "us" }],
 "id": "person3",
 "@companyNames": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "@companyCount": 2,
 "@numberOfRelationships": 4,
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "@info": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company2",
 "countryName": "chn"
 }
],
 "id": "person9",
 "@companyNames": ["company3", "company2"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person11",
 "attributes": {
 "interestList": ["sport", "football"],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [10],
 "skillList": [10],
 "locationId": "can",
 "interestSet": ["football", "sport"],
 "@info": [{ "companyName": "company5", "countryName": "can" }],
 "id": "person11",
 "@companyNames": ["company5"]
 },
 "v_type": "person"

5/13/25, 9:12 PM 3.3

1579

 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "@companyCount": 2,
 "@numberOfRelationships": 4,
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "@info": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "id": "person10",
 "@companyNames": ["company3", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "@companyCount": 2,
 "@numberOfRelationships": 4,
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "interestSet": ["sport", "art"],
 "@info": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company2",
 "countryName": "chn"
 }
],
 "id": "person7",
 "@companyNames": ["company3", "company2"]
 },

5/13/25, 9:12 PM 3.3

1580

},
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "@companyCount": 2,
 "@numberOfRelationships": 4,
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "@info": [
 {
 "companyName": "company2",
 "countryName": "chn"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "id": "person1",
 "@companyNames": ["company2", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "interestList": ["sport", "financial", "engineering"],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [5, 2, 8],
 "skillList": [8, 2, 5],
 "locationId": "can",
 "interestSet": ["engineering", "financial", "sport"],
 "@info": [{ "companyName": "company2", "countryName": "chn" }],
 "id": "person5",
 "@companyNames": ["company2"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "interestList": ["music", "art"],
 "@companyCount": 1,

"@ b OfR l ti hi " 1

5/13/25, 9:12 PM 3.3

1581

 "@numberOfRelationships": 1,
 "skillSet": [10, 7],
 "skillList": [7, 10],
 "locationId": "jp",
 "interestSet": ["art", "music"],
 "@info": [{ "companyName": "company1", "countryName": "us" }],
 "id": "person6",
 "@companyNames": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "@companyCount": 2,
 "@numberOfRelationships": 4,
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "@info": [
 {
 "companyName": "company2",
 "countryName": "chn"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "id": "person2",
 "@companyNames": ["company2", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "interestList": ["management"],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2],
 "locationId": "chn",
 "interestSet": ["management"],
 "@info": [{ "companyName": "company1", "countryName": "us" }],
 "id": "person8",
 "@companyNames": ["company1"]

Examples of Expression Statements

Expression Statement Examples

5/13/25, 9:12 PM 3.3

1582

 },
 "v_type": "person"
 }
]},
 {"@@totalRelationshipCount": 17},
 {"@@companyEmployeeRelationships": {
 "person4": ["company2"],
 "person3": ["company1"],
 "person2": ["company2", "company1"],
 "person1": ["company2", "company1"],
 "person9": ["company3", "company2"],
 "person12": ["company4"],
 "person8": ["company1"],
 "person7": ["company3", "company2"],
 "person6": ["company1"],
 "person10": ["company3", "company1"],
 "person5": ["company2"],
 "person11": ["company5"]
 }},
 {"@@companyEmployeeRelationships.size()": 12}
]
}

#Show various types of expression statements
CREATE QUERY expressionStmntEx() FOR GRAPH workNet {
 TYPEDEF tuple<STRING countryName, STRING companyName> companyInfo;

 ListAccum<companyInfo> @employerInfo;
 SumAccum<INT> @@a;
 ListAccum<STRING> @employers;
 SumAccum<INT> @employerCount;
 SetAccum<STRING> @@countrySet;

 int x;

 #exprStmnt := name "=" expr
 x = 10;

 #gAccumAssignStmt := globalAccumName ("+=" | "=") expr
 @@a = 10;

 PRINT x, @@a;

 start = {person.*};

 employees = SELECT s FROM start:s -(worksFor)-> :t
 ACCUM #exprStmnt := name "."localAccumName ("+="| "=") expr
 s.@employers += t.id,
 #exprStmnt := name ["<" type ["," type"]* ">"] "(" [ar

 s.@employerInfo += companyInfo(t.country, t.id),
 #gAccumAccumStmt := globalAccumName "+=" expr

 @@countrySet += t.country
 #exprStmnt := name "."localAccumName ["."name "(" [arg
 POST-ACCUM s.@employerCount += s.@employers.size();

 #exprStmnt := globalAccumName ["."name "(" [argList] ")"]+
 PRINT @@countrySet.size();
 PRINT employees;
}

5/13/25, 9:12 PM 3.3

1583

5/13/25, 9:12 PM 3.3

1584

GSQL > RUN QUERY expressionStmntEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@a": 10,
 "x": 10
 },
 {"@@countrySet.size()": 4},
 {"employees": [
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "@employerInfo": [{
 "companyName": "company2",
 "countryName": "chn"
 }],
 "interestSet": ["football"],
 "@employerCount": 1,
 "id": "person4",
 "@employers": ["company2"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person11",
 "attributes": {
 "interestList": ["sport", "football"],
 "skillSet": [10],
 "skillList": [10],
 "locationId": "can",
 "@employerInfo": [{
 "companyName": "company5",
 "countryName": "can"
 }],
 "interestSet": ["football", "sport"],
 "@employerCount": 1,
 "id": "person11",

5/13/25, 9:12 PM 3.3

1585

 "@employers": ["company5"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "@employerInfo": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "interestSet": ["sport", "football"],
 "@employerCount": 2,
 "id": "person10",
 "@employers": ["company3", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "@employerInfo": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company2",
 "countryName": "chn"
 }
],
 "interestSet": ["sport", "art"],
 "@employerCount": 2,
 "id": "person7",

"@employers": ["company3", "company2"]

5/13/25, 9:12 PM 3.3

1586

 @employers : [company3 , company2]
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "@employerInfo": [
 {
 "companyName": "company2",
 "countryName": "chn"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "interestSet": ["financial", "management"],
 "@employerCount": 2,
 "id": "person1",
 "@employers": ["company2", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "interestList": ["music", "art"],
 "skillSet": [10, 7],
 "skillList": [7, 10],
 "locationId": "jp",
 "@employerInfo": [{ "companyName": "company1", "countryName": "u
 "interestSet": ["art", "music"],
 "@employerCount": 1,
 "id": "person6",
 "@employers": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],

5/13/25, 9:12 PM 3.3

1587

 "locationId": "chn",
 "@employerInfo": [
 {
 "companyName": "company2",
 "countryName": "chn"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "interestSet": ["engineering"],
 "@employerCount": 2,
 "id": "person2",
 "@employers": ["company2", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "interestList": ["sport", "financial", "engineering"],
 "skillSet": [5, 2, 8],
 "skillList": [8, 2, 5],
 "locationId": "can",
 "@employerInfo": [{
 "companyName": "company2",
 "countryName": "chn"
 }],
 "interestSet": ["engineering", "financial", "sport"],
 "@employerCount": 1,
 "id": "person5",
 "@employers": ["company2"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person12",
 "attributes": {
 "interestList": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2, 2, 2],
 "locationId": "jp",

5/13/25, 9:12 PM 3.3

1588

Functions
This section contains information on all functions in the GSQL query language.

This section contains information on all functions in the GSQL query language.

Functions are categorized by data type when applicable, and by purpose when the

function involves multiple data structures.

All built-in function names are case-insensitive. However, user-defined function

names are case-sensitive

Built-in functions:

• Aggregation functions

• Datetime functions

• Edge methods

• JSON array functions

• JSON object functions

• Mathematical functions

• String functions

• Type conversion functions

• Vertex functions

jp ,
 "@employerInfo": [{ "companyName": "company4", "countryName": "u
 "interestSet": ["teaching", "engineering", "music"],
 "@employerCount": 1,
 "id": "person12",
 "@employers": ["company4"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "interestList": ["teaching"],
 "skillSet": [6, 1, 4],
 "skillList": [4, 1, 6],
 "locationId": "jp",
 "@employerInfo": [{ "companyName": "company1", "countryName": "u
 "interestSet": ["teaching"],
 "@employerCount": 1,
 "id": "person3",
 "@employers": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "@employerInfo": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company2",
 "countryName": "chn"
 }
],
 "interestSet": ["teaching", "financial"],
 "@employerCount": 2,
 "id": "person9",
 "@employers": ["company3", "company2"]
 },
 "v_type": "person"
 },
 {

" id" " 8"

5/13/25, 9:12 PM 3.3

1589

• Miscellaneous functions

In GSQL, users can supplement the language by defining their own Query User-

Defined Functions (Query UDF). To learn about how to define a Query UDF, see

Query User-Defined Functions.

 "v_id": "person8",
 "attributes": {
 "interestList": ["management"],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2],
 "locationId": "chn",
 "@employerInfo": [{ "companyName": "company1", "countryName": "u
 "interestSet": ["management"],
 "@employerCount": 1,
 "id": "person8",
 "@employers": ["company1"]
 },
 "v_type": "person"
 }
]}
]
}

5/13/25, 9:12 PM 3.3

1590

Aggregation Functions
This page lists the aggregation functions available in the GSQL query language.

These functions take a single SET , BAG, SetAccum , BagAccum , or ListAccum as

the parameter and return an aggregated value from all members of the set or bag.

The DISTINCT keyword can be used to include repeated values only once when
aggregating.

avg([DISTINCT] setExp)

Returns the average of all elements in a set or bag. The function can only take

set/bag expressions whose members are numeric types.

A numeric type. If all members of the set/bag expression are integers, the return

value will also be rounded down to be an integer.

Parameter Description Data type

setExp

An expression that

evaluates to a SET , BAG ,

SetAccum , BagAccum ,

ListAccum

SET , BAG , SetAccum ,

BagAccum, ListAccum

avg()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1591

count([DISTINCT] setExp)

Returns the size of the set or bag.

INT

max([DISTINCT] setExp)

avg([5, 4, 1, 0, 0, 0]) -> 1
avg([3, 2, 1]) -> 2

Parameter Description Data type

setExp

An expression that

evaluates to a SET , BAG ,

SetAccum , BagAccum ,

ListAccum

SET , BAG , SetAccum ,

BagAccum, ListAccum

Example

count()

Syntax

Description

Return type

Parameters

max()

Syntax

5/13/25, 9:12 PM 3.3

1592

Returns the member with the maximum value in a set or bag. The function can only

take set/bag expressions whose members are numeric types.

A numeric type.

min([DISTINCT] setExp)

Returns the member with the minimum value in a set or bag. The function can only

take set/bag expressions whose members are numeric types.

A numberic type.

Parameter Description Data type

setExp

An expression that

evaluates to a SET , BAG ,

SetAccum , BagAccum ,

ListAccum

SET , BAG , SetAccum ,

BagAccum, ListAccum

Description

Return type

Parameters

min()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1593

sum([DISTINCT] setExp)

Returns the sum of all members in a set or bag. The function can only take set/bag

expressions whose members are numeric types.

A numeric type.

Parameter Description Data type

setExp

An expression that

evaluates to a SET , BAG ,

SetAccum , BagAccum ,

ListAccum

SET , BAG , SetAccum ,

BagAccum, ListAccum

Parameter Description Data type

setExp

An expression that

evaluates to a SET , BAG ,

SetAccum , BagAccum ,

ListAccum

SET , BAG , SetAccum ,

BagAccum, ListAccum

sum()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1594

Datetime Functions
This page lists DATETIME functions that are available in the GSQL query language.

Every function in this page either takes a DATETIME object as its argument or return

a DATETIME object.

datetime_add(date, INTERVAL int_value time_unit)

Calculates a new DATETIME from a specified datepart multiplied by a specified

amount, added to a specified DATETIME . INTERVAL is a keyword that must be

exactly entered. time_unit is one of the keywords YEAR , MONTH , DAY , HOUR ,

MINUTE , or SECOND .

DATETIME

Parameter Description Data type

date The DATETIME to add to. DATETIME

int_value An integer value INT

datetime_add()

Syntax

Description

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1595

datetime_diff(date1, date2)

Calculates the difference in seconds between two DATETIME values

INT

datetime_add(to_datetime("1970-01-01 00:00:00"), INTERVAL 1 MONTH)
 -> 1970-02-01 00:00:00

Parameter Description Data type

date1 A DATETIME value DATETIME

date2 A DATETIME value DATETIME

datetime_diff(to_datetime("2020-01-01 00:00:00"), to_datetime("2020-02-03
 -> -2866392

datetime_diff()

Syntax

Description

Return type

Parameters

Example

datetime_format()

Syntax

5/13/25, 9:12 PM 3.3

1596

datetime_format(date[, str])

Print a DATETIME value in a specific format indicated by a string.

STRING

Parameter Description Data type

date A DATETIME value DATETIME

str

A string pattern expressing

the format to print date in.

Use the following specifiers

in your string to insert the

corresponding value in the

output.

• %Y - year

• %m - month

• %d - day of month

• %H - hour

• %M - minute

• %S - second

The default value for this

parameter is "%Y-%m-%d
%H:%M:%S"

DATETIME

datetime_format(to_datetime("2020-01-02 05:30:12"), "hi, it's %Y-%m-%d")
 -> "hi, it's 2020-01-02"

Description

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1597

datetime_sub(date, INTERVAL int_value time_unit)

Calculates a new DATETIME from a specified datepart multiplied by a specified

amount, subtracted from a specified DATETIME . INTERVAL is a keyword that must

be exactly entered. time_unit is one of the keywords YEAR , MONTH , DAY , HOUR ,

MINUTE , or SECOND .

DATETIME

Parameter Description Data type

date
The DATETIME to subtract

from
DATETIME

int_value An integer value INT

datetime_sub(to_datetime("1970-02-01 00:00:00"), INTERVAL 1 MONTH) -> 1970

datetime_sub()

Syntax

Description

Return type

Parameters

Example

datetime_to_epoch()

Syntax

5/13/25, 9:12 PM 3.3

1598

datetime_to_epoch(date)

Converts a DATETIME value to epoch time.

INT

day(date)

Returns the day of the month of a DATETIME value.

INT

Parameter Description Data type

date A DATETIME value DATETIME

datetime_to_epoch(to_datetime("1970-01-01 00:01:00")) -> 60

Description

Return type

Parameters

Example

day()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1599

epoch_to_datetime(int_value)

Converts an epoch time value to a DATETIME value.

DATETIME

Parameter Description Data type

date A DATETIME value DATETIME

day(to_datetime("1973-01-05 00:00:00")) -> 5

Parameter Description Data type

int_value An epoch time value INT

epoch_to_datetime(1) -> 1970-01-01 00:00:01

Parameters

Example

epoch_to_datetime()

Syntax

Description

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1600

hour(date)

Extracts the hour of the day from a DATETIME value.

INT

minute(date)

Extracts the minute of the hour from a DATETIME value.

Parameter Description Data type

date A DATETIME value DATETIME

hour(to_datetime("1980-01-01 15:01:02")) -> 15

hour()

Syntax

Description

Return type

Parameters

Example

minute()

Syntax

Description

5/13/25, 9:12 PM 3.3

1601

INT

month(date)

Extracts the month of the year from a DATETIME value.

Parameter Description Data type

date A DATETIME value DATETIME

minute(to_datetime("1980-02-05 03:04:05")) -> 4

Parameter Description Data type

date A DATETIME value DATETIME

Return type

Parameters

Example

month()

Syntax

Description

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1602

now()

Returns the current time in DATETIME

DATETIME

None.

second(date)

Extracts the second from a DATETIME value.

INT

month(to_datetime("1980-02-05 03:04:05")) -> 2

now()

Syntax

Description

Return type

Parameters

second()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1603

year(date)

Extracts the year from a DATETIME value.

Parameter Description Data type

date A DATETIME value DATETIME

second(to_datetime("1980-02-05 03:04:05")) -> 5

Parameter Description Data type

date A DATETIME value DATETIME

year(to_datetime("1980-02-05 03:04:05")) -> 1980

Parameters

Example

year()

Syntax

Description

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1604

Edge Methods
This page lists all built-in edge methods that can be accessed by edge aliases using

the dot (.) operator.

e.getAttr(attrName, atterType)

Returns the value of an attribute of the edge.

The data type of the attribute itself.

If we have the following edge:

Parameter Description Data type

attrName The name of the attribute. STRING

attrType The type of the attribute STRING

getAttr()

Syntax

Description

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1605

Assume the alias of the edge is e :

e.isDirected()

Returns a boolean value indicating whether the edge is directed or undirected.

BOOL

None.

{
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "2",
 "to_type": "Video",
 "attributes": {
 "rating": 5.2,
 "date_time": 0
}

e.getAttr("rating", "DOUBLE") -> 5.2

isDirected()

Syntax

Description

Return type

Parameters

setAttr()

5/13/25, 9:12 PM 3.3

1606

e.setAttr(attrName, attrNewValue)

Sets an attribute of an edge to a new value.

No return value.

Parameter Description Data type

attrName The name of the attribute STRING

attrNewValue
The new value of the

attribute
The type of the attrubute

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1607

JSON Array Methods
This page lists the methods of a JSONARRAY object. Methods can be accessed via

the dot(.) operator.

jsonarray.getBool(idx)

Returns the boolean value at a specified index.

BOOL

jsonarray.getDouble(idx)

Parameter Description Data type

idx
The index of the value to

return
INT

getBool()

Syntax

Description

Return value

Parameters

getDouble()

Syntax

Description

5/13/25, 9:12 PM 3.3

1608

Returns the double at a specified index.

DOUBLE

jsonarray.getInt(idx)

Returns the integer value at a specified index.

INT

Parameter Description Data type

idx
The index of the value to

return
INT

Parameter Description Data type

idx
The index of the value to

return
INT

Return value

Parameters

getInt()

Syntax

Description

Return value

Parameters

5/13/25, 9:12 PM 3.3

1609

jsonarray.getJSONArray(idx)

Returns the JSONArray value at a specified index.

BOOL

jsonarray.getJsonObject(idx)

Returns the JSONOBJECT value at a specified index.

Parameter Description Data type

idx
The index of the value to

return
INT

getJsonArray()

Syntax

Description

Return value

Parameters

getJsonObject()

Syntax

Description

Return value

5/13/25, 9:12 PM 3.3

1610

JSONOBJECT

jsonarray.getString(idx)

Returns the boolean value at a specified index.

STRING

Parameter Description Data type

idx
The index of the value to

return
INT

Parameter Description Data type

idx
The index of the value to

return
INT

Parameters

getString()

Syntax

Description

Return value

Parameters

size()

Syntax

5/13/25, 9:12 PM 3.3

1611

jsonarray.size()

Returns the size of the array.

INT

None.

Description

Return value

Parameters

5/13/25, 9:12 PM 3.3

1612

JSON Object Methods
This page lists the methods of a JSON object variable. Methods can be accessed

using the dot(.) operator.

jsonobject.containsKey(keyStr)

Returns a boolean value indicating whether the JSON object contains a specified

key.

BOOL

jsonobject.getBool(keyStr)

Parameter Description Data type

keyStr A string. STRING

containsKey()

Syntax

Description

Return type

Parameters

getBool()

Syntax

Description

5/13/25, 9:12 PM 3.3

1613

Returns the boolean value associated with a specified key.

BOOL

jsonobject.getDouble(keyStr)

Returns the double value associated with a specified key.

DOUBLE

Parameter Description Data type

keyStr
The key whose value to

return
STRING

Parameter Description Data type

keyStr
The key whose value to

return
STRING

Return type

Parameters

getDouble()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1614

jsonobject.getInt(keyStr)

Returns the integer value associated with a specified key.

INT

jsonobject.getJsonArray(keyStr)

Returns the JSON array value associated with a specified key.

Parameter Description Data type

keyStr
The key whose value to

return
STRING

getInt()

Syntax

Description

Return type

Parameters

getJsonArray()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1615

JSONARRAY

jsonobject.getJsonObject(keyStr)

Returns the value associated with a specified key.

JSONOBJECT

Parameter Description Data type

keyStr
The key whose value to

return
STRING

Parameter Description Data type

keyStr
The key whose value to

return
STRING

Parameters

getJsonObject()

Syntax

Description

Return type

Parameters

getString()

Syntax

5/13/25, 9:12 PM 3.3

1616

jsonobject.getString(keyStr)

Returns the string value associated with a specified key.

STRING

Parameter Description Data type

keyStr
The key whose value to

return
STRING

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1617

Mathematical Functions
This page lists the mathematical functions that are available in the GSQL query

language. They are divided into three categories:

• General

• Logarithmic

• Trigonometric

abs(num)

Returns the absolute value of a number.

Number

Parameter Description Data type

num
The number to return the

absolute value for
Number

General

abs()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1618

ceil(num)

Rounds a number up to the smallest integer that's greater than or equal to the

number.

INT

exp(num)

Returns the base-e exponential of a number.

Parameter Description Data type

num
The number to round up

from
num

ceil()

Syntax

Description

Return type

Parameters

exp()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1619

FLOAT

float_to_int (num)

Converts a floating-point number to an integer by truncating the floating part.

INT

floor(num)

Parameter Description Data type

num The exponent Number

Parameter Description Data type

num
The floating-point number

to convert to integer
FLOAT

Parameters

float_to_int()

Syntax

Description

Return type

Parameters

floor()

Syntax

5/13/25, 9:12 PM 3.3

1620

Rounds a number down to the biggest integer that is smaller than or equal to the

number.

INT

fmod(numer, denom)

Returns the floating-point remainder of numer divided by denom

FLOAT

Parameter Description Data type

num
The number to round down

from
Number

Parameter Description Data type

Description

Return type

Parameter

fmod()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1621

ldexp(x, exp)

Returns x multiplied by 2 raised to the power of exp

FLOAT

PI()

numer The dividend Number

x ∗ 2exp

Parameter Description Data type

x The base Number

exp The exponent of 2 Number

ldexp()

Syntax

Description

Return type

Parameters

PI()

Syntax

5/13/25, 9:12 PM 3.3

1622

Returns the value of π.

DOUBLE

None.

pow(base, exp)

Returns the power of a number.

FLOAT

 PI() * 1000000000 -> 3.141592653589793E9

Parameter Description Data type

Description

Return type

Parameters

Example

pow()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1623

rand([seed])

Returns a completely random number >= 0 and <1. If seed is specified, it returns a

repeatable sequence of random numbers. If no seed is specified, it returns a

completely random number.

DOUBLE

base The base Number

exp The exponent Number

Parameter Description Data type

seed

Optional. If seed is

specified, it returns a

repeatable sequence of

random numbers. If no seed

is specified, it returns a

completely random number

UINT

rand(5) -> 0.05518
rand(5) -> 0.83133
rand(5) -> 0.36374

rand()

Syntax

Description

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1624

round (num[, integer])

Rounds a number to a specified place relative to the decimal point and returns the

result.

A numeric type.

Parameter Description Data type

num The number to be rounded NUM

integer

Optional. An integer value

indicating the place to

round the first argument to.

If integer is positive, the

function returns num
rounded to integer places

to the right of the decimal

point. If you omit integer ,

then num is rounded to

zero places. If integer is

negative, then num is

rounded off to the left of the

decimal point.

INT

round()

Syntax

Description

Return type

Parameters

Examples

5/13/25, 9:12 PM 3.3

1625

sign(num)

Returns the sign of a number. If the number is positive, return 1 ; if the number is

negative, return -1 ; if the number is 0 , return 0

INT

round(15.213) => 15
round(15.213, -1) => 20
round(2.15, 1) => 2.2
round(2.25, 1) => 2.3

Parameter Description Data type

num A numeric value INT , DOUBLE

sign(100) => 1
sign(0) => 0
sign(-1.23) => -1

sign()

Syntax

Description

Return type

Parameters

Examples

square()

5/13/25, 9:12 PM 3.3

1626

square(num)

Returns the square of a number.

A numeric type.

sqrt(num)

Returns the square root of a number

Parameter Description Data type

num A numeric value. INT , FLOAT , or DOUBLE

square(0) => 0
square(50) => 2500
square(-50) => 2500

Syntax

Description

Return type

Parameters

Examples

sqrt()

Syntax

Description

5/13/25, 9:12 PM 3.3

1627

FLOAT

trunc(num, [decimal_place])

Returns a number truncated to a specified decimal place.

A numeric type.

Parameter Description Data type

num
The number to get square

root for.
Number

Parameter Description Data type

num The number to be truncated INT , FLOAT or DOUBLE

Optional. The integer

indicating the decimal place

to truncate the number to.

If decimal_plac is positive,

Return type

Parameters

trunc()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1628

log(num)

Returns the natural logarithm of a number (base e).

DOUBLE

decimal_place

the function returns the

number truncated to

decimal_place decimal

places. If decimal_place is

omitted, then the number is

truncated to 0 places.

decimal_place can be

negative to truncate (make

zero) decimal_place digits

left of the decimal point

INT

trunc(9.99) => 9
trunc(-9.99) => 9
trunc(99.999. -1) => 90
trunc(9.99, 1) => 9.9

Examples

Logarithmic

log()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1629

log2(num)

Returns the base-2 logarithm of a number.

DOUBLE

Parameter Description Data type

num
The number to compute

natural logarithm for
Number

Parameter Description Data type

num A numeric value INT , FLOAT , DOUBLE

log2(0.5) => -1
log2(1) => 0
log2(3) => 1.58

log2()

Syntax

Description

Return type

Parameters

Examples

log10()

Syntax

5/13/25, 9:12 PM 3.3

1630

log10(num)

Return the common logarithm of a number (base 10).

FLOAT

acos(num)

Returns the arc cosine of a number.

FLOAT

Parameter Description Data type

num
The number to compute

common logarithm for
Number

Description

Return type

Parameters

Trigonometric

acos()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1631

asin(num)

Returns the arc sine of a number.

FLOAT

atan(num)

Parameter Description Data type

num
The number to compute

arccosine for
Number

Parameter Description Data type

num
The number to compute

arcsine for
Number

Parameters

asin()

Syntax

Description

Return type

Parameters

atan()

Syntax

5/13/25, 9:12 PM 3.3

1632

Returns the arctangent of a number.

FLOAT

atan2(y, x)

Returns the arctangent of a fraction.

FLOAT

Parameter Description Data type

num
The number to compute

arctangent for
Number

atan()
x

y

Description

Return type

Parameters

atan2()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1633

cos(num)

Returns the cosine of a number.

FLOAT

cosh(num)

Parameter Description Data type

y
The dividend of the fraction

to compute arctangent for
Number

x
The divisor of the fraction to

compute arctangent for
Number

Parameter Description Data type

num
The number to return

cosine for
Number

cos()

Syntax

Description

Return type

Parameters

cosh()

Syntax

5/13/25, 9:12 PM 3.3

1634

Returns the hyperbolic cosine of a number.

FLOAT

cot(num)

Returns the cotangent of a number.

DOUBLE

Parameter Description Data type

num
The number to compute

hyperbolic cosine for
Number

Parameter Description Data type

num A numeric value INT , FLOAT , or DOUBLE

Description

Return type

Parameters

cot()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1635

degrees(num)

Converts a value in radians to degrees.

DOUBLE

cot(6) => -3.4363530041801278
cot(-1) => -0.64209261593433065

Parameter Description Data type

num A numeric value INT , FLOAT , or DOUBLE

degrees(2) => 114.59155902616465
degrees(1) => -57.29577951308232

Examples

degrees()

Syntax

Description

Return type

Parameters

Examples

radians()

Syntax

5/13/25, 9:12 PM 3.3

1636

radians(num)

Converts a value in degrees to radians.

DOUBLE

sin(num)

Returns the sine of a number.

Parameter Description Data type

num A numeric value INT , FLOAT , or DOUBLE

radians(45) => -0.7853981633974483
radians(30) => 0.5235987755982988
radians(50) => 0.8726646259971648

Description

Return type

Parameters

Examples

sin()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1637

FLOAT

sinh(num)

Returns the hyperbolic sine of a number.

FLOAT

Parameter Description Data type

num
The number to compute

sine for
Number

Parameter Description Data type

num
The number to compute

hyperbolic sine for
Number

Parameters

sinh()

Syntax

Description

Return type

Parameters

tan()

Syntax

5/13/25, 9:12 PM 3.3

1638

tan(num)

Returns the tangent of a number.

FLOAT

tanh(num)

Returns the hyperbolic tangent of a number.

FLOAT

Parameter Description Data type

num
The number to compute

tangent for
Number

Parameter Description Data type

Description

Return type

Parameters

tanh()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1639

num
The number to compute

hyperbolic tangent for
Number

5/13/25, 9:12 PM 3.3

1640

String Functions
This page lists the string functions available in the GSQL query language

ascii(str)

Returns the ASCII (numeric) position of the first character in a string. If the argument

is an empty string, returns 0.

INT

Parameter Description Data type

str A string value STRING

ascii("") => 0
ascii("A") => 65

ascii()

Syntax

Description

Return type

Parameters

Example

chr()

Syntax

5/13/25, 9:12 PM 3.3

1641

chr(n)

Converts an integer to a character according to its ASCII position. If the input value

n is greater than 255, returns the character at the position of the modulo of n /

256 .

STRING

difference(str1, str2)

Compares the Soundex codes of two strings and returns an integer. The return

value ranges from 0 to 4, and it indicates the similarity between the input strings'

phonetic representation values.

Parameter Description Data type

n An integer value INT

chr(65) => 'A'
chr(322) => 'B'

Description

Return type

Parameters

Examples

difference()

Syntax

Description

5/13/25, 9:12 PM 3.3

1642

0 indicates weak similarity, and 4 indicates strong similarity with identical phonetic

representation values.

INT

find_in_set(str, str_list)

Returns the position of a string within a list of strings separated by commas.

If string is not found in string_list , this function returns -1.

NOTE: find_in_set does not ignore whitespace after the comma. For example,

find_in_set("a", "b a, a") = 0 , indicating that “a” is not an element in the

Parameter Description Data type

str1 A string value STRING

str2 A string value STRING

difference("Johnson", "Jonson") => 4
difference("Adams", "Addamms") => 4
difference("Mary", "Bob") => 2

Return type

Parameters

Examples

find_in_set()

Syntax

Description

5/13/25, 9:12 PM 3.3

1643

list. This happens because the second and third elements of the list are space+a,

rather than a.

INT

gsql_uuid_v4()

Generates and returns a version-4 universally unique identifier(UUID) .

STRING

Parameter Description Data type

str A string value STRING

str_list
A string representation of a

list of strings.
STRING

find_in_set("a","") => 0
find_in_set("a","b,c,d") => 0
find_in_set("a","b,a,d") => 2

Return type

Parameters

Example

gsql_uuid_v4()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)
https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)

1644

None.

insert(str1, position[, number], str2)

Inserts a string within a string at the specified position and for a certain number of

characters, and replaces a specified number of characters starting from the

insertion position. The starting index is 0.

STRING

Parameter Description Data type

str1
The string to insert another

string into
STRING

position
The index of the starting

position to insert the string
INT

number

Optional. The number of

characters from the original

string that will be replaced.

If the argument is left off, it

defaults to 0.

STRING

str2 The string to be inserted STRING

Parameters

insert()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1645

instr (str, substr [, position, occurence])

Searches a string (str) for a substring (substr) and returns the location of the

substring in the string. If a substring that is equal to substr is found, then the

function returns an integer indicating the position of the first character of this

substring. If no such substring is found, then the function returns -1.

INT

insert("tigergraph.com", 0, 10, "Example") => "Example.com”
insert("tigergraph.com", 0, 2, "Example") => "Examplegergraph.com”
insert("tigergraph.com", 2, 20, "Example") => ”tiExample”
insert("Complete blank.", 9, "every ") => "Complete every blank."

Parameter Description Data type

str The string to search STRING

substr
The string to search for in

str
STRING

Optional. The position is a

nonzero integer indicating

the character of str from

where the search begins. If

Examples

instr()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1646

left(str, number_of_chars)

Extracts a number of characters from a string starting from left.

STRING

position
omitted, it defaults to 0. The

first position in the string is

0. If position is negative,

then the function counts

backward from the end of

str and then searches

backward from the resulting

position.

STRING

occurrence

Optional, The occurrence is

an integer indicating which

occurrence of substr in

str the function should

search for.

STRING

instr("This is the thing", "Th") -> 0;
instr("This is the thing", "is", 3) -> 5;

Parameter Description Data type

Example

left()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1647

length(str)

Returns the length of the input string.

INT

str A string value STRING

number_of_chars
The number of characters

to extract
INT

Parameter Description Data type

str
The string whose length to

evaluate
STRING

length("hello world") -> 11
length("") -> 0

length()

Syntax

Description

Return type

Parameters

Example

ltrim()

Syntax

5/13/25, 9:12 PM 3.3

1648

ltrim(str[, set])

Removes all occurrences of the characters contained in a set from a string from the

left side.

The function begins scanning the string from its first character and removes all

characters that appear in set until reaching a character not in set and then

returns the result.

STRING

lower(str)

Parameter Description Data type

str A string value STRING

set

Optional. A string of

characters. The distinct

characters from the string

form the set. If not

specified, it defaults to a

single space.

STRING

Description

Return type

Parameters

lower()

Syntax

Description

5/13/25, 9:12 PM 3.3

1649

Returns the input string with all letters in lowercase.

STRING

lpad(str, padded_length [, pad_str])

Pads the left side of a string with another pad string. If the pad string (pad_str) is

omitted, it will pad with white space. If the parameter length is smaller than the

original string, it will truncate the string from the right side.

STRING

Parameter Description Data type

str
The string to convert to

lowercase
STRING

lower("GSQL") -> "gsql"

Return type

Parameters

Example

lpad()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1650

replace(str, str_to_replace [, replacement_str])

Replaces a sequence of characters in a string with another set of characters.

Parameter Description Data type

str
The string to pad characters

to
STRING

padded_length

The number of characters

to return. If the

padded_length is smaller

than the original string, the

lpad function will truncate

the string to the size of

padded_length .

INT

pad_str

Optional. This is the string

that will be padded to the

left-hand side of str . If

this parameter is omitted,

the lpad function will pad

spaces to the left-side of

str .

STRING

 lpad("PQR", 5) -> " PQR"
 lpad("PQR", 2) -> "PQ"
 lpad("PQR", 10, "ABC") -> "ABCABCAPQR"

Example

replace()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1651

STRING

right(str, number_of_chars)

Extracts a number of characters from a string starting from the right.

Parameter Description Data type

str
The original string whose

substrings are to be

replaced

STRING

str_to_replace
The string that will be

searched for and replaced

in str
STRING

replacement_str

Optional. The string that will

replace str_to_replace . If

omitted, replace()
removes all occurrences of

string_to_replace, and

returns the resulting string.

STRING

 replace("SSQLL", "S", "G") -> "GGQLL"
 replace("SSQLL", "SQL", "Q") -> "SQL"
 replace("SSQLL", "L") -> "SSQ"

Parameters

Examples

right()

Syntax

Description

5/13/25, 9:12 PM 3.3

1652

STRING

rpad(str, padded_length [, pad_str])

Pads the right side of a string (str) with another pad string. If the pad string

(pad_str) is omitted, it will pad with white space. If the parameter length is smaller

than the original string, it will truncate the string from the right side.

STRING

Parameter Description Data type

str A string value STRING

number_of_chars
The number of characters

to extract
INT

Parameter Description Data type

str
The string to pad characters

to
STRING

Return type

Parameters

rpad()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1653

rtrim(str [,set])

Removes all occurrences of the characters contained in a set from a string from the

right side.

The function begins scanning the string from its last character and removes all

characters that appear in set until reaching a character not in set and then

returns the result.

padded_length

The number of characters

to return. If the

padded_length is smaller

than the original string, the

lpad function will truncate

the string to the size of

padded_length .

INT

pad_str

Optional. This is the string

that will be padded to the

right-hand side of str . If

this parameter is omitted,

the lpad function will pad

spaces to the right-side of

t

STRING

rpad("PQR", 5) -> "PQF "
lpad("PQR", 2) -> "PQ"
lpad("PQR", 10, "ABC") -> "ABCABCAPQR"

Example

rtrim()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1654

STRING

soundex(str)

Returns a character string containing the Soundex code of str . This function lets

you compare words that are spelled differently, but sound alike in English.

Soundex is a phonetic algorithm defined in The Art of Computer Programming,

Volume 3: Sorting and Searching, by Donald E. Knuth, as follows:

1. Retain the first letter of the string and remove all other occurrences of the

following letters: a, e, h, i, o, u, w, y.

2. Assign numbers to the remaining letters (after the first) as follows:

Parameter Description Data type

str A string value STRING

set

Optional. A string of

characters. The distinct

characters from the string

form the set. If not

specified, it defaults to a

single space.

STRING

Parameters

soundex()

Syntax

Description

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Soundex#:~:text=Soundex%20is%20a%20phonetic%20algorithm,despite%20minor%20differences%20in%20spelling.&text=Improvements%20to%20Soundex%20are%20the%20basis%20for%20many%20modern%20phonetic%20algorithms.
https://en.wikipedia.org/wiki/Soundex#:~:text=Soundex%20is%20a%20phonetic%20algorithm,despite%20minor%20differences%20in%20spelling.&text=Improvements%20to%20Soundex%20are%20the%20basis%20for%20many%20modern%20phonetic%20algorithms.

1655

3. If two or more letters with the same number were adjacent in the original name
(before step 1), or adjacent except for any intervening h and w, then retain the

first letter and omit the rest of all the adjacent letters with the same number.

4. Return the first four bytes padded with 0.

STRING

space(n)

b, f, p, v = 1
c, g, j, k, q, s, x, z = 2
d, t = 3
l = 4
m, n = 5
r = 6

Parameter Description Data type

str A string value STRING

soundex("Ashcraft") => "A261"
soundex("Burroughs") => "B620"
soundex("Burrows") => "B620"

Return type

Parameters

Examples

space()

Syntax

Description

5/13/25, 9:12 PM 3.3

1656

Returns a string that contains the specified number of space characters

STRING

substr(str, start [, length])

Returns the substring indicated by the start point and length. If the parameter length

is omitted, then it will extend to the end.

STRING

Parameter Description Data type

n An integer value INT

space(0) = ””
space(1) = ” ”
space(5) = ” ”

Return type

Parameters

Examples

substr()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1657

translate(str_origin, characters, translations)

Returns the string from the first argument after the characters specified in the

second argument are translated into the characters specified at the same index in

the third argument.

NOTE: The function will return an error if characters and translations have

different lengths.

Parameter Description Data type

str
The string to extract

substring from
STRING

start
The position that indicates

the start of the substring
INT

length

Optional. The length of the

substring. If length is

omitted, substr() extracts

characters to the end of the

string.

INT

substr("ABCDE", 2) -> "CDE"
substr("ABCDE", 2, 2) -> "CD"
substr("ABCDE", -2, 1) -> "D"

Example

translate()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1658

STRING

trim([[LEADING | TRAILING | BOTH] [removal_char FROM]] str)

Trims characters from the leading and/or trailing ends of a string.

By using one of the keywords LEADING , TRAILING , or BOTH , the user can specify

that characters are to be removed from the left end, right end, or both ends of the

string, respectively. If none of these keywords is used, the function will remove from

both ends.

Parameter Description Data type

str_origin A string value STRING

characters A string of characters STRING

translations A string of characters STRING

translate(”Hello world”, "", "") = ”Hello World”
translate(”Hello world”, "o", "U") = ”HellU WUrld”
translate(”Hello world”, "lo", "aU") = ”HeaaU WUrad”
translate(””, "lo", "aU") = ””

Parameters

Examples

trim()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1659

STRING

upper(str)

Returns the input string with all letters in uppercase.

Parameter Description Data type

removal_char

Optional. The character to

remove. If removal_char is

not specified, the function

will remove whitespaces,

including spaces, tabs, and

newlines. If removal_char
is specified, the user must

also write the keyword

FROM between

removal_char and str .

STRING

str A string value. STRING

trim(" Abc ") => "Abc"
trim(LEADING " a A ") => "a A "
trim(TRAILING "a" FROM "aa ABC aaa") => "aa ABC "

Parameters

Example

upper()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1660

STRING

Parameter Description Data type

str
The string to convert to

uppercase
STRING

upper("gsql") -> "GSQL"

Parameters

Example

5/13/25, 9:12 PM 3.3

1661

Type Conversion Functions
The functions on this page are used to convert data from one type to another in the

GSQL query language.

parse_json_array(str)

Converts a string into a JSON array. The string must be properly formatted, or the

function will generate a run-time error. To be properly formatted, besides having the

proper nesting and matching of curly braces { } and brackets [] , each value

field must be one of the following:

• a string

• a number

• a boolean

• a JSONOBJECT - Each key of a key-value pair must be a string in double

quotes.

• a JSON array

JSONARRAY

Parameter Description Data type

parse_json_array()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1662

parse_json_object(str)

Converts a string into a JSON object. The string must be properly formatted, or the

function will generate a run-time error. To be properly formatted, besides having the

proper nesting and matching of curly braces { } and brackets [] , each value

field must be one of the following:

• a string

• a number

• a boolean

• a JSONOBJECT - Each key of a key-value pair must be a string in double

quotes, and the quotes need to be escaped with a backlash-escape \ .

However, if you are supplying the string in GraphStudio as a parameter, you do

not need the backlash-escape since string values are not enclosed in double

quotes.

• a JSON array

JSONOBJECT

parse_json_array("[123]") -> [123]

Example

parse_json_object()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1663

str_to_int (str)

Converts a string to an integer.

INT

Parameter Description Data type

str
The string to be converted

into a JSON object.
STRING

parse_json_object("{\"abc\":123}") -> {"abc": 123}

Parameter Description Data type

str
The string that contains an

integer to convert to an

integer

STRING

Example

str_to_int ()

Syntax

Description

Return type

Parameters

to_datetime ()

Syntax

5/13/25, 9:12 PM 3.3

1664

to_datetime (str)

Converts a string value into a DATETIME value.

DATETIME

to_string(num)

Converts a number to a string.

STRING

Parameter Description Data type

str A string value STRING

to_datetime("2020-01-02 01:02:03") -> 2020-01-02 01:02:03

Description

Return type

Parameters

Example

to_string()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1665

Parameter Description Data type

num
The number to turn into a

string
Number

Parameters

5/13/25, 9:12 PM 3.3

1666

Vertex Functions
This page lists the vertex functions that are available in the GSQL query language.

The functions are divided into three categories.

• Vertex alias methods

◦ Methods available to vertex aliases

• Vertex-level access control(VLAC) vertex alias methods

◦ Methods available to vertex aliases that are related to vertex tags.

• Vertex functions

◦ Functions that return a vertex or vertex set, or functions that are closely

related to certain attributes of VERTEX type variables.

This section lists the built-in methods of vertex aliases. Methods can be accessed

by the dot (.) operator.

v.edgeAttribute(edgeType, attrName)

From a vertex, traverse edges of a specified type and return the bag of values for a

specified edge attribute.

BagAccum<attrType>

Vertex alias methods

edgeAttribute()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1667

This function is appended to neighbors() , neighborAttribute() , or

edgeAttribute() to filter the output set according to a filter condition. Only

elements that satisfy the condition will be returned.

BagAccum

Parameter Description Data type

edgeType The edge type to traverse STRING

attrName
The attribute whose value

to retrieve
STRING

v.neighbors().filter(condition)
v.neighborAttribute().filter(condition)
v.edgeAttribute().filter(condition)

Parameter Description Data type

condition
An expression that

evaluates to a boolean

value

BOOL

Parameters

filter()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1668

CREATE QUERY filterEx (SET<STRING> pIds, INT yr) FOR GRAPH workNet api("v2

 SetAccum<vertex<company>> @recentEmplr, @allEmplr;
 BagAccum<string> @diffCountry, @allCountry;

 Start = {person.*};

 L0 = SELECT v
 FROM Start:v
 WHERE v.id IN pIds
 ACCUM
 # filter using edge attribute
 v.@recentEmplr += v.neighbors("worksFor").filter(worksFor.startYe
 v.@allEmplr += v.neighbors("worksFor").filter(true),

 # vertex alias attribute and neighbor type attribute
 v.@diffCountry += v.neighborAttribute("worksFor", "company", "id")
 .filter(v.locationId != company.country),
 v.@allCountry += v.neighborAttribute("worksFor", "company", "id")
 ;

 PRINT yr, L0[L0.@recentEmplr, L0.@allEmplr, L0.@diffCountry, L0.@allCoun
}

Example

Example query

Results

5/13/25, 9:12 PM 3.3

1669

v.getAttr(attrName, attrType)

GSQL > RUN QUERY filterEx(["person1","person2"],2016)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "L0": [
 {
 "v_id": "person1",
 "attributes": {
 "L0.@diffCountry": ["company2"],
 "L0.@recentEmplr": ["company1"],
 "L0.@allCountry": ["company1", "company2"],
 "L0.@allEmplr": ["company2", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "L0.@diffCountry": ["company1"],
 "L0.@recentEmplr": [],
 "L0.@allCountry": ["company1", "company2"],
 "L0.@allEmplr": ["company2", "company1"]
 },
 "v_type": "person"
 }
],
 "yr": 2016
 }]
}

getAttr()

Syntax

Description

5/13/25, 9:12 PM 3.3

1670

Returns the value of a vertex attribute on the vertex.

attrType

v.neighborAttribute(edgeType, targetVertexType, attrName)

From a vertex, traverses edges of a specified type to its neighbors of a specified

type, and returns the set of values for a specified attribute.

BagAccum<attrType>

Parameter Description Data type

attrName A vertex attribute STRING

attrType
The type of the attribute

value
STRING

Parameter Description Data type

edgeType The edge type to traverse STRING

Return type

Parameters

neighborAttribute()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1671

For the following graph:

v.neighbors([edgeType])

targetVertexType
The target vertex type to

visit
STRING

attrName
An attribute of the target

vertex type
STRING

If v is Jenny
v.neighborAttribute("friendship", "person", "state") -> ["ca", "ny", "ca"]

Example

neighbors()

Syntax

5/13/25, 9:12 PM 3.3

1672

Returns the out-neighbors or undirected neighbors of the vertex. If edge types are

provided, it will only return the neighbors connected by the specified edge types.

BagAccum<VERTEX>

For the following graph:

Parameter Description Data type

edgeType
Optional. An edge type or a

collections of edge types.

STRING , SET<STRING> ,

SetAccum<STRING> ,

BagAccum<STRING> ,

ListAccum<STRING>

Description

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1673

v.outdegree([edgeType])

Returns the number of outgoing or undirected edges connected to the vertex. If

edge types are provided, it will only return the number of edges of the specified

types.

INT

If v is Jenny
v.neighbors() -> ["Dan", "Amily", "Tom"]

outdegree()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1674

Note on outdegree(): This function reads a metadata value stored with each vertex, to
avoid traversing the graph and thus have a fast response. The snapshot transaction
semantics means that outdegree() may sometimes read an old value if there are
concurrent write transactions. To guarantee an accurate count, traverse the
neighboring edges and count them with a SumAccum, or use a function like
neighbors() and then use size() on the set.

v.setAttr(attrName, newValue)

Sets the specified attribute of a vertex to a new value.

No return value.

Parameter Description Data type

edgeType
Optional. An edge type or a

collection of edge types.

STRING , SET<STRING> ,

SetAccum<STRING> ,

BagAccum<STRING> ,

ListAccum<STRING>

Parameter Description Data type

attrName The name of an attribute STRING

Parameters

setAttr()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1675

This section covers the vertex alias methods used to access and modify tags on

vertices,

v.addTags(STRING tag1,... STRING tagN)

Adds the tags provided in the argument list to the vertex.

No return value.

newValue
The new value for the

The type of the attribute

Parameter Description Data type

tagN A tag to add to the vertex STRING

VLAC vertex alias methods

addTags()

Syntax

Description

Return type

Parameters

Example:

5/13/25, 9:12 PM 3.3

1676

v.differenceTags(v2)

Returns the difference in tags between the vertex and another vertex as a set.

SET<STRING>

CREATE QUERY addTagsToPerson() {
 Seed = { any };
 # person1 ~ person5 will be tagged as public.
 vSet = SELECT s
 FROM Seed:s
 WHERE s.id IN ("person1","person2","person3","person4","person5")
 ACCUM s.addTags("public");

 # person6 and person7 will be tagged as public and vip.
 vSet = SELECT s
 FROM Seed:s
 WHERE s.id IN ("person6","person7")
 ACCUM s.addTags("vip", "public");

 # person8 will be tagged as vip
 vSet = SELECT s
 FROM Seed:s
 WHERE s.id == "person8"
 ACCUM s.addTags("vip");
}

Parameter Description Data type

differenceTags()

Syntax

Description

Return type

Paramters

5/13/25, 9:12 PM 3.3

1677

v.getTags()

Returns the vertex's tags as a set. If the vertex has no tags or is untaggable, it

returns an empty set.

SET<STRING>

None.

2 A t VERTEX

// return the difference set of tags between two vertices
CREATE QUERY exampleDifferencetags() {
 SetAccum<string> @vAcc;
 vSet = { any };
 vSet = SELECT s
 FROM vSet:s -(_)-> :t
 WHERE t.type == "person"
 ACCUM s.@vAcc += s.differenceTags(t);
 PRINT vSet[vSet.@vAcc];
}

Example:

getTags()

Syntax

Descriptions

Return type

Parameters

Example:

5/13/25, 9:12 PM 3.3

1678

Tip: getTags() can be used within a PRINT statement:

• PRINT R [R.getTags()];

• or PRINT R WITH TAGS which is syntax sugar, except that it wonʼt print

"R.getTags()": [] for non-taggable vertices.

hasTags(tag1, tag2, ..., tagN)

Returns true if the vertex has every tag provided in the argument list and returns

false if it does not.

BOOL

//print the tags of each vertices, in 2 different ways.
CREATE QUERY exampleGettags() {
 SetAccum<string> @vAcc;
 vSet = { any };
 vSet = SELECT s
 FROM vSet:s
 ACCUM s.@vAcc += s.getTags();
 PRINT vSet[vSet.@vAcc];
 PRINT vSet[vSet.gettags()];
}

Parameter Description Data type

hasTags()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1679

The output of the query would be:

USE GRAPH socialNet

CREATE QUERY findVertexWithTag(STRING tag) {
 seed = { ANY };
 res =
 SELECT v
 FROM seed:v
 WHERE v.hasTags(tag)
 ORDER BY v.id;
 PRINT res WITH TAGS;
}

INSTALL QUERY findVertexWithTag

RUN QUERY findVertexWithTag("vip")

Example:

5/13/25, 9:12 PM 3.3

1680

{
 "error": false,
 "message": "",
 "version": {
 "schema": 2,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"res": [
 {
 "v_id": "person6",
 "attributes": {
 "gender": "Male",
 "id": "person6",
 "res.gettags()": [
 "vip",
 "public"
]
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "id": "person7",
 "res.gettags()": [
 "vip",
 "public"
]
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "gender": "Male",
 "id": "person8",
 "res.gettags()": ["vip"]
 },
 "v_type": "person"
 }
]}]
}

5/13/25, 9:12 PM 3.3

1681

v.isTaggable()

Returns true if the vertex is taggable.

BOOL

None

//count the number of taggable vertices in the graph.
CREATE QUERY countIstaggable() for graph poc_graph_tag {
 SumAccum<int> @@count;
 vSet = { any };
 vSet = SELECT s
 FROM vSet:s
 WHERE s.isTaggable()
 ACCUM @@count += 1;
 PRINT @@count;
}

isTaggable()

Syntax

Description

Return type

Parameters

Example:

intersectTags()

Syntax

5/13/25, 9:12 PM 3.3

1682

v.intersectTags(v2)

Returns the common tags between the vertex and another vertex as a set.

SET<STRING>

v.removeAllTags()

Removes all tags from the vertex.

No return value.

//return the intersect set of tags between two vertices.
CREATE QUERY exampleIntersecttags() {
 SetAccum<string> @vAcc;
 vSet = { any };
 vSet = SELECT s
 FROM vSet:s -(_)-> :t
 WHERE t.type == "person"
 ACCUM s.@vAcc += s.intersectTags(t);
 PRINT vSet[vSet.@vAcc];
}

Description

Return type

Example:

removeAllTags()

Syntax

Description

Return type

5/13/25, 9:12 PM 3.3

1683

None

removeTags(tag1, tag2, ..., tagN)

Removes the tags provided in the argument list from the vertex.

No return value.

//remove all tags from all person vertices.
CREATE QUERY removealltagsFromPerson() {
 vSet = { person.* };
 # remove all tags from all person vertices
 vSet = SELECT s
 FROM vSet:s
 ACCUM s.removeAllTags();
}

Parameter Description Data type

tagN A string value STRING

Parameters

Example:

removeTags()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1684

The functions in this section either have return values of vertex or vertex set type or

are closely related to vertex attributes.

getvid(v)

Returns the internal ID number of a vertex.

The internal ID is not the primary ID which the user assigned when creating the

vertex. However, there is a 1-to-1 mapping between the external ID (primary_id)

and internal ID.

The engine can access the internal ID faster than accessing the external ID, so if a

query needs unique values for a large number of vertices, but doesn't care about

particular values, getvid() can be a useful option. For example, in many

community detection algorithms, we start by assigning every vertex a unique

community ID. Then, as the algorithm progresses, some vertices will join the

//remove tag “vip” and “public” from all person vertices.
CREATE QUERY removetagsFromPerson() {
 vSet = { person.* };
 # remove tag vip and public from all person vertices
 vSet = SELECT s
 FROM vSet:s
 ACCUM s.removeTags("vip", "public");
}

Example

Vertex functions

getvid()

Syntax

Description

5/13/25, 9:12 PM 3.3

1685

community of one of their neighbors, giving up their current community ID and

copying the IDs of their neighbors.

INT

Parameter Description Data type

v A vertex alias. Vertex alias

Query

CREATE QUERY getvid_ex () FOR GRAPH socialNet {
 MinAccum<int> @cc_id = 0; //each vertex's tentative component

 Start = {person.*};
 # Initialize: Label each vertex with its own internal ID
 S = SELECT x FROM Start:x
 POST-ACCUM
 x.@cc_id = getvid(x);

 # Community detection steps omitted
 PRINT Start.@cc_id;
}

Result

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1686

5/13/25, 9:12 PM 3.3

1687

{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Start": [
 {
 "v_id": "person7",
 "attributes": {"Start.@cc_id": 0},
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"Start.@cc_id": 4194304},
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {"Start.@cc_id": 4194305},
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {"Start.@cc_id": 11534336},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"Start.@cc_id": 13631488},
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {"Start.@cc_id": 20971520},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"Start.@cc_id": 22020096},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"Start.@cc_id": 24117248},
 "v_type": "person"

5/13/25, 9:12 PM 3.3

1688

selectVertex(filepath, vertexIdColumn, vertexTypeColumn, seperator,

header)

Reads a data file that lists particular vertices of the graph and returns the

corresponding vertex set. This function can only be used in a vertex set variable

declaration statement as a seed set and the vertices in the data file must already be

in the graph. The data file must be organized as a table with one or more columns.

One column must be for vertex ID. Optionally, another column is for vertex type.

SET<VERTEX>

 }
]}]
}

Parameter Description Data type

filePath

The absolute file path of the

input file to be read. A

relative path is not

supported.

STRING

vertexIdColumn

The vertex ID column

position.

The index for column

positions starts at 0.

Therefore, to designate the

$ num .

If header is set to true, $

selectVertex()

Syntax

Description

Return type

Parameters

5/13/25, 9:12 PM 3.3

1689

first column as the ID

column, set this parameter

to $0 .

"column_name" is also

acceptable.

vertexTypeColumn
The vertex type column

position or a specific vertex

type.

$ num .

If header is set to true, $
"column_name" is also

acceptable.

Alternatively, a vertex type

without double quotes.

separator
The column separator

character.
STRING

header
Whether this file has a

header.
`BOO

ID,type
Dan,person
Jenny,person
Amily,person

CREATE QUERY selectVertexEx(STRING filename) FOR GRAPH socialNet {
 S1 = {SelectVertex(filename, $"c1", $1, ",", true)};
 S2 = {SelectVertex(filename, $0, person, ",", true)};
 PRINT S1, S2; # Both sets of inputs product the same result
}

Example

selectVertex.csv

Example query

Results

5/13/25, 9:12 PM 3.3

1690

5/13/25, 9:12 PM 3.3

1691

RUN QUERY selectVertex("/home/tigergraph/mydata/selectVertex.csv")
{
 "S1": [
 {
 "attributes": {
 "age": 0,
 "gender": "female",
 "name": "Amily",
 "state": "ca"
 },
 "v_id": "Amily",
 "v_type": "person"
 },
 {
 "attributes": {
 "age": 1,
 "gender": "male",
 "name": "Dan",
 "state": "ny"
 },
 "v_id": "Dan",
 "v_type": "person"
 },
 {
 "attributes": {
 "age": 1,
 "gender": "female",
 "name": "Jenny",
 "state": "tx"
 },
 "v_id": "Jenny",
 "v_type": "person"
 }
],
 "S2": [
 {
 "attributes": {
 "age": 0,
 "gender": "female",
 "name": "Amily",
 "state": "ca"
 },
 "v_id": "Amily",
 "v_type": "person"
 },
 {
 "attributes": {
 "age": 1,

5/13/25, 9:12 PM 3.3

1692

Running to_vertex() and to_vertex_set() requires real-time conversion of an
external ID to a GSQL internal ID, which is a relatively slow process. Therefore,

• If the user can always know the id before running the query, define the query with

VERTEX or SET<VERTEX> parameters instead of STRING or SET<STRING>
parameters, and avoid calling to_vertex() or to_vertex_set() .

• Calling to_vertex_set() one time is much faster than calling to_vertex()
multiple times. Use to_vertex_set() instead of to_vertex() as much as

possible.

to_vertex(id, vertex_type)

 "gender": "male",
 "name": "Dan",
 "state": "ny"
 },
 "v_id": "Dan",
 "v_type": "person"
 },
 {
 "attributes": {
 "age": 1,
 "gender": "female",
 "name": "Jenny",
 "state": "tx"
 },
 "v_id": "Jenny",
 "v_type": "person"
 }
]
 }
]

to_vertex()

Syntax

Description

5/13/25, 9:12 PM 3.3

1693

Returns a vertex from a string ID and vertex type. If a vertex with the provided ID

and type does not exist, the function will throw a run-time error.

VERTEX

Parameter Description Data type

id The ID of a vertex STRING

vertex_type The type of the vertex STRING

CREATE QUERY to_vertex_test (STRING uid, STRING vtype) FOR GRAPH social {
 VERTEX v;

 v = to_vertex (uid, vtype); # to_vertex assigned to a vertex v
 PRINT v; # vertex variable -> only vertex i
}

GSQL > RUN QUERY to_vertex_test("Dan", "person")
{
 "error": false,
 "message": "",
 "version": {
 "schema": 1,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"v": "Dan"}]
}

Return type

Parameters

Example

Example query using to_vertex()

Query result

5/13/25, 9:12 PM 3.3

1694

to_vertex_set(id_set, vertex_type)

Returns a vertex set from a set or bag of string IDs and a vertex type. If there are

invalid IDs in the set, those IDs will be skipped and the response will contain a

warning message. If the vertex type does not exist, the function will throw a run-

time error.

SET<VERTEX>

Parameter Description Data type

id_set A set of vertex IDs SET<STRING>, BAG<STRING>

vertex_type The type of the vertices STRING

CREATE QUERY to_vertex_set_test (SET<STRING> uids, STRING vtype) FOR GRAPH

 S2 = to_vertex_set (uids, vtype); # to_vertex_set assigned to a vertex s
 PRINT S2; # vertex set variable-> full detai
}

to_vertex_set()

Syntax

Description

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1695

GSQL > run query to_vertex_set_test(["Dan", "Amily", "Jeff"], "person")
{
 "error": false,
 "message": "Runtime Warning: 1 ids are invalid person vertex ids.",
 "version": {
 "schema": 1,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"S2": [
 {
 "v_id": "Amily",
 "attributes": {
 "gender": "female",
 "name": "Amily",
 "state": "ca",
 "age": 0
 },
 "v_type": "person"
 },
 {
 "v_id": "Dan",
 "attributes": {
 "gender": "male",
 "name": "Dan",
 "state": "ny",
 "age": 1
 },
 "v_type": "person"
 }
]}]
}

5/13/25, 9:12 PM 3.3

1696

Miscellaneous Functions
This page lists the functions in the GSQL query language that are not tied to any

single data type.

coalesce(exp [, exp ...])

Returns the first expression that isn't NULL .

This function requires all its arguments have the same data type (BOOL , INT ,

FLOAT, DOUBLE , STRING , or VERTEX). The only exception is that different numeric

types can be used together. In this case, all values are converted into the first

argument type.

BOOL , INT , FLOAT, DOUBLE , STRING , or VERTEX

The function takes a number of parameters and returns the first one that does not

evaluate to NULL

CREATE QUERY coalesceFuncEx (INT p1, DOUBLE p2) FOR GRAPH social {
 PRINT COALESCE(p1, p2, 999.5); # p2 and the last value will be converte
}

coalesce()

Syntax

Description

Return type

Parameters

Example

5/13/25, 9:12 PM 3.3

1697

evaluate(expressionStr, typeStr)

Takes a string argument and interprets it as an expression which is evaluated during

run-time. This enables users to create a general purpose query instead of separate

queries for each specific computation.

This function cannot be nested.

The following situations generate a run-time error:

GSQL > RUN QUERY coalesceFuncEx(_,_)
{
 "error": false,
 "message": "",
 "version": {
 "schema": 1,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"coalesce(p1,p2,999.5)": 999}]
}

GSQL > RUN QUERY coalesceFuncEx(1,2)
{
 "error": false,
 "message": "",
 "version": {
 "schema": 1,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"coalesce(p1,p2,999.5)": 1}]
}

evaluate()

Syntax

Description

Results

5/13/25, 9:12 PM 3.3

1698

• The expression string expressionStr cannot be compiled (unless the error is due
to a non-existent vertex or edge attribute).

• The result type of the expression does not match the parameter typeStr.

Silent failure conditions

If any of the following conditions occur, the query may continue running, but the entire
clause or statement in which the evaluate() function resides will fail, without producing
a run-time error message. For conditional clauses (WHERE, HAVING), a failing
evaluate() clause is treated as if the condition is false. An assignment statement with a
failing evaluate() will not execute, and an ORDER BY clause with a failing evaluate() will
not sort.

1. The expression references a non-existent attribute of a vertex or edge alias.

2. The expression uses an operator for non-compatible operation. For example, 123

== "xyz".

Tyep indicated by typeStr

Parameter Description Data type

expressionStr

The expression to evaluate

typed as a string.

• Identifiers used in the

expression can refer

only to a vertex or edge

aliases, vertex-attached

accumulators, global

accumulators,

parameters, or scalar

function calls involving

the above variables.

• The expression may not

refer to local variables,

global variables, or to

FROM clause vertices

or edges by type.
STRING

Return type

Parameters

5/13/25, 9:12 PM 3.3

1699

• Any accumulators in the

expression must be

scalar accumulators

(e.g., MaxAccum) for

primitive-type data.

Container accumulators

(e.g., SetAccum) or

scalar accumulators

with non-primitive type

(e.g. VERTEX, EDGE,

DATETIME) are not

supported. Container

type attributes are not

supported.

typeStr

The return type for the

function call. It must be a

string literal for a primitive

data type, e.g., one of

"int" , "float" ,

"double" , "bool" ,

"string" (case

insensitive).

The default value is

"bool" .

STRING

CREATE QUERY evaluateEx (STRING whereCond = "TRUE", STRING postAccumIntExp
 SetAccum<INT> @@timeSet;
 MaxAccum<INT> @latestLikeTime, @latestLikePostTime;

 S = {person.*};
 S2 = SELECT s
 FROM S:s - (liked:e) -> post:t
 WHERE evaluate(whereCond)
 ACCUM s.@latestLikeTime += datetime_to_epoch(e.actionTime),
 s.@latestLikePostTime += datetime_to_epoch(t.postTime)
 POST-ACCUM @@timeSet += evaluate(postAccumIntExpr, "int")
 ;
 PRINT @@timeSet;
}

Example

Example query

5/13/25, 9:12 PM 3.3

1700

GSQL > RUN QUERY evaluateEx("s.gender==\"Male\"", "s.@latestLikePostTime")
{
 "error": false,
 "message": "",
 "results": [
 {
 "@@timeSet": [1263295325,1296752752,1297054971,1296788551]
 }
]
}

GSQL > RUN QUERY evaluateEx("s.gender==\"Female\"", "s.@latestLikeTime + 1
{
 "error": false,
 "message": "",
 "results": [
 {
 "@@timeSet": [1263293536,1263352566,1263330726]
 }
]
}

Results

5/13/25, 9:12 PM 3.3

1701

Query User-Defined Functions
In GSQL, users can supplement the language by defining their own query user-

defined functions (query UDF). Query UDFs can be called in queries and subqueries

to perform a set of defined actions and return a value like the built-in functions.

This page introduces the process to define a query UDF. Once defined, the new

functions will be added into GSQL automatically next time GSQL is executed.

Below are the steps to add a Query UDF to GSQL:

Use the GET ExprFunctions command in GSQL to download the current UDF file to

any location on your machine. The file and the directores will be created if they do

not exist, and the file must end with the file extention .hpp :

If your query UDF requires a user-defined struct or helper function, also use the GET

ExprUtil command to download the current ExprUtil file:

Define the C++ function inside the UDIMPL namespace inside of the UDF file you

just downloaded in Step 1. The definition of the function should include the keyword

inline . Only bool , int , float , double , and string (NOT std::string) are

allowed as the return value type and the function argument type. However, any C++

type is allowed inside a function body.

GSQL > GET ExprFunctions TO "/example/path/to/ExprFunctions.hpp"

GSQL > GET ExprUtil TO "/example/path/ExprUtil.hpp"

Define a query UDF

Step 1: Download current query UDF file

Step 2: Define C++ function

5/13/25, 9:12 PM 3.3

1702

If the function requires a user-defined struct or helper function, define it in the

ExprUtil file you downloaded in Step 1.

Below is an example of a query UDF definition:

If any code in ExprFunctions.hpp or ExprUtil.hpp causes a compilation error, GSQL
cannot install any GSQL query, even if the GSQL query doesn't call any query UDF.
Therefore, please test each new query UDF after adding it. One way of testing a
function is to create a new file test.cpp and compile it:
> g++ test.cpp
> ./a.out
You might need to remove the include header #include
<gle/engine/cpplib/headers.hpp> in ExprFunctions.hpp and ExprUtil.hpp in order
to compile.

After you have defined the function, use the PUT command to upload the files you

modified.

#include <algorithm> // for std::reverse
inline bool greater_than_three (double x) {
 return x > 3;
}
inline string reverse(string str){
 std::reverse(str.begin(), str.end());
 return str;
}

#include "ExprFunctions.hpp"
#include <iostream>
int main () {
 std::cout << to_string (123) << std::endl; // to_string and st
 std::cout << str_to_int ("123") << std::endl;
 return 0;
}

Step 3: Upload files

New code in ExprFunctions.hpp

test.cpp

5/13/25, 9:12 PM 3.3

1703

The PUT command will automatically upload the files to all nodes in a cluster. Once

the files are uploaded, you will be able to call the query UDF the next time GSQL is

executed. This includes the next time you start the GSQL shell or executing GSQL

scripts from a bash shell.

Suppose you are working in a distributed environment and want to add a function

that that returns a random double between 0 and 1.

Start by downloading the current UDF file with the GET command:

In the downloaded file, add the function definition for function rng and add the

necessary include directives at the top:

GSQL > PUT ExprFunctions FROM "/path/to/udf_file.hpp"
PUT ExprFunctions successfully.
GSQL > PUT ExprUtil FROM "/path/to/utils_file.hpp"
PUT ExprUtil successfully.

CREATE QUERY udfExample() FOR GRAPH minimalNet {
 DOUBLE x;
 BOOL y;

 x = 3.5;
 PRINT greater_than_three(x);
 y = greater_than_three(2.5);
 PRINT y;

 PRINT reverse("abc");
}

GSQL > GET ExprFunctions TO "/home/tigergraph/documents/udf.hpp"

Example

Example of a GSQL query that uses the UDF

udf.hpp

5/13/25, 9:12 PM 3.3

1704

Lastly, use the PUT command to upload the file. This will uploaded the file to all

nodes in a cluster:

// Some code is left out for simplicity

// Copyright (c) 2015-2021, TigerGraph Inc.

#ifndef EXPRFUNCTIONS_HPP_
#define EXPRFUNCTIONS_HPP_

#include <stdlib.h>
#include <stdio.h>
#include <string>
#include <gle/engine/cpplib/headers.hpp>
#include <iostream>
#include <fstream>
#include <sstream>
#include <random> // include statement for rng()
#include <vector>
#include <map>

#include "ExprUtil.hpp"

namespace UDIMPL {
 typedef std::string string;

 // other UDFs ...

 inline double rng() {
 std::random_device rd;
 std::mt19937 gen(rd());
 std::uniform_real_distribution < double > distribution(0.0, 1.0);

 return distribution(gen);
 }

 // other UDFs ...

}

#endif /* EXPRFUNCTIONS_HPP_ */

GSQL > PUT ExprFunctions FROM "/home/tigergraph/documents/udf.hpp"
PUT ExprFunctions successfully.

5/13/25, 9:12 PM 3.3

1705

The UDF has now been added to GSQL and you can start using the function in GSQL

queries.

5/13/25, 9:12 PM 3.3

1706

Declaration and
Assignment Statements
In GSQL, different types of variables and objects follow different rules when it

comes to variable declaration and assignment. This section discusses the different

types of declaration and assignment statements and covers the following subset of

the EBNF syntax:

EBNF

5/13/25, 9:12 PM 3.3

1707

5/13/25, 9:12 PM 3.3

1708

Declarations
accumDeclStmt :=
 accumType localAccumName ["=" constant]
 ["," localASccumName ["=" constant]]*
 | [STATIC] accumType globaAccumName ["=" constant]
 ["," GlobalAccumName ["=" constant]]*
localAccumName := "@"accumName;
globalAccumName := "@@"accumName;

baseDeclStmt := baseType name ["=" constant] ["," name ["=" constant]]*
fileDeclStmt := FILE fileVar "(" filePath ")"
fileVar := name

localVarDeclStmt := baseType varName "=" expr

vSetVarDeclStmt := vertexSetName ["(" vertexType ")"] "=" (seedSet | simpl

simpleSet := vertexSetName
 | "(" simpleSet ")"
 | simpleSet (UNION | INTERSECT | MINUS) simpleSet

seedSet := "{" [seed ["," seed]*] "}"
seed := '_'
 | ANY
 | vertexSetName
 | globalAccumName
 | vertexType ".*"
 | paramName
 | "SelectVertex" selectVertParams

selectVertParams := "(" filePath "," columnId "," (columnId | name) ","
 stringLiteral "," (TRUE | FALSE) ")" ["." FILTER "(" condition "

columnId := "$" (integer | stringLiteral)

Assignment Statements
assignStmt := name "=" expr
 | name "." attrName "=" expr

attrAccumStmt := name "." attrName "+=" expr

lAccumAssignStmt := vertexAlias "." localAccumName ("+="| "=") expr

gAccumAssignStmt := globalAccumName ("+=" | "=") expr

loadAccumStmt := globalAccumName "=" "{" LOADACCUM loadAccumParams
 ["," LOADACCUM loadAccumParams]* "}"

5/13/25, 9:12 PM 3.3

1709

Different types of variable declarations use different scoping rules. There are two

types of scoping rules in a GSQL query:

• Block scoping

• Global scoping

In GSQL, curly brackets, as well as IF .. THEN , ELSE , WHILE ... DO , FOREACH

... DO statements create a block. A SELECT statement also creates a block. A

block-scoped variable declared inside a block scope is only accessible inside that

scope.

Additionally, variables declared in a lower scope can use the same name as a

variable already declared in a higher scope. The lower-scope declaration will take

precedence over the higher-scope declaration until the end of the lower scope.

The following types of variables use block scoping:

• Accumulators

• Base type variables

• Local base type variables

• File objects

• Vertex or edge aliases

loadAccumParams := "(" filePath "," columnId ["," columnId]* ","
 stringLiteral "," (TRUE | FALSE) ")" ["." FILTER "(" condition "

Function Call Statement
funcCallStmt := name ["<" type ["," type]* ">"] "(" [argList] ")"
 | globaAccumName ("." funcName "(" [argList] ")")+
 | "reset_collection_accum" "(" accumName ")"

argList := expr ["," expr]*

Variable scopes

Block scoping

5/13/25, 9:12 PM 3.3

1710

A global-scoped variable is always accessible anywhere in the query once it has

been declared regardless of where it is declared. One also cannot declare another

variable with the same name as a global-scoped variable that has already been

declared.

The following types of variables use global scoping:

• Vertex set variables

There are six types of variable declarations in a GSQL query:

• Accumulator

• Base type variable

• Local base type variable

• Vertex set

• File object

• Vertex or edge aliases

The first five types each have their own declaration statement syntax and are

covered in this section. Aliases are declared implicitly in a SELECT statement.

Accumulator declaration is discussed in Accumulators.

Global scoping

Declaration Statements

Accumulators

Base type variables

5/13/25, 9:12 PM 3.3

1711

In a GSQL query body, variables holding values of types INT , UINT , FLOAT ,

DOUBLE , BOOL , STRING , DATETIME , VERTEX , EDGE , JSONOBJECT and JSONARRAY

are called base type variables. The scope of a base type variable is from the point

of declaration until the end of the block where its declaration took place.

A base type variable can be declared and accessed anywhere in the query. To

declare a base type variable, specify the data type and the variable name.

Optionally, you can initialize the variable by assigning it a value with the assignment

operator (=) and the desired value on the right side. You can declare multiple

variables of the same type in a single declaration statement.

When a base type variable is assigned a new value in an ACCUM or POST-ACCUM

clause, the change will not take place until exitng the clause. Therefore, if there are

multiple assignment statements for the same base type variable in an ACCUM or

POST-ACCUM clause, only the last one will take effect.

For example, in the following query, a base type variable is assigned a new value in

the ACCUM clause, but the change will not take place until the clause ends.

Therefore, the accumulator will not receive the value and will hold a value of 0 at the

end of the query.

baseVarDeclStmt := baseType name ["=" expr]["," name ["=" expr]]*

CREATE QUERY baseTypeVariable() {
 STRING a;
 DOUBLE num1, num2 = 3.2;
 INT year = 2020, month = 12, day = 115;
 INT b = rand(5);
 PRINT a, b, num;
}

EBNF for base type variable declaration

5/13/25, 9:12 PM 3.3

1712

Base type variables declared in a DML-sub statement, such as in a statement inside

a ACCUM , POST-ACCUM , or UPDATE SET clause, are called local base type variables.

Local base type variables are block-scoped and are accessible in the block where

they are declared only. Within a local base type variable's scope, another local base

type variable with the same name cannot be declared at the same level. However, a

new local base type variable with the same name can be declared at a lower level

(i.e., within a nested SELECT or UPDATE statement). The lower declaration takes

precedence at the lower level.

In a POST-ACCUM clause, each local base type variable may only be used in source

vertex statements or only in target vertex statements, not both.

Local base type variables are not subject to the assignment restrictions of regular

base type variables. Their values can be updated inside an ACCUM or POST-ACCUM

clause and the change will take place immediately.

CREATE QUERY baseTypeVariable(vertex<person> m1) FOR GRAPH socialNet {
 MaxAccum<INT> @@maxDateGlob;
 DATETIME dt;

 allUser = {person.*};
 allUser = SELECT src
 FROM allUser:src - (liked:e) -> post
 ACCUM
 dt = e.actionTime, # dt isn't updated yet
 @@maxDateGlob += datetime_to_epoch(dt);
 PRINT @@maxDateGlob, dt; # @@maxDateGlob will be 0
}

localVarDeclStmt := baseType varName "=" expr

Local base type variables

Example:

EBNF for local base type variable declaration and initialization

5/13/25, 9:12 PM 3.3

1713

Variables that contain a set of one or more vertices are called vertex set variables.

Vertex set variables play a special role within GSQL queries. They are used for both

the input and output of SELECT statements. Therefore, before the first SELECT

statement in a query, a vertex set variable must be declared and initialized. This

initial vertex set is called the seed set.

An example showing a local base type variable succeeds
where a base type variable fails
CREATE QUERY localVariable(vertex<person> m1) FOR GRAPH socialNet {
 MaxAccum<INT> @@maxDate, @@maxDateGlob;
 DATETIME dtGlob;

 allUser = {person.*};
 allUser = SELECT src
 FROM allUser:src - (liked:e) -> post
 ACCUM
 DATETIME dt = e.actionTime, # Declare and assign local dt
 dtGlob = e.actionTime, # dtGlob isn't updated yet
 @@maxDate += datetime_to_epoch(dt),
 @@maxDateGlob += datetime_to_epoch(dtGlob);
 PRINT @@maxDate, @@maxDateGlob, dtGlob; # @@maxDateGlob will be 0
}

GSQL > RUN QUERY localVariable("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "dtGlob": "2010-01-11 03:26:05",
 "@@maxDateGlob": 0,
 "@@maxDate": 1263618953
 }]
}

Vertex Set Variable Declaration and Assignment

Base type variable declaration in DML statements

localVariable Query Results

5/13/25, 9:12 PM 3.3

1714

Vertex set variables are global-scoped. They are also the only type of variable that

isn't explicitly typed during declaration. To declare a vertex set variable, assign an

initial set of vertices to the variable name.

The query below lists all ways of assigning a vertex set variable an initial set of

vertices (that is, forming a seed set).

• A vertex parameter, untyped or typed, enclosed in curly brackets

• A vertex set parameter, untyped or typed

• A global SetAccum<VERTEX> accumulator, untyped or typed

• All vertices of any type or of one type

• A list of vertex IDs in an external file

• Copy of another vertex set

• A combination of individual vertices, vertex set parameters, or base type

variables, enclosed in curly brackets

• Union of vertex set variables

vSetVarDeclStmt := vertexSetName ["(" vertexType ")"] "=" (seedSet | simpl

simpleSet := vertexSetName
 | "(" simpleSet ")"
 | simpleSet (UNION | INTERSECT | MINUS) simpleSet

seedSet := "{" [seed ["," seed]*] "}"
seed := '_'
 | ANY
 | vertexSetName
 | globalAccumName
 | vertexType ".*"
 | paramName
 | "SelectVertex" selectVertParams

selectVertParams := "(" filePath "," columnId "," (columnId | name) ","
 stringLiteral "," (TRUE | FALSE) ")" ["." FILTER "(" condition ")"]

columnId := "$" (integer | stringLiteral)

EBNF for Vertex Set Variable Declaration

Seed Set Example

5/13/25, 9:12 PM 3.3

1715

When declaring a vertex set variable, a set of vertex types can be optionally

specified to the vertex set variable. If the vertex set variable set type is not specified

explicitly, the system determines the type implicitly by the vertex set value. The type

can be ANY , _ (equivalent to ANY), or any explicit vertex type(s). See the EBNF

grammar rule vertexEdgeType .

Declaration syntax difference: vertex set variable vs. base type variable

In a vertex set variable declaration, the optional type specifier follows the variable
name and should be surrounded by parentheses: vSetName(type)
This is different than a base type variable declaration, where the type specifier is
required and comes before the base variable name: type varName

After a vertex set variable is declared, the vertex type of the vertex set variable is

immutable. Every assignment (e.g. SELECT statement) to this vertex set variable

must match the type. The following is an example in which we must declare the

vertex set variable type.

CREATE QUERY seedSetExample(VERTEX v1, VERTEX<person> v2, SET<VERTEX> v3,
 SetAccum<VERTEX> @@testSet;
 SetAccum<VERTEX<person>> @@testSet2;
 S1 = { v1 }; # untyped vertex parameter enclosed in curly brackets
 S2 = { v2 }; # typed vertex parameter enclosed in curly brackets
 S3 = v3; # untyped vertex set parameter
 S4 = v4; # typed vertex set parameter
 S5 = @@testSet; # untyped global set accumulator
 S6 = @@testSet2; # typed global set accumulator
 S7 = ANY; # All vertices
 S8 = person.*; # All person vertices
 S9 = _; # Equivalent to ANY
 S10 = SelectVertex("absolute_path_to_input_file", $0, post, ",", false);
 S11 = S1; # copy of another vertex set
 S12 = {@@testSet, v2, v3}; # Individual vertex: v2
 # Vertex set parameter: v3
 # global accumulator: @@testSet
 # Inside curly brackets cannot be put ano
 # seedset, e.g., S1
 S13 = S11 UNION S12; # but we can use UNION to combine S1
}

Assignment

5/13/25, 9:12 PM 3.3

1716

In the above example, the query returns the set of vertices after a 5-step traversal

from the input person vertex. If we declare the vertex set variable S without

explicitly giving a type, because the type of vertex parameter m1 is person , the

GSQL engine will implicitly assign S to be person type. However, if S is assigned

to person type, the SELECT statement inside the WHILE loop causes a type-

checking error, because the SELECT block will generate all connected vertices,

including non-person vertices. Therefore, S must be declared as an ANY-type

vertex set variable.

A FILE object is a sequential text storage object, associated with a text file on the

local machine.

When a FILE object is declared, associated with a particular text file, any existing

content in the text file will be erased. During the execution of the query, content

written to or printed to the FILE object will be appended to the FILE object.

When the query where the FILE object is declared finishes running, the content of

the FILE object is saved to the text file.

CREATE QUERY vertexSetVariableTypeExample(vertex<person> m1) FOR GRAPH soc
 INT ite = 0;
 S (ANY) = {m1}; # ANY is necessary
 WHILE ite < 5 DO
 S = SELECT t
 FROM S:s - (ANY:e) -> ANY:t;

 ite = ite + 1;
 END;
 PRINT S;
}

fileDeclStmt := FILE fileVar "(" filePath ")"
fileVar := name

FILE Object Declaration

Vertex set variable type

EBNF for FILE object declaration

5/13/25, 9:12 PM 3.3

1717

Assignment statements are used to set or update the value of a variable after it has

been declared. This applies to base type variables, vertex set variables, and

accumulators. Accumulators also have the special += accumulate statement, which

was discussed in the Accumulator section. Assignment statements can use

expressions to define the new value of the variable.

CREATE QUERY getUSWorkerInterests (STRING fileLocation) FOR GRAPH workNet
 // Declare FILE object f1
 FILE f1 (fileLocation);
 // Initialize a seed set of all person vertices
 P = {person.*};

 PRINT "header" TO_CSV f1;

 // Select workers located in the US and print their interests onto
 // the FILE object
 USWorkers = SELECT v FROM P:v
 WHERE v.locationId == "us"
 ACCUM f1.println(v.id, v.interestList);
 PRINT "footer" TO_CSV f1;
}
INSTALL QUERY getUSWorkers
RUN QUERY getUSWorkerInterests("/home/tigergraph/fileEx.txt")

Example:

Assignment and Accumulate Statements

File object query example

EBNF for Assignment Statements

5/13/25, 9:12 PM 3.3

1718

Vertex and edge (non-accumulator) attributes can use the += operator in an ACCUM or
POST-ACCUM clause to perform parallel accumulation.

In general, assignment statements can take place anywhere after the variable has

been declared. However, there are some restrictions. These restrictions apply to

"inner level" statements which are within the body of a higher-level statement:

• The ACCUM or POST-ACCUM clause of a SELECT statement

• The SET clause of an UPDATE statement

• The body of a FOREACH statement

• Global accumulator assignment is not permitted within the body of SELECT or

UPDATE statements

• Base type variable assignment is permitted in ACCUM or POST-ACCUM clauses, but

the change in value will not take place until exiting the clause. Therefore, if there

are multiple assignment statements for the same variable, only the final one will

take effect.

• Vertex attribute assignment is not permitted in an ACCUM clause. However, edge

attribute assignment is permitted. This is because the ACCUM clause iterates over

an edge set.

Assignment Statement
assignStmt := name "=" expr # baseType variable, vertex set variab
 | name "." name "=" expr # attribute of a vertex or edge

attrAccumStmt := name "." attrName "+=" expr

lAccumAssignStmt := vertexAlias "." localAccumName ("+="| "=") expr

gAccumAssignStmt := globalAccumName ("+=" | "=") expr

loadAccumStmt := globalAccumName "=" "{" "LOADACCUM" loadAccumParam
 ["," "LOADACCUM" loadAccumParams]* "}"

attrAccumStmt := name "."attrName "+=" expr

Restrictions on Assignment Statements

5/13/25, 9:12 PM 3.3

1719

• There are additional restrictions within FOREACH loops for the loop variable. See

the Data Modification section.

LOADACCUM() can initialize a global accumulator by loading data from a file.

LOADACCUM() has 3+n parameters explained in the table below, where n is the

number of fields in the accumulator.

Any accumulator using generic VERTEX as an element type cannot be initialized by
LOADACCUM() .

loadAccumStmt := globalAccumName "=" "{" LOADACCUM loadAccumParams
 ["," LOADACCUM loadAccumParams]* "}"

loadAccumParams := "(" filePath "," columnId ["," [columnId]* ","
 stringLiteral "," (TRUE | FALSE) ")" ["."FILTER "(" condition ")
columnId := "$"(integer | stringLiteral)

Name Type Description

filePath String

The absolute file path of the

input file to be read. A

relative path is not

supported.

columnId String or number

The column position(s) or

column name(s) of the data

file that supply data values

to each field of the

accumulator.

separator Single-character string The separator of columns.

header Boolean
Whether this file has a

header.

LOADACCUM Statement

Parameters:

5/13/25, 9:12 PM 3.3

1720

One assignment statement can have multiple LOADACCUM() function calls. However,

every LOADACCUM() referring to the same file in the same assignment statement

must use the same separator and header parameter values.

person1,1,"test1",3
person5,2,"test2",4
person6,3,"test3",5

CREATE QUERY loadAccumEx(STRING filename) FOR GRAPH socialNet {
 TYPEDEF TUPLE<STRING aaa, VERTEX<post> ddd> yourTuple;
 MapAccum<VERTEX<person>, MapAccum<INT, yourTuple>> @@testMap;
 GroupByAccum<STRING a, STRING b, MapAccum<STRING, STRING> strList> @@tes

 @@testMap = { LOADACCUM (filename, $0, $1, $2, $3, ",", false)};
 @@testGroupBy = { LOADACCUM (filename, $1, $2, $3, $3, ",", true) };

 PRINT @@testMap, @@testGroupBy;
}

Example:

loadAccumInput.csv

LoadAccum example

Results of Query loadAccumEx

5/13/25, 9:12 PM 3.3

1721

GSQL > RUN QUERY loadAccumEx("/file_directory/loadAccumInput.csv")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@testGroupBy": [
 {
 "a": "3",
 "b": "\"test3\"",
 "strList": {"5": "5"}
 },
 {
 "a": "2",
 "b": "\"test2\"",
 "strList": {"4": "4"}
 }
],
 "@@testMap": {
 "person1": {"1": {
 "aaa": "\"test1\"",
 "ddd": "3"
 }},
 "person6": {"3": {
 "aaa": "\"test3\"",
 "ddd": "5"
 }},
 "person5": {"2": {
 "aaa": "\"test2\"",
 "ddd": "4"
 }}
 }
 }]
}

Function Call Statements

5/13/25, 9:12 PM 3.3

1722

Typically, a function call returns a value and so is part of an expression. In some

cases, however, the function does not return a value (i.e., returns VOID) or the

return value can be ignored, so the function call can be used as an entire statement.

This is a Function Call Statement.

Collection accumulators (e.g., ListAccum , SetAccum , MapAccum) grow in size as

data is added. Particularly for vertex-attached accumulators, if the number of

vertices is large, their memory consumption can be significant. It can improve

system performance to clear or reset collection accumulators during a query as

soon as their data is no longer needed. Running the

reset_collection_accum(accumName) function resets the collection(s) to be zero-

length (empty). If the argument is a vertex-attached accumulator, then the entire set

of accumulators is reset.

reset_collection_accum only works in DISTRIBUTED mode queries. If the query is
not in distributed mode, the reset does not take place.

funcCallStmt := name ["<" type ["," type]* ">"] "(" [argList] ")"
 | globalAccumName ("." funcName "(" [argList] ")")+
 | "reset_collection_accum" "(" accumName ")"

argList := expr ["," expr]*

ListAccum<STRING> @@listAcc;
BagAccum<INT> @@bagAcc;
...
examples of function call statements
@@listAcc.clear();
@@bagAcc.removeAll(0);

"reset_collection_accum" "(" accumName ")"

Clear Collection Accumulators

Examples of Function Call statements

5/13/25, 9:12 PM 3.3

1723

CREATE DISTRIBUTED QUERY reset_accum()
FOR GRAPH workNet SYNTAX v2 {
 ListAccum<STRING> @stuff;
 ListAccum<STRING> @@allStuff;

 Comp = SELECT c
 FROM person:p -(worksFor:w)- company:c
 ACCUM c.@stuff += p.id,
 @@allStuff += p.id,
 c.@stuff += p.locationId,
 @@allStuff += p.locationId,
 FOREACH interest IN p.interestList DO
 c.@stuff += interest,
 @@allStuff += interest
 END
 ;
 // display accum size: should be full
 PRINT Comp[Comp.@stuff.size()] AS stuffCount;
 PRINT @@allStuff.size() AS allStuffCount;

 reset_collection_accum(@stuff);
 reset_collection_accum(@@allStuff);
 // display accum size: should be empty
 PRINT Comp[Comp.@stuff.size()] AS stuffClear;
 PRINT @@allStuff.size() AS allStuffClear;
}

5/13/25, 9:12 PM 3.3

1724

5/13/25, 9:12 PM 3.3

1725

[{
 "stuffCount": [
 {"attributes": {"Comp.@stuff.size()": 23},
 "v_id": "company2",
 "v_type": "company"
 },
 {"attributes": {"Comp.@stuff.size()": 7},
 "v_id": "company4",
 "v_type": "company"
 },
 {"attributes": {"Comp.@stuff.size()": 12},
 "v_id": "company3",
 "v_type": "company"
 },
 {"attributes": {"Comp.@stuff.size()": 21},
 "v_id": "company1",
 "v_type": "company"
 },
 {"attributes": {"Comp.@stuff.size()": 4},
 "v_id": "company5",
 "v_type": "company"
 }]
 },
 {
 "allStuffCount": 67
 },
 {
 "stuffClear": [
 {"attributes": {"Comp.@stuff.size()": 0},
 "v_id": "company2",
 "v_type": "company"
 },
 {"attributes": {"Comp.@stuff.size()": 0},
 "v_id": "company4",
 "v_type": "company"
 },
 {"attributes": {"Comp.@stuff.size()": 0},
 "v_id": "company3",
 "v_type": "company"
 },
 {"attributes": {"Comp.@stuff.size()": 0},
 "v_id": "company1",
 "v_type": "company"
 },
 {"attributes": {"Comp.@stuff.size()": 0},
 "v_id": "company5",
 "v_type": "company"
 }]

5/13/25, 9:12 PM 3.3

1726

 },
 {
 "allStuffClear": 0
 }]

5/13/25, 9:12 PM 3.3

1727

SELECT Statement

NOTE: Starting with TigerGraph 2.6, there are now two versions of the GSQL Query
Language. Both are available in the product. The original version is called GSQL Syntax
V1. GSQL Syntax V2 was introduced to provide more flexible and powerful Pattern
Matching. A query indicates which grammar to use in the SYNTAX clause of the
CREATE QUERY header. V1 is the default.

As new features are being added to GSQL, some are available only V2. In the future,
we plan to transition so that Syntax V2 will be the default.

The key differences between the two grammars:

1. SQL-like Tabular SELECT is only in Syntax V2 (since TigerGraph 3.1)

2. Multi-hop Pattern Matching is only in Syntax V2 (since TigerGraph 2.6)

• In V2, each SELECT statement can traverse a multi-hop path.

◦ The traversal direction is under the control of the query writer, with

arrowheads on each edge set to show the direction.

◦ There is no arrowhead outside the parentheses:

Start:s -((ForwardEdge> | <BackwardEdge):e)- Target:t

◦ Users can write paths that explicitly show multiple hops, and they can use

a Kleene star (*) to indicate repetition.

Start:s -(Edge1>:e1)- Middle:m -(<Edge2:e2)- Target:t or

Start:s -(Edge*1..3)- Target:t

• In V1 (default), each SELECT statement can traverse one hop (from a set of

vertices to their adjacent vertices).

◦ To write a multi-hop query, you write a sequence of SELECT statements.

◦ The traversal action is from left to right, and the notation uses "ASCII art"

to depict a connection, either with a rightward facing arrowhead or no

arrowhead:

Start:s -(Edges:e)-> Target:t or

Start:s -(Edges:e)- Target:t

This section discusses the SELECT statement in-depth and covers the following

EBNF syntax. Note that there are now two forms for a SELECT statement, the classic

GSQL form gsqlSelectBlock , and the new SQL-like form sqlSelectBlock . Since

GSQL Syntax Versions

5/13/25, 9:12 PM 3.3

1728

GSQL has always been similar to SQL in many ways, there are only a few differences

to know about.

EBNF for Select Statement

5/13/25, 9:12 PM 3.3

1729

5/13/25, 9:12 PM 3.3

1730

selectStmt := gsqlSelectBlock
 | sqlSelectBlock

gsqlSelectBlock := gsqlSelectClause
 fromClause
 [sampleClause]
 [whereClause]
 [accumClause]
 [postAccumClause]*
 [havingClause]
 [orderClause]
 [limitClause]

sqlSelectBlock := sqlSelectClause
 fromClause
 [whereClause]
 [groupByClause]
 [havingClause]
 [orderClause]
 [limitClause]

gsqlSelectClause := ertexSetName "=" SELECT vertexAlias
sqlSelectClause := SELECT [DISTINCT] columnExpr ("," columnExpr)*
 INTO tableName
columnExpr := expr [AS columnName]
 | aggregator "("[DISTINCT] expr ")" [AS columnName]
columnName := name
tableName := name

fromClause := FROM (step | stepV2 | pathPattern ["," pathPattern]*)

step := stepSourceSet ["-" "(" stepEdgeSet ")" ("-"|"->") stepVertexSet
stepV2 := stepVertexSet ["-" "(" stepEdgeSet ")" "-" stepVertexSet]

stepSourceSet := vertexSetName [":" vertexAlias]
stepEdgeSet := [stepEdgeTypes] [":" edgeAlias]
stepVertexSet := [stepVertexTypes] [":" vertexAlias]
alias := (vertexAlias | edgeAlias)
vertexAlias := name
edgeAlias := name

stepEdgeTypes := atomicEdgeType | "(" edgeSetType ["|" edgeSetType]* ")"
atomicEdgeType := "_" | ANY | edgeSetType
edgeSetType := edgeType | paramName | globalAccumName

stepVertexTypes := atomicVertexType | "(" vertexSetType ["|" vertexSetType
atomicVertexType := "_" | ANY | vertexSetType
vertexSetType := vertexType | paramName | globalAccumName

5/13/25, 9:12 PM 3.3

1731

The SELECT block uses a step pattern or path pattern to select some of the graph's

vertices and edges. There are a number of optional clauses that define and/or refine

the selection by constraining the vertex or edge set or the result set. The final

output of a query is either a vertex set known as the result set or a table.

Size limitation

There is a maximum size limit of 2GB for the result set of a SELECT block . If the result
of the SELECT block is larger than 2GB, the system will return no data. NO error
message is produced.

#----------# Pattern Matching #----------#
pathPattern := stepVertexSet ["-" "(" pathEdgePattern ")" "-" stepVertexSe

pathEdgePattern := atomicEdgePattern
 | "(" pathEdgePattern ")"
 | pathEdgePattern "." pathEdgePattern
 | disjPattern
 | starPattern

atomicEdgePattern := atomicEdgeType
 | atomicEdgeType ">"
 | "<" atomicEdgeType

disjPattern := atomicEdgePattern ("|" atomicEdgePattern)*

starPattern := ([atomicEdgePattern] | "(" disjPattern ")") "*" [starBounds

starBounds := CONST_INT ".." CONST_INT
 | CONST_INT ".."
 | ".." CONST_INT
 | CONST_INT
#--#
sampleClause := SAMPLE (expr | expr "%") EDGE WHEN condition
 | SAMPLE expr TARGET WHEN condition
 | SAMPLE expr "%" TARGET PINNED WHEN condition

whereClause := WHERE condition

accumClause := [perClauseV2] ACCUM dmlSubStmtList

perClauseV2 := PER "(" alias ["," alias] ")"

postAccumClause := "POST-ACCUM" dmlSubStmtList

dmlSubStmtList := dmlSubStmt ["," dmlSubStmt]*

dmlSubStmt := assignStmt // Assignment
 | funcCallStmt // Function Call
 | gAccumAccumStmt // Assignment
 | lAccumAccumStmt // Assignment
 | attrAccumStmt // Assignment
 | vAccumFuncCall // Function Call
 | localVarDeclStmt // Declaration
 | dmlSubCaseStmt // Control Flow
 | dmlSubIfStmt // Control Flow
 | dmlSubWhileStmt // Control Flow
 | dmlSubForEachStmt // Control Flow

| BREAK // Control Flow

gsqlSelectBlock := gsqlSelectClause
 fromClause
 [sampleClause]
 [whereClause]
 [accumClause]
 [postAccumClause]*
 [havingClause]
 [orderClause]
 [limitClause]

gsqlSelectClause := vertexSetName "=" SELECT vertexAlias

GSQL SELECT Statement

EBNF for GSQL Select Statement

5/13/25, 9:12 PM 3.3

1732

In classic GSQL, the SELECT statement is an assignment statement with a SELECT

block on the right hand side. The initial clause is the SELECT clause: SELECT

vertexAlias . Its purpose is to specify which set of vertices from the FROM clause

is to become the output. The classic SELECT clause may contain only one item: a

vertex alias defined in the FROM clause. As of v3.1, the vertex alias may be from

anywhere in a multi-hop pattern, not only an endpoint. GSQL now also supports

SQL-like SELECT statements with tabular output.

The fromClause defines a path pattern to traverse in the graph, and each vertex in

the path pattern can be given a vertexAlias name. Thus, the SELECT clause picks

the set of vertices at one of these points in the pattern -- the source vertices, the

target vertices, or those from an interior point in a multi-hop path -- to be the output

vertices.

The SELECT block has many optional clauses, which fit together in a logical flow.

Overall, the SELECT block starts from a source set of vertices and returns a result

set that is either a subset of the source vertices or a subset of their neighboring

vertices. Along the way, computations can be performed on the selected vertices

and edges. The figure below graphically depicts the overall SELECT data flow. While

the ACCUM and POST-ACCUM clauses do not directly affect which vertices are

included in the result set, they affect the data (accumulators) which are attached to

those vertices.

 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | insertStmt // Data Modification
 | dmlSubDeleteStmt // Data Modification
 | printlnStmt // Output
 | logStmt // Output

vAccumFuncCall := vertexAlias "." localAccumName ("." funcName "(" [argLis

groupByClause := GROUP BY groupExpr ("," groupExpr)*
groupExpr := expr

havingClause := HAVING condition

orderClause := ORDER BY expr [ASC | DESC] ["," expr [ASC | DESC]]*

limitClause := LIMIT (expr | expr "," expr | expr OFFSET expr)

5/13/25, 9:12 PM 3.3

1733

5/13/25, 9:12 PM 3.3

1734

In classic (Syntax v1) GSQL, the FROM clause described one step or hop pattern. In

Pattern Matching (Syntax v2), the pattern can be multiple hops long. Path patterns

also have many other options for finer control and greater flexibility.

A hop or step consists of going from a starting set of vertices, crossing over a set of

their edges, to an ending set of vertices. We typically use the names Source and

Target for the starting and ending vertex sets: Source -(Edges)-> Target

The step pattern defines constraints for the Source set, the Edge set, and the Target

set. The result of the FROM clause can be interpreted as a 3-column virtual table

called the match table. Each row is a 3-element tuple: (source vertex, connected

edge, target vertex).

Notice that the edge set and target set are optional: a step can be just source

vertices (stepSourceSet).

Rules for Source Vertex Set in Syntax V1:

Basic data flow for a classic 1-hop GSQL SELECT statement

fromClause := FROM (step | stepV2 | pathPattern ["," pathPattern]*)

step := stepSourceSet ["-" "(" stepEdgeSet ")" ("-"|"->") stepVertexSet

FROM Clause: Vertex and Edge Sets

Source Vertex Set (SYNTAX v1)

FROM clause

EBNF for source-only pattern (SYNTAX v1)

5/13/25, 9:12 PM 3.3

1735

1. The source set may only be a vertexSetName. If this the first SELECT statement in

the query, then the vertexSetName is generally created as a seedsSet:

2. The vertexSetName is optionally followed by an alias, which used in subsequent

clauses to refer to the source set:

For example:

This statement can be interpreted as "Select all vertices s, from the vertex set

Source ." The result is a vertex set. Below is a simple example of a vertex selection.

stepSourceSet := vertexSetName [":" vertexAlias]
vertexAlias := name

resultSet = SELECT s FROM Source:s;

displays all 'post'-type vertices
CREATE QUERY printAllPosts() FOR GRAPH socialNet
{
 start = {post.*}; # initialized with all vertices of type
 results = SELECT s FROM start:s; # select these vertices
 PRINT results;
}

Vertex SELECT example

Results of Query printAllPosts

5/13/25, 9:12 PM 3.3

1736

5/13/25, 9:12 PM 3.3

1737

GSQL > RUN QUERY printAllPosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"results": [
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "10",
 "attributes": {
 "postTime": "2011-02-04 03:02:31",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "2",
 "attributes": {
 "postTime": "2011-02-03 01:02:42",
 "subject": "query languages"
 },
 "v_type": "post"
 },
 {
 "v_id": "4",
 "attributes": {
 "postTime": "2011-02-07 05:02:51",
 "subject": "coffee"
 },
 "v_type": "post"
 },
 {
 "v_id": "9",
 "attributes": {
 "postTime": "2011-02-05 23:12:42",
 "subject": "cats"
 },

5/13/25, 9:12 PM 3.3

1738

Usually, a FROM clause has a full 1-hop step.

The symbols -(and)- enclose the stepEdgeSet and separate the three parts.

Each of the three parts may also define an alias, which makes a convenient way to

refer to each of the three sets of entities.

Below is a simple example:

The Source set is all Persons, but the pattern will not include all Persons. It will only

include those Persons who Bought or Rented a Product or Service. Moreover, the

result will be a set of matched triples: (s, e, t). For example, if Sam bought a TV and

Andy rented a car, the results will include (Sam, Bought, TV) and (Andy, Rented,

Car). However, these two facts do not imply (Sam, Rented, Car) or (Andy, Rented,

TV).

 "v_type": "post"
 },
 {
 "v_id": "3",
 "attributes": {
 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "7",
 "attributes": {
 "postTime": "2011-02-04 17:02:41",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "11",
 "attributes": {
 "postTime": "2011-02-03 01:02:21",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "8",
 "attributes": {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },

"v type": "post"

step := stepSourceSet ["-" "(" stepEdgeSet ")" ("-"|"->") stepVertexSet

stepSourceSet := vertexSetName [":" vertexAlias]
stepEdgeSet := [setEdgeTypes] [":" edgeAlias]
stepVertexSet := [setVertexTypes] [":" vertexAlias]

Person:s -((Bought|Rented):e)- (Product|Service):t

1-Hop Step (SYNTAX v1)

5/13/25, 9:12 PM 3.3

1739

NOTE: The GSQL grammar allows the righthand enclosure to be either)- or
)-> . Previously, we recommended the arrowhead)-> . However, for better
compatibility with the new V2 pattern matching syntax, we now recommend the
headless version:)- Syntax v2 has a specific semantic meaning for the arrowheads.

Rules for Edge Set and Target Set in Syntax V1:

1. The edge set (stepEdgeSet) and target vertex set (stepVertexSet) obey very

similar rules. Each may be a set specifier (stepEdgeTypes or stepVertexTypes)

followed optionally by an alias.

2. The set specifier can be any of the following:

• "_" or "ANY" or <blank>, which means any edge/vertex.

• a named type (edgeType or vertexType)

• a global SetAcum accumulator containing a set of edges or vertices

("@@"accumName)

• a string or string set parameter which names one or more edge or vertex types

(paramName) This parameterized type is one aspect of Dynamic Querying.

• A list of types, string parameters, or global accumulators, e.g.,

"(" edgeSetType ["|" edgeSetType]* ")"

• The list of types must contain the same type of specifiers.

 v_type : post
 },
 {
 "v_id": "6",
 "attributes": {
 "postTime": "2011-02-05 02:02:05",
 "subject": "tigergraph"
 },
 "v_type": "post"
 }
]}]
}

stepEdgeSet := [setEdgeTypes] [":" edgeAlias]
stepVertexSet := [setVertexTypes] [":" vertexAlias]
alias := (vertexAlias | edgeAlias)
vertexAlias := name
edgeAlias := name

stepEdgeTypes := atomicEdgeType
 | "(" edgeSetType ["|" edgeSetType]* ")"
atomicEdgeType := "_" | ANY | edgeSetType
edgeSetType := edgeType | paramName | globalAccumName

stepVertexTypes := atomicVertexType
 | "(" vertexSetType ["|" vertexSetType]* ")
atomicVertexType := "_" | ANY | vertexSetType
vertexSetType := vertexType | paramName | globalAccumName

Edge Set and Target Vertex Set Options

5/13/25, 9:12 PM 3.3

1740

Parentheses are always needed around the edge type in a FROM clause:
FROM Source:s -(eType:e)- Target:t

Parentheses are also needed if a vertexEdgeType is the union of more than one or
more individual edge types or vertex types:
FROM Source:s -((eType1 | eType2):e) - Target:t

Note the double set of parentheses for the edge specifier. If these is an edge alias,
these parentheses are needed. If however there is no edge alias, it is legal to have just
a single set of parentheses:
FROM Source:s -(eType1 | eType2) - Target:t

Either the source vertex set (s) or target vertex set (t) can be used as the SELECT

argument, which determines the result of the SELECT statement. Note the small

difference in the two SELECT statements below.

resultSet1 is based on the source end of the edges. resultSet2 is based on the target

end of the selected edges. However, resultSet1 is NOT identical to the Source vertex

set. It is only those members of Source which connect to an eType edge and then to

notation accepted vertex/edge types

(empty) any type

_ any type

ANY any type

vertex/edge type name given type

string parameter holding a vertex/edge type

name
given type

global SetAccum containing vertices or

edges
given set

(name | name ...) UNION of two or more collections

resultSet1 = SELECT s FROM source:s-(eType:e)-tType:t; //select from the
resultSet2 = SELECT t FROM source:s-(eType:e)-tType:t; //select from the

Selecting source or target vertices from edge-induced selection

5/13/25, 9:12 PM 3.3

1741

a tType vertex. Other clauses (presented later in this "SELECT Statement" section,

can do additional filtering of the Source set.

We strongly suggest that an alias should be declared with every vertex and edge in the
FROM clause, as there are several functions and features which are only available to
vertex and edge aliases.

If is legal to declare an alias without explicitly stating an edge/target type. See the

examples below.

The following are a set of queries that demonstrate edge-induced SELECT blocks.

The allPostsLiked and allPostsMade queries show how the target vertex type can be

omitted. The allPostsLikedOrMade query uses the "|" operator to select multiple

types of edges.

resultSet3 = SELECT v FROM Source:v-(eType:e)->(V1|V2):t;
resultSet4 = SELECT v FROM Source:v-(eType:e)->:t;
resultSet5 = SELECT v FROM Source:v-(eType:e)->ANY:t;
resultSet6 = SELECT v FROM Source:v-(eType:e)->_:t;

resultSet7 = SELECT v FROM Source:v-((E1|E2|E3):e)->tType:t;
resultSet8 = SELECT v FROM Source:v-(:e)->tType:t;
resultSet9 = SELECT v FROM Source:v-(_:e)->tType:t;
resultSet10 = SELECT v FROM Source:v-(ANY:e)->tType:t;

Target vertex type inference

Edge type inference

Edge induced SELECT example

5/13/25, 9:12 PM 3.3

1742

5/13/25, 9:12 PM 3.3

1743

uses various SELECT statements (some of which are equivalent) to print o
either the posts made by the given user, the posts liked by the given
user, or the posts made or liked by the given user.
CREATE QUERY printAllPosts2(vertex<person> seed) FOR GRAPH socialNet
{

start = {seed}; # initialize starting set of vertices

--- statements produce equivalent results
select all 'post' vertices which can be reached from 'start' in one
using an edge of type 'liked'
allPostsLiked = SELECT targetVertex FROM start -(liked:e)-> post:targe

select all vertices of any type which can be reached from 'start' in
using an edge of type 'liked'
allPostsLiked = SELECT targetVertex FROM start -(liked:e)-> :targetVer

--- statements produce equivalent results
start with the vertex set from above, and traverse all edges of type

 # (locally those edges are just given a name 'e' in case they need a
 # and return all vertices of type 'post' which can be reached within

allPostsMade = SELECT targetVertex FROM start -(posted:e)-> post:targe

start with the vertex set from above, and traverse all edges of type
 # (locally those edges are just given a name 'e' in case they need a
 # and return all vertices of any type which can be reached within on

allPostsMade = SELECT targetVertex FROM start -(posted:e)-> :targetVer

--- statements produce equivalent results
select all vertices of type 'post' which can be reached from 'start'
using an edge of any type
not equivalent to any statement. because it doesn't restrict the edg
this will include any vertex connected by 'liked' or 'posted' edge
allPostsLikedOrMade = SELECT t FROM start -(:e)-> t;

select all vertices of type 'post' which can be reached from 'start'
using an edge of type either 'posted' or 'liked'
allPostsLikedOrMade = SELECT t FROM start -((posted|liked):e)-> post:t

select all vertices of any type which can be reached from 'start' in
using an edge of type either 'posted' or 'liked/
allPostsLikedOrMade = SELECT t FROM start -((posted|liked):e)-> :t;

#option for simplified parentheses in edge pattern:

5/13/25, 9:12 PM 3.3

1744

allPostsLikedOrMade = SELECT t FROM start - (posted|liked)-> :t

PRINT allPostsLiked;
 PRINT allPostsMade;
 PRINT allPostsLikedOrMade;
}

Results of Query printAllPosts2

5/13/25, 9:12 PM 3.3

1745

5/13/25, 9:12 PM 3.3

1746

GSQL > RUN QUERY printAllPosts2("person2")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"allPostsLiked": [
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "3",
 "attributes": {
 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 }
]},
 {"allPostsMade": [{
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },
 "v_type": "post"
 }]},
 {"allPostsLikedOrMade": [
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "3",
 "attributes": {

5/13/25, 9:12 PM 3.3

1747

This example is another edge selection that uses the "|" operator to select edges

that have target vertices of multiple types.

 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },
 "v_type": "post"
 }
]}
]
}
GSQL > RUN QUERY printAllPosts2("person6")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"allPostsLiked": [{
 "v_id": "8",
 "attributes": {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },
 "v_type": "post"
 }]},
 {"allPostsMade": [
 {
 "v_id": "10",
 "attributes": {
 "postTime": "2011-02-04 03:02:31",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"

}

Edge induced SELECT example

5/13/25, 9:12 PM 3.3

1748

 },
 "v_type": "post"
 }
]},
 {"allPostsLikedOrMade": [
 {
 "v_id": "10",
 "attributes": {
 "postTime": "2011-02-04 03:02:31",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "8",
 "attributes": {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },
 "v_type": "post"
 }
]}
]
}

uses a SELECT statement to print out everything related to a given user
this includes posts that the user liked, posts that the user made, and
of the user
CREATE QUERY printAllRelatedItems(vertex<person> seed) FOR GRAPH socialNet
{

sourceVertex = {seed};

-- statements produce equivalent output
returns all vertices of type either 'person' or 'post' that can be r
from the sourceVertex set using one edge of any type
everythingRelated = SELECT v FROM sourceVertex -(:e)-> (person|post):v

returns all vertices of any type that can be reached from the source
using one edge of any type
this statement is equivalent to the above one because the graph sche
has vertex types of either 'person' or 'post'. if there were more
types present, these would not be equivalent.
everythingRelated = SELECT v FROM sourceVertex -(:e)-> :v;
--

PRINT everythingRelated;
}

Results

5/13/25, 9:12 PM 3.3

1749

5/13/25, 9:12 PM 3.3

1750

GSQL > RUN QUERY printAllRelatedItems("person2")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"everythingRelated": [
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "person3",
 "attributes": {
 "gender": "Male",
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "gender": "Male",
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "3",
 "attributes": {
 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },

5/13/25, 9:12 PM 3.3

1751

Vertex and edge aliases are declared within the FROM clause of a SELECT block, by

using the character ":", followed by the alias name. Aliases can be accessed

anywhere within the same SELECT block. They are used to reference a single

selected vertex or edge of a set. It is through the vertex or edge aliases that

attributes of these vertices or edges can be accessed.

For example, the following code snippets show two different SELECT statements.

The first SELECT statement starts from a vertex set called allVertices, and the vertex

alias name v can access each individual vertex from allVertices. The second

SELECT statement selects a set of edges. It can use the vertex alias s to reference

the source vertices, or the alias t to reference the target vertices.

The following example shows an edge-based SELECT statement, declaring aliases

for all three parts of the edge. In the ACCUM clause, the e and t aliases are

assigned to local vertex and edge variables.

We strongly suggest that an alias should be declared with every vertex and edge in the
FROM clause, as there are several functions and features only available to vertex and

 "v_type": "post"
 }
]}]
}
GSQL > RUN QUERY printAllRelatedItems("person6")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"everythingRelated": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "10",
 "attributes": {
 "postTime": "2011-02-04 03:02:31",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "person8",
 "attributes": {
 "gender": "Male",
 "id": "person8"
 },
 "v_type": "person"
 },
 {
 "v_id": "8",

"attributes": {

results = SELECT v FROM allVertices:v;
results = SELECT t FROM allVertices:s -()-> :t;

results = SELECT v
 FROM allVertices:s -(:e)-> :t
 ACCUM VERTEX v = t, EDGE eg = e;

Vertex and Edge Aliases

Vertex variables

Edge variables

5/13/25, 9:12 PM 3.3

1752

edge aliases.

We give a brief overview of Pattern Matching syntax and semantics in the FROM

clause, from the perspective of the formal notation and how the rules can be

inferred from that. For a more practical explanation of Pattern Matching, we

recommend the GSQL102 Pattern Matching tutorial.

There are three options for the syntax of the pattern in a FROM clause:

1. step pattern, SYNTAX v1. This is the default syntax from classic GSQL.

2. stepV2 pattern, SYNTAX v2. The query or the GSQL session must specify that
SYNTAX v2 is to be used. This is still a 1-Hop query, but there are two

differences:

• The source vertex set now has the same flexibility as the target vertex. It is

not necessary to create a seedSet. Instead, the source can be one or more

vertex types, given either statically or dynamically as string parameters, or
the special symbol ANY or _ .

• The arrowhead -()-> should not be used between the edge set and the

target set. Simply use a dash -()- .

3. One or more pathPattern s.

A pathPattern begins with a stepVertexSet and then has one or more hops across

and edge set to a target set: -(pathEdgePattern)-setVertexSet.

We have already studied stepVertexSet. Now we will look at the options for

pathEdgePattern and their meanings.

 attributes : {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },
 "v_type": "post"
 }
]}]
}

fromClause := FROM (step | stepV2 | pathPattern ["," pathPattern]*)

pathPattern := stepVertexSet ["-" "(" pathEdgePattern ")" "-" stepVertexSe

Pattern Matching (SYNTAX v2)

5/13/25, 9:12 PM 3.3

1753

The most basic form for a pathEdgePattern is an atomicEdgePattern . This in turn

can be, similar to stepVertexSet , one of the following:

• "_" or "ANY"

• an edgeType, a string parameter, or a global SetAccum accumulator.

Moreover, an atomicEdgePattern can have either a left pointer "<" on the left or a

right pointer ">" on the right. These indicate edge direction, of course. If no pointer

is used, then the edge is undirected. Suppose we have 3 edge types or parameters

called A, B, C.

• A> is a rightward facing A edge

• <B is a leftward facing B edge

• C is an undirected C edge. If C is actually a directed edge type, then there is no

match.

Looking at the remaining options for pathEdgePattern, we see that we can have

parentheses around it, we can use a dot "." between two pathEdgePatterns, or we

can have a disjPattern or starPattern.

disjPattern is how we write "either this edge pattern or that edge pattern""

pathEdgePattern := atomicEdgePattern
 | "(" pathEdgePattern ")"
 | pathEdgePattern "." pathEdgePattern
 | disjPattern
 | starPattern

atomicEdgePattern := atomicEdgeType
 | atomicEdgeType ">"
 | "<" atomicEdgeType

atomicEdgeType := "_" | ANY | edgeSetType
edgeSetType := edgeType | paramName | globalAccumName

Edge Direction

Disjunction, Repeats, and Dot Concatenation

5/13/25, 9:12 PM 3.3

1754

For example, we can combine the three direction-specfic examples from above: (A>

| <B | C)

starPattern explains how the Kleene star and min..max range specifiers can be used

to say "repeat this edge pattern from min to max times."

For example, (A> | <B | C)*2..4 means "a series of 2 to 4 adjacent edges, where

each edge has type A>, <B, or C. Note that we do not have to use the same edge

type for all the repeats. Either iteration can select an option from disjPattern .

The dot operator means concatenate the two edge patterns into one. Naturally,

there must be a vertex joining the two edges, but it is omitted from the syntax. The

dot operator is a shorthand, when you don't care about the type of that intermediate

vertex.

(A>.<B.C) means a series of 3 edges, having the specifying types and directions.

The optional repeating phrase ["," pathPattern]* allows you to have multiple

pathPatterns. They form a conjunction, meaning all of them must be satisfied in

order to have a valid match result.

Recall that each step pattern or path pattern forms a match table, one row per

matching path in the graph. Each vertex alias or edge alias is one column in the

table. When we have a conjunctive path, each path must share at least one vertex

disjPattern := atomicEdgePattern ("|" atomicEdgePattern)*

starPattern := ([atomicEdgePattern] | "(" disjPattern ")") "*" [starBounds

starBounds := CONST_INT ".." CONST_INT
 | CONST_INT ".."
 | ".." CONST_INT
 | CONST_INT

fromClause := FROM (step | stepV2 | pathPattern ["," pathPattern]*)

Conjunctive Pattern Matching

5/13/25, 9:12 PM 3.3

1755

alias with another path. This enables the two path sets (and match tables) to be

joined. Formally, we make the natural join of the two tables.

This explains all of the syntax for the FROM clause with SYNTAX v2 (Pattern

Matching). The other significant area to consider for SYNTAX v2 is the ACCUM and

POST-ACCUM clauses.

The SAMPLE clause is an optional clause that selects a uniform random sample

from the population of edges or target vertices specified in the FROM argument.

If you want to sample from a set of vertices directly, not from edges or from
neighboring (target) vertices, then the following technique is simpler and faster:

The SAMPLE clause draws from the edge population consisting of those edges

which satisfy all three parts – source set, edge type, and target type – of the FROM

clause. The SAMPLE clause is intended to provide a representative sample of the

distribution of edges (or vertices) connected to hub vertices, instead of dealing with

all edges. A hub vertex is a vertex with a relatively high degree. (The degree of a

vertex is the number of edges which connect to it. If edges are directional, one can

distinguish between indegree and outdegree.)

The expression following SAMPLE specifies the sample size, either an absolute

number or a percentage of the population. The expression in sampleClause must

random = SELECT s
 FROM S:s
 LIMIT k;

sampleClause := SAMPLE (expr | expr "%") EDGE WHEN condition # sample an
 | SAMPLE expr TARGET WHEN condition # sample an
 | SAMPLE expr "%" TARGET PINNED WHEN condition # sample a

SAMPLE Clause

Select k random vertices from a vertex set S

EBNF for Sample Clause

5/13/25, 9:12 PM 3.3

1756

evaluate to a positive integer. There are two sampling methods. One is sampling

based on edge id. The other is based on target vertex id: if a target vertex id is

sampled, all edges from this source vertex to the sampled target vertex are

sampled.

Note: Currently, the WHEN condition that can be used with a SAMPLE clause is limited
strictly to checking if the result of a function call on a vertex is greater than or greater
than/equal to some number.

Given that the sampling is random, some of the details of each of the example

queries may change each time they are run.

The following query displays two modes of sampling: an absolute number of edges

from a source vertex and a percentage of edges fro a source vertex. We use the

computerNet graph (see Appendix D). In computerNet, there are 31 vertices and 43

edges, but only 7 vertices are source vertices. Moreover, c1, c12, and c23 are hub

nodes, with at least 10 outgoing edges each. For the absolute count case, we set

the size to 1 edge per source vertex, which is equivalent to a random walk. We

expect exactly 7 edges to be selected. For the percentage sampling case, we

sample 33% of the edges for vertices which have 3 or more outgoing edges. We

expect about 15 edges, but the number may vary.

sampleEx3: SAMPLE based on edges per source vertex

5/13/25, 9:12 PM 3.3

1757

CREATE QUERY sampleEx3() FOR GRAPH computerNet
{
 MapAccum<STRING,ListAccum<STRING>> @@absEdges; // record each selected
 SumAccum<INT> @@totalAbs;
 MapAccum<STRING,ListAccum<STRING>> @@pctEdges; // record each selected
 SumAccum<INT> @@totalPct;

 start = {computer.*};

 # Sample one outgoing edge per source vertex = Random Walk
 absSample = SELECT v FROM start:s -(:e)-> :v
 SAMPLE 1 EDGE WHEN s.outdegree() >= 1 # sample 1 target ve
 ACCUM @@absEdges += (s.id -> v.id),
 @@totalAbs += 1;
 PRINT @@totalAbs, @@absEdges;

 pctSample = SELECT v FROM start:s -(:e)-> :v
 SAMPLE 33% EDGE WHEN s.outdegree() >= 3 # select ~1/3 of edg
 ACCUM @@pctEdges += (s.id -> v.id),
 @@totalPct += 1;
 PRINT @@totalPct, @@pctEdges;
}

sampleEx3.json

5/13/25, 9:12 PM 3.3

1758

5/13/25, 9:12 PM 3.3

1759

GSQL > RUN QUERY sampleEx3()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@totalAbs": 7,
 "@@absEdges": {
 "c4": ["c23"],
 "c11": ["c12"],
 "c10": ["c11"],
 "c12": ["c14"],
 "c23": ["c26"],
 "c14": ["c24"],
 "c1": ["c10"]
 }
 },
 {
 "@@totalPct": 13,
 "@@pctEdges": {
 "c4": ["c23"],
 "c11": ["c12"],
 "c10": ["c11"],
 "c12": [
 "c14",
 "c15",
 "c19"
],
 "c23": [
 "c29",
 "c25"
],
 "c14": [
 "c24",
 "c23"
],
 "c1": [
 "c3",
 "c8",
 "c2"
]
 }
 }

5/13/25, 9:12 PM 3.3

1760

Below is an example of using SELECT to only traverse one edge for each source

vertex. The vertex-attached accumulators @timesTraversedNoSample and

@timesTraversedWithSample are used to keep track of the number of times an edge

is traversed to reach the target vertex. Without using sampling, this occurs once for

each edge; thus @timesTraversedNoSample has the same number as the in-degree

of the vertex. With sampling edges, the number of edges is restricted. This is

reflected in the @timesTraversedWithSample accumulator. Notice the difference in

the result set. Because only one edge per source vertex is traversed when the

SAMPLE clause is used, not all target vertices are reached. The vertex company3

has 3 incident edges, but in one instance of the query execution, it is never reached.

Additionally, company2 has 6 incident edges, but only 4 source vertices sampled an

edge incident to company2 .

]
}

CREATE QUERY sampleEx1() FOR GRAPH workNet
{

SumAccum<INT> @timesTraversedNoSample;
SumAccum<INT> @timesTraversedWithSample;
workers = {person.*};

the 'beforeSample' result set encapsulates the normal functionality
a SELECT statement, where 'timesTraversedNoSample' vertex accumulato
each edge incident to the vertex.
beforeSample = SELECT v FROM workers:t -(:e)-> :v

 ACCUM v.@timesTraversedNoSample += 1;

The 'afterSample' result set is formed by those vertices which can b
reached when for each source vertex, only one edge is used for trave
This is demonstrated by the values of 'timesTraversedWithSample' ver
is increased for each edge incident to the vertex which is used in t
sample.
afterSample = SELECT v FROM workers:t -(:e)-> :v

 SAMPLE 1 EDGE WHEN t.outdegree() >= 1 # only use 1 edge
 ACCUM v.@timesTraversedWithSample += 1;

PRINT beforeSample;
PRINT afterSample;

}

example of SAMPLE using an absolute number of edges

5/13/25, 9:12 PM 3.3

1761

sampleEx1.json

5/13/25, 9:12 PM 3.3

1762

5/13/25, 9:12 PM 3.3

1763

GSQL > RUN QUERY sampleEx1()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"beforeSample": [
 {
 "v_id": "company4",
 "attributes": {
 "country": "us",
 "@timesTraversedNoSample": 1,
 "@timesTraversedWithSample": 1,
 "id": "company4"
 },
 "v_type": "company"
 },
 {
 "v_id": "company5",
 "attributes": {
 "country": "can",
 "@timesTraversedNoSample": 1,
 "@timesTraversedWithSample": 1,
 "id": "company5"
 },
 "v_type": "company"
 },
 {
 "v_id": "company3",
 "attributes": {
 "country": "jp",
 "@timesTraversedNoSample": 3,
 "@timesTraversedWithSample": 3,
 "id": "company3"
 },
 "v_type": "company"
 },
 {
 "v_id": "company2",
 "attributes": {
 "country": "chn",
 "@timesTraversedNoSample": 6,
 "@timesTraversedWithSample": 4,
 "id": "company2"

5/13/25, 9:12 PM 3.3

1764

Since the PRINT statements are placed at the end of query, the two vertex sets
beforeSample and afterSample are almost identical, showing the final values of both
accumulators@timesTraversedNoSample and @timesTraversedWithSample. There is
one difference: company3 is not included in afterSample because none of the sample-
selected edges reached company3.

The WHERE clause is an optional clause that constrains edges and vertices

specified in the FROM and SAMPLE clauses.

The WHERE clause uses a boolean condition to test each vertex or edge in the

FROM set (or the sampled vertex and edge sets, if the SAMPLE clause was used).

If the expression evaluates to false for vertex/edge X, then X excluded from further

consideration in the result set. The expression may use constants or any variables

or parameters within the scope of the SELECT, arithmetic operators (+, -, *, /,%),

 },
 "v_type": "company"
 },
 {
 "v_id": "company1",
 "attributes": {
 "country": "us",
 "@timesTraversedNoSample": 6,
 "@timesTraversedWithSample": 3,
 "id": "company1"
 },
 "v_type": "company"
 }
]},
 {"afterSample": [
 {
 "v_id": "company4",
 "attributes": {
 "country": "us",
 "@timesTraversedNoSample": 1,
 "@timesTraversedWithSample": 1,
 "id": "company4"
 },
 "v_type": "company"
 },
 {
 "v_id": "company5",
 "attributes": {
 "country": "can",
 "@timesTraversedNoSample": 1,
 "@timesTraversedWithSample": 1,
 "id": "company5"
 },
 "v_type": "company"
 },
 {
 "v_id": "company3",
 "attributes": {
 "country": "jp",
 "@timesTraversedNoSample": 3,
 "@timesTraversedWithSample": 3,
 "id": "company3"
 },
 "v_type": "company"
 },
 {
 "v_id": "company2",
 "attributes": {

"country": "chn",

whereClause := WHERE condition

WHERE Clause

EBNF for Where Clause

5/13/25, 9:12 PM 3.3

1765

comparison operators (==, !=, <, <=, >,>=), boolean operators (AND, OR, NOT), set

operators (IN, NOT IN) and parentheses to enforce precedence. The WHERE

conditional expression may use any of the variables within its scope (global

accumulators, vertex set variables, query input parameters, the FROM clause's

vertex and edge sets (or their vertex and edge aliases), or any of the attributes or

accumulators of the vertex/edge sets.) For a more formal explanation of condition,

see the EBNF definitions of condition and expr.

Using built-in vertex and edge attributes and functions, such as .type and

.neighbors(), the WHERE clause can be used to implement sophisticated selection

rules for the edge traversal. In the following example, the selection conditions are

completely specified in the WHERE clause, with no edge types or vertex types

mentioned in the FROM clause.

The following examples demonstrate using the WHERE clause to limit the resulting

vertex set based on a vertex attribute.

 country : chn ,
 "@timesTraversedNoSample": 6,
 "@timesTraversedWithSample": 4,
 "id": "company2"
 },
 "v_type": "company"
 },
 {
 "v_id": "company1",
 "attributes": {
 "country": "us",
 "@timesTraversedNoSample": 6,
 "@timesTraversedWithSample": 3,
 "id": "company1"
 },
 "v_type": "company"
 }
]}
]
}

resultSet1 = SELECT v FROM S:v-((E1|E2|E3):e)->(V1|V2):t;
resultSet2 = SELECT v FROM S:v-(:e)->:t

 WHERE t.type IN ("V1", "V2") AND
 t IN v.neighbors("E1|E2|E3")

CREATE QUERY printCatPosts() FOR GRAPH socialNet {
posts = {post.*};
catPosts = SELECT v FROM posts:v # select only those post verti

 WHERE v.subject == "cats"; # which have a subset of 'cats
PRINT catPosts;

}

WHERE used as a filter

Basic SELECT WHERE

Results for Query printCatPosts

5/13/25, 9:12 PM 3.3

1766

5/13/25, 9:12 PM 3.3

1767

GSQL > RUN QUERY printCatPosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"catPosts": [
 {
 "v_id": "10",
 "attributes": {
 "postTime": "2011-02-04 03:02:31",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "9",
 "attributes": {
 "postTime": "2011-02-05 23:12:42",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "3",
 "attributes": {
 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "11",
 "attributes": {
 "postTime": "2011-02-03 01:02:21",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "8",
 "attributes": {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },

5/13/25, 9:12 PM 3.3

1768

 "v_type": "post"
 }
]}]
}

CREATE QUERY findGraphFocusedPosts() FOR GRAPH socialNet
{

posts = {post.*};
results = SELECT v FROM posts:v # select only post ver

WHERE v.subject IN ("Graph", "tigergraph"); # which have a subject
PRINT results;

}

SELECT WHERE using IN operator

Results for Query findGraphFocusedPosts

5/13/25, 9:12 PM 3.3

1769

WHERE NOT limitations

The NOT operator may not be used in combination with the .type attribute selector. To
check if an edge or vertex type is not equal to a given type, use the != operator. See
the example below.

The following example shows the equivalence of using WHERE as a type filter as

well as its limitations.

GSQL > RUN QUERY findGraphFocusedPosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"results": [
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "6",
 "attributes": {
 "postTime": "2011-02-05 02:02:05",
 "subject": "tigergraph"
 },
 "v_type": "post"
 }
]}]
}

5/13/25, 9:12 PM 3.3

1770

finds female person in the social network. all of the following statemen
are equivalent (i.e., produce the same results)
CREATE QUERY findFemaleMembers() FOR GRAPH socialNet
{

allVertices = {ANY}; # includes all posts and person
females = SELECT v FROM allVertices:v

 WHERE v.type == "person" AND
 v.gender != "Male";

females = SELECT v FROM allVertices:v
 WHERE v.type == "person" AND
 v.gender == "Female";

females = SELECT v FROM allVertices:v
 WHERE v.type == "person" AND
 NOT v.gender == "Male";

females = SELECT v FROM allVertices:v

 WHERE v.type != "post" AND
 NOT v.gender == "Male";

 # does not compile. cannot use NOT operator in combination with type a
#females = SELECT v FROM allVertices:v
WHERE NOT v.type != "person" AND
NOT v.gender == "Male";

 # does not compile. cannot use NOT operator in combination with type a
#females = SELECT v FROM allVertices:v
WHERE NOT v.type == "post" AND
NOT v.gender == "Male";

personVertices = {person.*};
females = SELECT v FROM personVertices:v

 WHERE NOT v.gender == "Male";

females = SELECT v FROM personVertices:v
 WHERE v.gender != "Male";

females = SELECT v FROM personVertices:v
 WHERE v.gender != "Male" AND true;

females = SELECT v FROM personVertices:v
 WHERE v.gender != "Male" OR false;

PRINT females;

}

SELECT WHERE using AND/OR

5/13/25, 9:12 PM 3.3

1771

The following example uses edge attributes to determine which workers are

registered as full time for some company.

GSQL > RUN QUERY findFemaleMembers()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"females": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "gender": "Female",
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "gender": "Female",
 "id": "person2"
 },
 "v_type": "person"
 }
]}]
}

Results for Query findFemaleMembers

WHERE using edge attributes

5/13/25, 9:12 PM 3.3

1772

find all workers who are full time at some company
CREATE QUERY fullTimeWorkers() FOR GRAPH workNet
{

start = {person.*};
fullTimeWorkers = SELECT v FROM start:v -(worksFor:e)-> company:t

WHERE e.fullTime; # fullTime is a boolean attribute on the e

PRINT fullTimeWorkers;
}

fullTimeWorkers Results

5/13/25, 9:12 PM 3.3

1773

5/13/25, 9:12 PM 3.3

1774

GSQL > RUN QUERY fullTimeWorkers()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"fullTimeWorkers": [
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "interestSet": ["football"],
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person11",
 "attributes": {
 "interestList": ["sport", "football"],
 "skillSet": [10],
 "skillList": [10],
 "locationId": "can",
 "interestSet": ["football", "sport"],
 "id": "person11"
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",

5/13/25, 9:12 PM 3.3

1775

If multiple edge types are specified in edge-induced selection, the WHERE clause
should use OR to separate each edge type or each target vertex type. For example,

 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "interestList": ["music", "art"],
 "skillSet": [10, 7],
 "skillList": [7, 10],
 "locationId": "jp",
 "interestSet": ["art", "music"],
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "interestList": ["management"],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2],
 "locationId": "chn",
 "interestSet": ["management"],
 "id": "person8"
 },
 "v_type": "person"
 },
 {
 "v_id": "person12",

"attributes": {

Multiple Edge Type WHERE clause

5/13/25, 9:12 PM 3.3

1776

The above query is compilable. However, if we use line 5 as the WHERE clause instead,
the query is not compilable. The edge-type conflict checking detects an error, because
i t uses attributes from both "liked" edges and "friend" edges without separating them
out by OR.

The optional ACCUM and POST-ACCUM clauses enable sophisticated aggregation

and other computations across the set of vertices or edges selected by the

preceding FROM, SAMPLE, and WHERE clauses. A query can contain one or both of

these clauses. The statements in an ACCUM clause are applied for every edge in an

edge-induced selection or every vertex in a vertex-induced selection.

If there is more than one statement in the ACCUM clause, the statements are

separated by commas and executed sequentially for each selected element.

However, the TigerGraph system uses parallelism to improve performance. Within

an ACCUM clause, each edge is handled by a separate process. As such, there is no

fixed order in which the edges are processed within the ACCUM clause and the

edges should not be treated as executing sequentially. The accumulators are mutex

variables shared among each of these processes. The results of any accumulation

within the ACCUM clause is not complete until all edges are traversed. Any

inspection of an intermediate result within the ACCUM is incomplete and may not be

that meaningful.

The statements within the ACCUM clause are executed sequentially for a given vertex
or edge. However, there is no fixed order in which a vertex set or edge set is

 attributes : {
 "interestList": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2, 2, 2],
 "locationId": "jp",
 "interestSet": ["teaching", "engineering", "music"],
 "id": "person12"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "interestList": ["teaching"],
 "skillSet": [6, 1, 4],
 "skillList": [4, 1, 6],
 "locationId": "jp",
 "interestSet": ["teaching"],
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "id": "person9"
 },
 "v_type": "person"
 }
]}]
}

CREATE QUERY multipleEdgeTypeWhereEx(vertex<person> m1) FOR GRAPH s
 allUser = {m1};
 FilteredUser = SELECT s
 FROM allUser:s - ((posted|liked|friend):e) -> (post|person):t
 # WHERE e.actionTime > epoch_to_datetime(1) AND t.gender ==
 WHERE (e.type == "liked" AND e.actionTime > epoch_to_datetim
 (e.type == "friend" AND t.gender == "Male")
 ;
 PRINT FilteredUser;
}

ACCUM and POST-ACCUM Clauses

5/13/25, 9:12 PM 3.3

1777

processed.

The optional POST-ACCUM clause enables aggregation and other computations

across the set of vertices (but not edges) selected by the preceding clauses. POST-

ACCUM can be used without ACCUM. If it is preceded by an ACCUM clause, then it

can be used for 2-stage accumulative computation: a first stage in ACCUM followed

by a second stage in POST-ACCUM.

Each statement within the POST-ACCUM clause can refer to either source vertices or
target vertices but not both.

Since the ACCUM clause iterates over edges, and often two edges will connect to

the same source vertex or to the same target vertex, the ACCUM clause can be

repeated multiple times for one vertex.

Operations that are to be performed exactly once per vertex should be performed in
the POST-ACCUM clause.

The primary purpose of the ACCUM or POST-ACCUM clause is to collect

information about the graph by updating accumulators (via += or =). See the

"Accumulator" section for details on the += operation. However, other kinds of

statements (e.g., branching, iteration, local assignments) are permitted to support

more complex computations or to log activity. The EBNF syntax below defines the

allowable kinds of statements that can occur within an ACCUM or POST-ACCUM.

The dmlSubStmt list is similar to the queryBodyStmt list which applies to

statements outside of a SELECT block; it is important to note the differences. Each

of these statement types is discussed in one of the main sections of this reference

document.

EBNF for ACCUM and POST-ACCUM Clauses

5/13/25, 9:12 PM 3.3

1778

Note that dml-sub-statements do not include global accumulator assignment
statement (gAccumAssignStmt) but global accumulator accumulation statement
(gAccumAccumStmt). Global accumulators may perform accumulation += but not
assignment "=" within these clauses.

There are additional restrictions on dml-sub level statements:

• Global variable assignment is permitted in ACCUM or POST-ACCUM clauses, but

the change in value will not take place until the query completes. Therefore, if

there are multiple assignment statements for the same variable, only the final one

will take effect.

• Vertex attribute assignment "=" is not permitted in an ACCUM clause. However,

edge attribute assignment is permitted. This is because the ACCUM clause iterates

over an edge set. Vertex attribute attribute assignment is permitted in the POST-

ACCUM clause. Like all updates, the change in value does not take place until the

query completes.

accumClause := [perClauseV2] ACCUM dmlSubStmtList

perClauseV2 := PER "(" alias ["," alias] ")"

postAccumClause := POST-ACCUM dmlSubStmtList

dmlSubStmtList := dmlSubStmt ["," dmlSubStmt]*

dmlSubStmt := assignStmt // Assignment
 | funcCallStmt // Function Call
 | gAccumAccumStmt // Assignment
 | lAccumAccumStmt // Assignment
 | attrAccumStmt // Assignment
 | vAccumFuncCall // Function Call
 | localVarDeclStmt // Declaration
 | dmlSubCaseStmt // Control Flow
 | dmlSubIfStmt // Control Flow
 | dmlSubWhileStmt // Control Flow
 | dmlSubForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | insertStmt // Data Modification
 | dmlSubDeleteStmt // Data Modification
 | printlnStmt // Output
 | logStmt // Output

5/13/25, 9:12 PM 3.3

1779

To reference each element of the selected set, use the aliases defined in the FROM

clause. For example, assume that we have the following aliases:

Let (V1, V2,... Vn) be the vertices in the vertex-induced selection . The following

pseudocode emulates ACCUM clause behavior.

Let E = (E1, E2,... En) be the edges in the edge-induced selected set. Further, let S =

(S1,S1,...Sn) and T= (T1,T2,...Tn) be the multisets (bags) of source vertices and

target vertices which correspond to the edge set. S and T are bags, because they

can contain repeated elements.

Note that any reference to the source alias s or target alias t is for the endpoint

vertices of the current edge.

Similarly, the POST-ACCUM clause acts like a FOREACH loop on the vertex result set

specified in the SELECT clause (e.g., either S or T).

FROM source:s -(edgeTypes:e)-> targetTypes:t # edge-induced selection
FROM source:v # vertex-induced selection

FOREACH v in (V1,V2,...Vn) DO # iterations may occur in parallel, in unkno
 dmlSubStmts referencing v
DONE

FOREACH i in (1..n) DO # iterations may occur in parallel, in unknown orde
 dmlSubStmts referencing e, s, t, which really means e_i, s_i, t_i
DONE

Aliases and ACCUM/POST-ACCUM Iteration Model

Pattern Matching ACCUM and POST-ACCUM

Example of vertex and edge aliases

Model for ACCUM behavior in vertex-induced selection

Model for ACCUM behavior in edge-induced selection

5/13/25, 9:12 PM 3.3

1780

In Pattern Matching (SYNTAX v2), we may have a multi-step pattern, with several

vertex and edge aliases. Each statement (dml-sub-statement) can refer to one or

more aliases. There are no restrictions, though complex expressions and accessing

multiple aliases may degrade performance.

The PER clause is available only in SYNTAX v2. It is an optional prefix to the ACCUM

clause, affecting only that clause. The PER clause allows the user to specify that

they wish to aggregate the match table, so that there is one row PER <alias>. For

more information see the PER Clause section in the Pattern Matching tutorial.

Multiple POST-ACCUM clauses are supported in TG 3.0+. In SYNTAX v2, Each

POST-ACCUM may refer to only one vertex alias. See the POST-ACCUM section in

the Pattern Matching tutorial.

If multiple edge types are specified in edge-induced selection, each ACCUM

statement in ACCUM clause checks whether edge types are conflicted. If only a

subset of edge types are effective in an ACCUM statement , this statement is not

executed on other edge types. For example:

In the above example, line 6 is only executed on "liked" edges, because

"actionTime" is the attribute of "liked" edge only. Similarly, line 7 is only executed on

"friend" edges, because "gender" is the attribute of "person" only, and only "friend"

edge uses "person" as target vertex. However, line 8 causes a compilation error,

CREATE QUERY multipleEdgeTypeCheckEx(vertex<person> m1) FOR GRAPH socialNe
 ListAccum<STRING> @@testList1, @@testList2, @@testList3;
 allUser = {m1};
 allUser = SELECT s
 FROM allUser:s - ((posted|liked|friend):e) -> (post|person):t
 ACCUM @@testList1 += to_string(datetime_to_epoch(e.actionTime))
 ,@@testList2 += t.gender
 #,@@testList3 += to_string(datetime_to_epoch(e.actionTime)) +
 ;
 PRINT @@testList1, @@testList2, @@testList3;
}

Edge/Vertex Type Inference and Conflict

Multiple Edge Type ACCUM statement check

5/13/25, 9:12 PM 3.3

1781

because it uses multiple edges where some edges cannot be supported in a part of

the statement, i.e., "liked" edges doesn't have t.gender, "friend" edges doesn't have

e.actionTime.

We strongly suggest that if multiple edge types are specified in edge-induced
selection, ACCUM clauses should uses CASE statement (see Section "Control Flow
Statements" for more details) to separate the operation on each edge type or each
target vertex type (or combination of target vertex type and edge type). The edge-type
conflict checking then checks the ACCUM statement inside each THEN/ELSE blocks
based on the condition. For example,

The above query is compilable. However, if we switch line 8 and line 10, the edge-type
conflict checking generates errors because "liked" edges doesn't support t.gender and
"friend" edges doesn't support e.actionTime.

Similar to the ACCUM clause, if multiple source/target vertex types are specified in

edge-induced selection and the POST-ACCUM clauses accesses source/target

vertex, each ACCUM statement in POST-ACCUM clause checks whether

source/target vertex types are conflicted. If only a subset of source/target vertex

types are effective in a POST-ACCUM statement, this statement is not executed on

other source/target vertex types.

Similar to ACCUM clause, we strongly suggest that if multiple source/target vertex
types are specified in edge-induced selection and the POST-ACCUM clauses accesses

CREATE QUERY multipleEdgeTypeCheckEx2(vertex<person> m1) FOR GRAPH
 ListAccum<STRING> @@testList1;
 allUser = {m1};
 allUser = SELECT s
 FROM allUser:s - ((posted|liked|friend):e) -> (post|per
 ACCUM CASE
 WHEN e.type == "liked" THEN # for liked edge
 @@testList1 += to_string(datetime_to_epoch(e
 WHEN e.type == "friend" THEN # for friend edg
 @@testList1 += t.gender
 ELSE # For the remained edge type, which i
 @@testList1 += to_string(datetime_to_epoch(t
 END
 ;
 PRINT @@testList1;
}

Multiple Edge Type ACCUM statement check 2

5/13/25, 9:12 PM 3.3

1782

source/target vertex, POST-ACCUM clauses should uses CASE statement (see Section
"Control Flow Statements" for more details) to separate the operation on each
source/target vertex type. The vertex type conflict checking then checks the ACCUM
statement inside each THEN/ELSE blocks based on the condition.

Prior to v1.0, a vertex-attached accumulator could only be updated in an ACCUM or

POST-ACCUM clause and only if its vertex was selected for by the preceding

FROM-SAMPLE-WHERE clauses.

Beginning in v1.0, there are additional circumstances where a vertex-attached

accumulator may be updated. Vertices which are referenced via a vertex-attached

accumulator of a selected vertex may have their vertex-attached accumulators

updated in the ACCUM clause (but not in the POST-ACCUM clause). That is, a

vertex referenced by an selected vertex can be updated, with some limitations

explained below. Some examples will help to illustrate this more complex condition.

• Suppose a query declares a vertex-attached accumulator which holds vertex

information . We call this a vertex-holding accumulator . This could take several

forms:

◦ A scalar accumulator, e.g., MaxAccum< VERTEX > @maxV;

◦ A collection accumulator: e.g., ListAccum< VERTEX > @listV;

◦ An accumulator containing tuple(s), where the tuple type contains a VERTEX
field.

• If a vertex V is selected, then not only can V's accumulators be updated, but the

vertices stored in its vertex-holding accumulators can also be updated, in the

ACCUM clause.

• Before these indirectly referenced vertices can be used, they need to be

activated . There are two ways to activate an indirect vertex:

◦ A vertex from a vertex-holding accumulator is first assigned to a local vertex

variable. The vertex can now be updated through the local vertex variable.

ACCUM
 VERTEX<person> mx = tgt.@maxV, # assign to local variable
 mx.@curId += src.id # access via local variable

Rules for Updating Vertex-Attached Accumulators

5/13/25, 9:12 PM 3.3

1783

• A FOREACH loop can iterate on a vertex-holding collection accumulator. The

vertices can now be updated through the loop variable.

The following uses are NOT supported by the new rules:

• Indirectly activated vertices may not be updated in the POST-ACCUM clause or

outside of a SELECT statement.

• Passing a vertex into the query as an input parameter is not a route to activation.

• Using a global vertex-holding accumulator is not a route to activation.

• If a vertex is being indirectly activated by assigning it to a local variable (e.g., a

variable declaring in ACCUM or POST-ACCUM), note the following rule, which

always applies to all local variables:

◦ A local variable can be declared and initialized in an ACCUM block once. It

cannot be redeclared or reassigned later in the ACCUM block.

The following query demonstrates updates to indirectly activated vertices.

ACCUM
 FOREACH vtx IN src.@setIds DO # iterate on collection accumulator
 vtx.@curId += tgt.id # access via loop variable
 END

Updating an Indirectly-Referenced Vertex

5/13/25, 9:12 PM 3.3

1784

CREATE QUERY vUpdateIndirectAccum() FOR GRAPH socialNet {

 SetAccum<VERTEX<person>> @posters;
 SetAccum<VERTEX<person>> @fellows;

 Persons = {person.*};
 # To each post, attach a list of persons who liked the post
 likedPosts = SELECT p
 FROM Persons:src -(liked:e)-> post:p
 ACCUM
 p.@posters += src;

 # To each person who liked a post, attach a list of everyone
 # who also liked one of this person's liked posts.

likedPosts = SELECT src
FROM likedPosts:src
ACCUM
 FOREACH v IN src.@posters DO
 v.@fellows += src.@posters
 END

 ORDER BY src.subject;

PRINT Persons[Persons.@fellows];
}

Results from Query vUpdateIndirectAccums

5/13/25, 9:12 PM 3.3

1785

5/13/25, 9:12 PM 3.3

1786

GSQL > RUN QUERY vUpdateIndirectAccess()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Persons": [
 {
 "v_id": "person4",
 "attributes": {"Persons.@fellows": [
 "person8",
 "person4"
]},
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {"Persons.@fellows": ["person2", "person1", "person3"
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"Persons.@fellows": ["person7"]},
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {"Persons.@fellows": ["person2", "person1", "person3"
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"Persons.@fellows": ["person5"]},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"Persons.@fellows": ["person6"]},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"Persons.@fellows": ["person2", "person1", "person3"
 "v_type": "person"
 },

5/13/25, 9:12 PM 3.3

1787

We now show several examples. This example demonstrates how ACCUM or POST-

ACCUM can be used to count the number of vertices in the given set.

 {
 "v_id": "person8",
 "attributes": {"Persons.@fellows": ["person8", "person4"]},
 "v_type": "person"
 }
]}]
}

ACCUM and POST-ACCUM Examples

Accum and PostAccum Semantics

5/13/25, 9:12 PM 3.3

1788

5/13/25, 9:12 PM 3.3

1789

#Show Accum PostAccum Behavior
CREATE QUERY accumPostAccumSemantics() FOR GRAPH workNet {

 SumAccum<INT> @@vertexOnlyAccum;
 SumAccum<INT> @@vertexOnlyPostAccum;

 SumAccum<INT> @@vertexOnlyWhereAccum;
 SumAccum<INT> @@vertexOnlyWherePostAccum;

 SumAccum<INT> @@sourceWithEdgeAccum;
 SumAccum<INT> @@sourceWithEdgePostAccum;

 SumAccum<INT> @@targetWithEdgeAccum;
 SumAccum<INT> @@targetWithEdgePostAccum;

 #Seed start set with all company vertices
 start = {company.*};

 #Select all vertices in source set start
 selectVertexSet = SELECT v from start:v

#Happens once for each vertex discovered
ACCUM @@vertexOnlyAccum += 1

#Happens once for each vertex in the result set "v"
POST-ACCUM @@vertexOnlyPostAccum += 1;

 #Select all vertices in source set start with a where constraint
 selectVertexSetWhere = SELECT v from start:v WHERE (v.country == "us")

#Happens once for each vertex discovered that also
meets the constraint condition
ACCUM @@vertexOnlyWhereAccum += 1

#Happens once for each vertex in the result set "v
POST-ACCUM @@vertexOnlyWherePostAccum += 1;

 #Select all source "s" vertices in set start and explore all "worksFor"
 selectSourceWithEdge = SELECT s from start:s -(worksFor)-> :t

 #Happens once for each "worksFor" edge discovered
 ACCUM @@sourceWithEdgeAccum += 1

#Happens once for each vertex in result set "s" (s
POST-ACCUM @@sourceWithEdgePostAccum += 1;

 #Select all target "t" vertices found from exploring all "worksFor" edge
 selectTargetWithEdge = SELECT t from start:s -(worksFor)-> :t

 #Happens once for each "worksFor" edge discovered
 ACCUM @@targetWithEdgeAccum += 1

5/13/25, 9:12 PM 3.3

1790

This example uses ACCUM to find all the subjects a user posted about.

 #Happens once for each vertex in result set "t" (
 POST-ACCUM @@targetWithEdgePostAccum += 1;

 PRINT @@vertexOnlyAccum;
 PRINT @@vertexOnlyPostAccum;

 PRINT @@vertexOnlyWhereAccum;
 PRINT @@vertexOnlyWherePostAccum;

 PRINT @@sourceWithEdgeAccum;
 PRINT @@sourceWithEdgePostAccum;

 PRINT @@targetWithEdgeAccum;
 PRINT @@targetWithEdgePostAccum;
}

GSQL > RUN QUERY accumPostAccumSemantics()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@vertexOnlyAccum": 5},
 {"@@vertexOnlyPostAccum": 5},
 {"@@vertexOnlyWhereAccum": 2},
 {"@@vertexOnlyWherePostAccum": 2},
 {"@@sourceWithEdgeAccum": 17},
 {"@@sourceWithEdgePostAccum": 5},
 {"@@targetWithEdgeAccum": 17},
 {"@@targetWithEdgePostAccum": 12}
]
}

accumPostAccumSemantics Result

Vertex ACCUM Example

5/13/25, 9:12 PM 3.3

1791

For each person, make a list of all their post subjects
CREATE QUERY userPosts() FOR GRAPH socialNet {
 ListAccum<STRING> @personPosts;
 start = {person.*};

 # Find all user post topics and append them to the vertex list accum
 userPostings = SELECT s FROM start:s -(posted)-> :g
 ACCUM s.@personPosts += g.subject;

 PRINT userPostings;
}

Results for Query userPosts

5/13/25, 9:12 PM 3.3

1792

5/13/25, 9:12 PM 3.3

1793

GSQL > RUN QUERY userPosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"userPostings": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "@personPosts": ["cats"],
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "gender": "Male",
 "@personPosts": ["query languages"],
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "@personPosts": ["cats", "tigergraph"],
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "gender": "Male",
 "@personPosts": ["Graphs"],
 "id": "person1"
 },
 "v_type": "person"
 },
/*** other vertices omitted ***/
]}]

5/13/25, 9:12 PM 3.3

1794

This example shows each person's posted vertices and each person's like

behaviors (liked edges).

}

Show each user's post and liked post time
CREATE QUERY userPosts2() FOR GRAPH socialNet {
 ListAccum<VERTEX> @personPosts;
 ListAccum<EDGE> @personLikedInfo;
 start = {person.*};

 # Find all user post topics and append them to the vertex list accum
 userPostings = SELECT s FROM start:s -(posted)-> :g
 ACCUM s.@personPosts += g;

 userPostings = SELECT s from start:s -(liked:e)-> :g
 ACCUM s.@personLikedInfo += e;

 PRINT start;
}

ACCUM<VERTEX> and ACCUM<EDGE> Example

Results from Query userPosts2

5/13/25, 9:12 PM 3.3

1795

5/13/25, 9:12 PM 3.3

1796

GSQL > RUN QUERY userPosts2()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"start": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "@personPosts": ["3"],
 "id": "person4",
 "@personLikedInfo": [{
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person4",
 "to_id": "4",
 "attributes": {"actionTime": "2010-01-13 03:16:05"},
 "e_type": "liked"
 }]
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "@personPosts": ["9", "6"],
 "id": "person7",
 "@personLikedInfo": [{
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person7",
 "to_id": "10",
 "attributes": {"actionTime": "2010-01-12 11:22:05"},
 "e_type": "liked"
 }]
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",

5/13/25, 9:12 PM 3.3

1797

This example counts the total number of times each topic is used.

 "attributes": {
 "gender": "Male",
 "@personPosts": ["0"],
 "id": "person1",
 "@personLikedInfo": [{
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person1",
 "to_id": "0",
 "attributes": {"actionTime": "2010-01-11 11:32:00"},
 "e_type": "liked"
 }]
 },
 "v_type": "person"
 },
/*** other vertices omitted ***/
]}]
}

Show number of total posts by topic
CREATE QUERY userPostsByTopic() FOR GRAPH socialNet {
 MapAccum<STRING, INT> @@postTopicCounts;
 start = {person.*};

 # Append subject and update the appearance count in the global map accum
 posts = SELECT g FROM start -(posted)-> :g

 ACCUM @@postTopicCounts += (g.subject -> 1);

 PRINT @@postTopicCounts;
}

Global ACCUM Example

Results for Query userPostsByTopic

5/13/25, 9:12 PM 3.3

1798

This is an example of using ACCUM and POST-ACCUM in conjunction. The ACCUM

traverses the graph and finds all people who live and work in the same country.

After this is determined, POST-ACCUM examines each vertex (person) to see if they

work where they live.

GSQL > RUN QUERY userPostsByTopic()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@postTopicCounts": {
 "cats": 5,
 "coffee": 1,
 "query languages": 1,
 "Graphs": 2,
 "tigergraph": 3
 }}]
}

Vertex POST-ACCUM Example

5/13/25, 9:12 PM 3.3

1799

#Show all person who both work and live in the same country
CREATE QUERY residentEmployees() FOR GRAPH workNet {

 ListAccum<STRING> @company;
 OrAccum @worksAndLives;

 start = {person.*};

 employees = SELECT s FROM start:s -(worksFor)-> :c
 #If a person works for a company in the same country where t
 # add the company to the list
 ACCUM CASE WHEN (s.locationId == c.country) THEN
 s.@company += c.id
 END

 #Check each vertex and see if a person works where they live
 POST-ACCUM CASE WHEN (s.@company.size() > 0) THEN
 s.@worksAndLives += True
 ELSE
 s.@worksAndLives += False
 END;

 PRINT employees WHERE (employees.@worksAndLives == True);
}

residentEmployees Result

5/13/25, 9:12 PM 3.3

1800

5/13/25, 9:12 PM 3.3

1801

GSQL > RUN QUERY residentEmployees()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"employees": [
 {
 "v_id": "person11",
 "attributes": {
 "interestList": [
 "sport",
 "football"
],
 "skillSet": [10],
 "skillList": [10],
 "@worksAndLives": true,
 "locationId": "can",
 "interestSet": ["football", "sport"],
 "id": "person11",
 "@company": ["company5"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "@worksAndLives": true,
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "id": "person10",
 "@company": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "@worksAndLives": true,

5/13/25, 9:12 PM 3.3

1802

This is an example of a POST-ACCUM only that counts the number people with a

particular gender.

 "locationId": "us",
 "interestSet": ["financial", "management"],
 "id": "person1",
 "@company": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "@worksAndLives": true,
 "locationId": "chn",
 "interestSet": ["engineering"],
 "id": "person2",
 "@company": ["company2"]
 },
 "v_type": "person"
 }
]}]
}

#Count the number of person of a given gender
CREATE QUERY personGender(STRING gender) FOR GRAPH socialNet {

 SumAccum<INT> @@genderCount;

 start = {ANY};

 # Select all person vertices and check the gender attribute
 friends = SELECT v FROM start:v
 WHERE v.type == "person"

 POST-ACCUM CASE WHEN (start.gender == gender) THEN
 @@genderCount += 1
 END;

 PRINT @@genderCount;
}

Global POST-ACCUM Example

5/13/25, 9:12 PM 3.3

1803

The optional HAVING clause provides constraints on the result set of the SELECT.

The constraints are applied after ACCUM and POST-ACCUM actions. This differs

from the WHERE clause, which is applied before the ACCUM and POST-ACCUM

actions.

The condition in the HAVING clause is applied to each vertex in the SELECT set

(either source or target vertices) which also fulfilled the FROM and WHERE

conditions. The HAVING clause is intended to test one or more of the accumulator

variables that were updated in the ACCUM or POST-ACCUM clause, though the

condition may be anything that equates to a boolean value. If the condition is false

for a particular vertex, then that vertex is excluded from the result set.

The following example demonstrates using the HAVING clause to constrain a result

set based on the vertex accumulator variable which was updated during the ACCUM

clause.

GSQL > RUN QUERY personGender("Female")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@genderCount": 3}]
}

havingClause := HAVING condition

HAVING Clause

Results for Query personGender

EBNF for HAVING Clause

Example 1. HAVING

5/13/25, 9:12 PM 3.3

1804

If the activityThreshold parameter is set to 3, the query returns 5 vertices:

find all persons meeting a given activityThreshold, based on how many po
CREATE QUERY activeMembers(int activityThreshold) FOR GRAPH socialNet
{
 SumAccum<int> @activityAmount;
 start = {person.*};
 result = SELECT v FROM start:v -(:e)-> post:tgt
 ACCUM v.@activityAmount +=1

 HAVING v.@activityAmount >= activityThreshold;
 PRINT result;
}

Example 1 Results

5/13/25, 9:12 PM 3.3

1805

5/13/25, 9:12 PM 3.3

1806

GSQL > RUN QUERY activeMembers(3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result": [
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 3,
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "gender": "Female",
 "@activityAmount": 3,
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 3,
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "gender": "Female",
 "@activityAmount": 3,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",

5/13/25, 9:12 PM 3.3

1807

If the activityThreshold parameter is set to 2, the query would return 8 vertices. With

activityThreshold = 4, the query would return no vertices.

The following example demonstrates the equivalence of a SELECT statement in

which the condition for the HAVING clause is always true.

 "attributes": {
 "gender": "Male",
 "@activityAmount": 3,
 "id": "person8"
 },
 "v_type": "person"
 }
]}]
}

find all person meeting a given activityThreshold, based on how many pos
CREATE QUERY printMemberActivity() FOR GRAPH socialNet
{
 SumAccum<int> @activityAmount;
 start = {person.*};

--- equivalent statements -----
 result = SELECT v FROM start:v -(:e)-> post:tgt

 ACCUM v.@activityAmount +=1
 HAVING true;

result = SELECT v FROM start:v -(:e)-> post:tgt

 ACCUM v.@activityAmount +=1;

 PRINT result;
}

Example 2. HAVING with literal condition

Results from Query printMemberActivity

5/13/25, 9:12 PM 3.3

1808

5/13/25, 9:12 PM 3.3

1809

GSQL > RUN QUERY printMemberActivity()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "@activityAmount": 4,
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 4,
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 6,
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 4,
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",

5/13/25, 9:12 PM 3.3

1810

The following shows an example of equivalent result sets from using WHERE vs.

HAVING. Recall that the WHERE clause is evaluated before the ACCUM and that the

HAVING clause is evaluated after the ACCUM. Both constrain the result set based on

a condition that vertices must meet.

 "attributes": {
 "gender": "Female",
 "@activityAmount": 6,
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 6,
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "gender": "Female",
 "@activityAmount": 6,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 6,
 "id": "person8"
 },
 "v_type": "person"
 }
]}]
}

Example 3. HAVING vs. WHERE

5/13/25, 9:12 PM 3.3

1811

Compute the total post activity for each male person.
Because the gender of the vertex does not change, evaluating whether the
is male before (WHERE) the ACCUM clause or after (HAVING) the ACCUM clau
change the result. However, if the condition in the HAVING clause could
the ACCUM clause, these statements would produce different results.

CREATE QUERY activeMaleMembers() FOR GRAPH socialNet
{
 SumAccum<INT> @activityAmount;
 start = {person.*};

 ### --- statements produce equivalent results
 result1 = SELECT v FROM start:v -(:e)-> post:tgt
 WHERE v.gender == "Male"
 ACCUM v.@activityAmount +=1;

 result2 = SELECT v FROM start:v -(:e)-> post:tgt
 ACCUM v.@activityAmount +=1
 HAVING v.gender == "Male";

 PRINT result2[result2.@activityAmount];
 PRINT result2[result2.@activityAmount];
}

Results from Query ActiveMaleMembers

5/13/25, 9:12 PM 3.3

1812

5/13/25, 9:12 PM 3.3

1813

GSQL > RUN QUERY activeMaleMembers()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"result2": [
 {
 "v_id": "person3",
 "attributes": {"result2.@activityAmount": 4},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {"result2.@activityAmount": 4},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 }
]},
 {"result2": [
 {
 "v_id": "person3",
 "attributes": {"result2.@activityAmount": 4},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 },

5/13/25, 9:12 PM 3.3

1814

The following example has a compilation error because the result set is taken from

the source vertices, but the HAVING condition is checking the target vertices.

 {
 "v_id": "person1",
 "attributes": {"result2.@activityAmount": 4},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 }
]}
]
}

find all person having a post subject about cats
This query is illegal because the having condition is testing the wrong
CREATE QUERY printMemberAboutCats() FOR GRAPH socialNet
{
 start = {person.*};

 result = SELECT v FROM start:v -(:e)-> post:tgt
 HAVING tgt.subject == "cats";
 PRINT result;
}

> gsql printMemberAboutCats.gsql
Semantic Check Error in query printMemberAboutCats (SEM-50): line 8, col 3
The SELECT block selects src, but the HAVING clause uses tgt

ORDER BY Clause

Example 4. HAVING the wrong vertex set

Compilation Error for printMemberAboutCats

5/13/25, 9:12 PM 3.3

1815

The optional ORDER BY clause sorts the result set.

ASC specifies ascending order (least value first), and DESC specifies descending

order (greatest value first). If neither is specified, then ascending order is used.

Each expr must refer to the attributes or accumulators of a member of the result set,

and the expr must evaluate to a sortable value (e.g., a number or a string). ORDER

BY offers hierarchical sorting by allowing a comma-separated list of expressions,

sorting first by the leftmost expr. It uses the next expression only to sort items

where the current sort expr results in identical values. Any items in the result set

which cannot be sorted (because the sort expressions do not pertain to them) will

appear at the end of the set, after the sorted items.

In tabular SELECT queries, the ORDER BY expressions may only be SELECT column
aliases.

The following example demonstrates the use of ORDER BY with multiple

expressions. The returned vertex set is first ordered by the number of friends of the

vertex, and then ordered by the number of coworkers of that vertex.

orderClause := ORDER BY expr [ASC | DESC] ["," expr [ASC | DESC]]*

find the most popular people, sorting first based on the number as frien
and then in case of a tie by the number of coworkers
CREATE QUERY topPopular() FOR GRAPH friendNet
{

SumAccum<INT> @numFriends;
SumAccum<INT> @numCoworkers;
start = {person.*};

result = SELECT v FROM start -((friend|coworker):e)-> person:v
 ACCUM CASE WHEN e.type == "friend" THEN v.@numFriends += 1

 WHEN e.type == "coworker" THEN v.@numCoworkers += 1
 END
 ORDER BY v.@numFriends DESC, v.@numCoworkers DESC;

PRINT result;
}

EBNF for ORDER BY Clause

topPopular.gsql: ORDER BY Descending

5/13/25, 9:12 PM 3.3

1816

topPopular.json

5/13/25, 9:12 PM 3.3

1817

5/13/25, 9:12 PM 3.3

1818

GSQL > RUN QUERY topPopular()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result": [
 {
 "v_id": "person9",
 "attributes": {
 "@numCoworkers": 3,
 "@numFriends": 5,
 "id": "person9"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "@numCoworkers": 1,
 "@numFriends": 4,
 "id": "person8"
 },
 "v_type": "person"
 },
 {
 "v_id": "person12",
 "attributes": {
 "@numCoworkers": 1,
 "@numFriends": 4,
 "id": "person12"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "@numCoworkers": 4,
 "@numFriends": 3,
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",

5/13/25, 9:12 PM 3.3

1819

The optional LIMIT clause sets constraints on the number and ranking of items

included in the final result set.

Each of the expr must evaluate to a nonnegative integer. To understand LIMIT, note

that the tentative result set is held in the computer as a list of vertices. If the query

has an ORDER BY clause, the order is specified; otherwise the list order is unknown.

Assume we number the vertices as v_1 , v_2 , ..., v_n . The LIMIT clause specifies a

range of vertices, starting from a lower position in the list to an upper position.

There are three forms:

 "attributes": {
 "@numCoworkers": 3,
 "@numFriends": 3,
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {
 "@numCoworkers": 5,
 "@numFriends": 2,
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "@numCoworkers": 3,
 "@numFriends": 2,
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "@numCoworkers": 3,
 "@numFriends": 2,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "@numCoworkers": 1,
 "@numFriends": 2,
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "@numCoworkers": 6,
 "@numFriends": 1,

"id": "person7"

limitClause := LIMIT (expr | expr "," expr | expr OFFSET expr)

LIMIT Clause

EBNF for LIMIT Clause

LIMIT scenarios

5/13/25, 9:12 PM 3.3

1820

Case 1: LIMIT k

• When a single expr is provided, LIMIT returns the first k elements from the

tentative result set. If there are fewer than k elements available, then all elements

will be returned in the result set. If k=5 and the tentative result set has at least 5
items, then the final result list will be [v_1 , v_2 , v_3 , v_4 , v_5].

Case 2: LIMIT j, k

• When a comma separates two expressions, LIMIT treats the first expression j as

an offset. That is, it skips the first j items in the list. The second expr k tells the
maximum number of items items to include. If the list has at least 7 items, then

LIMIT 2, 5 would return [v_3 , v_4 , v_5, v_6 , v_7].

Case 3: LIMIT k OFFSET j

• The behavior of Case 3 is the same as that of Case 2, except that the syntax is
different. The keyword OFFSET separates the two expressions, and the count

comes before the offset, rather than vice versa. If the list has at least 7 items,

then LIMIT 5 OFFSET 2 would return [v_3 , v_4 , v_5, v_6 , v_7].

If any of the expressions evaluate to a negative integer, the results are undefined.

OFFSET is intended for result sets which are in a known order. It is a compile time
error to use OFFSET without the ORDER BY clause.

The following examples demonstrate the various forms of the LIMIT clause.

The first example shows the LIMIT clause when used as an upper limit. It returns a

result set with a maximum size of 4 elements in the set.

 id : person7
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "@numCoworkers": 5,
 "@numFriends": 1,
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person11",
 "attributes": {
 "@numCoworkers": 1,
 "@numFriends": 1,
 "id": "person11"
 },
 "v_type": "person"
 }
]}]
}

result = SELECT v FROM S -(:e)-> :v LIMIT k; # case 1: k = Count
result = SELECT v FROM S -(:e)-> :v LIMIT j, k; # case 2: j = Offset
result = SELECT v FROM S -(:e)-> :v LIMIT k OFFSET j; # case 3: k = Count,

limitEx1.gsql: LIMIT by some number

5/13/25, 9:12 PM 3.3

1821

CREATE QUERY limitEx1(INT k) FOR GRAPH friendNet
{
 start = {person.*};

 result1 = SELECT v FROM start:v
 ORDER BY v.id
 LIMIT k;

PRINT result1[result1.id]; // api v2
}

GSQL > RUN QUERY limitEx1(4)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result1": [
 {
 "v_id": "person1",
 "attributes": {"result1.id": "person1"},
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {"result1.id": "person10"},
 "v_type": "person"
 },
 {
 "v_id": "person11",
 "attributes": {"result1.id": "person11"},
 "v_type": "person"
 },
 {
 "v_id": "person12",
 "attributes": {"result1.id": "person12"},
 "v_type": "person"
 }
]}]
}

limit1Ex.json Results

5/13/25, 9:12 PM 3.3

1822

The following example shows how to use the LIMIT clause with an offset.

The following example shows the alternative syntax for a result size limit with an

offset. This time we try larger values for offset and size. In a large data set,

CREATE QUERY limitEx2(INT j, INT k) FOR GRAPH friendNet
{
 start = {person.*};
 result2 = SELECT v FROM start:v
 ORDER BY v.id
 LIMIT j, k;

 PRINT result2[result2.id]; // api v2
}

GSQL > RUN QUERY limitEx2(2,3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result2": [
 {
 "v_id": "person11",
 "attributes": {"result2.id": "person11"},
 "v_type": "person"
 },
 {
 "v_id": "person12",
 "attributes": {"result2.id": "person12"},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"result2.id": "person2"},
 "v_type": "person"
 }
]}]
}

limit2Ex.gsql: LIMIT with lower-bound and size

limit2Ex.json Results

5/13/25, 9:12 PM 3.3

1823

limitTest(5,20) might return 20 vertices, but since we don't have 25 vertices in the

original data, the output was fewer than 20 vertices.

CREATE QUERY limitEx3(INT j, INT k) FOR GRAPH friendNet
{
 start = {person.*};

 result3 = SELECT v FROM start:v
 ORDER BY v.id
 LIMIT k OFFSET j;

 PRINT result3[result3.id]; // api v2
}

limit3Ex.gsql: LIMIT with OFFSET

limit3Ex.json Results

5/13/25, 9:12 PM 3.3

1824

GSQL > RUN QUERY limitEx3(5,20)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result3": [
 {
 "v_id": "person3",
 "attributes": {"result3.id": "person3"},
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {"result3.id": "person4"},
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"result3.id": "person5"},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"result3.id": "person6"},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"result3.id": "person7"},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"result3.id": "person8"},
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {"result3.id": "person9"},
 "v_type": "person"
 }
]}]
}

5/13/25, 9:12 PM 3.3

1825

SQL-like SELECT statement
The SQL-like SELECT statement defines a tabular output. It introduces the GROUP

BY clause, as well as internal table structures which can be printed.

Just as in SQL, the SELECT keyword is followed by an ordered list of expressions

(columnExpr), each expression defining one column in the output table. The

expressions can refer to the attributes or accumulators of the vertices and edges

selected in the FROM clause of this query. A column can apply one of the

aggregator functions (COUNT, SUM, AVG, MIN, MAX), so that the table aggregates

the raw data into summary results. Each column can be given an alias for its

heading (AS columnName).

If some columns are aggregated, the non-aggregated (grouping) columns must come
first.

Unlike the classic GSQL SELECT statement which assigns its output to a vertex set

variable, the SQL-like form uses INTO tableName to store the results in a table.

tableName can be any identifier that has not been used in the query before.

DISTINCT has the same meaning as it does in SQL: values that appear more than

once in the raw data should only be used once. It can be used either individually for

sqlSelectBlock := sqlSelectClause
 fromClause
 [whereClause]
 [groupByClause]
 [havingClause]
 [orderClause]
 [limitClause]

sqlSelectClause := SELECT [DISTINCT] columnExpr ("," columnExpr)*
 INTO tableName
columnExpr := expr [AS columnName]
 | aggregator "("[DISTINCT] expr ")" [AS columnName]
columnName := name
tableName := name

EBNF for SQL-Like Select Statement

5/13/25, 9:12 PM 3.3

1826

aggregated columns (e.g., count how many unique values there are) or collectively

so that there are no repeated rows in the table.

The SQL-like form may use the GROUP BY clause but may not use the ACCUM and

POST-ACCUM clauses.

This feature is only available in syntax v2. Ensure that the correct syntax version is
specified in the CREATE QUERY header.

In the example graph socialNet , which has vertex types person and post , and

edge type liked for when someone likes a post, use a query to retrieve

timestamps of all likes, the subject of the posts being liked, and the primary IDs of

the people who liked the posts.

Query

CREATE QUERY getLikes() FOR GRAPH socialNet SYNTAX v2 {
 SELECT l.actionTime, pt.subject, p INTO T
 FROM person:p -(liked>:l)- post:pt;
 PRINT T;
}

Output

Example:

5/13/25, 9:12 PM 3.3

1827

5/13/25, 9:12 PM 3.3

1828

[
 {
 "Table1": [
 {
 "actionTime": "2010-01-12 11:22:05",
 "p": "person7",
 "subject": "cats"
 },
 {
 "actionTime": "2010-01-12 21:12:05",
 "p": "person5",
 "subject": "tigergraph"
 },
 {
 "actionTime": "2010-01-11 11:32:00",
 "p": "person1",
 "subject": "Graphs"
 },
 {
 "actionTime": "2010-01-13 03:16:05",
 "p": "person4",
 "subject": "coffee"
 },
 {
 "actionTime": "2010-01-12 10:52:15",
 "p": "person2",
 "subject": "Graphs"
 },
 {
 "actionTime": "2010-01-11 16:02:26",
 "p": "person2",
 "subject": "cats"
 },
 {
 "actionTime": "2010-01-16 05:15:53",
 "p": "person3",
 "subject": "Graphs"
 },
 {
 "actionTime": "2010-01-11 03:26:05",
 "p": "person8",
 "subject": "coffee"
 },
 {
 "actionTime": "2010-01-14 11:23:05",
 "p": "person6",
 "subject": "cats"
 }

5/13/25, 9:12 PM 3.3

1829

The optional GROUP BY clause acts just as it does in basic SQL: it groups and

merge rows of data together, so that the output table summarizes the data, rather

than showing every individual tuple which matches the SELECT and FROM clauses.

The SELECT clause's list of column expressions defines a set of tuples or rows. All

the tuples which have the same value for groupExpr are grouped together. If there

is a second groupExpr , then this is used to subdivide each group into subgroups,

and so on through the list of groupExpr from left to right.

The SELECT clause and GROUP BY clause must be coordinated. Each expression

groupExpr may be a vertex or edge alias from the FROM clause, or an attribute of a

vertex or edge alias. Furthermore, each groupExpr must either be the same as or

the basis of a SELECT columnExpr . In the SELECT clause, any columns which are

not associated with a groupExpr must be be aggregated (with COUNT, SUM, AVG,

MIN or MAX) and must be at the end of the list of columns. For example, in the

workNet graph, if we have this FROM clause:

FROM person:p -(worksFor:w)- company:c

and if we want columns for company's country, whether working full time or not,

and employees, with no grouping we could have

]
 }
]

groupByClause := GROUP BY groupExpr ("," groupExpr)*
groupExpr = expr

SELECT c.country, w.fulltime, p INTO T
FROM person:p -(worksFor:w)- company:c

GROUP BY Clause

Coordinating SELECT and GROUP BY

EBNF for GROUP BY clause

5/13/25, 9:12 PM 3.3

1830

The non-grouped output would look like this:

If we want to group by country and then by work status, we could have this:

Then the grouped output would look like this:

If the SELECT clause contains aggregator functions, the GROUP BY clause can be

omitted. Instead, GSQL will assume that every SELECT expression that is not

aggregrated is to be used for grouping, in left-to-right order.

Example 1 (grouping and aggregation): For each employee, find the number of its

employers

[{"T": [
 {"country": "us","fullTime": true,"p": "person3"},
 {"country": "us","fullTime": true,"p": "person6"},
 {"country": "us","fullTime": true,"p": "person10"},
 ...

SELECT c.country, w.fulltime, COUNT(p) AS numEmployees INTO T
FROM person:p -(worksFor:w)- company:c
GROUP BY c.country, w.fulltime

[{"T": [
 {"country": "us","fullTime": true,"numEmployees": 7},
 {"country": "chn","fullTime": false,"numEmployees": 4},
 {"country": "chn","fullTime": true,"numEmployees": 2},
 ...

Query

Implied GROUP BY

Examples

Coordination between SELECT columns and GROUP BY expressions

5/13/25, 9:12 PM 3.3

1831

Example 2 (HAVING clause): Find persons with at least 2 employers.

CREATE QUERY tabularEx1() FOR GRAPH workNet SYNTAX v2 {
 SELECT p AS employee, count(c) AS employerCount INTO T
 FROM person:p -(worksFor)- company:c
 GROUP BY p;

 PRINT T;
}

Output

{"version":{"edition":"enterprise",
 "api":"v2",
 "schema":0},
"error":false,
"message":"",
"results":[{"T":[
{"employee":"person6","employerCount":1},
{"employee":"person7","employerCount":2},
{"employee":"person12","employerCount":1},
{"employee":"person3","employerCount":1},
{"employee":"person11","employerCount":1},
{"employee":"person4","employerCount":1},
{"employee":"person9","employerCount":2},
{"employee":"person10","employerCount":2},
{"employee":"person1","employerCount":2},
{"employee":"person5","employerCount":1},
{"employee":"person2","employerCount":2},
{"employee":"person8","employerCount":1}]}]}

Query

5/13/25, 9:12 PM 3.3

1832

Example 2a (implicit grouping): Same as Example 2, but with implicit grouping from

the SELECT clause.

The output is the same as for Example 2.

CREATE QUERY tabularEx2() FOR GRAPH workNet SYNTAX v2 {
 SELECT p AS employee, count(c) AS employerCount INTO T
 FROM person:p -(worksFor)- company:c
 GROUP BY p
 HAVING employerCount > 1;

 PRINT T;
}

Output

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"T": [
 {"employee": "person2","employerCount": 2},
 {"employee": "person1","employerCount": 2},
 {"employee": "person7","employerCount": 2},
 { "employee": "person10","employerCount": 2},
 {"employee": "person9","employerCount": 2}
]}]
}

CREATE QUERY tabularEx2a() FOR GRAPH workNet SYNTAX v2 {
 SELECT p AS employee, count(c) AS employerCount INTO T
 FROM person:p -(worksFor)- company:c
 HAVING employerCount > 1;

 PRINT T;
}

5/13/25, 9:12 PM 3.3

1833

Example 3 (grouping, aggregation, order by and limit): Group employees by country

and by work status, sorted by group size and then by country name.

Query

CREATE QUERY tabularEx3() SYNTAX v2 {
 SELECT c.country, w.fullTime, COUNT(p) AS numEmployees INTO T
 FROM person:p -(worksFor:w)- company:c
 GROUP BY c.country, w.fullTime
 ORDER BY numEmployees DESC, c.country ASC
 LIMIT 10;

 PRINT T;
}

Output

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"T": [
 {"country":"us", "numEmployees":7, "fullTime":true},
 {"country":"chn", "numEmployees":4, "fullTime":false},
 {"country":"chn", "numEmployees":2, "fullTime":true},
 {"country":"jp", "numEmployees":2, "fullTime":false},
 {"country":"can", "numEmployees":1, "fullTime":true},
 {"country":"jp", "numEmployees":1, "fullTime":true}
]}]
}

5/13/25, 9:12 PM 3.3

1834

Control Flow Statements
The GSQL Query Language includes a comprehensive set of control flow statements

to empower sophisticated graph traversal and data computation: IF/ELSE, CASE,

WHILE, and FOREACH.

Note that any of these statements can be used as a query-body statement or as a

DML-sub level statement.

If the control flow statement is at the query-body level, then its block(s) of statements
are query-body statements (queryBodyStmts). In a queryBodyStmts block , each
individual statement ends with a semicolon, so there is always a semicolon at the end.

If the control flow statement is at the DML-sub level, then its block(s) of statements are
DML-sub statements (dmlSubStmtList). In a dmlSubStmtList block, a comma
separates statements, but there is no punctuation at the end.

The "Statement Types" subsection in the Chapter on "CREATE / INSTALL / RUN /

SHOW / DROP QUERY" has a more detailed general example of the difference

between queryBodyStmts and dmlSubStmts.

The IF statement provides conditional branching: execute a block of statements (

queryBodyStmts or dmlSubStmtList) only if a given condition is true. The IF

statement allows for zero or more ELSE-IF clauses, followed by an optional ELSE

clause. The IF statement can be used either at the query-body level or at the DML-

sub-statement level. (See the note about differences in block syntax .)

Differences in Block Syntax

IF Statement

IF syntax

5/13/25, 9:12 PM 3.3

1835

If a particular IF condition is not true, then the flow proceeds to the next ELSE IF

condition. When a true condition is encountered, its corresponding block of

statements is executed, and then the IF statement terminates (skipping any

remaining ELSE-IF or ELSE clauses). If an ELSE-clause is present, its block of

statements are executed if none of the preceding conditions are true. Overall, the

functionality can be summarized as "execute the first block of statements whose

conditional test is true."

queryBodyIfStmt := IF condition THEN queryBodyStmts
 [ELSE IF condition THEN queryBodyStmts]*
 [ELSE queryBodyStmts] END
dmlSubIfStmt := IF condition THEN dmlSubStmtList
 [ELSE IF condition THEN dmlSubStmtList]*
 [ELSE dmlSubStmtList] END

if then
IF x == 5 THEN y = 10; END; # y is assigned to 10 only if x is 5.

if then else
IF x == 5 THEN y = 10; # y is 10 only if x is 5.
ELSE y = 20; END; # y is 20 only if x is NOT 5.

#if with ELSE IF
IF x == 5 THEN y = 10; # y is 10 only if x is 5.
ELSE IF x == 7 THEN y = 5; # y is 5 only if x is 7.
ELSE y = 20; END; # y is 20 only if x is NOT 5 and NOT 7.

IF semantics

Example 1. countFriendsOf2.gsql : Simple IF-ELSE at query-body level

5/13/25, 9:12 PM 3.3

1836

count the number of friends a person has, and optionally include coworke
CREATE QUERY countFriendsOf2(vertex<person> seed, BOOL includeCoworkers) F
{
 SumAccum<INT> @@numFriends = 0;
 start = {seed};

 IF includeCoworkers THEN
 friends = SELECT v FROM start -((friend | coworker):e)-> :v
 ACCUM @@numFriends +=1;
 ELSE
 friends = SELECT v FROM start -(friend:e)-> :v
 ACCUM @@numFriends +=1;
 END;
 PRINT @@numFriends, includeCoworkers;
}

GSQL > RUN QUERY countFriendsOf2("person2", true)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@numFriends": 5,
 "includeCoworkers": true
 }]
}
GSQL > RUN QUERY countFriendsOf2("person2", false)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@numFriends": 2,
 "includeCoworkers": false
 }]
}

Example 1 Results

5/13/25, 9:12 PM 3.3

1837

determine if a user is active in terms of social networking (i.e., posts
CREATE QUERY calculateActivity(vertex<person> seed) FOR GRAPH socialNet
{
 SumAccum<INT> @@numberPosts = 0;
 start = {seed};
 result = SELECT postVertex FROM start -(posted:e)-> :postVertex
 ACCUM @@numberPosts += 1;

 IF @@numberPosts < 2 THEN
 PRINT "Not very active";
 ELSE IF @@numberPosts < 3 THEN
 PRINT "Semi-active";
 ELSE
 PRINT "Very active";
 END;
}

GSQL > RUN QUERY calculateActivity("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Not very active": "Not very active"}]
}
GSQL > RUN QUERY calculateActivity("person5")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Semi-active": "Semi-active"}]
}

Example 2. IF-ELSE IF-ELSE at query-body level

Example 2 Results for Query calculateActivity

Example 3. Nested IF at query-body level

5/13/25, 9:12 PM 3.3

1838

use a more advanced activity calculation, taking into account number of
and number of likes that a user made
CREATE QUERY calculateInDepthActivity(vertex<person> seed) FOR GRAPH socia
{
 SumAccum<INT> @@numberPosts = 0;
 SumAccum<INT> @@numberLikes = 0;
 start = {seed};
 result = SELECT postVertex FROM start -(posted:e)-> :postVertex
 ACCUM @@numberPosts += 1;
 result = SELECT likedPost FROM start -(liked:e)-> :likedPost
 ACCUM @@numberLikes += 1;

 IF @@numberPosts < 2 THEN
 IF @@numberLikes < 1 THEN
 PRINT "Not very active";
 ELSE
 PRINT "Semi-active";
 END;
 ELSE IF @@numberPosts < 3 THEN
 IF @@numberLikes < 2 THEN
 PRINT "Semi-active";
 ELSE
 PRINT "Active";
 END;
 ELSE
 PRINT "Very active";
 END;
}

GSQL > RUN QUERY calculateInDepthActivity("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Semi-active": "Semi-active"}]
}

Example 3 Results for Query calculateInDepthActivity

Example 4. Nested IF at DML-sub level

5/13/25, 9:12 PM 3.3

1839

give each user post an accumulated rating based on the subject and how m
This query is equivalent to the query ratePosts shown above
CREATE QUERY ratePosts2() FOR GRAPH socialNet {
 SumAccum<INT> @rating = 0;
 allPeople = {person.*};

 results = SELECT v FROM allPeople -(:e)-> post:v
 ACCUM IF e.type == "posted" THEN
 IF v.subject == "cats" THEN
 v.@rating += -1 # -1 if post is about cats
 ELSE IF v.subject == "Graphs" THEN
 v.@rating += 2 # +2 if post is about graphs
 ELSE IF v.subject == "tigergraph" THEN
 v.@rating += 10 # +10 if post is about tigergraph
 END
 ELSE IF e.type == "liked" THEN
 v.@rating += 3 # +3 each time p
 END
 ORDER BY v.@rating DESC
 LIMIT 5;
 PRINT results;
}

Example 4 Results for Query ratePosts2

5/13/25, 9:12 PM 3.3

1840

5/13/25, 9:12 PM 3.3

1841

GSQL > RUN QUERY ratePosts2()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"results": [
 {
 "v_id": "6",
 "attributes": {
 "postTime": "2011-02-05 02:02:05",
 "subject": "tigergraph",
 "@rating": 13
 },
 "v_type": "post"
 },
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs",
 "@rating": 11
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph",
 "@rating": 10
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph",
 "@rating": 10
 },
 "v_type": "post"
 },
 {
 "v_id": "4",

5/13/25, 9:12 PM 3.3

1842

The CASE statement provides conditional branching: execute a block of statements

only if a given condition is true. CASE statements can be used as query-body

statements or DML-sub-statements. (See the note about differences in block syntax

.)

One CASE statement contains one or more WHEN-THEN clauses, each WHEN

presenting one expression. The CASE statement may also have one ELSE clause

whose statements are executed if none of the preceding conditions are true.

There are two syntaxes of the CASE statement: one equivalent to an if-else

statement, and the other is structured like a switch statement. The if-else version

evaluates the boolean condition within each WHEN-clause and executes the first

block of statements whose condition is true. The optional concluding ELSE-clause is

executed only if all WHEN-clause conditions are false.

The switch version evaluates the expression following the keyword WHEN and

compares its value to the expression immediately following the keyword CASE.

These expressions do not need to be boolean; the CASE statement compares pairs

of expressions to see if their values are equal. The first WHEN-THEN clause to have

an expression value equal to the CASE expression value is executed; the remaining

 "attributes": {
 "postTime": "2011-02-07 05:02:51",
 "subject": "coffee",
 "@rating": 6
 },
 "v_type": "post"
 }
]}]
}

queryBodyCaseStmt := CASE (WHEN condition THEN queryBodyStmts)+ [ELSE que
 | CASE expr (WHEN constant THEN queryBodyStmts)+ [ELSE que
dmlSubCaseStmt := CASE (WHEN condition THEN dmlSubStmtList)+ [ELSE dml
 | CASE expr (WHEN constant THEN dmlSubStmtList)+ [ELSE dml

CASE Statement

CASE syntax

5/13/25, 9:12 PM 3.3

https://doc.tigergraph.com/2.1.3/GSQL-Language-Reference-Part-2---Querying.html#GSQLLanguageReferencePart2-Querying-queryBlock_vs_DMLSub_warning
https://doc.tigergraph.com/2.1.3/GSQL-Language-Reference-Part-2---Querying.html#GSQLLanguageReferencePart2-Querying-queryBlock_vs_DMLSub_warning
https://doc.tigergraph.com/2.1.3/GSQL-Language-Reference-Part-2---Querying.html#GSQLLanguageReferencePart2-Querying-queryBlock_vs_DMLSub_warning

1843

clauses are skipped. The optional ELSE-clause is executed only if no WHEN-clause

expression has a value matching the CASE value.

STRING drink = "Juice";

CASE statement: if-else version
CASE
 WHEN drink == "Juice" THEN @@calories += 50
 WHEN drink == "Soda" THEN @@calories += 120
 ...
 ELSE @@calories = 0 # Optional else-clause
END
Since drink = "Juice", 50 will be added to calories

CASE statement: switch version
CASE drink
 WHEN "Juice" THEN @@calories += 50
 WHEN "Soda" THEN @@calories += 120
 ...
 ELSE @@calories = 0 # Optional else-clause
END
Since drink = "Juice", 50 will be added to calories

Display the total number times connected users posted about a certain su
CREATE QUERY userNetworkPosts (vertex<person> seedUser, STRING subjectName
 SumAccum<INT> @@topicSum = 0;
 OrAccum @visited;
 reachableVertices = {}; # empty vertex set
 visitedVertices (ANY) = {seedUser}; # set that can contain ANY type o

 WHILE visitedVertices.size() !=0 DO # loop terminates when all
 visitedVertices = SELECT s # s is all neighbors of vi
 FROM visitedVertices-(:e)->:s
 WHERE s.@visited == false
 ACCUM s.@visited = true,
 CASE
 WHEN s.type == "post" and s.subject == subjectName THE
 END;
 END;
 PRINT @@topicSum;
}

CASE Semantics

Example 1. CASE as IF-ELSE

5/13/25, 9:12 PM 3.3

1844

GSQL > RUN QUERY userNetworkPosts("person1", "Graphs")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@topicSum": 3}]
}

tally male and female friends of the starting vertex
CREATE QUERY countGenderOfFriends(vertex<person> seed) FOR GRAPH socialNet
 SumAccum<INT> @@males = 0;
 SumAccum<INT> @@females = 0;
 SumAccum<INT> @@unknown = 0;
 startingVertex = {seed};

 people = SELECT v FROM startingVertex -(friend:e)->:v
 ACCUM CASE v.gender

 WHEN "Male" THEN @@males += 1
 WHEN "Female" THEN @@females +=1
 ELSE @@unknown += 1
 END;

PRINT @@males, @@females, @@unknown;
}

Example 1 Results for Query userNetworkPosts

Example 2. CASE as switch

Example 2 Results for Query countGenderOfFriends

5/13/25, 9:12 PM 3.3

1845

GSQL > RUN QUERY countGenderOfFriends("person4")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@males": 2,
 "@@unknown": 0,
 "@@females": 1
 }]
}

give each social network user a social impact score which accumulates
based on how many friends and posts they have
CREATE QUERY scoreSocialImpact() FOR GRAPH socialNet api("v2") {
 SumAccum<INT> @socialImpact = 0;
 allPeople = {person.*};
 people = SELECT v FROM allPeople:v
 ACCUM CASE WHEN v.outdegree("friend") > 1 THEN v.@socialImpa
 CASE WHEN v.outdegree("friend") > 2 THEN v.@socialImpa
 CASE WHEN v.outdegree("posted") > 1 THEN v.@socialImpa
 CASE WHEN v.outdegree("posted") > 3 THEN v.@socialImpa
 #PRINT people.@socialImpact; // api v1
 PRINT people[people.@socialImpact]; // api v2
}

Example 3. Multiple CASE statements

Example 3 Results for Query scoreSocialImpact

5/13/25, 9:12 PM 3.3

1846

5/13/25, 9:12 PM 3.3

1847

GSQL > RUN QUERY scoreSocialImpact()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"people": [
 {
 "v_id": "person4",
 "attributes": {"people.@socialImpact": 2},
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {"people.@socialImpact": 1},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"people.@socialImpact": 2},
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {"people.@socialImpact": 1},
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"people.@socialImpact": 2},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"people.@socialImpact": 2},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"people.@socialImpact": 1},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"people.@socialImpact": 3},

5/13/25, 9:12 PM 3.3

1848

 "v_type": "person"
 }
]}]
}

give each user post a rating based on the subject and how many likes it
CREATE QUERY ratePosts() FOR GRAPH socialNet api("v2") {
 SumAccum<INT> @rating = 0;
 allPeople = {person.*};

 results = SELECT v FROM allPeople -(:e)-> post:v
 ACCUM CASE e.type
 WHEN "posted" THEN
 CASE
 WHEN v.subject == "cats" THEN v.@rating += -1 # -1 if post ab
 WHEN v.subject == "Graphs" THEN v.@rating += 2 # +2 if post ab
 WHEN v.subject == "tigergraph" THEN v.@rating += 10 # +10 if pos
 END
 WHEN "liked" THEN v.@rating += 3 # +3 each time post
 END;
 #PRINT results.@rating; // api v1
 PRINT results[results.@rating]; // api v2
}

Example 4. Nested CASE statements

Example 4 Results for Query ratePosts

5/13/25, 9:12 PM 3.3

1849

5/13/25, 9:12 PM 3.3

1850

GSQL > RUN QUERY ratePosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"results": [
 {
 "v_id": "0",
 "attributes": {"results.@rating": 11},
 "v_type": "post"
 },
 {
 "v_id": "10",
 "attributes": {"results.@rating": 2},
 "v_type": "post"
 },
 {
 "v_id": "2",
 "attributes": {"results.@rating": 0},
 "v_type": "post"
 },
 {
 "v_id": "4",
 "attributes": {"results.@rating": 6},
 "v_type": "post"
 },
 {
 "v_id": "9",
 "attributes": {"results.@rating": -1},
 "v_type": "post"
 },
 {
 "v_id": "3",
 "attributes": {"results.@rating": 2},
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {"results.@rating": 10},
 "v_type": "post"
 },
 {
 "v_id": "7",
 "attributes": {"results.@rating": 2},

5/13/25, 9:12 PM 3.3

1851

The WHILE statement provides unbounded iteration over a block of statements.

WHILE statements can be used as query-body statements or DML-sub-statements.

(See the note about differences in block syntax .)

The WHILE statement iterates over its body (queryBodyStmts or dmlSubStmtList)

until the condition evaluates to false or until the iteration limit is met. A condition is

any expression that evaluates to a boolean. The condition is evaluated before each

iteration. CONTINUE statements can be used to change the control flow within the

while block. BREAK statements can be used to exit the while loop.

 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {"results.@rating": 10},
 "v_type": "post"
 },
 {
 "v_id": "11",
 "attributes": {"results.@rating": -1},
 "v_type": "post"
 },
 {
 "v_id": "8",
 "attributes": {"results.@rating": 2},
 "v_type": "post"
 },
 {
 "v_id": "6",
 "attributes": {"results.@rating": 13},
 "v_type": "post"
 }
]}]
}

queryBodyWhileStmt := WHILE condition [LIMIT simpleSize] DO queryBodyStmts
dmlSubWhileStmt := WHILE condition [LIMIT simpleSize] DO dmlSubStmtList
simpleSize := integer | varName | paramName

WHILE Statement

WHILE syntax

5/13/25, 9:12 PM 3.3

1852

A WHILE statement may have an optional LIMIT clause. LIMIT clauses has a

constant positive integer value or integer variable to constrain the maximum number

of loop iterations. The example below demonstrates how the LIMIT behaves.

If a limit value is not specified, it is possible for a WHILE loop to iterate infinitely. It is
the responsibility of the query author to design the condition logic so that it is
guaranteed to eventually be true (or to set a limit).

Below are a number of examples that demonstrate the use of WHILE statements.

These three WHILE statements behave the same. Each terminates when
(v.size == 0) or after 5 iterations of the loop.
WHILE v.size() !=0 LIMIT 5 DO
 # Some statements
END;

INT iter = 0;
WHILE (v.size() !=0) AND (iter < 5) DO

Some statements
 iter = iter + 1;
END;

INT iter = 0;
WHILE v.size() !=0 DO
 IF iter == 5 THEN BREAK; END;
 # Some statements

iter = iter + 1;
END;

WHILE LIMIT semantics

Example 1. Simple WHILE loop

5/13/25, 9:12 PM 3.3

1853

find all vertices which are reachable from a starting seed vertex (i.e.,
CREATE QUERY reachable(vertex<person> seed) FOR GRAPH workNet
{
 OrAccum @visited;
 reachableVertices = {}; # empty vertex set
 visitedVertices (ANY) = {seed}; # set that can contain ANY type of ve

 WHILE visitedVertices.size() !=0 DO # loop terminates when all
 visitedVertices = SELECT s # s is all neighbors of vi
 FROM visitedVertices-(:e)->:s
 WHERE s.@visited == false
 POST-ACCUM s.@visited = true;
 reachableVertices = reachableVertices UNION visitedVertices;
 END;
 PRINT reachableVertices;
}

reachable Results

5/13/25, 9:12 PM 3.3

1854

5/13/25, 9:12 PM 3.3

1855

GSQL > RUN QUERY reachable("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"reachableVertices": [
 {
 "v_id": "person3",
 "attributes": {
 "interestList": ["teaching"],
 "skillSet": [6, 1, 4],
 "skillList": [4, 1, 6],
 "locationId": "jp",
 "interestSet": ["teaching"],
 "@visited": true,
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "@visited": true,
 "id": "person9"
 },
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "interestSet": ["football"],
 "@visited": true,
 "id": "person4"
 },
 "v_type": "person"

5/13/25, 9:12 PM 3.3

1856

 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "interestSet": ["sport", "art"],
 "@visited": true,
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "@visited": true,
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "interestList": ["sport", "financial", "engineering"],
 "skillSet": [5, 2, 8],
 "skillList": [8, 2, 5],
 "locationId": "can",
 "interestSet": ["engineering", "financial", "sport"],
 "@visited": true,
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "interestList": ["music", "art"],
 "skillSet": [10, 7],
 "skillList": [7, 10],
 "locationId": "jp",
 "interestSet": ["art", "music"],

"@visited": true,

5/13/25, 9:12 PM 3.3

1857

 @visited : true,
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "@visited": true,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "interestList": ["management"],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2],
 "locationId": "chn",
 "interestSet": ["management"],
 "@visited": true,
 "id": "person8"
 },
 "v_type": "person"
 },
 {
 "v_id": "company3",
 "attributes": {
 "country": "jp",
 "@visited": true,
 "id": "company3"
 },
 "v_type": "company"
 },
 {
 "v_id": "company2",
 "attributes": {
 "country": "chn",
 "@visited": true,
 "id": "company2"
 },
 "v_type": "company"
 },

find all vertices which are reachable within two hops from a starting se
CREATE QUERY reachableWithinTwo(vertex<person> seed) FOR GRAPH workNet
{
 OrAccum @visited;
 reachableVertices = {}; # empty vertex set
 visitedVertices (ANY) = {seed}; # set that can contain ANY type of ve

 WHILE visitedVertices.size() !=0 LIMIT 2 DO # loop terminates when all
 visitedVertices = SELECT s # s is all neighbors of v
 FROM visitedVertices-(:e)->:s
 WHERE s.@visited == false
 POST-ACCUM s.@visited = true;
 reachableVertices = reachableVertices UNION visitedVertices;
 END;
 PRINT reachableVertices;
}

Example 2. WHILE loop using a LIMIT

reachableWithinTwo Results

5/13/25, 9:12 PM 3.3

1858

 {
 "v_id": "company1",
 "attributes": {
 "country": "us",
 "@visited": true,
 "id": "company1"
 },
 "v_type": "company"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "@visited": true,
 "id": "person10"
 },
 "v_type": "person"
 }
]}]
}

5/13/25, 9:12 PM 3.3

1859

GSQL > RUN QUERY reachableWithinTwo("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"reachableVertices": [
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "interestSet": ["football"],
 "@visited": true,
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "interestList": ["teaching"],
 "skillSet": [6, 1, 4],
 "skillList": [4, 1, 6],
 "locationId": "jp",
 "interestSet": ["teaching"],
 "@visited": true,
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "@visited": true,
 "id": "person9"
 },
 "v_type": "person"

5/13/25, 9:12 PM 3.3

1860

 },
 {
 "v_id": "person5",
 "attributes": {
 "interestList": ["sport", "financial", "engineering"],
 "skillSet": [5, 2, 8],
 "skillList": [8, 2, 5],
 "locationId": "can",
 "interestSet": ["engineering", "financial", "sport"],
 "@visited": true,
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "interestList": ["music", "art"],
 "skillSet": [10, 7],
 "skillList": [7, 10],
 "locationId": "jp",
 "interestSet": ["art", "music"],
 "@visited": true,
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "@visited": true,
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "interestList": ["management"],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2],
 "locationId": "chn",
 "interestSet": ["management"],

"@visited": true

5/13/25, 9:12 PM 3.3

1861

The FOREACH statement provides bounded iteration over a block of statements.

FOREACH statements can be used as query-body statements or DML-sub-

statements. (See the note about differences in block syntax .)

The formal syntax for forEachControl appears complex. It can be broken down into

the following cases:

• name IN setBagExpr

• (key, value) pair IN setBagExpr // because it's a Map

• name IN RANGE [expr, expr]

• name IN RANGE [expr, expr].STEP (expr)

 @visited : true,
 "id": "person8"
 },
 "v_type": "person"
 },
 {
 "v_id": "company1",
 "attributes": {
 "country": "us",
 "@visited": true,
 "id": "company1"
 },
 "v_type": "company"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "@visited": true,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "company2",
 "attributes": {
 "country": "chn",
 "@visited": true,
 "id": "company2"
 },
 "v_type": "company"
 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "interestSet": ["sport", "art"],
 "@visited": true,
 "id": "person7"
 },
 "v_type": "person"
 },

queryBodyForEachStmt := FOREACH forEachControl DO queryBodyStmts END
dmlSubForEachStmt := FOREACH forEachControl DO dmlSubStmtList END

forEachControl := (iterationVar | "(" keyVar ("," valueVar)+ ")") (IN | "
 | iterationVar IN RANGE "[" expr "," expr"]" ["." STEP(" e
iterationVar := name
keyVar := name
valueVar := name

FOREACH Statement

FOREACH syntax

5/13/25, 9:12 PM 3.3

1862

Note that setBagExpr includes container accumulators and explicit sets.

The FOREACH statement has the following restrictions:

• In a DML-sub level FOREACH, it is never permissible to update the loop variable

(the variable declared before IN, e.g., var in "FOREACH var IN setBagExpr").

• In a query-body level FOREACH, in most cases it is not permissible to update the

loop variable. The following exceptions apply:

◦ If the iteration is over a ListAccum, its values can be updated.

◦ If the iteration is over a MapAccum, its values can be updated, but its keys

cannot.

• If the iteration is over a set of vertices, it is not permissible to access (read or

write) their vertex-attached accumulators.

• A query-body-level FOREACH cannot iterate over a set or bag of constants. For

example, FOREACH i in (1,2,3) is not supported. However, DML-sub FOREACH

does support this.

The FOREACH statement has an optional RANGE clause RANGE[expr, expr], which

can be used to define the iteration collection. Optionally, the range may specify a

step size:

RANGE[expr, expr].STEP(expr)

Each expr must evaluate to an integer. Any of the integers may be negative, but the

step expr may not be 0.

The clause RANGE[a,b].STEP(c) produces the sequence of integers from a to b,

inclusive, with step size c. That is,

(a, a+c, a+2*c, a+3*c, ... a+k*c), where k = the largest integer such that |k*c| ≤ |b-

a|.

If the .STEP method is not given, then the step size c = 1.

 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "@visited": true,
 "id": "person1"
 },
 "v_type": "person"
 }
]}]
}

FOREACH ... IN RANGE

Nested FOREACH IN RANGE with MapAccum

5/13/25, 9:12 PM 3.3

1863

The step value can be positive for an ascending range or negative for a descending

range. If the step has the wrong polarity, then the loop has zero iterations; that is,

the exit condition is already satisfied.

CREATE QUERY foreachRangeEx() FOR GRAPH socialNet {
 ListAccum<INT> @@t;
 Start = {person.*};
 FOREACH i IN RANGE[0, 2] DO
 @@t += i;
 L = SELECT Start
 FROM Start
 WHERE Start.id == "person1"
 ACCUM
 FOREACH j IN RANGE[0, i] DO
 @@t += j
 END
 ;
 END;
 PRINT @@t;
}

GSQL > RUN QUERY foreachRangeEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@t": [0, 0, 1, 0, 1, 2, 0, 1, 2]}]
}

CREATE QUERY foreachRangeStep(INT a, INT b, INT c) FOR GRAPH minimalNet {
 ListAccum<INT> @@t;
 FOREACH i IN RANGE[a,b].step(c) DO
 @@t += i;
 END;
 PRINT @@t;
}

Results for Query foreachRangeEx

FOREACH IN RANGE with step

5/13/25, 9:12 PM 3.3

1864

GSQL > RUN QUERY foreachRangeStep(100,0,-9)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@t": [
 100,
 91,
 82,
 73,
 64,
 55,
 46,
 37,
 28,
 19,
 10,
 1
]}]
}
GSQL > RUN QUERY foreachRangeStep(-100,100,-9)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@t": []}]
}

Query-body-level FOREACH Examples

foreachRangeStep.json Results

Example 1 - FOREACH with ListAccum

5/13/25, 9:12 PM 3.3

1865

Count the number of companies whose country matches the provided string
CREATE QUERY companyCount(STRING countryName) FOR GRAPH workNet {
 ListAccum<STRING> @@companyList;
 INT countryCount;
 start = {ANY}; # start will have a set of all ver

 s = SELECT v FROM start:v # get all vertices
 WHERE v.type == "company" # that have a type of "company"
 ACCUM @@companyList += v.country; # append the country attribute fro

 # Iterate the ListAccum and compare each element to the countryName para
 FOREACH item in @@companyList DO
 IF item == countryName THEN
 countryCount = countryCount + 1;
 END;
 END;
 PRINT countryCount;
}

GSQL > RUN QUERY companyCount("us")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"countryCount": 2}]
}
GSQL > RUN QUERY companyCount("can")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"countryCount": 1}]
}

companyCount Results

Example 2 - FOREACH with a seed set

5/13/25, 9:12 PM 3.3

1866

#Find all company person who live in a given country
CREATE QUERY employeesByCompany(STRING country) FOR GRAPH workNet {
 ListAccum<VERTEX<company>> @@companyList;
 start = {ANY};

 # Build a list of all company vertices
 # (these are vertex IDs only)
 s = SELECT v FROM start:v
 WHERE v.type == "company"
 ACCUM @@companyList += v;

 # Use the vertex IDs as Seeds for vertex sets
 FOREACH item IN @@companyList DO
 companyItem = {item};
 employees = SELECT t FROM companyItem -(worksFor)-> :t
 WHERE (t.locationId == country);
 PRINT employees;
 END;
}

employeesByCompany Results

5/13/25, 9:12 PM 3.3

1867

5/13/25, 9:12 PM 3.3

1868

GSQL > RUN QUERY employeesByCompany("us")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"employees": []},
 {"employees": []},
 {"employees": [
 {
 "v_id": "person9",
 "attributes": {
 "interestList": [
 "financial",
 "teaching"
],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "id": "person9"
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "interestSet": ["sport", "art"],
 "id": "person7"

5/13/25, 9:12 PM 3.3

1869

 },
 "v_type": "person"
 }
]},
 {"employees": [
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "interestSet": ["football"],
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "id": "person9"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "interestSet": ["sport", "art"],
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",

"interestSet": ["financial" "management"]

Example 3 - Nested FOREACH with MapAccum

5/13/25, 9:12 PM 3.3

1870

 interestSet : [financial , management],
 "id": "person1"
 },
 "v_type": "person"
 }
]},
 {"employees": [
 {
 "v_id": "person10",
 "attributes": {
 "interestList": [
 "football",
 "sport"
],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "id": "person1"
 },
 "v_type": "person"
 }
]}
]
}

Count the number of employees from a given country and list their ids
CREATE QUERY employeeByCountry(STRING countryName) FOR GRAPH workNet {
 MapAccum <STRING, ListAccum<STRING>> @@employees;

 # start will have a set of all person type vertices
 start = {person.*};

 # Build a map using person locationId as a key and a list of strings to
 s = SELECT v FROM start:v
 ACCUM @@employees += (v.locationId -> v.id);

 # Iterate the map using (key,value) pairs
 FOREACH (key,val) in @@employees DO
 IF key == countryName THEN
 PRINT val.size();

 # Nested foreach to iterate over the list of person ids
 FOREACH employee in val DO
 PRINT employee;
 END;

 # MapAccum keys are unique so we can BREAK out of the loop
 BREAK;
 END;
 END;
}

GSQL > RUN QUERY employeeByCountry("us")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"val.size()": 5},
 {"employee": "person4"},
 {"employee": "person10"},
 {"employee": "person7"},
 {"employee": "person1"},
 {"employee": "person9"}
]
}

employeeByCountry Results

5/13/25, 9:12 PM 3.3

1871

Show post topics liked by users and show total likes per topic
CREATE QUERY topicLikes() FOR GRAPH socialNet {
 SetAccum<STRING> @@personPosts;
 SumAccum<INT> @postLikes;
 MapAccum<STRING,INT> @@likesByTopic;

 start = {person.*};

 # Find all user posts and generate a set of post topics
 # (set has no duplicates)
 posts = SELECT g FROM start - (posted) -> :g
 ACCUM @@personPosts += g.subject;

 # Use set of topics to increment how many times a specfic
 # post is liked by other users
 likedPosts = SELECT f FROM start - (liked) -> :f
 ACCUM FOREACH x in @@personPosts DO
 CASE WHEN (f.subject == x) THEN
 f.@postLikes += 1
 END
 END
 # Aggregate all liked totals by topic
 POST-ACCUM @@likesByTopic += (f.subject -> f.@postLikes);

 # Display the number of likes per topic
 PRINT @@likesByTopic;
}

DML-sub FOREACH Examples

ACCUM FOREACH

Results for Query topicLikes

5/13/25, 9:12 PM 3.3

1872

GSQL > RUN QUERY topicLikes()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@likesByTopic": {
 "cats": 3,
 "coffee": 2,
 "Graphs": 3,
 "tigergraph": 1
 }}]
}

#Show a summary of the number of friends all persons have by gender
CREATE QUERY friendGender() FOR GRAPH socialNet {
 ListAccum<STRING> @friendGender;
 SumAccum<INT> @@maleGenderCount;
 SumAccum<INT> @@femaleGenderCount;

 start = {person.*};

 # Record a list showing each friend's gender
 socialMembers = SELECT s from start:s -(friend)-> :g
 ACCUM s.@friendGender += (g.gender)

 # Loop over each list of genders and total them
 POST-ACCUM FOREACH x in s.@friendGender DO

 CASE WHEN (x == "Male") THEN
 @@maleGenderCount += 1
 ELSE
 @@femaleGenderCount += 1
 END

 END;

 PRINT @@maleGenderCount;
 PRINT @@femaleGenderCount;
}

Example 1 - POST-ACCUM FOREACH

Results for Query friendGender

5/13/25, 9:12 PM 3.3

1873

The CONTINUE and BREAK statements can only be used within a block of a WHILE

or FOREACH statement. The CONTINUE statement branches control flow to the end

of the loop, skipping any remaining statements in the current iteration, and

proceeding to the next iteration. That is, everything in the loop block after the

CONTINUE statement will be skipped, and then the loop will continue as normal.

The BREAK statement branches control flow out of the loop, i.e., it will exit the loop

and stop iteration.

Below are a number of examples that demonstrate the use of BREAK and

CONTINUE.

GSQL > RUN QUERY friendGender()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@maleGenderCount": 11},
 {"@@femaleGenderCount": 7}
]
}

CONTINUE and BREAK Statements

Continue and Break Semantics

5/13/25, 9:12 PM 3.3

1874

While with a continue
INT i = 0;
INT nCount = 0;
WHILE i < 10 DO
 i = i + 1;
 IF (i % 2 == 0) { CONTINUE; }
 nCount = nCount + 1;
END;
i is 10, nCount is 5 (skips the increment for every even i).

While with a break
i = 0;
WHILE i < 10 DO
 IF (i == 5) { BREAK; } # When i is 5 the loop is exited
 i = i + 1;
END;
i is now 5

find posts of a given person, and post of friends of that person, friend
until a post about cats is found. The number of friend-hops to reach is
CREATE QUERY findDegreeOfCats(vertex<person> seed) FOR GRAPH socialNet
{
 SumAccum<INT> @@degree = 0;
 OrAccum @@foundCatPost = false;
 OrAccum @visited = false;

 friends (ANY) = {seed};
 WHILE @@foundCatPost != true AND friends.size() > 0 DO
 posts = SELECT v FROM friends-(posted:e)->:v
 ACCUM CASE WHEN v.subject == "cats" THEN @@foundCatPost

 IF @@foundCatPost THEN
 BREAK;
 END;

 friends = SELECT v FROM friends-(friend:e)->:v
 WHERE v.@visited == false
 ACCUM v.@visited = true;
 @@degree += 1;
 END;
 PRINT @@degree;
}

Example 1. Break

Results of Query findDegreeOfCats

5/13/25, 9:12 PM 3.3

1875

GSQL > RUN QUERY findDegreeOfCats("person2")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@degree": 2}]
}
GSQL > RUN QUERY findDegreeOfCats("person4")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@degree": 0}]
}

Example 2. findEnoughFriends.gsql: While loop using continue statement

5/13/25, 9:12 PM 3.3

1876

find all 3-hop friends of a starting vertex. count coworkers as friends
if there are not enough friends
CREATE QUERY findEnoughFriends(vertex<person> seed) FOR GRAPH friendNet
{
 SumAccum<INT> @@distance = 0; # keep track of the distance from the
 OrAccum @visited = false;
 visitedVertices = {seed};
 WHILE true LIMIT 3 DO
 @@distance += 1;
 # traverse from visitedVertices to its friends
 friends = SELECT v
 FROM visitedVertices -(friend:e)-> :v
 WHERE v.@visited == false
 POST-ACCUM v.@visited = true;
 PRINT @@distance, friends;

 # if number of friends at this level is sufficient, finish this it
 IF visitedVertices.size() >= 2 THEN
 visitedVertices = friends;
 CONTINUE;
 END;
 # if fewer than 4 friends, add in coworkers
 coworkers = SELECT v
 FROM visitedVertices -(coworker:e)-> :v
 WHERE v.@visited == false
 POST-ACCUM v.@visited = true;
 visitedVertices = friends UNION coworkers;
 PRINT @@distance, coworkers;
 END;
}

findEnoughFriends.json Example 2 Results

5/13/25, 9:12 PM 3.3

1877

5/13/25, 9:12 PM 3.3

1878

GSQL > RUN QUERY findEnoughFriends("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@distance": 1,
 "friends": [
 {
 "v_id": "person4",
 "attributes": {
 "@visited": true,
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "@visited": true,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "@visited": true,
 "id": "person3"
 },
 "v_type": "person"
 }
]
 },
 {
 "coworkers": [
 {
 "v_id": "person5",
 "attributes": {
 "@visited": true,
 "id": "person5"
 },
 "v_type": "person"

5/13/25, 9:12 PM 3.3

1879

 },
 {
 "v_id": "person6",
 "attributes": {
 "@visited": true,
 "id": "person6"
 },
 "v_type": "person"
 }
],
 "@@distance": 1
 },
 {
 "@@distance": 2,
 "friends": [
 {
 "v_id": "person9",
 "attributes": {
 "@visited": true,
 "id": "person9"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "@visited": true,
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "@visited": true,
 "id": "person8"
 },
 "v_type": "person"
 }
]
 },
 {
 "@@distance": 3,
 "friends": [
 {
 "v_id": "person12",
 "attributes": {
 "@visited": true,

"id": "person12"

Example 3. While loop using break statement

5/13/25, 9:12 PM 3.3

1880

 id : person12
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "@visited": true,
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "@visited": true,
 "id": "person7"
 },
 "v_type": "person"
 }
]
 }
]
}

find at least the top-k companies closest to a given seed vertex, if the
CREATE QUERY topkCompanies(vertex<person> seed, INT k) FOR GRAPH workNet
{
 SetAccum<vertex<company>> @@companyList;
 OrAccum @visited = false;
 visitedVertices (ANY) = {seed};
 WHILE true DO
 visitedVertices = SELECT v # traverse from x to i
 FROM visitedVertices -(:e)-> :v
 WHERE v.@visited == false
 ACCUM CASE
 WHEN (v.type == "company") THEN # count the number of
 @@companyList += v
 END
 POST-ACCUM v.@visited += true; # mark vertices as vis

 # exit loop when at least k companies have been counted
 IF @@companyList.size() >= k OR visitedVertices.size() == 0 THEN
 BREAK;
 END;
 END;
 PRINT @@companyList;
}

Example 3. topkCompanies Results

5/13/25, 9:12 PM 3.3

1881

GSQL > RUN QUERY topkCompanies("person1", 2)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@companyList": [
 "company2",
 "company1"
]}]
}
GSQL > RUN QUERY topkCompanies("person2", 3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@companyList": [
 "company3",
 "company2",
 "company1"
]}]
}

Example 4 - Usage of CONTINUE in FOREACH

5/13/25, 9:12 PM 3.3

1882

#List out all companies from a given country
CREATE QUERY companyByCountry(STRING countryName) FOR GRAPH workNet {
 MapAccum <STRING, ListAccum<STRING>> @@companies;
 start = {company.*}; # start will have a set of all co

 #Build a map using company country as a key and a list of strings to hol
 s = SELECT v FROM start:v
 ACCUM @@companies += (v.country -> v.id);

 #Iterate the map using (key,value) pairs
 FOREACH (key,val) IN @@companies DO
 IF key != countryName THEN
 CONTINUE;
 END;

 PRINT val.size();

 #Nested foreach to iterate over the list of company ids
 FOREACH comp IN val DO
 PRINT comp;
 END;
 END;
}

GSQL > RUN QUERY companyByCountry("us")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"val.size()": 2},
 {"comp": "company1"},
 {"comp": "company4"}
]
}

companyByCountry Results

Example 5 - Usage of BREAK in FOREACH

5/13/25, 9:12 PM 3.3

1883

#List all the persons located in the specified country
CREATE QUERY employmentByCountry(STRING countryName) FOR GRAPH workNet {
 MapAccum < STRING, ListAccum<STRING> > @@employees;
 start = {person.*}; # start will have a set of all per

 #Build a map using person locationId as a key and a list of strings to h
 s = SELECT v FROM start:v
 ACCUM @@employees += (v.locationId -> v.id);

 #Iterate the map using (key,value) pairs
 FOREACH (key,val) IN @@employees DO
 IF key == countryName THEN
 PRINT val.size();

 #Nested foreach to iterate over the list of person ids
 FOREACH employee IN val DO
 PRINT employee;
 END;

 BREAK;
 END;
 END;
}

GSQL > RUN QUERY employmentByCountry("us")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"val.size()": 5},
 {"employee": "person1"},
 {"employee": "person4"},
 {"employee": "person7"},
 {"employee": "person9"},
 {"employee": "person10"}
]
}

employmentByCountry Result

5/13/25, 9:12 PM 3.3

1884

Data Modification Statements
The GSQL language provides full support for vertex and edge insertion, deletion,

and attribute update is provided. Therefore, the language is more than just a "query"

language.

Each query is considered one transaction. Therefore, modifications to the graph

data do not take effect until the entire query is completed (committed). Accordingly,

any modification statement does not affect any other statements inside the same

query.

The query-body DELETE statement deletes a given set of edges or vertices. This

statement can only be used as a query-body statement. (Deletion at the DML-sub

level is served by the DML-sub DELETE statement, described next.

The GSQL DELETE operation is a cascading deletion. If a vertex is deleted, then all of
the edges which connect to it are automatically deleted as well.

The vertexPattern and edgePattern terms in the FROM clause follow the same rules

as those in the FROM clause in a SELECT statement. The WHERE clause can filter

the items in the vertexPattern or edgePattern. Below are two examples, one for

deleting vertices and one for deleting edges.

queryBodyDeleteStmt := DELETE alias FROM pattern [whereClause]
pattern := (vertexPattern | edgePattern)

Query-body DELETE Statement

EBNF

DELETE statement example

5/13/25, 9:12 PM 3.3

1885

The following query can be used to observe the effect of the delete statements. This

query counts the person vertices who work in the US ("us") and the worksFor edges

for persons in the US. When the initial workNet test data loaded, there are 5

persons and 9 worksFor edges for locationId = "us". If query deleteEx2 is run, the

worksAtUS query will then find the 5 persons but 0 worksFor edges. Next, if the

deleteEx query is run, the worksAtUS query will then find 0 persons and 0 worksFor

edges.

For example, the following sequence of countAtLocation, deleteEx2, and deleteEx

queries

Delete all "person" vertices with location equal to "us"
CREATE QUERY deleteEx() FOR GRAPH workNet {
 S = {person.*};
 DELETE s FROM S:s
 WHERE s.locationId == "us";
}

Delete all "worksFor" edges where the person's location is "us"
CREATE QUERY deleteEx2() FOR GRAPH workNet {
 S = {person.*};
 DELETE e FROM S:s -(worksFor:e)-> company:t
 WHERE s.locationId == "us";
}

CREATE QUERY countAtLocation(STRING loc) FOR GRAPH workNet {
 SetAccum<EDGE> @@selEdge;
 Start = {person.*};

 SV = SELECT s FROM Start:s
 WHERE s.locationId == loc;
 PRINT SV.size() AS numVertices;

 SE = SELECT s FROM Start:s -(worksFor:e)-> company:t
 WHERE s.locationId == loc
 ACCUM @@selEdge += e;
 PRINT @@selEdge.size() AS numEdges;
}

DELETE statement example 2

Query to check the results of deleteEx and deleteEx2

5/13/25, 9:12 PM 3.3

1886

will produce the following result:

RUN QUERY countAtLocation("us")
RUN QUERY deleteEx2()
RUN QUERY countAtLocation("us")
RUN QUERY deleteEx()
RUN QUERY countAtLocation("us")

deleteEx.run

Results from DeleteEx Example

5/13/25, 9:12 PM 3.3

1887

5/13/25, 9:12 PM 3.3

1888

Before any deletions
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"numVertices": 5},
 {"numEdges": 9}
]
}
Delete edges
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": []
}
After deleting edges
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"numVertices": 5},
 {"numEdges": 0}
]
}
Delete vertices
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },

5/13/25, 9:12 PM 3.3

1889

DML-sub DELETE is a DML-substatement which deletes one vertex or edge each

time it is called. (Deletion at the query-body level is served by the Query-body

DELETE statement described above.) In practice, this statement resides within the

body of a SELECT...ACCUM/POST-ACCUM clause, so it is called once for each

member of a selected vertex set or edge set.

The GSQL DELETE operation is a cascading deletion. If a vertex is deleted, then all of
the edges which connect to it are automatically deleted as well.

The ACCUM clause iterates over an edge set, which can encounter the same vertex
multiple times. If you wish to delete a vertex, it is best practice to place the DML-sub
DELETE statement in the POST-ACCUM clause rather than in the ACCUM clause.

The following example uses and modifies the graph data for socialNet.

 "results": []
}
After deleting vertices
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"numVertices": 0},
 {"numEdges": 0}
]
}

dmlSubDeleteStmt := DELETE "(" alias ")"

DML-sub DELETE Statement

EBNF

5/13/25, 9:12 PM 3.3

1890

For example, the following sequence of selectUserPosts and deletePosts queries

will produce the following result:

Remove any post vertices posted by the given user
CREATE QUERY deletePosts(vertex<person> seed) FOR GRAPH socialNet {

start = {seed};

Best practice is to delete a vertex in a POST-ACCUM, which only
occurs once for each vertex v, guaranteeing that a vertex is not
deleted more than once
postAccumDeletedPosts = SELECT v FROM start -(posted:e)-> post:v
 POST-ACCUM DELETE (v);

Possible, but not recommended as the DML-sub DELETE statement occurs
once for each edge of the vertex v
accumDeletedPosts = SELECT v FROM start -(posted:e)-> post:v
 ACCUM DELETE (v);

}

Need a separate query to display the results, because deletions don't ta
CREATE QUERY selectUserPosts(vertex<person> seed) FOR GRAPH socialNet {
 start = {seed};

 userPosts = SELECT v FROM start -(posted:e)-> post:v;
 PRINT userPosts;
}

RUN QUERY selectUserPosts("person3")
RUN QUERY deletePosts("person3")
RUN QUERY selectUserPosts("person3")

DELETE within ACCUM vs. POST-ACCUM

deletePosts.run

Results from DeletePosts Example

5/13/25, 9:12 PM 3.3

1891

Before the deletion
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"userPosts": [{
 "v_id": "2",
 "attributes": {
 "postTime": "2011-02-03 01:02:42",
 "subject": "query languages"
 },
 "v_type": "post"
 }]}]
}
Deletion; no output results requested at this point
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": []
}
After the deletion
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"userPosts": []}]
}

INSERT INTO Statement

5/13/25, 9:12 PM 3.3

1892

The INSERT INTO statement adds edges or vertices to the graph. When the ID

value(s) for the inserted vertex/edge match those of an existing vertex/edge, then

the new values will overwrite the old values. To insert an edge, its endpoint vertices

must already exist, either before running the query or inserted earlier in that query.

The INSERT INTO statement can be used as a query-body-level statement or a

DML-sub statement.

Like any other data modification in a query, the insertion does not take effect until

the entire query is completed.

Dynamic Query Support

As of TigerGraph 3.0, the vertex or edge type in an INSERT statement can either be
set statically (vertexType or edgeType), or it can be written as a string variable
(name), with the value being set at run time, to make a Dynamic DML query.
INSERT INTO (vertexType | name) ...
Note that to INSERT an edge type dynamically, the keyword EDGE is required:
INSERT INTO (edgeType | EDGE name) ...

There are two options for specifying the attributes of the vertex or edge type for the

values provided:

• Provide a value for the ID(s) and then each attribute, in the canonical order for

the vertex or edge type. In this case, it is not necessary to explicitly name the

attributes, since it is assumed that every attribute is being referenced, in order.

insertStmt := insertVertexStmt | insertEdgeStmt
insertVertexStmt := INSERT INTO (vertexType | name)
 ["(" PRIMARY_ID ["," attrName]* ")"]
 VALUES "(" ("_" | expr) ["," ("_" | expr)]*] ")"

insertEdgeStmt := INSERT INTO (edgeType | EDGE name)
 ["(" FROM "," TO ["," attrName]* ")"]
 VALUES "(" ("_" | expr) [vertexType]
 ["," ("_" | expr) [vertexType] ["," ("_" | expr)]*] ")"

INSERT INTO vertex_or_edge_type VALUES (full_list_of_parameter_values)

EBNF

INSERT with implicit attribute names

5/13/25, 9:12 PM 3.3

1893

• Name the specific attributes to be set, and then provide a corresponding list of

values. The attributes can be in any order, with the exception that the IDs must

come first. That is, to insert a vertex, the first attribute name must be

PRIMARY_ID . To insert an edge, the first two attribute names must be FROM
and TO .

For each attribute value, provide either an expression expr or _ , which means the

default value for that attribute type. The optional name which follows the first two

(id) values is to specify the source vertex type and target vertex type, if the edge

type had been defined with wildcard vertex types.

The query insertEx illustrates query-body level INSERT statements: insert new

company vertices and worksFor edges into the workNet graph.

INSERT INTO vertex_type (PRIMARY_ID, specified_attributes)
VALUES (ID, values_for_specified_attributes)

INSERT INTO edge_type (FROM, TO, specified_attributes)
VALUES (

Query-Body INSERT

INSERT with explicit attribute names

INSERT statement

5/13/25, 9:12 PM 3.3

1894

The query whoWorksForCompany can be used to check the effect of query

insertEx . Prior to running insertEx , running whoWorksForCompany("gsql") will

find 0 companies called "gsql" and 0 worksFor edges for company "gsql" . If

we then run the query insertEx("tic", "tac", "toe", "gsql") , then

insertEx("gsql") will find a company called "gsql" and another one called

"gsql_jp" . Moreover, it will find 3 edges, tic, tac, and toe, with different values for

the startMonth , startYear , and fullTime parameters.

CREATE QUERY insertEx(STRING name, STRING name2, STRING name3, STRING comp
 # Vertex insertion
 # Adds 2 'company' vertices. One is located in the USA, and a sister c
 # company:
 # company(PRIMARY_ID clientId STRING, id STRING, country STRING)
 INSERT INTO company VALUES (comp, comp, "us");
 INSERT INTO company (PRIMARY_ID, country) VALUES (comp + "_jp", "jp"

 # Edge insertion
 # Adds a 'worksFor' edge from person 'name' to the company 'comp', fil
 # values for startYear (0), startMonth (0), and fullTime (false).
 # worksFor:
 # worksFor(FROM person, TO company, startYear INT, startMonth INT, ful
 INSERT INTO worksFor VALUES (name person, comp company, _, _, _);

 # Adds a 'worksFor' edge from person 'name2' to the company 'comp', fi
 # values for startMonth (0), but specifying values for startYear and f
 INSERT INTO worksFor (FROM, TO, startYear, fullTime) VALUES (name2 per

 # Adds a 'worksFor' edge from person 'name3' to the company 'comp', fi
 # values for startMonth (0), and fullTime (false) but specifying a val
 INSERT INTO worksFor (FROM, TO, startYear) VALUES (name3 person, comp
}

Query to check the results of insertEx

5/13/25, 9:12 PM 3.3

1895

The following example shows a DML-sub level INSERT. Because the statement

applies to all companies, several vertices will be inserted.

Example: Add a child company in Japan to the US-based company company3 . List

all the Japan-based companies before and after the insertion.

CREATE QUERY whoWorksForCompany(STRING comp) FOR GRAPH workNet {
 SetAccum<EDGE> @@setEdge;

 Comps = {company.*};
 PRINT Comps[Comps.id]; # output api v2

 Pers = {person.*};
 S = SELECT s
 FROM Pers:s -(worksFor:e)-> :t
 WHERE t.id == comp
 ACCUM @@setEdge += e;
 PRINT @@setEdge;
}

Add a child company of a given company name. The new child company is in
CREATE QUERY addNewChildCompany(STRING name) FOR GRAPH workNet {
 allCompanies = {company.*};
 X = SELECT s
 FROM allCompanies:s
 WHERE s.id == name
 ACCUM INSERT INTO company VALUES (name + "_jp", name + "_jp", "jp"
}

Add separate query to list the companies, before and after the insertion
CREATE QUERY listCompanyNames(STRING countryFilter) FOR GRAPH workNet {
 allCompanies = {company.*};
 C = SELECT s
 FROM allCompanies:s
 WHERE s.country == countryFilter;

 PRINT C.size() AS numCompanies;
 PRINT C;
}

DML-sub INSERT

DML-sub INSERT statement

5/13/25, 9:12 PM 3.3

1896

RUN QUERY listCompanyNames("jp")
RUN QUERY addNewChildCompany("company4")
RUN QUERY listCompanyNames("jp")

addNewChildCompany.run

Results from addNewChildCompany Example

5/13/25, 9:12 PM 3.3

1897

5/13/25, 9:12 PM 3.3

1898

Before insertion
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"numCompanies": 1},
 {"C": [{
 "v_id": "company3",
 "attributes": {
 "country": "jp",
 "id": "company3"
 },
 "v_type": "company"
 }]}
]
}
insert company "company4_jp"
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": []
}
after insertion
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"numCompanies": 2},
 {"C": [
 {
 "v_id": "company3",
 "attributes": {
 "country": "jp",

5/13/25, 9:12 PM 3.3

1899

The UPDATE statement updates the attributes of vertices or edges.

UPDATE statements are not supported in syntax V2. To update vertex or edge
attributes in syntax v2, use assignment statements in the ACCUM and POST-ACCUM
clauses of a SELECT statement. For more details, see Data Modification in Syntax V2.

The set of vertices or edges to update is described in the FROM clause, following

the same rules as the FROM clause in a SELECT statement. In the SET clause, the

dmlSubStmtList contains assignment statements to update the attributes of a

vertex or edge. Both simple base type attributes and collection type attributes can

be updated. These assignment statements use the vertex or edge aliases declared

in the FROM clause. The optional WHERE clause supports boolean conditions to filter

the items in the vertex set or edge set.

 "id": "company3"
 },
 "v_type": "company"
 },
 {
 "v_id": "company4_jp",
 "attributes": {
 "country": "jp",
 "id": "company4_jp"
 },
 "v_type": "company"
 }
]}
]
}

updateStmt := UPDATE alias FROM pattern SET dmlSubStmtList [whereClause]
pattern := (vertexPattern | edgePattern)

UPDATE Statement

EBNF

UPDATE statement example

5/13/25, 9:12 PM 3.3

1900

The UPDATE statement can only be used as a query-body-level statement.

However, DML-sub level updates are still possible by using other statement types. A

vertex attribute's value can be updated within the POST-ACCUM clause of a SELECT

block by using the assignment operator (=); An edge attribute's value can be

updated within the ACCUM clause of a SELECT block by using the assignment

operator. In fact, the UPDATE statement is equivalent to a SELECT statement with

ACCUM and/or POST-ACCUM to update the vertex or edge attribute values.

Updating a vertex's attribute value in an ACCUM clause is not allowed, because the
update can occur multiple times in parallel, and possibly result in a non-deterministic
value. If the vertex attribute value update depends on an edge attribute value, use the
vertex-attached accumulators to save the value and update the vertex attribute's value
in the POST-ACCUM clause.

The query below uses a SELECT statement instead of an UPDATE statement and

performs the same update as the query above. Query updateEx2 reverses the

locationId change made by updateEx .

Change all "person" vertices with location equal to "us" to "USA"
CREATE QUERY updateEx() FOR GRAPH workNet {
 S = {person.*};

 UPDATE s FROM S:s
 SET s.locationId = "USA", # simple base type attribute
 s.skillList = [1,2,3] # collection-type attribute
 WHERE s.locationId == "us";

 # The update cannot become effective within this query, so PRINT S still
 PRINT S;
}

UPDATE statement example 2

5/13/25, 9:12 PM 3.3

1901

Below is an example of an edge update with two attribute changes, including an

incremental change:

In addition to UPDATE statements and SELECT statements, a simple assignment

statement at the query-body level can be used to update the attribute value of a

single vertex or edge, if the vertex or edge has been assigned to a variable or

parameter.

The second example is equivalent to the above updateEx
CREATE QUERY updateEx2() FOR GRAPH workNet {
 S = {person.*};

 X = SELECT s
 FROM S:s
 WHERE S.locationId == "USA"
 POST-ACCUM S.locationId = "us",
 S.skillList = [3,2,1];
 PRINT S;
}

CREATE QUERY updateEx3() FOR GRAPH workNet{
 S = {person.*};

 # update edge and target vertices' attribute
 UPDATE e FROM S:s - (worksFor:e) -> :t
 SET e.startYear = e.startYear + 1, // Incremental change
 e.fullTime = false
 WHERE s.locationId == "us";

 PRINT S;
}

Other Update Methods

UPDATE statement example 3

update by assignment

5/13/25, 9:12 PM 3.3

1902

change the given person's new location
CREATE QUERY updateByAssignment(VERTEX<person> v, STRING newLocation) FOR
 v.locationId = newLocation;
}

5/13/25, 9:12 PM 3.3

1903

Output Statements and FILE Objects

The PRINT statement specifies output data. Each execution of a PRINT statement

adds a JSON object to the results array which will be part of the query output. A

PRINT statement can appear anywhere that query-body statements are permitted.

A PRINT statement does not trigger immediate output. The full set of data from all
PRINT statements is delivered at one time, when the query concludes.

A query can print a maximum of 2GB of data.

If the output is to a FILE object, then the size limit does not apply.

Each PRINT statement contains a list of expressions for output data. The optional

WHERE clause filters the output. If the condition is false for any items, then those

items are excluded from the output.

Each printExpr contributes one key-value pair to the PRINT statement's JSON

object result. The optional AS clause sets the JSON key for the expression,

overriding the default key (explained below).

If the query includes one more tabular SELECT statements, the PRINT statement can
include table names. Both tabular and non-tabular printExpr expressions can be
including in one PRINT statement.

printStmt := PRINT printExpr ("," printExpr)* [WHERE condition] [TO_CSV (f
printExpr := (expr | vExprSet) [AS jsonKey]
 | tableName
vExprSet := expr "[" vSetProj ("," vSetProj)* "]"
vSetProj := expr [AS jsonKey]
jsonKey := name

PRINT Statement (API v2)

EBNF

Simple Example Showing JSON Output Format

5/13/25, 9:12 PM 3.3

1904

Each printExpr may be one of the following:

• A literal value

• A global or local variable (including VERTEX and EDGE variables)

• An attribute of a vertex variable, e.g., Person.name

• A global accumulator

• An expression whose terms are among the types above. The following

operators may be used:

STRING str = "first statement";
INT number = 5;
PRINT str, number;

str = "second statement";
number = number + 1;
PRINT str, number;

The statements above produce the following output
{
 "version": {"edition": "developer","api": "v2","schema": 0},
 "error": false,
 "message": "",
 "results": [
 {
 "str": "first statement",
 "number": 5
 },
 {
 "str": "second statement",
 "number": 6
 }
]
}

Data type Operators

String concatenation: +

Set UNION INTERSECT MINUS

PRINT Expressions

5/13/25, 9:12 PM 3.3

1905

Parentheses can be used for controlling order of precedence.

1. A vertex set variable

2. A vertex expression set vExprSet (only available if the output API is set to

"v2" . Vertex expression sets are explained in a separate section below.

If a printExpr includes the optional AS name clause, then the name sets the key

for that expression in the JSON output. Otherwise, the following rules determine the

key: If the expression is simply a single variable (local variable, global variable,

global accumulator, or vertex set variable), then the key is the variable name. Also,

for a vertex expression set, the key is the vertex set variable name. Otherwise, the

key is the entire expression, represented as a string.

Each data type has a distinct output format.

• Simple numeric, string, and boolean data types follow JSON standards.

• Lists, sets, bags, and arrays are printed as JSON arrays (i.e., a list enclosed in

square brackets).

• Maps and tuples are printed as JSON objects (i.e., a list of key:value pairs

enclosed in curly braces).

• Vertices and edges have a custom JSON object, shown below.

• A vertex set variable is treated as a list of vertices.

• Accumulator output format is determined by the accumulator's return type. For

example, an AvgAccum outputs a DOUBLE value, and a BitwiseAndAccum
outputs an INT value. For container accumulators, simply consider whether the

output is a list, set, bag, or map.

◦ ListAccum , SetAccum , BagAccum , ArrayAccum : list

Numeric
Arithmetic: + - * / . %
Bit: << >> & |

JSON Format: Keys

JSON Format: Values

5/13/25, 9:12 PM 3.3

1906

◦ MapAccum : map

◦ HeapAccum , GroupByAccum : list of tuples

Full details of vertices are printed only when part of a vertex set variable or vertex
expression set. When a single vertex is printed (from a variable or accumulator whose
data type happens to be VERTEX), only the vertex id is printed.

Vertex (when not part of a vertex set variable)

The output is just the vertex id as a string:

Vertex (as part of a vertex set variable)

Edge

ListAccum<VERTEX> @@vList; // not a vertex set variable
VERTEX v; // not a vertex set variable
...
PRINT @@vList, v; // output will contain only vertex ids

"<vertex_id>"

{
 "v_id": "<vertex_id>",
 "v_type": "<vertex_type>",
 "attributes": {
 <list of key:value pairs,
 one for each attribute
 or vertex-attached accumulator>
 }
}

Cases where only the vertex id will be printed

Output Format for a Value which is a Vertex, not part of a Vertex Set Variable

Output Format for a Vertex as part of a Vertex Set Variable

Output Format for a Value which is an Edge

5/13/25, 9:12 PM 3.3

1907

List, Set or Bag

Map

Tuple

{
 "e_type": "<edge_type>",
 "directed": <boolean_value>,
 "from_id": "<source_vertex_id>",
 "from_type": "<source_vertex_type>",
 "to_id": "<target_vertex_id>",
 "to_type": "<target_vertex_type>",
 "attributes": {
 <list of key:value pairs,
 one for each attribute>
 }
}

[
 <value1>,
 <value2>,
 ...,
 <valueN>
]

{
 <key1>: <value1>,
 <key2>: <value2>,
 ...,
 <keyN>: <valueN>
}

Output format for a Value which is a List, Set, or Bag

Output Format for a Value which is a Map

Output Format for a Value which is a Tuple

5/13/25, 9:12 PM 3.3

1908

Vertex Set Variable

A vertex expression set is a list of expressions which is applied to each vertex in a

vertex set variable. The expression list is used to compute an alternative set of

values to display in the "attributes" field of each vertex.

The easiest way to understand this is to consider examples containing only one term

and then consider combinations. Consider the following example query. C is a

vertex set variable containing the set of all company vertices. Furthermore, each

vertex has a vertex-attached accumulator @count.

{
 <fieldName1>: <value1>,
 <fieldName2>: <value2>,
 ...,
 <fieldNameN>: <valueN>
}

[
 <vertex1>,
 <vertex2>,
 ...,
 <vertexN>
]

CREATE VERTEX company(PRIMARY_ID clientId STRING, id STRING, country STR

CREATE QUERY vExprSet () FOR GRAPH workNet {
 SumAccum<INT> @count;
 C = {company.*};

 # include some print statements here
}

Vertex Expression Set

Output Format for a Value which is a Vertex Set Variable

Example Query for Vertex Expression Set

5/13/25, 9:12 PM 3.3

1909

If we print the full vertex set, the "attributes" field of each vertex will contain 3

fields: "id", "country", and "@count". Now consider some simple vertex expression

sets:

• PRINT C[C.country] prints the vertex set variable C, except that the

"attributes" field will contain only "country", instead of 3 fields.

• PRINT C[C.@count] prints the vertex set variable C, except that the "attributes"

field will contain only "@count", instead of 3 fields.

• PRINT C[C.@count AS company_count] prints the same as above, except that
the "@count" accumulator is is aliased as "company_count".

• PRINT C[C.id, C.@count] prints the vertex set variable C, except that the

"attributes" field will contain only "id" and "@count".

• PRINT C[C.id+"_ex", C.@count+1] prints the vertex set variable C, except that

the "attributes" field contains the following:

◦ One field consists of each vertex's id value, with the string "_ex" appended
to it.

◦ Another field consists of the @count value incremented by 1. Note: the value

of @count itself has not changed, only the displayed value is incremented.

The last example illustrates the general format for a vertex expression set:

The vertex expression set begins with the name of a vertex set variable. It is

followed by a list of attribute expressions, enclosed in square brackets. Each

attribute expression follows the same rules described earlier in the Print Expressions

section. That is, each attribute expression may refer to one or more attributes or

vertex-attached accumulators of the current vertices, as well as literals, local or

global variables, and global accumulators. The allowed operators (for numeric,

string, or set operations) are the same ones mentioned above.

The key for the vertex expression set is the vertex set variable name.

vExprSet := expr "[" vSetProj {, vSetProj} "]"
vSetProj := expr [AS name]

Syntax for Vertex Expression Set

5/13/25, 9:12 PM 3.3

1910

The value for the vertex expression set is a modified vertex set variable, where the

regular "attributes" value for each vertex is replaced with a set of key:value pairs

corresponding to the set of attribute expressions given in the print expression.

An example which shows all of the cases described above, in combination, is shown

below.

Print Basic Example

5/13/25, 9:12 PM 3.3

1911

Note how the results of the six PRINT statements are grouped in the JSON "results"
field below:

1. Each of the six PRINT statements is represented as one JSON object with the

"results" array.

CREATE QUERY printExampleV2(VERTEX<person> v) FOR GRAPH socialNet {

 SetAccum<VERTEX> @@setOfVertices;
 SetAccum<EDGE> @postedSet;
 MapAccum<VERTEX,ListAccum<VERTEX>> @@testMap;
 FLOAT paperWidth = 8.5;
 INT paperHeight = 11;
 STRING Alpha = "ABC";

 Seed = person.*;
 A = SELECT s
 FROM Seed:s
 WHERE s.gender == "Female"
 ACCUM @@setOfVertices += s;

 B = SELECT t
 FROM Seed:s - (posted:e) -> post:t
 ACCUM s.@postedSet += e,
 @@testMap += (s -> t);

Numeric, String, and Boolean expressions, with renamed keys:
 PRINT paperHeight*paperWidth AS PaperSize, Alpha+"XYZ" AS Letters,
 A.size() > 10 AS AsizeMoreThan10;
Note how an expression is named if "AS" is not used:
 PRINT A.size() > 10;

Vertex variables. Only the vertex id is included (no attributes):
 PRINT v, @@setOfVertices;

Map of Person -> Posts posted by that person:
 PRINT @@testMap;

Vertex Set Variable. Each vertex has a vertex-attached accumulator, whic
happens to be a set of edges (SetAccum<EDGE>), so edge format is shown a
 PRINT A AS VSetVarWomen;

Vertex Set Expression. The same set of vertices as above, but with only
one attribute plus one computed attribute:
 PRINT A[A.gender, A.@postedSet.size()] AS VSetExpr;
}

5/13/25, 9:12 PM 3.3

1912

2. When a PRINT statement has more than one expression (like the first one), the

expressions may appear in the output in a different order than on the PRINT

statement.

3. The 2nd PRINT statement shows a key that is generated from the expression itself.

4. The 3rd and 4th PRINT statements show a set of vertices (different than a vertex

set variable) and a map, respectively.

5. The 5th PRINT statement shows the vertex set variable A, including its vertex-

attached accumulators (PRINT A).

6. The 6th PRINT statement shows a vertex set expression for A, customized to

include only one static attribute plus a newly computed attribute.

Results from Query printExampleV2 (WITH COMMENTS ADDED)

5/13/25, 9:12 PM 3.3

1913

5/13/25, 9:12 PM 3.3

1914

GSQL > RUN QUERY printExampleV2("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "AsizeMoreThan10": false,
 "Letters": "ABCXYZ",
 "PaperSize": 93.5
 },
 {"A.size()>10": false},
 {
 "v": "person1",
 "@@setOfVertices": ["person4", "person5", "person2"]
 },
 {"@@testMap": {
 "person4": ["3"],
 "person3": ["2"],
 "person2": ["1"],
 "person1": ["0"],
 "person8": ["7", "8"],
 "person7": ["9", "6"],
 "person6": ["10", "5"],
 "person5": ["4", "11"]
 }},
 {"VSetVarWomen": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "id": "person4",
 "@postedSet": [{
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person4",
 "to_id": "3",
 "attributes": {},
 "e_type": "posted"
 }]
 },
 "v_type": "person"
 },

5/13/25, 9:12 PM 3.3

1915

Instead of printing output in JSON format, output can be written to a FILE object in

comma-separated values (CSV) format. To select this option, at the end of the

PRINT statement, include the keyword TO_CSV followed by the FILE object name:

Each execution of the PRINT statement appends one line to the FILE . If the

PRINT statement includes multiple expressions, then each printed value is

separated from its neighbor by a comma. If an expression evaluates to a set or list,

then the collection's values are delimited by single spaces. Due to the simpler

 {
 "v_id": "person5",
 "attributes": {
 "gender": "Female",
 "id": "person5",
 "@postedSet": [
 {
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person5",
 "to_id": "11",
 "attributes": {},
 "e_type": "posted"
 },
 {
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person5",
 "to_id": "4",
 "attributes": {},
 "e_type": "posted"
 }
]
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "gender": "Female",
 "id": "person2",
 "@postedSet": [{
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person2",
 "to_id": "1",
 "attributes": {},
 "e_type": "posted"
 }]
 },
 "v_type": "person"
 }
]},
 {"VSetExpr": [
 {

"v id": "person4",

PRINT to CSV FILE syntax example

PRINT @@setOfVertices TO_CSV file1;

Printing CSV to a FILE Object

5/13/25, 9:12 PM 3.3

1916

format of CSV vs. JSON, the TO_CSV feature only supports data with a simple one-

or two-dimension structure.

Limitations of PRINT > File

• Printing a full Vertex set variable is not supported.

• If a vertex is printed, only its ID value is printed.

• If printing a vertex set's vertex-attached accumulator or a vertex set's variable, the

result is a list of values, one for each vertex, separated by newlines.

• The syntax for printing a vertex set expression is currently different when printing

to a file than when printing to standard output. Compare:

◦ PRINT A[A.gender]; # with brackets

◦ PRINT A.gender TO_CSV file1; # without brackets

Writing to FILE objects is optimized for parallel processing. Consequently, the order in
which data is written to the FILE is not guaranteed. Therefore, it is strongly
recommended that the user design their queries such that one of these conditions is
satisfied:

1. The query prints only one set of data, and the order of the set is not important.

2. Each line of data to print to a file includes a label which can be used to identify the

data.

 v_id : person4 ,
 "attributes": {
 "A.@postedSet.size()": 1,
 "A.gender": "Female"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "A.@postedSet.size()": 2,
 "A.gender": "Female"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "A.@postedSet.size()": 1,
 "A.gender": "Female"
 },
 "v_type": "person"
 }
]}
]
}

PRINT WHERE and PRINT TO_CSV FILE Object Example

5/13/25, 9:12 PM 3.3

1917

The FILE println statement writes data to a FILE object. Unlike the PRINT

statement, which is a query-body level statement, the FILE println statement can

be either a query-body level statement or a DML-sub-statement.

println is a method of a FILE object variable. The println statement can be

used either at the query-body level or a DML-sub-statement, e.g., within the

ACCUM clause of a SELECT block. Each time println is called, it adds one new

line of values to the FILE object, and then to the corresponding file.

The println function can print any expression that can be printed by a PRINT

statement with the exception of vertex set variables. Vertex expression sets are also

CREATE QUERY printExampleFile() FOR GRAPH socialNet {
 SetAccum<VERTEX> @@testSet, @@testSet2;
 ListAccum<STRING> @@strList;
 int x = 3;
 FILE file1 ("/home/tigergraph/printExampleFile.txt");

 Seed = person.*;
 A = SELECT s
 FROM Seed:s
 WHERE s.gender == "Female"
 ACCUM @@testSet += s, @@strList += s.gender;
 A = SELECT s
 FROM Seed:s
 WHERE s.gender == "Male"
 ACCUM @@testSet2 += s;

 PRINT @@testSet, @@testSet2 TO_CSV file1; # 1st line: 2 4 5, 1 3 6 7 8
 PRINT x WHERE x < 0 TO_CSV file1; # 2nd line: <skipped because no cont
 PRINT x WHERE x > 0 TO_CSV file1; # 3rd line: 3
 PRINT @@strList TO_CSV file1; # 4th line: Female Female Female
 PRINT A.gender TO_CSV file1; # 5th line: Male\n Male\n Male\n Male\n
}

printlnStmt := fileVar".println" "(" expr ("," expr)* ")"

FILE println statement

EBNF for FILE println statement

5/13/25, 9:12 PM 3.3

1918

not applicable to the println function.

If the println statement has a list of expressions to print, it will produce a comma-

separated list of values. If an expression refers to a list or set, then the output will be

a list of values separated by spaces.

The data from query-body level FILE print statements (either TO_CSV or println)
will appear in their original order. However, due to the parallel processing of statements
in an ACCUM block, the order in which println statements at the DML-sub-statement
level are processed cannot be guaranteed.

All of the PRINT statements in this example use the TO_CSV option, so there is no

JSON output to the console.

CREATE QUERY fileEx (STRING fileLocation) FOR GRAPH workNet {

 FILE f1 (fileLocation);
 P = {person.*};

 PRINT "header" TO_CSV f1;

 USWorkers = SELECT v FROM P:v
 WHERE v.locationId == "us"
 ACCUM f1.println(v.id, v.interestList);

 PRINT "footer" TO_CSV f1;
}
INSTALL QUERY fileEx
RUN QUERY fileEx("/home/tigergraph/files")

Example

File object query example

Results from Query fileEx

5/13/25, 9:12 PM 3.3

1919

All the output in this case goes to the FILE object. In the query definition, the line

"header" is printed first, followed by the println statements in the ACCUM

clause, and "footer" is printed last. The output in the file follows this order

because the order of query-body level statements is maintained in the output.

However, within the ACCUM clause itself, the order of the println statements is not

guranteed.

A FILE Object can be passed from one query to a subquery. The subquery can

then also write to the FILE object.

GSQL > RUN QUERY fileEx("/home/tigergraph/fileEx.txt")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": []
}

[tigergraph@localhost]$ more /home/tigergraph/fileEx.txt
header
person7,art sport
person10,football sport
person4,football
person9,financial teaching
person1,management financial
footer

Passing a FILE Object as a Parameter

File contents produced by fileEx example

Example: query passing a FILE object to another query

5/13/25, 9:12 PM 3.3

1920

The LOG statement is another means to output data. It works as a function that

outputs information to a log file.

CREATE QUERY fileParamSub(FILE f, STRING label, INT num) FOR GRAPH socialN
 f.println(label, "header");
 FOREACH i IN RANGE [1,2] DO
 f.println(label, num+i);
 END;
 f.println(label, "footer");
}

CREATE QUERY fileParamMain(STRING mainlabel) FOR GRAPH socialNet {
 FILE f ("/home/tigergraph/fileParam.txt");
 f.println(mainlabel, "header");
 FOREACH i IN RANGE [1,2] DO
 f.println(mainlabel, i);
 fileParamSub(f, " sub", 10*i);
 END;
 f.println(mainlabel, "footer");
}

GSQL > RUN QUERY fileParamMain("main")
GSQL > EXIT

$ cat /home/tigergraph/fileParam.txt
main,header
main,1
 sub,header
 sub,11
 sub,12
 sub,footer
main,2
 sub,header
 sub,21
 sub,22
 sub,footer
main,footer

LOG Statement

EBNF for LOG statement

5/13/25, 9:12 PM 3.3

1921

The first argument of the LOG statement is a boolean condition that enables or

disables logging. This allows logging to be easily turned on/off, for uses such as

debugging. After the condition, LOG takes one or more expressions (separated by

commas). These expressions are evaluated and output to the log file.

Unlike the PRINT statement, which can only be used as a query-body statement, the

LOG statement can be used as both a query-body statement and a DML-sub-

statement.

The values will be recorded in the GPE log. To find the log file after the query has

completed, open a Linux shell and use the command "gadmin log gpe". It may

show you more than one log file name; use the one ending in "INFO". Search this

file for "UDF_".

The RETURN statement specifies data that a subquery passes back to an outer

query that called the subquery. The return type for a RETURN statement can be any

base type or accumulator type, but must be the same type as indicated by the

RETURNS clause of the subquery.

For subqueries to return a HeapAccum or GroupByAccum , the accumulators must be

defined at the catalog level. See the example below:

logStmt := LOG "(" condition "," argList ")"

BOOLEAN debug = TRUE;
INT x = 10;

LOG(debug, 20);
LOG(debug, 10, x);

returnStmt := RETURN expr

RETURN Statement

Examples

EBNF for RETURN statement

5/13/25, 9:12 PM 3.3

1922

TYPEDEF tuple<name string, friends int> myTuple
TYPEDEF HeapAccum<myTuple>(3, friends DESC) myHeap

CREATE QUERY subquery1() FOR GRAPH socialNet RETURNS (myHeap){
myHeap @@heap; // Define the heap accumulator at the global level
SumAccum<int> @friends;
Start = {person.*};
Start = select s from Start:s-(friend:e)-:t
 accum s.@friends += 1
 post-accum @@heap += myTuple(s.id,s.@friends);
RETURN @@heap;

}

CREATE QUERY query1() FOR GRAPH socialNet {
PRINT subquery1();

}

Subquery Returning HeapAccum Example

5/13/25, 9:12 PM 3.3

1923

Exception Statements
This section describes how the GSQL language responds to exceptions and

supports user-defined exception handling . An exception is a run-time error. The

GSQL language supports both built-in system exceptions and user-defined

exceptions. Built-in exceptions include GSQL language exceptions (such as out-of-

range value, wrong data type, and illegal operation), and errors arising in other

TigerGraph components or from the operation system.

The GSQL query language also supports user-defined exception responses, also

known as exception handling. This section covers the following syntax for user-

defined exception behavior:

When an exception occurs during the execution of a query, the default response is

the following:

• The query will not execute any more statements; it will exit.

• If the query was run using the RUN QUERY command, then an error message

will be displayed.

###
Exception Statements

declExceptStmt := EXCEPTION exceptVarName "(" errorCode ")"
exceptVarName := name
errorCode := integer

raiseStmt := RAISE exceptVarName [errorMsg]
errorMsg := "(" expr ")"

tryStmt := TRY queryBodyStmts EXCEPTION caseExceptBlock+
 [elseExceptBlock] END ";"
caseExceptBlock := WHEN exceptVarName THEN queryBodyStmts
elseExceptBlock := ELSE queryBodyStmts

Default Exception Response

5/13/25, 9:12 PM 3.3

1924

• If the query was run by invoking the GET /query REST++ endpoint, then the

output will be a simple JSON object. Some errors have a error "code" field;

others do no t:

The example below show two common errors: wrong data type and divide-by-zero.

First we define a simple query that divides 100.0 by the query's input parameter.

We then test three cases:

1. A valid input (such as n1 = 7)

2. Wrong data type (n1 = "A")

3. Divide by zero (n1 = 0)

First we test using the GSQL interface. When the query runs without error, the

output is in JSON format. Where there is a built-in exception, however, only an error

message is displayed.

{
 "error": true,
 "message": "<errorMsg>"
 "code": "<errType><errorCode>"
}

CREATE QUERY excpBuiltin(INT n1) FOR GRAPH minimalNet {
 PRINT 100.0/n1;
}

Output of Unhandled Exception (query run as REST Endpoint)

Example: query excpBuiltin

Exception response for RUN QUERY

5/13/25, 9:12 PM 3.3

1925

The situation is a little different when running the query as a REST++ endpoint. The

output is always in JSON format.

As of TigerGraph v1.2, the format for the GET /query endpoint has changed. The
graph name must now be specified after /query:
/query/{graph_name}/{query_name}

GSQL > RUN QUERY excpBuiltin(7)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"100.0/n1": 14.28571}]
}

GSQL > RUN QUERY excpBuiltin("a")
Values of parameter n1 must be INT64 type, invalid value [a] provided.

GSQL > RUN QUERY excpBuiltin(0)
Runtime Error: divider is zero.

Exception response for GET /query request

5/13/25, 9:12 PM 3.3

1926

A query author can specify what should be the response if a particular type of

exception occurs within a particular specified block of statements.

$ curl -X GET "http://localhost:9000/query/minimalNet/excpBuiltin?n1=7"
{
 "error": false,
 "message": "",
 "results": [
 {
 "100.0/n1": 14.28571
 }
],
 "version": {
 "edition": "developer",
 "api": "v2",
 "schema": 0
 }
}

$ curl -X GET "http://localhost:9000/query/minimalNet/excpBuiltin?n1=a"
{
 "code": "REST-30000",
 "error": true,
 "message": "Values of parameter n1 must be INT64 type, invalid value [
 "version": {
 "edition": "developer",
 "api": "v2",
 "schema": 0
 }
}

$ curl -X GET "http://localhost:9000/query/minimalNet/excpBuiltin?n1=0"
{
 "error": true,
 "message": "Runtime Error: divider is zero.",
 "version": {
 "edition": "developer",
 "api": "v2",
 "schema": 0
 }
}

User-Defined Exception Behavior

5/13/25, 9:12 PM 3.3

1927

The following statement types are available to specify a user-defined exception

condition or a user-defined exception response.

• The EXCEPTION Declaration Statement names a user-defined exception.

• The RAISE Statement indicates that one of the user-defined exceptions has

occurred.

• The TRY…EXCEPTION Statement is used to define and apply user-defined

exception handling to a block of query-body statements. This can be used with

or without preceding user-defined EXCEPTION and RAISE statements.

Built-in exceptions always take precedence over user-defined exceptions. Therefore,
user-defined exceptions can only be used to catch conditions that would not be caught
by a built-in exception. This means that built–in exceptions are best used to capture
situations which are legal according to the general syntax and semantics of the GSQL
query language, but which are illegal or undesirable for a particular user application.

To use a user-defined exception, it must first be declared. An exception declaration

statement declares a user-defined exception type, assigning a name and

identification number. The id number errorCode must be greater than 40,000.

Numbers 40,000 and lower are reserved for system exceptions. Exception

statements must be placed before any query-body statements, after accumulator

declaration statements . A query can declare multiple exception types.

declExceptStmt := EXCEPTION exceptVarName "(" errorCode ")"
exceptVarName := name
errorCode := integer

raiseStmt := RAISE exceptVarName [errorMsg]
errorMsg := "(" expr ")"

EXCEPTION Declaration Statement

RAISE Statement

5/13/25, 9:12 PM 3.3

1928

The RAISE statement announces that a user-defined exception has just occurred.

The exceptVarName must match one of the exceptions that was previously

declared. An optional error message can be specified. Once the RAISE statement is

executed, the flow of execution changes. If the RAISE statement is not within a TRY

clause, then the query ends with the default exception response, using the error

code and error message defined by the exception type and RAISE statements. If the

RAISE is within a TRY statement, then execution jumps to the EXCEPTION handling

clause of the TRY statement.

A RAISE statement itself does not include the conditions that define the exception.

Typically, the user will use an IF…THEN statement and place the RAISE statement

within the THEN clause.

In the current version, a RAISE statement can only be used as a query-body-
statement. It cannot be used as a DML-sub-statement. In particular, you cannot RAISE
an exception inside a SELECT statement.

The example below defines and checks for two types of exceptions: an empty input

set (40001) and no matching edges (40002). Remember that the minimum allowed

code number is 40001.

Example: Unhandled User-Defined Exceptions

5/13/25, 9:12 PM 3.3

1929

CREATE QUERY excpCountActivity(SET<VERTEX<person>> vSet, STRING eType) FOR
 # Count how many edges there are from each member of the input person se
 # along the specified edge type.

 MapAccum<STRING,INT> @@allCount;
 EXCEPTION emptyList (40001);
 EXCEPTION noEdges (40002);

 IF ISEMPTY(vSet) THEN ## Raise 40001
 RAISE emptyList ("Error: Input parameter 'vSet' (type SET<VERTEX<perso
 END;

 Start = vSet;
 Results = SELECT s
 FROM Start:s -(:e)-> post:t
 WHERE e.type == eType
 ACCUM @@allCount += (t.subject -> 1);

 IF Results.size() == 0 THEN ## Raise 40002
 RAISE noEdges ("Error: No '" + eType + "' edges from the vertex set");
 END;
 PRINT @@allCount;
}

Results

5/13/25, 9:12 PM 3.3

1930

// Valid input: no exceptions
$ curl -X GET "http://localhost:9000/query/socialNet/excpCountActivity?vSe
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@allCount": {
 "cats": 1,
 "tigergraph": 2
 }
 }]
}

// empty input set (due to spelling error in parameter name)
$ curl -X GET "http://localhost:9000/query/socialNet/excpCountActivity?vse
{
 "code": "40001",
 "error": true,
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "message": "Error: Input parameter 'vSet' (type SET<VERTEX<person>>) is
}

// no edges (due to unknown edge type)
$ curl -X GET "http://localhost:9000/query/socialNet/excpCountActivity?vSe
{
 "code": "40002",
 "error": true,
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "message": "Error: No 'commented' edges from the vertex set"
}

5/13/25, 9:12 PM 3.3

1931

The TRY…EXCEPTION Statement is used to define and apply user-defined exception

handling to a block of query-body statements. A TRY...EXCEPTION statement can

be nested within a TRY block or EXCEPTION block.

The current version of GSQL does not support custom handling of built-in exceptions.
Therefore, if a built-in exception occurs, it ignores the TRY..EXCEPTION blocks and
simply applies the default handling, and the query aborts. In future updates, we plan to
support custom handling of both custom exceptions (RAISE) and built-in exception with
the TRY...EXCEPTION block.

The TRY…EXCEPTION Statement is a compound statement containing two blocks.

The first block (TRY) consists of the query-body statements for which custom error

handling should be applied. The second block (EXCEPTION) contains a series of

WHEN…THEN exception handling clauses. Each exception handling clause names

an exception type and specifies what actions to take in the event of the exception.

An optional ELSE clause contains handling statements for all other exceptions. The

following text and visual flowchart details how the TRY... EXCEPTION block handles

an exception.

When an exception occurs within a TRY block, the flow of execution skips the

remainder of the TRY block and jumps to the EXCEPTION block. The GSQL flow now

seeks to match the exception type with a handler. After executing the handling

statements in the THEN or ELSE clause, the flow skips the remainder of the

EXCEPTION block and continues with the statement following the END statement.

However, if there is no matching WHEN or ELSE handler, then the exception is

propagated. That is, the RAISE state is maintained after exiting the EXCEPTION

block. If the TRY...EXCEPTION block is nested inside another TRY block, then the

handling process is repeated at this upper level. This repeats until either the

exception is handled or there are no more TRY...EXCEPTION blocks.

tryStmt := TRY queryBodyStmts EXCEPTION caseExceptBlock [elseExcep
caseExceptBlock := WHEN exceptVarName THEN queryBodyStmts+
elseExceptBlock := ELSE queryBodyStmts

TRY...EXCEPTION Statement for Custom Error Handling

5/13/25, 9:12 PM 3.3

1932

Finally, if the unhandled exception is not within a TRY block, then the the query is

aborted, and the default exception response is the output.

Case 1: If cond1 is true in the outer TRY block,

• RAISE A and jump to the output EXCEPTION block.

Handled by ELSE HandStmtsZ.

Case 2: If cond2 is true in the inner TRY block,

• RAISE A and jump to the inner EXCEPTION block.

Handled by handStmtsX;

Case 3: If cond3 is true in the inner TRY block,

• RAISE B and jump to the inner EXCEPTION block. There is no matching handler

here, so propagate the exception. Jump to the outer EXCEPTION block. Handled

by handStmtsY.

Custom Handling Example:

5/13/25, 9:12 PM 3.3

1933

The following example is a modified shortest path query. It looks for all paths from a

source to a target in a computer network. It uses breadth-first search and stops at

depth N when it has found at least one path at depth N, or it has searched the entire

graph. There are three conditions which will cause it to RAISE an exception and

abort the search:

1. Seeing an edge with a negative connection speed (because the graph has bad
data).

2. Seeing an edge with a very slow connection speed (again because the graph

has bad data).

3. If no path was found in the graph (the search is already over, but we skip

printing results).

Note that cases 1 and 2 do NOT mean that a negative or slow speed edge is actually

on a shortest path, only that the query noticed a bad edge during its search. Also,

because we cannot RAISE within the SELECT block, we use a workaround: set an

integer variable with an error code. Immediately after the SELECT block, test the

integer variable and RAISE exceptions as needed.

Example: Path Search with Exceptions

5/13/25, 9:12 PM 3.3

1934

5/13/25, 9:12 PM 3.3

1935

CREATE QUERY compPathValid (vertex<computer> src, vertex<computer> tgt, BO
FOR GRAPH computerNet {
Find valid paths in a computer network from a source to a target.
Stop search once you have found some paths.
3 Exceptions: (1) Negative connection speed, (2) Slow connection speed,
Set enExcp=true to raise exceptions. enExcp=false will find paths, good

OrAccum @@reached, @visited;
ListAccum<STRING> @paths;
DOUBLE minSpeed = 0.4;
INT err;

EXCEPTION negSpeed (40001);
EXCEPTION slowSpeed (40002);
EXCEPTION notReached (40003);

TRY
Start = {src};
Initialize: path to src is itself.
Start = SELECT s

FROM Start:s
ACCUM s.@paths = s.id;

WHILE Start.size() != 0 AND NOT @@reached DO
Start = SELECT t

FROM Start:s -(:e)-> :t
WHERE t.@visited == false
ACCUM CASE

WHEN e.connectionSpeed < 0 THEN err = 1
WHEN e.connectionSpeed < minSpeed THEN err = 2
WHEN t == tgt THEN @@reached += true
END,

List1 * List2 -> List(each elem of List1 concat w/each elem
t.@paths += (s.@paths * ["~"]) * [t.id]

POST-ACCUM t.@visited = true;
IF err == 1 AND enExcp THEN

RAISE negSpeed ("Negative Speed");
ELSE IF err == 2 AND enExcp THEN

RAISE slowSpeed ("Slow Speed");
END;

END; # WHILE

IF NOT @@reached AND enExcp THEN
RAISE notReached ("No path to target");

ELSE
Result = {tgt};
PRINT Result[Result.@paths]; // api v2

END;

5/13/25, 9:12 PM 3.3

1936

As the data in Appendix D show:

• Any search passing through c1 will see negative edges.

• Any search passing through c12 will see negative and slow edges.

• Any search passing through c14 will see negative edges.

The results for 5 cases are shown: 1 valid search plus each of the 3 exception

conditions. The 5th case is the same as the 4th, but exception handling is not

enabled.

EXCEPTION
WHEN negSpeed THEN PRINT "bad path: negative speed";
WHEN slowSpeed THEN PRINT "bad path: slow speed";
WHEN notReached THEN PRINT "no path from source to target";

END;
}

compPathValid.json

5/13/25, 9:12 PM 3.3

1937

5/13/25, 9:12 PM 3.3

1938

GSQL > RUN QUERY compPathValid("c10","c12",true)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "c12",
 "attributes": {"Result.@paths": ["c10~c11~c12"]},
 "v_type": "computer"
 }]}]
}
GSQL > RUN QUERY compPathValid("c1","c12",true)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"bad path: negative speed": "bad path: negative speed"}]
}
GSQL > RUN QUERY compPathValid("c10","c13",true)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"bad path: slow speed": "bad path: slow speed"}]
}
GSQL > RUN QUERY compPathValid("c24","c25",true)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"no path from source to target": "no path from source to ta
}

5/13/25, 9:12 PM 3.3

1939

The flowchart below summarizes all the cases for triggering and handling

exceptions, both user-defined and built-in.

GSQL > RUN QUERY compPathValid("c24","c25",false)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "c25",
 "attributes": {"Result.@paths": []},
 "v_type": "computer"
 }]}]
}

Exception Handling Flowchart

5/13/25, 9:12 PM 3.3

1940

5/13/25, 9:12 PM 3.3

1941

Comments
A comment is a section of text that is ignored by the language parser; its purpose is

to provide information to human readers. The comment markers follow the

conventions used in C++ and SQL:

• Single-line or partial-line comments begin with either # or // and end at the end

of the line (with the newline character).

• Multi-line comment blocks begin with /* and end with */

5/13/25, 9:12 PM 3.3

1942

Appendix

5/13/25, 9:12 PM 3.3

1943

Common Errors and Problems

No computer can store all floating point numbers (i.e., non-integers) with perfect

precision. The float data type offers about 7 decimal digits of precision; the double

data type offers about 15 decimal digits of precision. Comparing two float or double

values by using operators involving exact equality (==, <=, >=, BETWEEN ... AND ...)

might lead to unexpected behavior. If the GSQL language parser detects that the

user is attempting an exact equivalence test with float or double data types, it will

display a warning message and suggestion. For example, if there are two float

variables v and v2, the expression v == v2 causes the following warning message:

Response to Non-existent vertex ID

If a query has a vertex parameter (VERTEX or VERTEX<vType>), and if the ID for a

nonexistent vertex is given when running the query, an error message is shown, and

the query won't run. This is also the response when calling a function to convert a

single vertex ID string to a vertex:

• to_vertex(): See Section "Miscellaneous Functions".

However, if the parameter is a vertex set (SET<VERTEX> or

SET<VERTEX<vType>>), and one or more nonexistent IDs are given when running

the query, a warning message is shown, but the query still runs, ignoring those

nonexistent IDs. Therefore, if all given IDs are nonexistent, the parameter becomes

an empty set. T his is also the response when calling a function to convert a set of

vertex IDs to a set of vertices :

• to_vertex_set(): See Section " Miscellaneous Functions ".

• SelectVertex(): See Section " Miscellaneous Functions ".

The comparison 'v==v2' may lead to unexpected behavior because it involves
equality test between float/double numeric values. We suggest to do such
comparison with an error margin, e.g. 'abs((v) - (v2)) < epsilon', where e
is a very small positive value of your choice, such as 0.0001.

Floating Point Precision Limits

5/13/25, 9:12 PM 3.3

1944

Formal Grammar for Query Language
This is the definition for the GSQL Query Language syntax. It is defined as a set of

rules expressed in EBNF notation.

This defines the EBNF notation used to describe the syntax. Rules contains terminal

and non-terminal symbols. A terminal symbol is a base-level symbol which

expresses literal output. All symbols in single or double quotes (e.g., '+', "=", ")",

"10") are terminal symbols. A non-terminal symbol is defined as some combination

of terminal and non-terminal symbols. The left-hand side of a rule is always a non-

terminal; this rule defines the non-terminal. The example rule below defines

assignmentStmt (that is, an Assignment Statement) to be a name followed by an

equal sign followed by an expression, operator, and expression with a terminating

semi-colon. AssignmentStmt, name, and expr are all non-terminals. Additionally,

all KEYWORDS are in all-capitals and are terminal symbols. The ":=" is part of

EBNF and states the left hand side can be expanded to the right hand side.

A vertical bar | in EBNF indicates choice. Choose either the symbol on the left or on

the right. A sequence of vertical bars means choose any one of the symbols in the

sequence.

Square brackets [] indicate an optional part or group of symbols. Parentheses ()

group symbols together. The rule below defines a constant to be one, two, or three

digits preceded by an optional plus or minus sign.

assignmentStmt := name "=" expr op expr ";"

op := "+" | "-" | "*" | "/"

Notation Used to Define Syntax

EBNF Syntax example: A rule

EBNF Syntax: vertical bar

EBNF Syntax: Square brackets and parentheses

5/13/25, 9:12 PM 3.3

1945

Star * and plus + are symbols in EBNF for closure. Star means zero or more

occurrences, and plus means one or more occurrences. The following defines

intConstant to be an optional plus or minus followed by one or more digits. It also

defines floatConstant to be an optional plus or minus followed by zero or more digits

followed by a decimal followed by one or more digits. The star and plus also can be

applied to groups of symbols as in the definition of list. The non-terminal list is

defined as a parenthesized list of comma-separated expressions (expr). The list

has at least one expression which can be followed by zero or more comma-

expression pairs.

constant := ["+" | "-"] (digit | (digit digit) | (digit digit digit))

intConstant := ["+" | "-"] digit+
floatConstant := ["+" | "-"] digit* "." digit+
list := "(" expr ["," expr]* ")"

GSQL Query Language EBNF

EBNF Syntax: square brackets and parentheses

5/13/25, 9:12 PM 3.3

1946

5/13/25, 9:12 PM 3.3

1947

###
EBNF for GSQL Query Language

createQuery := CREATE [OR REPLACE] [DISTRIBUTED] QUERY queryName
 "(" [parameterList] ")"
 [FOR GRAPH graphName]
 [RETURNS "(" baseType | accumType ")"]
 [API "(" stringLiteral ")"]
 [SYNTAX syntaxName]
 "{" queryBody "}"

interpretQuery := INTERPRET QUERY "(" ")"
 [FOR GRAPH graphName]
 [SYNTAX syntaxName]
 "{" queryBody "}"

parameterValueList := parameterValue ["," parameterValue]*
parameterValue := parameterConstant
 | "[" parameterValue ["," parameterValue]* "]" // BAG or
 | "(" stringLiteral "," stringLiteral ")" // a gene
parameterConstant := numeric | stringLiteral | TRUE | FALSE
parameterList := parameterType paramName ["=" constant]
 ["," parameterType paramName ["=" constant]]*

syntaxName := name

queryBody := [typedefs] [declExceptStmts] queryBodyStmts
typedefs := (typedef ";")+
declStmts := (declStmt ";")+
declStmt := baseDeclStmt | accumDeclStmt | fileDeclStmt
declExceptStmts := (declExceptStmt ";")+
queryBodyStmts := (queryBodyStmt ";")+
queryBodyStmt := assignStmt // Assignment
 | vSetVarDeclStmt // Declaration
 | declStmts // Declaration
 | lAccumAssignStmt // Assignment
 | gAccumAssignStmt // Assignment
 | gAccumAccumStmt // Assignment
 | funcCallStmt // Function Call
 | selectStmt // Select
 | queryBodyCaseStmt // Control Flow
 | queryBodyIfStmt // Control Flow
 | queryBodyWhileStmt // Control Flow
 | queryBodyForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | updateStmt // Data Modification
 | insertStmt // Data Modification

5/13/25, 9:12 PM 3.3

1948

 | queryBodyDeleteStmt // Data Modification
 | printStmt // Output
 | printlnStmt // Output
 | logStmt // Output
 | returnStmt // Output
 | raiseStmt // Exception
 | tryStmt // Exception

installQuery := INSTALL QUERY [installOptions] ("*" | ALL |queryName [","
runQuery := (RUN | INTERPRET) QUERY [runOptions] queryName "(" parameterVa

showQuery := SHOW QUERY queryName
dropQuery := DROP QUERY ("*" | ALL | queryName ["," queryName]*)

###
Types and names

lowercase := [a-z]
uppercase := [A-Z]
letter := lowercase | uppercase
digit := [0-9]
integer := ["-"]digit+
real := ["-"]("."digit+) | ["-"](digit+"."digit*)

numeric := integer | real
stringLiteral := '"' [~["] | '\\' ('"' | '\\')]* '"'

name := (letter | "_") [letter | digit | "_"]* // can be a single "_" or
graphName := name
queryName := name
paramName := name
vertexType := name
edgeType := name
accumName := name
vertexSetName := name
attrName := name
varName := name
tupleType := name
fieldName := name
funcName := name

type := baseType | tupleType | accumType | STRING COMPRESS

baseType := INT
 | UINT
 | FLOAT
 | DOUBLE
 | STRING

| BOOL

5/13/25, 9:12 PM 3.3

1949

 | BOOL
 | VERTEX ["<" vertexType ">"]
 | EDGE
 | JSONOBJECT
 | JSONARRAY
 | DATETIME

filePath := paramName | stringLiteral

typedef := TYPEDEF TUPLE "<" tupleFields ">" tupleType

tupleFields := (baseType fieldName) | (fieldName baseType)
 ["," (baseType fieldName) | (fieldName baseType)]*

parameterType := baseType
 | [SET | BAG] "<" baseType ">"
 | FILE

###
Accumulators

accumDeclStmt := accumType localAccumName ["=" constant]
 ["," localAccumName ["=" constant]]*
 | [STATIC] accumType globalAccumName ["=" constant]
 ["," globalAccumName ["=" constant]]*
localAccumName := "@"accumName;
globalAccumName := "@@"accumName;

accumType := "SumAccum" "<" (INT | FLOAT | DOUBLE | STRING | STRING COMPR
 | "MaxAccum" "<" (INT | FLOAT | DOUBLE) ">"
 | "MinAccum" "<" (INT | FLOAT | DOUBLE) ">"
 | "AvgAccum"
 | "OrAccum"
 | "AndAccum"
 | "BitwiseOrAccum"
 | "BitwiseAndAccum"
 | "ListAccum" "<" type ">"
 | "SetAccum" "<" elementType ">"
 | "BagAccum" "<" elementType ">"
 | "MapAccum" "<" elementType "," (baseType | accumType | tuple
 | "HeapAccum" "<" tupleType ">" "(" simpleSize "," fieleName [A
 ["," fieldName [ASC | DESC]]
 | "GroupByAccum" "<" elementType fieldName ["," elementType fie

 accumType fieldName ["," accumType fieldNa
 | "ArrayAccum" "<" accumName ">"

elementType := baseType | tupleType | STRING COMPRESS

5/13/25, 9:12 PM 3.3

1950

gAccumAccumStmt := globalAccumName "+=" expr

##
Operators, Functions, and Expressions

constant := numeric | stringLiteral | TRUE | FALSE | GSQL_UINT_MAX
 | GSQL_INT_MAX | GSQL_INT_MIN | TO_DATETIME "(" stringLiteral ")

mathOperator := "*" | "/" | "%" | "+" | "-" | "<<" | ">>" | "&" | "|"

condition := expr
 | expr comparisonOperator expr
 | expr [NOT] IN setBagExpr
 | expr IS [NOT] NULL
 | expr BETWEEN expr AND expr
 | "(" condition ")"
 | NOT condition
 | condition (AND | OR) condition
 | (TRUE | FALSE)
 | expr [NOT] LIKE expr [ESCAPE escape_char]

comparisonOperator := "<" | "<=" | ">" | ">=" | "==" | "!="

aggregator := COUNT | MAX | MIN | AVG | SUM

expr := name
 | globalAccumName

| name "." name
| name "." localAccumName ["\'"]
| name "." name "." name "(" [argList] ")"

 | name "." name "(" [argList] ")" ["." FILTER "(" condition ")"]
| name ["<" type ["," type]* ">"] "(" [argList] ")"
| name "." localAccumName ("." name "(" [argList] ")")+ ["." name]
| globalAccumName ("." name "(" [argList] ")")+ ["." name]
| COALESCE "(" [argList] ")"
| aggregator "(" [DISTINCT] setBagExpr ")"
| ISEMPTY "(" setBagExpr ")"
| expr mathOperator expr
| "-" expr
| "(" expr ")"
| "(" argList "->" argList ")" // key value pair for MapAccum
| "[" argList "]" // a list
| constant
| setBagExpr
| name "(" argList ")" // function call or a tuple object

setBagExpr := name
 | globalAccumName
 | name "." name

5/13/25, 9:12 PM 3.3

1951

|
 | name "." localAccumName
 | name "." localAccumName ("." name "(" [argList] ")")+
 | name "." name "(" [argList] ")" ["." FILTER "(" condition "
 | globalAccumName ("." name "(" [argList] ")")+
 | setBagExpr (UNION | INTERSECT | MINUS) setBagExpr
 | "(" argList ")"
 | "(" setBagExpr ")"

###
Declarations and Assignments

Declarations
baseDeclStmt := baseType name ["=" expr] ["," name ["=" expr]]*
fileDeclStmt := FILE fileVar "(" filePath ")"
fileVar := name

localVarDeclStmt := baseType varName "=" expr

vSetVarDeclStmt := vertexSetName ["(" vertexType ")"]
 "=" (seedSet | simpleSet | selectBlock)

simpleSet := vertexSetName | "(" simpleSet ")"
 | simpleSet (UNION | INTERSECT | MINUS) simpleSet

seedSet := "{" [seed ["," seed]*] "}"
seed := '_'
 | ANY
 | vertexSetName
 | globalAccumName
 | vertexType ".*"
 | paramName
 | "SelectVertex" selectVertParams

selectVertParams := "(" filePath "," columnId "," (columnId | name) ","
 stringLiteral "," (TRUE | FALSE) ")" ["." FILTER "(" cond

columnId := "$"(integer | stringLiteral)

Assignment Statements
assignStmt := name "=" expr
 | name "." attrName "=" expr

attrAccumStmt := name "." attrName "+=" expr

lAccumAssignStmt := vertexAlias "." localAccumName ("+="| "=") expr

gAccumAssignStmt := globalAccumName ("+=" | "=") expr

l dA St t l b lA N " " "{" LOADACCUM l dA P

5/13/25, 9:12 PM 3.3

1952

loadAccumStmt := globalAccumName "=" "{" LOADACCUM loadAccumParams
 ["," LOADACCUM loadAccumParams]* "}"

loadAccumParams := "(" filePath "," columnId ["," [columnId]* ","
 stringLiteral "," (TRUE | FALSE) ")" ["." FILTER "(" condi

Function Call Statement
funcCallStmt := name ["<" type ["," type"]* ">"] "(" [argList] ")"
 | globalAccumName ("." funcName "(" [argList] ")")+

argList := expr ["," expr]*

###
Select Statement

selectStmt := gsqlSelectBlock
 | sqlSelectBlock

gsqlSelectBlock := gsqlSelectClause
 fromClause
 [sampleClause]
 [whereClause]
 [accumClause]
 [postAccumClause]*
 [havingClause]
 [orderClause]
 [limitClause]

sqlSelectBlock := sqlSelectClause
 fromClause
 [whereClause]
 [groupByClause]
 [havingClause]
 [orderClause]
 [limitClause]

gsqlSelectClause := vertexSetName "=" SELECT vertexAlias
sqlSelectClause := SELECT [DISTINCT] columnExpr ("," columnExpr)*
 INTO tableName
columnExpr := expr [AS columnName]
 | aggregator "("[DISTINCT] expr ")" [AS columnName]
columnName := name
tableName := name

fromClause := FROM (step | stepV2 | pathPattern ["," pathPattern]*)

step := stepSourceSet ["-" "(" stepEdgeSet ")" ("-"|"->") stepVertexSet
stepV2 := stepVertexSet ["-" "(" stepEdgeSet ")" "-" stepVertexSet]

5/13/25, 9:12 PM 3.3

1953

g

stepSourceSet := vertexSetName [":" vertexAlias]
stepEdgeSet := [stepEdgeTypes] [":" edgeAlias]
stepVertexSet := [stepVertexTypes] [":" vertexAlias]
alias := (vertexAlias | edgeAlias)
vertexAlias := name
edgeAlias := name

stepEdgeTypes := atomicEdgeType | "(" edgeSetType ["|" edgeSetType]* ")"
atomicEdgeType := "_" | ANY | edgeSetType
edgeSetType := edgeType | paramName | globalAccumName

stepVertexTypes := atomicVertexType | "(" vertexSetType ["|" vertexSetType
atomicVertexType := "_" | ANY | vertexSetType
vertexSetType := vertexType | paramName | globalAccumName

#----------# Pattern Matching #----------#
pathPattern := stepVertexSet ["-" "(" pathEdgePattern ")" "-" stepVertexS

pathEdgePattern := atomicEdgePattern
 | "(" pathEdgePattern ")"
 | pathEdgePattern "." pathEdgePattern
 | disjPattern
 | starPattern

atomicEdgePattern := atomicEdgeType
 | atomicEdgeType ">"
 | "<" atomicEdgeType

disjPattern := atomicEdgePattern ("|" atomicEdgePattern)*

starPattern := ([atomicEdgePattern] | "(" disjPattern ")") "*" [starBounds

starBounds := CONST_INT ".." CONST_INT
 | CONST_INT ".."
 | ".." CONST_INT
 | CONST_INT
#--------------------------------------#

sampleClause := SAMPLE (expr | expr "%") EDGE WHEN condition
 | SAMPLE expr TARGET WHEN condition
 | SAMPLE expr "%" TARGET PINNED WHEN condition

whereClause := WHERE condition

accumClause := [perClauseV2] ACCUM dmlSubStmtList

perClauseV2 := PER "(" alias ["," alias] ")"

5/13/25, 9:12 PM 3.3

1954

postAccumClause := "POST-ACCUM" dmlSubStmtList

dmlSubStmtList := dmlSubStmt ["," dmlSubStmt]*

dmlSubStmt := assignStmt // Assignment
 | funcCallStmt // Function Call
 | gAccumAccumStmt // Assignment
 | lAccumAccumStmt // Assignment
 | attrAccumStmt // Assignment
 | vAccumFuncCall // Function Call
 | localVarDeclStmt // Declaration
 | dmlSubCaseStmt // Control Flow
 | dmlSubIfStmt // Control Flow
 | dmlSubWhileStmt // Control Flow
 | dmlSubForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | insertStmt // Data Modification
 | dmlSubDeleteStmt // Data Modification
 | printlnStmt // Output
 | logStmt // Output

vAccumFuncCall := vertexAlias "." localAccumName ("." funcName "(" [argLis

groupByClause := GROUP BY groupExpr ("," groupExpr)*
groupExpr := expr

havingClause := HAVING condition

orderClause := ORDER BY expr [ASC | DESC] ["," expr [ASC | DESC]]*

limitClause := LIMIT (expr | expr "," expr | expr OFFSET expr)

###
Control Flow Statements

queryBodyIfStmt := IF condition THEN queryBodyStmts
 [ELSE IF condition THEN queryBodyStmts]*
 [ELSE queryBodyStmts] END
dmlSubIfStmt := IF condition THEN dmlSubStmtList
 [ELSE IF condition THEN dmlSubStmtList]*
 [ELSE dmlSubStmtList] END

queryBodyCaseStmt := CASE (WHEN condition THEN queryBodyStmts)+ [ELSE que
 | CASE expr (WHEN constant THEN queryBodyStmts)+ [ELSE que
dmlSubCaseStmt := CASE (WHEN condition THEN dmlSubStmtList)+ [ELSE dml
 | CASE expr (WHEN constant THEN dmlSubStmtList)+ [ELSE dml

5/13/25, 9:12 PM 3.3

1955

Query Language Reserved Words
The following words are reserved for use by the GSQL query language. That is, a

query may not use any of these words for a user-defined identifier, such as the

name of a local variable or a local TUPLE type.

• v3.1: Added TAGS , RESET_COLLECTION_ACCUM , WITH

There is a separate list for Reserved Words for the GSQL DDL Language.

The compiler will reject the use of a Reserved Word as a user-defined identifier.

queryBodyWhileStmt := WHILE condition [LIMIT simpleSize] DO queryBodyStmts
dmlSubWhileStmt := WHILE condition [LIMIT simpleSize] DO dmlSubStmtList
simpleSize := integer | varName | paramName

queryBodyForEachStmt := FOREACH forEachControl DO queryBodyStmts END
dmlSubForEachStmt := FOREACH forEachControl DO dmlSubStmtList END

forEachControl := (iterationVar | "(" keyVar ("," valueVar)+ ")") (IN | "
 | iterationVar IN RANGE "[" expr "," expr"]" ["." STEP "("
iterationVar := name
keyVar := name
valueVar := name

###
Other Data Modifications Statements

queryBodyDeleteStmt := DELETE alias FROM pattern [whereClause]
dmlSubDeleteStmt := DELETE "(" alias ")"

updateStmt := UPDATE alias FROM pattern SET dmlSubStmtList [whereClause]

insertStmt := insertVertexStmt | insertEdgeStmt
insertVertexStmt := INSERT INTO (vertexType | name)
 ["(" PRIMARY_ID ["," attrName]* ")"]
 VALUES "(" ("_" | expr) ["," ("_" | expr)]*] ")"

insertEdgeStmt := INSERT INTO (edgeType | EDGE name)
 ["(" FROM "," TO ["," attrName]* ")"]
 VALUES "(" ("_" | expr) [vertexType]
 ["," ("_" | expr) [vertexType] ["," ("_" | expr)]*] ")"

###
Output Statements

printStmt := PRINT printExpr ("," printExpr)* [WHERE condition] [TO_CSV (f
printExpr := (expr | vExprSet) [AS jsonKey]
 | tableName
vExprSet := expr "[" vSetProj ("," vSetProj)* "]"
vSetProj := expr [AS jsonKey]
jsonKey := name

printlnStmt := fileVar ".println" "(" expr ("," expr)* ")"

logStmt := LOG "(" condition "," argList ")"

returnStmt := RETURN expr

###

History:

Query Language Reserved Words

5/13/25, 9:12 PM 3.3

1956

###
Exception Statements

declExceptStmt := EXCEPTION exceptVarName "(" errorInt ")"
exceptVarName := name
errorInt := integer

raiseStmt := RAISE exceptVarName [errorMsg]
errorMsg := "(" expr ")"

tryStmt := TRY queryBodyStmts EXCEPTION caseExceptBlock+ [elseExce
caseExceptBlock := WHEN exceptVarName THEN queryBodyStmts
elseExceptBlock := ELSE queryBodyStmts

ACCUM AND ANY API
AS ASC AVG BAG
BATCH BETWEEN BOOL BOTH
BREAK BY CASE CATCH
COALESCE COMPRESS CONTINUE COUNT
CREATE DATETIME DATETIME_ADD DATETIME_SUB
DELETE DESC DISTRIBUTED DO
DOUBLE EDGE ELSE END
ESCAPE EXCEPTION FALSE FILE
FILTER FLOAT FOR FOREACH
FROM GRAPH GROUP GSQL_INT_MAX
GSQL_INT_MIN GSQL_UINT_MAX HAVING IF
IN INSERT INT INTERPRET
INTERSECT INTERVAL INTO IS
ISEMPTY JSONARRAY JSONOBJECT LASTHOP
LEADING LIKE LIMIT LIST
LOAD_ACCUM LOG MAP MATCH
MAX MIN MINUS NOT
NOW NULL OFFSET OR
ORDER PATH PER PINNED
POST_ACCUM POST-ACCUM PRIMARY_ID PRINT
QUERY RAISE RANGE REPLACE
RESET_COLLECTION_ACCUM RETURN RETURNS
RUN SAMPLE SELECT SELECT_VERTEX
SET SRC STATIC STRING
SUM SYNTAX TARGET TAGS
TGT THEN TO TO_CSV
TO_DATETIME TRAILING TRIM TRUE
TRY TUPLE TYPEDEF UINT
UNION UPDATE VALUES VERTEX
WHEN WHERE WHILE WITH

5/13/25, 9:12 PM 3.3

1957

Example Graphs
Below is the listing of the graph create&load command files and data files to

generate the six example graphs used in this document: workNet , socialNet ,

friendNet , computerNet , minimalNet , andinvestmentNet . The tar-gzip file

gsql_ref_examples_2.0.gz contains all of these files. Each graph has its own folder.

To create a particular graph, go in its folder and run the following command:

gsql graph_create.gsql

gsql_ref_examples_2.0.gz

66KB
gsql_ref_examples_2.0.gz

workNet

graph_create.gsql for workNet

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNiwwsRfxO9TDUnKGoq%2F-LNix2SBbRguSccCK-F7%2Fgsql_ref_examples_2.0.gz?alt=media&token=b86a3e9c-2edc-47da-9504-79235c96becb

1958

Updated 5/1/18 for v2.0
DROP ALL
CREATE VERTEX person(PRIMARY_ID personId STRING, id STRING, locationId STR
CREATE VERTEX company(PRIMARY_ID clientId STRING, id STRING, country STRIN
CREATE UNDIRECTED EDGE worksFor(FROM person, TO company, startYear INT, st
CREATE GRAPH workNet(*)

USE GRAPH workNet // v1.2
CREATE LOADING JOB loadMember FOR GRAPH workNet {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX person VALUES($0, $0, $1, _, _, SPLIT($3,"|"), SPLIT($3,"|")
 TO TEMP_TABLE t2(id, skill) VALUES ($0, flatten($2,"|",1));

 LOAD TEMP_TABLE t2
 TO VERTEX person VALUES($0, _, _, $"skill", $"skill", _, _);
}

CREATE LOADING JOB loadCompany FOR GRAPH workNet {
 DEFINE FILENAME f;
 LOAD f TO VERTEX company VALUES($0, $0, $1);
}

CREATE LOADING JOB loadMemberCompany FOR GRAPH workNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE worksFor VALUES($0, $1, $2, $3, $4);
}

RUN LOADING JOB loadMember USING f="./persons"
RUN LOADING JOB loadCompany USING f="./companies"
RUN LOADING JOB loadMemberCompany USING f="./person_company"

person1,us,1|2|3,management|financial
person2,chn,2|3|5|6,engineering
person3,jp,4|1|6,teaching
person4,us,4|1|10,football
person5,can,|8|2|5,sport|financial|engineering
person6,jp,7|10,music|art
person7,us,8|6,art|sport
person8,chn,1|5|2,management
person9,us,4|7|2,financial|teaching
person10,us,3,football|sport
person11,can,10,sport|football
person12,jp,1|5|2|2|2,music|engineering|teaching|teaching|teaching

file: persons (vertices)

5/13/25, 9:12 PM 3.3

1959

company1,us
company2,chn
company3,jp
company4,us
company5,can

person1,company1,2016,1,1
person1,company2,2014,3,0
person2,company1,2015,7,1
person2,company2,2012,6,0
person3,company1,2016,6,1
person4,company2,2013,2,1
person5,company2,2016,4,0
person6,company1,2015,1,1
person7,company2,2016,3,0
person7,company3,2014,1,0
person8,company1,2013,2,1
person9,company2,2015,12,1
person9,company3,2016,11,1
person10,company1,2016,2,1
person10,company3,2014,5,0
person11,company5,2016,5,1
person12,company4,2014,1,1

socialNet

file: company (vertices)

file: person_company (edges)

graph_create.gsql for socialNet

5/13/25, 9:12 PM 3.3

1960

Updated 5/1/18 for v2.0
DROP ALL
CREATE VERTEX person(PRIMARY_ID personId UINT, id STRING, gender STRING) W
CREATE UNDIRECTED EDGE friend(FROM person, TO person)
CREATE VERTEX post(PRIMARY_ID postId UINT, subject STRING, postTime DATETI
CREATE DIRECTED EDGE posted(FROM person, TO post)
CREATE DIRECTED EDGE liked(FROM person, TO post, actionTime DATETIME)
CREATE GRAPH socialNet(*)

USE GRAPH socialNet // v1.2
CREATE LOADING JOB loadMember FOR GRAPH socialNet {
 DEFINE FILENAME f;
 LOAD f TO VERTEX person VALUES($0, $0, $1) ;
}

CREATE LOADING JOB loadFriend FOR GRAPH socialNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE friend VALUES($0, $1) ;
}

CREATE LOADING JOB loadPost FOR GRAPH socialNet {
 DEFINE FILENAME f;
 LOAD f TO VERTEX post VALUES($0, $1, $2);
}

CREATE LOADING JOB loadPosted FOR GRAPH socialNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE posted VALUES($0, $1) ;
}

CREATE LOADING JOB loadLiked FOR GRAPH socialNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE liked VALUES($0, $1, $2) ;
}

RUN LOADING JOB loadMember USING f="./persons"
RUN LOADING JOB loadFriend USING f="./friends"
RUN LOADING JOB loadPost USING f="./posts"
RUN LOADING JOB loadPosted USING f="./posted"
RUN LOADING JOB loadLiked USING f="./liked"

file: persons (vertices)

5/13/25, 9:12 PM 3.3

1961

person1,Male
person2,Female
person3,Male
person4,Female
person5,Female
person6,Male
person7,Male
person8,Male

person1,person2
person2,person3
person3,person4
person4,person5
person4,person6
person5,person7
person6,person8
person7,person8
person8,person1

0,Graphs,2010-01-12 11:22:05
1,tigergraph,2011-03-03 23:02:00
2,query languages,2011-02-03 01:02:42
3,cats,2011-02-05 01:02:44
4,coffee,2011-02-07 05:02:51
5,tigergraph,2011-02-06 01:02:02
6,tigergraph,2011-02-05 02:02:05
7,Graphs,2011-02-04 17:02:41
8,cats,2011-02-03 17:05:52
9,cats,2011-02-05 23:12:42
10,cats,2011-02-04 03:02:31
11,cats,2011-02-03 01:02:21

file: friends (edges)

file: posts (vertices)

file: posted (edges)

5/13/25, 9:12 PM 3.3

1962

person1,0
person2,1
person3,2
person4,3
person5,4
person5,11
person6,5
person6,10
person7,6
person7,9
person8,7
person8,8

person1,0,2010-01-11 11:32:00
person2,0,2010-01-12 10:52:15
person2,3,2010-01-11 16:02:26
person3,0,2010-01-16 05:15:53
person4,4,2010-01-13 03:16:05
person5,6,2010-01-12 21:12:05
person6,8,2010-01-14 11:23:05
person7,10,2010-01-12 11:22:05
person8,4,2010-01-11 03:26:05

friendNet

file: liked (edges)

graph_create.gsql for friendNet

5/13/25, 9:12 PM 3.3

1963

Updated 5/1/18 for v2.0
DROP ALL
CREATE VERTEX person(PRIMARY_ID personId UINT, id STRING)
CREATE UNDIRECTED EDGE friend(FROM person, TO person)
CREATE UNDIRECTED EDGE coworker(FROM person, TO person)
CREATE GRAPH friendNet(*)

USE GRAPH friendNet // v1.2
CREATE LOADING JOB loadMember FOR GRAPH friendNet {
 DEFINE FILENAME f;
 LOAD f TO VERTEX person VALUES($0, $0);
}

CREATE LOADING JOB loadFriend FOR GRAPH friendNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE friend VALUES($0, $1);
}

CREATE LOADING JOB loadCoworker FOR GRAPH friendNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE coworker VALUES($0, $1);
}

RUN LOADING JOB loadMember USING f="./persons"
RUN LOADING JOB loadFriend USING f="./friends"
RUN LOADING JOB loadCoworker USING f="./coworkers"

person1
person2
person3
person4
person5
person6
person7
person8
person9
person10
person11
person12

file: persons (vertices)

file: friends (edges)

5/13/25, 9:12 PM 3.3

1964

person1,person2
person1,person3
person1,person4
person2,person8
person3,person9
person4,person6
person5,person6
person6,person9
person7,person9
person8,person10
person9,person8
person10,person12
person11,person12
person12,person8
person12,person9

person1,person4
person1,person5
person1,person6
person2,person3
person2,person4
person3,person5
person3,person6
person4,person5
person4,person6
person5,person6
person6,person5
person7,person9
person7,person5
person7,person4
person8,person9
person9,person2
person10,person7
person11,person7
person12,person7

computerNet

file: coworkers (edges)

graph_create.gsql for computerNet

5/13/25, 9:12 PM 3.3

1965

Updated 5/1/18 for v2.0
DROP ALL
CREATE VERTEX computer(PRIMARY_ID compID UINT, id STRING)
CREATE DIRECTED EDGE connected(FROM computer, TO computer, connectionSpeed
CREATE GRAPH computerNet(*)

USE GRAPH computerNet // v1.2
CREATE LOADING JOB loadComputer FOR GRAPH computerNet {
 DEFINE FILENAME f;
 LOAD f TO VERTEX computer VALUES($0, $0);
}
CREATE LOADING JOB loadConnection FOR GRAPH computerNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE connected VALUES($0, $1, $2, $3);
}

RUN LOADING JOB loadComputer USING f="./computers"
RUN LOADING JOB loadConnection USING f="./connections"

file: computers (vertices)

5/13/25, 9:12 PM 3.3

1966

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15
c16
c17
c18
c19
c20
c21
c22
c23
c24
c25
c26
c27
c28
c29
c30
c31

file: connections (edges)

5/13/25, 9:12 PM 3.3

1967

c1,c2,16.0,3
c1,c3,64.0,3
c1,c4,64.0,2
c1,c5,16.5,3
c1,c6,64.3,3
c1,c7,3.2,3
c1,c8,-3.5,3
c1,c9,-5.1,1
c1,c10,15.5,3
c1,c10,.5,1
c1,c10,126,3
c10,c11,16,3
c11,c12,.5,3
c12,c13,-0.5,3
c12,c14,0.16,4
c12,c15,1e2,3
c12,c16,3.516e3,3
c12,c17,5.12e-3,2
c12,c18,-2.34e-5,1
c12,c19,-0.000000000234,5
c12,c20,0.000123e-5,4
c12,c21,1000e3,1
c12,c22,0.000123e10,1
c14,c23,123456e-6,1
c14,c24,123456e5,3
c23,c24,64,2
c23,c25,16,2
c23,c26,32,2
c23,c27,16,2
c23,c28,3,1
c23,c29,32,2
c23,c30,16,2
c23,c25,3,2
c23,c26,3,2
c23,c27,64,2
c23,c28,32,2
c23,c29,3,2
c23,c30,3,2
c23,c31,32,2
c4,c23,16,2
c4,c23,32,2
c4,c23,64,2
c4,c23,3,2

minimalNet

5/13/25, 9:12 PM 3.3

1968

There is no loading job or data for minimalNet (hence, "minimal.")

DROP ALL
CREATE VERTEX testV(PRIMARY_ID id STRING)
CREATE UNDIRECTED EDGE testE(FROM testV, TO testV)
CREATE GRAPH minimalNet(*)

Updated 5/1/18 for v2.0
DROP ALL
TYPEDEF TUPLE <age UINT (4), mothersName STRING(20) > SECRET_INFO
CREATE VERTEX person(PRIMARY_ID personId STRING, portfolio MAP<STRING, DOU
CREATE VERTEX stockOrder(PRIMARY_ID orderId STRING, ticker STRING, orderSi
CREATE UNDIRECTED EDGE makeOrder(FROM person, TO stockOrder, orderTime DAT
CREATE GRAPH investmentNet (*)

USE GRAPH investmentNet // v1.2
CREATE LOADING JOB loadPerson FOR GRAPH investmentNet {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX person VALUES($0, SPLIT($1, ":", ";"), SECRET_INFO($2, $3)
}

CREATE LOADING JOB loadOrder FOR GRAPH investmentNet {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX stockOrder VALUES($1, $3, $4, $5),
 TO EDGE makeOrder VALUES($0, $1, $2);
}

RUN LOADING JOB loadPerson USING f="./persons"
RUN LOADING JOB loadOrder USING f="./orders"

person1,AAPL:3142.24;G:6112.23;MS:5000.00,25,JAMES
person2,A:5242.62;GCI:5331.21;BAH:3200.00,67,SMITH
person3,AA:5223.73;P:7935.00;BAK:6923.52,45,WILLIAMS
person4,ACH:3542.62;S:6521.55;BABA:4030.52,51,ANTHONY

investmentNet

graph_create.gsql for minimalNet

graph_create.gsql for investmentNet

file: persons (vertices)

5/13/25, 9:12 PM 3.3

1969

person1,0,1488566548,AAPL,500,34.42
person1,1,1488566549,A,210,50.55
person1,2,1488566550,B,211,202.32
person2,3,1488566555,S,2,42.44
person3,4,1488566155,ABC,2,52.44
person4,5,1488566255,Z,2,62.34
person4,6,1488566655,S,2,10.01

file: orders (vertices and edges)

5/13/25, 9:12 PM 3.3

1970

Interpreted GSQL Limitations
Currently, a query defined with CREATE DISTRIBUTED QUERY cannot be run in

Interpreted Mode. However, interpreted queries can still run on a distributed graph

with a regular, non-distributed execution model.

The list below includes additional limitations. These limitations are expected to be

temporary. We are continuing to expand the capabilities of Interpreted Mode.

• Distributed Query Mode

• Any operation involving files

◦ FILE objects

◦ PRINT TO_CSV

◦ LoadAccum() function

◦ SelectVertex() function

• Statements

◦ Exception statements:

▪ RAISE statements

▪ TRY...EXCEPTION statements

◦ RETURN statement

▪ Returning a vertex set variable

◦ SELECT statement

▪ ORDER BY clause

◦ Assigning value to a global variable at the statement level

• Attributes and accumulators

◦ ArrayAccum

◦ Accessing the previous value of a vertex-attached accumulator with the '

operator, e.g., src.@acc'

◦ STRING COMPRESS as accumulator type

Unsupported Features in Interpreted Mode

5/13/25, 9:12 PM 3.3

1971

◦ Accessing the attribute of a vertex variable that is not a vertex alias defined

in a FROM clause

• Functions and Operators

◦ Aggregate functions: AVG() , MIN() , MAX() , COUNT() , ISEMPTY() ,
SUM()

◦ neighbor() , neighborAttribute()

◦ COALESCE()

◦ IS NULL , IS NOT NULL

◦ evaluate()

◦ datetime_format()

◦ parse_json_object() , parse_json_array()

◦ User-Defined Functions

• Data types

◦ JSONOBJECT , JSONARRAY

◦ BAG type parameters

• Other

◦ In INSERT : Optional vertex type information for from- and to- vertices when

inserting edges

◦ Using _ or ANY to specify any source vertex type in a FROM clause

◦ Having the same name for global accumulators, global variables, and query

parameters

▪ For example, there cannot be a query parameter named param and a

global accumulator named @@param within the same query

5/13/25, 9:12 PM 3.3

1972

RESTful API User Guide

Introduction

Built-in Endpoints

Built-in Endpoints JSON Catalog

5/13/25, 9:12 PM 3.3

1973

Introduction
TigerGraph's REST API endpoints exist on the REST++ and the GSQL server.

REST++ (or RESTPP) is the TigerGraph customized REST server. Our API accepts

URL-encoded query string parameters, JSON -encoded request bodies and

returns JSON encoded responses. This user guide provides information on how to

engage with our REST APIs: the introduction section explains how to send requests,

pass parameters, and format request bodies, while the subsequent sections

describe in detail each endpoint and its input and output.

To submit a request, send an HTTP request to the REST++ server or the GSQL

server. By default, the REST++ server listens for requests at port 9000 and the

GSQL server listens on port 14240. A request needs to specify five things:

• The request method (GET , POST , PUT , or DELETE)

• The endpoint address

• Any required or optional request parameters in URL encoding

• For POST requests, a data payload (i.e., request body) in JSON encoding unless

otherwise specified

• In some cases, request header parameters

For requests that are sent to the GSQL server, the sender needs to provide

TigerGraph user credentials for the request to be accepted. If authentication is

enabled on the RESTPP server, a request token needs to be included in the request

header as well.

In a test or development environment, the requester may be on the same server as
REST++. In this case, the server IP is localhost.

TigerGraph's API endpoints accept parameters in URL encoding, which is

straightforward in the case of string, number, and boolean values. However, some

parameters are more complex and require specific formatting. The list below

Query String Parameters

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.json.org/json-en.html
https://www.json.org/json-en.html

1974

describes how to format the complex type parameter values when executing a

query.

Parameter type Description Example

SET or BAG of primitives
Assign multiple values to

the same parameter name.

A SET<INT> parameter

named p1 is assigned 3

integers:

p1=1&p1=5&p1=10

VERTEX with a defined type
Use the primary key of the

vertex.

A VERTEX<person>
parameter named vp is

assigned a vertex whose ID

is "person2" :

vp=person2

VERTEX without a defined

type

Use <parameter_name>.
<parameter_type> to

specify the type of the

parameter, and also provide

the primary key of the

vertex.

A VERTEX parameter

named va is assigned a

person type vertex whose

ID is "person1"
va=person1&va.type=perso
n

SET or BAG of vertices

with a defined type

Same as a SET or BAG of

primitives, where the value

for each element is the

primary key of the vertex.

A SET<VERTEX<person>>
parameter named vp is

assigned two vertices with

IDs person3 and person4 :

vp=person3&vp=person4

SET or BAG of vertices

without a defined type

The SET or BAG must be

treated as an array,

specifying the order of the

elements with indices

[0] , [1] , etc.

A SET<VERTEX> parameter

named vp is assigned a

person type vertex with an

ID of person1 and a post
type vertex with an ID of

11 :

vp[0]=person1&vp[0].type
=person&vp[1]=11&vp[1].ty
pe=post

Input Data for POST requests

5/13/25, 9:12 PM 3.3

1975

Input data for POST requests should be in JSON format, unless the endpoint

specifically accepts data in other formats. There are two ways to supply the data:

inline or in a separate file.

The data should be formatted as a single string without linebreaks. If using curl, use

the -d option, followed by the JSON string.

The following example uses the POST /graph endpoint to insert one User type

vertex whose ID is "id6 " into the graph called "socialNet" .

Often it will be more convenient for the input data to be in a separate file, especially

if the data is large.

For curl, use --data-binary <path_to_file> as in the example below:

Data of primitive types, including INT, UINT, FLOAT, DOUBLE, STRING, BOOL , and

DATETIME , as well as arrays and objects, follow the standard JSON Data

Interchange Syntax . This subsection describes how to format complex data types.

curl -X POST -d 'json_string' "http://server_ip:9000/path_to_endpoint?requ

curl -X POST -d '{"vertices":{"User":{"id6":{"id":{"value":"id6"}}}}}' "ht

curl -X POST --data-binary <path_to_file> "http://server_ip:9000/path_to_e

Inline Data

Data File

Formatting Data in JSON

Syntax for a POST request with Inline Data Payload

Example using inline input data

Syntax for a POST request with Payload Data File

5/13/25, 9:12 PM 3.3

https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html

1976

Data type Description Example

SET , LIST or BAG of

primitives

Use a JSON array of

primitive values.

A set of primitive values:

[0.5, 0,6, 0.7]

VERTEX

Use a JSON object that has

an id field

whose value is the primary

key of the

vertex and a "type" field

whose value

is the type of the vertex.

A person vertex with an ID

of "Tom" :

{"id": "Tom", "type":
"person"}

MAP

Use a JSON object that has

two JSON

arrays with keys keyList
and

valueList , each

containing the

keys and the values of the

map respectively.

The order of items in the

valueList should correspond

to the order of items in the

keyList.

A map of nations and their

capitals:

{
"keyList": ["England",
"Germany"],

"valueList": ["London",
"Berlin"]
}

User-Defined Type (UDT)

Use a JSON object that has

two JSON

arrays with keys keyList
and

valueList . The keyList
array contains the field

names of the tuple, and the

valueList array contains

the values of the fields.

The order of items in the

valueList should correspond

to the order of items in the

keyList.

Tuple schema definition:

TYPEDEF TUPLE <name
STRING, age INT> person A

person tuple written in

JSON:

{"keyList: ["name",
"age"], "valueList":
["Sam", 24]}

Example: UDT Definition

5/13/25, 9:12 PM 3.3

1977

If a vertex has a composite key composed of N attributes, then N values must be

provided for the "id" . The values can be presented either as a JSON object with

N key-value pairs, or as a JSON array with a list of N values in the same order as

defined in the schema.

The example below shows the two methods for a vertex v having a composite

primary key composed of the three attributes id , name , and label.

TYPEDEF TUPLE <field1 INT(1), field2 UINT, field3 STRING(10), field4 D

Option1

{
 "v": {
 "id": {
 "id": 3,
 "name": "c",
 "label": 300
 },
 "type": "v3"
 }
}

Option2

Vertices with Composite Keys

Vertex v with composite key as JSON object

Vertex v with composite key as JSON array

5/13/25, 9:12 PM 3.3

1978

To describe a SET or BAG of vertices in JSON, use a JSON array with vertex

objects nested in the SET or BAG array.

All TigerGraph REST responses are in JSON format. The output JSON object has

four fields: "version" , "error" , "message" , and "result" .

• "version" - this field describes the version of the running TigerGraph instance.

• " error" - a boolean value to indicate if there is an error in processing the

request. If there is an error, the "error" field will be true .

• "message" - the error message when there is an error. If a request is

successful, the field will be an empty string or a brief message conveying the
result of the request.

• "results" - this field contains the resulting data from the request. Details

about the result of each built-in endpoint are described in the Built-in Endpoints

section.

{
 "v": {
 "id": {
 "id": [3, "c", 300] // The values in the array must be in the sa
 // order as they are defined in the schema
 },
 "type": "v3"
 }
}

SET or BAG of Vertices

Output Responses

5/13/25, 9:12 PM 3.3

1979

To make the JSON output more human-readable in the terminal, use the jq
command or Python json library built into most Linux installations:

The maximum length for the request URL is 8K bytes, including the query string.

Requests with a large parameter size should use a data payload file instead of inline

data.

The maximum size for a request body, including the payload file, is set by the

system parameter Nginx.ClientMaxBodySize . The default value is 200 (in MB). To

increase this limit, use the following gadmin command:

// Example response
{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_id": "id1",
 "v_type": "User",
 "attributes": {}
 }
]
}

curl -X method "http://server_ip:9000/path_to_endpoint?request_para
curl -X method "http://server_ip:9000/path_to_endpoint?request_para

gadmin config set Nginx.ClientMaxBodySize NNN

Size and Time limits

Request Body Size

5/13/25, 9:12 PM 3.3

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

1980

The upper limit of this setting is 1024 MB. Raising the size limit for the data payload

buffer reduces the memory available for other operations, so be cautious about

increasing this limit.

By default, an HTTP request in the TigerGraph system times out after 16 seconds.

to customize this timeout limit for a particular query instance, you can set the GSQL-

TIMEOUT parameter in the request header. If you are using curl to submit your

RESTPP request, the syntax would be the following:

You can specify the response size limit of an HTTP request with the following

header:

If the response size is larger than the given limit, an error message will be returned

instead of the actual query result:

Request examples in this guide are made using curl . Below is a list of curl

options used in our code examples:

curl -X <GET/POST> -H "GSQL-TIMEOUT: <timeout value in ms>" '<request_URL>

curl -X <GET/POST> -H "RESPONSE-LIMIT: <size limit in byte>" '<request_URL

{
 "error": true,
 "message": "The query response size is 256MB, which exceeds limit 32MB."
 "results": [],
 "code": "REST-4000"
}

GSQL Query Timeout

Response Size

curl options

5/13/25, 9:12 PM 3.3

https://curl.se/docs/manpage.html
https://curl.se/docs/manpage.html

1981

• -d <data>

◦ Sends the specified data in a POST request to the HTTP server in the same

way that a browser does when a user has filled in an HTML form and presses
the submit button. This will cause curl to pass the data to the server using

the content-type application/x-www-form-urlencoded .

◦ If you start the data with the character @ , the rest should be a filepath from

which to read the data. The command curl -d @foobar will read data from
a file named foobar .

• --data-binary <data>

◦ Sends data with a POST request exactly as specified with no extra

processing.

• --fail

◦ Makes curl fail silently (no output at all) on server errors.

◦ This is mostly done to enable scripts etc. to better deal with failed attempts.

In normal cases when an HTTP server fails to deliver a document, it returns
an HTML document stating so (which often also describes why and more).

This flag will prevent curl from outputting that and return error 22.

• -H <header>

◦ Extra header to include in the request when sending HTTP to a server. You

may specify any number of extra headers.

◦ TigerGraph APIs use headers to specify size and time limits, as well as to
provide RESTPP authentication tokens.

• -s

◦ Silent or quiet mode. Don't show a progress meter or error messages. It will

still output the data you ask for, potentially even to the terminal/stdout unless

you redirect it.

• -u <user:password>

◦ Submits the specified user name and password for server authentication.

• -X <request_method>

◦ Specifies a custom request method to use when communicating with the

HTTP server. If this option is not used, curl will make a GET request by

default.

5/13/25, 9:12 PM 3.3

1982

Authentication
TigerGraph's RESTful APIs communicate with either the REST++ server on port

9000 or the GSQL server on port 14240. Each server uses different methods of

authentication.

By default, TigerGraph REST++ endpoints are public: anyone with access to the

HTTP ports of the TigerGraph server can run your endpoints. When REST++

authentication is enabled, then a valid authorization token must be included in the

header.

The REST++ server implements OAuth 2.0-style authorization as follows:

1. Each user can create one or more secrets (unique pseudorandom strings). Each

secret is associated with a particular user and the user's privileges for a

particular graph.

2. Anyone who has this secret can invoke a special REST endpoint to generate

authorization tokens (other pseudorandom strings).

3. An authorization token can then be used to perform TigerGraph database
operations via other REST endpoints. Each token will expire after a certain period

of time. The TigerGraph default lifetime for a token is 1 month.

Once REST++ authentication is enabled, a valid token should always be included in

the HTTP header. If you are using curl to format and submit your REST++ requests,

then use the following syntax:

Here is a sample request:

curl -X GET -H "Authorization: Bearer <token>" '<request_URL>'

REST++ Server Requests

Using Tokens

curl GSQL request, with authorization token in header

5/13/25, 9:12 PM 3.3

1983

All requests made to the GSQL Server must be accompanied by your user

credentials. You can use the curl -u option to pass in the username and password

of the TigerGraph user:

To keep your credentials more secure, one way to avoid having the user name and

password on the command line is to instead use a .netrc file or a config file . If

you are in interactive mode, you can also use the -u option without specifying the

password, and then curl will prompt for the password.

curl -X GET -H "Authorization: Bearer 01234567abcdefgh01234567abcdefgh" "h

curl -X GET -u <username>:<password> "http://localhost:14240/<path_to_endp

GSQL Server Requests

5/13/25, 9:12 PM 3.3

https://everything.curl.dev/usingcurl/netrc
https://everything.curl.dev/usingcurl/netrc
https://everything.curl.dev/cmdline/configfile
https://everything.curl.dev/cmdline/configfile

1984

Built-in Endpoints

GET /echo and POST /echo

These endpoints provide simple diagnostic utilities, which respond with the

following message if the RESTPP server is up and running. Neither GET /echo or

POST /echo require authentication, even when RESTPP authentication is enabled.

POST /echo has the same response as GET /echo .

curl -X GET "http://localhost:9000/echo"
{
 "error": false,
 "message": "Hello GSQL"
}

Name Required Description

sleep No

Integer that indicates the

number of seconds for

which the response will be

delayed.

System Utilities

Echo (Public)

Sample request:

Parameters

Health check (public)

GET echo/ Request and Response

5/13/25, 9:12 PM 3.3

1985

This endpoint performs a simple server health check. It listens on port 14240 and

does not require authentication. If you ping it and the server is running, it will

respond with the message "pong".

GET /api/ping

No parameters.

GET /endpoints/{graph_name}

This endpoint returns a list of the installed endpoints and their parameters. There

are three types of endpoints:

• Built-in endpoints which are preinstalled in the TigerGraph system

• Dynamic endpoints which are generated when compiling GSQL queries

• _Static endpoints _which are user-installed endpoints

To include one or more of the endpoint types in the output, include the endpoint

type in the parameter query string and set its value to true . If no type parameters

are provided, all endpoints are returned.

$ curl 'http://localhost:14240/api/ping'

{
 "error": "false",
 "message": "pong",
 "results": {}
}

Endpoint:

Sample request:

Parameters:

List all endpoints

5/13/25, 9:12 PM 3.3

1986

There are over a dozen built-in endpoints, and some have several parameters, so

the formatted JSON output of all built-in endpoints is over 300 lines long. It is listed

in full in Appendix A. Below is a small excerpt of the output:

curl -X GET "http://localhost:9000/endpoints?builtin=true" | jq .

 "GET /endpoints": {
 "parameters": {
 "builtin": {
 "default": "false",
 "max_count": 1,
 "min_count": 0,
 "type": "BOOL"
 },
 "dynamic": {
 "default": "false",
 "max_count": 1,
 "min_count": 0,
 "type": "BOOL"
 },
 "static": {
 "default": "false",
 "max_count": 1,
 "min_count": 0,
 "type": "BOOL"
 }
 }
 }

Name Required Description

builtin No

Takes a boolean value.

Returns built-in endpoints if

true.

Response

Parameters

Example: Report on all built-in endpoints

Subset of GET /endpoints output

5/13/25, 9:12 PM 3.3

1987

GET /version

This endpoint returns the GIT versions of all components of the system.

This endpoint does not take any parameters.

dynamic No

Takes a boolean value.

Returns dynamic endpoints

if true.

static No

Takes a boolean value.

Returns user-installed

d i if

curl -X GET "http://localhost:9000/version"
{"error":"false", "message":"TigerGraph RESTPP:
 --- Version ---
product release_2.6.0_05-09-2020 ab1e3d0da6237c27468d6cabb909
olgp release_2.6.0_05-09-2020 046c745088106b69920b9bdb3bd1
topology release_2.6.0_05-09-2020 c028af100117f2051b619436c3aa
gpe release_2.6.0_05-09-2020 34b9e86ef7b5fdaa106637e7db1d
gse release_2.6.0_05-09-2020 ed2c2351357aa9077fa4dee7ea7a
third_party release_2.6.0_05-09-2020 4bce6990bae5be2b91e9201693ce
utility release_2.6.0_05-09-2020 2ce197d3edb3557bdd66ed1a4194
realtime release_2.6.0_05-09-2020 52a82b454437c73b47d846acd580
er release_2.6.0_05-09-2020 a3e6cb7606fb74984c75cae9bbd4
gle release_2.6.0_05-09-2020 d8bdbd1cf346e181aa9a317c704d
bigtest release_2.6.0_05-09-2020 2f64c47b7a5ac1834ead9a22eef8
document release_2.6.0_05-09-2020 6327094bd76b2dbc8f4625108d54
glive release_2.6.0_05-09-2020 93f61ea06fe42759c808fc58ff62
gap release_2.6.0_05-09-2020 e798efb595545bf91c4490345668
gst release_2.6.0_05-09-2020 1b695c02f277efad0ddfb2deab71
gus release_2.6.0_05-09-2020 eee784502b5387844e462305bae4
blue_features release_2.6.0_05-09-2020 5d7a4e8d806519f529274b331496
blue_commons release_2.6.0_05-09-2020 432763afc49bf986aed4731e5025
"}

Show component versions

Sample request:

Parameters

5/13/25, 9:12 PM 3.3

1988

POST /ts3/api/datapoints

TigerGraph System State Service (TS3) is TigerGraph's managed monitoring service

that collects system metrics and events. Many TigerGraph components will report

metrics such as CPU usage, memory usage, disk usage, and network traffic to TS3

at regular intervals. You can use this endpoint to read from TS3, filtering for the data

points you need by time (when , from , and to), component(who), metric(what)

and location(where). Visualization of such metrics are available in Admin Portal -

Dashboard - Cluster Monitoring.

On a TigerGraph cluster, this endpoint is only present on the m1 node.

Name Required Description

from No

Epoch timestamp that

indicates the start of the

time filter. Only data points

reported after the

timestamp will be included

in the return results.

to No

Epoch timestamp that

indicates the end of the time

filter. Only data points

reported before the

timestamp will be included

in the return results.

latest No

Number of latest data points

to return. If provided, the

endpoint will return the

latest data points that

satisfy the what , who and

where filters and ignore

other time-related filters.

Monitor system metrics

Parameters

5/13/25, 9:12 PM 3.3

1989

In the sample request below, the filters in the query string include a timeframe

starting at 1618957536 and ending at 1619023346 , and specifying that the

response should only include CPU information:

what No

Name of the metric to filter

for. Possible values are:

• cpu : Percentage of

CPU usage by

component

• mem : Memory usage in

megabytes by

component

• diskspace : Disk usage

in megabytes by

directory

• network : Network

traffic in bytes since the

service started

• qps : Number of

requests per second by

endpoint

• servicestate :

Whether or not the

service is online. A

value of 0 indicates

that the service is

offline while a value of

1 means the service is

online

• connection : Number

of open TCP

connections

who No
Name of the component

that reported the datapoint

Name of the node that the

Sample requests

5/13/25, 9:12 PM 3.3

1990

In the below example, the request asks for the 10 latest data points regarding

memory usage:

$ curl -X GET
"https://crunch.i.tgcloud.io:14240/ts3/api/datapoints?from=1618957536&to=1

Three data points returned
[
 {
 "detail": 0, # GPE is using 0 percent CPU
 "when": 1619023346,
 "where": "m1",
 "who": "GPE_1#1",
 "what": "cpu"
 },
 {
 "detail": 0,
 "when": 1619023346,
 "where": "m1",
 "who": "GSE_1#1",
 "what": "cpu"
 },
 {
 "detail": 0,
 "when": 1619023346,
 "where": "m1",
 "who": "RESTPP#1",
 "what": "cpu"
 }
]

5/13/25, 9:12 PM 3.3

1991

5/13/25, 9:12 PM 3.3

1992

$ curl -X GET
"https://crunch.i.tgcloud.io:14240/ts3/api/datapoints?what=mem&latest=10"

[
 {
 "detail": 159,
 "when": 1620076473,
 "where": "m1",
 "who": "RESTPP#1",
 "what": "mem"
 },
 {
 "detail": 211,
 "when": 1620076533,
 "where": "m1",
 "who": "GPE_1#1",
 "what": "mem"
 },
 {
 "detail": 436,
 "when": 1620076533,
 "where": "m1",
 "who": "GSE_1#1",
 "what": "mem"
 },
 {
 "detail": 159,
 "when": 1620076533,
 "where": "m1",
 "who": "RESTPP#1",
 "what": "mem"
 },
 {
 "detail": 211,
 "when": 1620076593,
 "where": "m1",
 "who": "GPE_1#1",
 "what": "mem"
 },
 {
 "detail": 436,
 "when": 1620076593,
 "where": "m1",
 "who": "GSE_1#1",
 "what": "mem"
 },
 {
 "detail": 159,

5/13/25, 9:12 PM 3.3

1993

GET /statistics/{graph_name}

This endpoint returns real-time query performance statistics over the given time

period, as specified by the seconds ** **parameter. The seconds parameter must

be a positive integer less than or equal to 60.

The return object is a hash of the endpoints and their performance data:

 "when": 1620076593,
 "where": "m1",
 "who": "RESTPP#1",
 "what": "mem"
 },
 {
 "detail": 210,
 "when": 1620076653,
 "where": "m1",
 "who": "GPE_1#1",
 "what": "mem"
 },
 {
 "detail": 436,
 "when": 1620076653,
 "where": "m1",
 "who": "GSE_1#1",
 "what": "mem"
 },
 {
 "detail": 159,
 "when": 1620076653,
 "where": "m1",
 "who": "RESTPP#1",
 "what": "mem"
 }
]

Show query performance

Sample request:

5/13/25, 9:12 PM 3.3

1994

The example shows two endpoints (/graph/vertex and
/statistics) called during the past 60 seconds.
curl -X GET "http://localhost:9000/statistics/poc_graph?seconds=60" | jq '

{
 "GET /graph/vertices/{vertex_type}/{vertex_id}": {
 "CompletedRequests": 8,
 "QPS": 0.08,
 "TimeoutRequests": 0,
 "AverageLatency": 130,
 "MaxLatency": 133,
 "MinLatency": 128,
 "LatencyPercentile": [
 200,
 200,
 200,
 200,
 200,
 200,
 200,
 200,
 200,
 200
]
 },
 "GET /statistics": {
 "CompletedRequests": 4226,
 "QPS": 42.26,
 "TimeoutRequests": 0,
 "AverageLatency": 2,
 "MaxLatency": 125,
 "MinLatency": 0,
 "LatencyPercentile": [
 10,
 10,
 10,
 10,
 10,
 10,
 10,
 10,
 10,
 200
]
 }
}

5/13/25, 9:12 PM 3.3

1995

Each endpoint has the following attributes:

• CompletedRequests - the number of completed requests.

• QPS - query per second.

• TimeoutRequests - the number of requests not returning before the system-

configured timeout limit. Timeout requests are not included in the calculation of

QPS.

• AverageLatency - the average latency of completed requests.

• MaxLatency - the maximum latency of completed requests.

• MinLatency - the minimum latency of completed requests.

• LatencyPercentile - The latency distribution. The number of elements in this

array depends on the segments ** parameter of this endpoint whose default

value is 10, meaning the percentile range 0-100% will be divided into ten equal

segments: 0%-10%, 11%-20%, etc. Segments **must be [1, 100].

If there is no query sent in the past given seconds, an empty json will be returned.

Name Required Description

seconds Yes

Positive integer less than 60

that indicates how many

seconds back from the

current time the statistics

report will cover.

segments No

Integer that indicates the

number of segments that

LatencyPercentile array

in the response will be split

into. The value for this

endpoint must be between 1

and 100 and has a default

value of 10.

Parameters

Rebuild graph engine

5/13/25, 9:12 PM 3.3

1996

GET /rebuildnow/{graph_name} or POST /rebuildnow/{graph_name}

In TigerGraph, when new data is being loaded into the graph (such as new vertices

or edges), data is first stored in memory before it is saved to disk permanently.

TigerGraph runs a rebuild of the Graph Processing Engine (GPE) to commit the data

in memory to disk every 30 seconds, but you can also call this endpoint to trigger a

rebuild immediately.

Name Required Description

threadnum No

Number of threads used to

execute the rebuild. If not

specified, the number

specified in line 185 of the

.tg.cfg file

("RebuildThreadNumber")

in the home directory of the

server on which TigerGraph

is running will be used; it is

set to 3 by default.

The maximum value for this

parameter is the number of

vCPUs per node in your

distributed system. If you

are running a single-node

server, the maximum is the

number of vCPUs on that

node. You can run lscpu in

the command line of your

Linux server and look in the

CPU(s) column to view the

number of vCPUs.

vertextype No

Vertex type to perform the

rebuild for. If not provided,

the rebuild will be run for all

the vertex types.

Segment ID of the segments

to rebuild. If not provided,

all segments will be rebuilt.

Parameters:

5/13/25, 9:12 PM 3.3

1997

segid No In general, it is

recommended not to

provide this parameter and

rebuild all segments.

path No

Path to save the summary of

the rebuild to. If not

provided, the default path is

/tmp/rebuildnow

force No

Boolean value that indicates

whether to perform rebuilds

for segments for which

there are no records of new

data. Normally, a rebuild

would skip such segments,

but if force is set true, the

segments will not be

skipped.

$ curl -X GET 'http://localhost:9000/rebuildnow/social'

JSON response
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "RebuildNow finished, please check details in the folder: /tm
 "results": [],
 "code": "REST-0000"
}

Example summary file
$ cat finished.summary.txt

[SELECTED] Segment id: 106, vertextype: 0, vertexsubtypeid: 0, vertexcoun
[SKIPPED] Segment id: 6, vertextype: 0, vertexsubtypeid: 0, vertexcount:

Example:

5/13/25, 9:12 PM 3.3

1998

GET /deleted_vertex_check

In certain rare cases, TigerGraph's Graph Processing Engine (GPE) and Graph

Storage Engine (GSE) might be out of sync on vertex deletion information. When this

happens, some vertices might exist on one of the components, but not the other.

Even though these errors are exceedingly rare, TigerGraph provides an endpoint

that allows you to check the deleted vertices on GSE and GPE and see if they out of

sync.

The check passes if there are no discrepancies between the GSE and GPE in terms

of deleted vertices. If there is a discrepancy, the check fails and the return result will

contain the IDs of the deleted vertices that are not synced properly. If you are

running TigerGraph on a distributed cluster, the check will be performed on each

node of the cluster, and the endpoint will return a list containing the results of the

check for every node.

Name Required Description

threadnum No

Integer that indicates the

number of threads used to

execute the deleted vertex

check jobs. This parameter

is optional and the default

value is 6 if none is

provided

segid No

IDs of segments to perform

the deleted vertex check

for. If none is provided, the

check will be performed on

all segments.

vertextype No

Vertex types to perform the

deleted vertex check for. If

none is provided, the check

Check deleted vertices

Parameters:

5/13/25, 9:12 PM 3.3

1999

will be performed on all

vertex types.

verbose No

Integer that indicates the

level of detail in the return

results. Here is a list of

accepted values and their

corresponding level of

detail:

• 0 (default) : Only

return whether the

check passed and the

list of unsynced vertex

IDs

• 1 : In addition to the

previous level, also

return vertex count

information

• 2 : In addition to the

previous level, return

vertex count

information for every

segment

• 4 : In addition to the

previous level, also

return the IDs of deleted

vertices for every

segment

log No

Integer that indicates the log

level of the deleted vertex

check. This log is not

returned in the endpoint's

HTTP response, but is

printed to the logs of the

GPE component at

/tigergraph/log/gpe/log.
INFO :

• 0 (default): Report

brief log for the check

as a whole

• 1 : Report logs for

each segment

• 2 : Report additional

logs on the obtained

5/13/25, 9:12 PM 3.3

2000

deleted ID list

Example:

5/13/25, 9:12 PM 3.3

2001

5/13/25, 9:12 PM 3.3

2002

Passing check performed on a single-node database
$ curl -X GET "http://localhost:9000/deleted_vertex_check?threadnum=10&ver

{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "check passed",
 "results": [
 {
 "GPE": "GPE_1_1",
 "PassCheck": true,
 "UnSyncList": []
 }
],
 "code": "REST-0000"
}

Failed check performed on a distributed cluster

$ curl -X GET 'http://localhost:9000/deleted_vertex_check?threadnum=10&ver
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "check failed",
 "results": [
 {
 "GPE": "GPE_2_1",
 "PassCheck": false,
 "UnSyncList": [
 {
 "Segid": 193,
 "IsRemote": false,
 "VertexType": "region",
 "GPEDelHash": 7013042118817697000,
 "IDSDelHash": 202375168
 }
]
 },
 {
 "GPE": "GPE_3_1",

5/13/25, 9:12 PM 3.3

2003

The endpoints in this subsection allow users to create, refresh and delete

authentication tokens for requests made to the REST++ server. These endpoints

only exist when user authentication is enabled on RESTPP endpoints.

GET /requesttoken

If authentication is enabled on RESTPP endpoints, a token needs to be included in

the request header for all requests sent to the RESTPP server. A user can generate a

token using either

 "PassCheck": false,
 "UnSyncList": [
 {
 "Segid": 193,
 "IsRemote": true,
 "VertexType": "region",
 "GPEDelHash": 7013042118817697000,
 "IDSDelHash": 202375168
 }
]
 },
 {
 "GPE": "GPE_1_1",
 "PassCheck": false,
 "UnSyncList": [
 {
 "Segid": 193,
 "IsRemote": true,
 "VertexType": "region",
 "GPEDelHash": 7013042118817697000,
 "IDSDelHash": 202375168
 }
]
 }
],
 "code": "REST-0000"
}

Authentication

Request a token (GET)

5/13/25, 9:12 PM 3.3

2004

• A secret, which is a random string generated in GSQL (see Managing User

Privileges and Authentication)

• Their username and password in their request header as well as specifying the

graph

You may also use a POST request to generate your token, see Request a token

(POST).

Users can use either secret or their username and password to generate a token.

If the user does not supply a secret and chooses to use their username and

password instead, then the parameter graph becomes required.

curl -X GET "http://localhost:9000/requesttoken?secret=jiokmfqqfu2f95qs6ug
{
 "code": "REST-0000",
 "expiration": 1616042814,
 "error": false,
 "message": "Generate new token successfully.",
 "token": "tohvf6khjqju8jf0r0l1cohhlm8gi5fq"
}

curl --user example_username:example_password -X GET "localhost:9000/reque

Name Required Description

secret
Yes if graph is not

supplied

User's secret to generate

the token.

lifetime No

Period of time for which the

token is valid measured in

seconds. The default value

is about 2.6 million (about a

month).

graph
Yes if secret is not

supplied

Name of the graph that the

token will be valid for.

Sample request:

Parameters:

5/13/25, 9:12 PM 3.3

2005

POST /requesttoken

If authentication is enabled on RESTPP endpoints, a token needs to be included in

the request header for all requests sent to the RESTPP server. A user can generate a

token using either

• A secret, which is a random string generated in GSQL (see Managing User
Privileges and Authentication)

• Their username and password in their request header as well as specifying the

graph

You may also use a GET request to generate your token, see Request a token

(GET).

Replace path_to_secret with the path to the file containing your secret. The file

should only include a single line, which is your secret.

Request

curl -d <path_to_secret> -X POST \
"http://localhost:9000/requesttoken?lifetime=1000000"

Response

{
 "code": "REST-0000",
 "expiration": 0,
 "error": false,
 "message": "Refresh token successfully.",
 "token": "tohvf6khjqju8jf0r0l1cohhlm8gi5fq"
}

Request a token (POST)

Sample requests

5/13/25, 9:12 PM 3.3

2006

You can also use a username-password pair to generate a token. In this case, you

must also specify the graph you want to generate the token for.

PUT /requesttoken

This endpoint takes a token and its associated secret and refreshes the lifetime of

the token. The token itself remains unchanged.

Parameters:

Request

curl --user tigergraph:tigergraph \
-X POST '127.0.0.1:9000/requesttoken?graph=gsql_demo'

Response

{
 "error":false,
 "message":"Request token successfully.",
 "results":{"token":"o5pn931drmppjasi2vjidrlf6rp4n4po"}
}

Name Required Description

lifetime No

Period of time for which the

token is valid in seconds.

The default value is about

2.6 million (about a month).

graph
Yes if using username-

password pair

The graph for which to

generate token.

Parameters:

Refresh a token

5/13/25, 9:12 PM 3.3

2007

DELETE /requesttoken

This endpoint takes a token and its associated secret, and deletes the token.

Name Required Description

token Yes Token to refresh.

secret Yes
User's secret used to

generate the token.

lifetime Yes

Period of time for which the

token is valid measured in

seconds.

curl -X PUT "http://localhost:9000/requesttoken?lifetime=15&secret=ksdoilr
{
 "code": "REST-0000",
 "expiration": 15,
 "error": false,
 "message": "Refresh token successfully.",
 "token": "0mq98l9pderkaivndf820gudg923p3l0"
}

Name Required Description

token Yes Token to delete.

secret Yes
User's secret used to

generate the token.

Sample request

Delete a token

Parameters:

Loading jobs

5/13/25, 9:12 PM 3.3

2008

POST /ddl/{graph_name}

This endpoint is for loading data into a graph. It submits data as an HTTP request

payload, to be loaded into the graph by the DDL Loader. The data payload can be

formatted as generic CSV or JSON. For more details, please see GSQL Language

Reference Part 1 - Defining Graphs and Loading Data.

If the loading job references multiple files, multiple HTTP requests are needed to

complete the loading job since you can only provide data for one filename varibale

at a time. The loading job will skip the LOAD statements referencing filename

variables that the request didn't provide data for. To provide data for a filename

variable, put the data in the request body and use the filename parameter

(explained in the parameter table below) to match the variable name defined in the

loading job.

If a LOAD statement is written using a filepath string instead of a file variable, even

though the filepath is already provided in the loading job, you still need to provide

data in the request body for the LOAD statement to run. Since there isn't a file

variable in this case, use a position-based file identifier to identify the filepath string

you are providing data for in the filename parameter.

The request body is the data to be loaded (either in CSV or JSON format).

Curl allows you to read the data from an input file by using the @ symbol:

curl -X POST --data-binary @./company.csv "http://…"

In this example, the loading job is dependent on three filename variables (f1 and

f3) and one filepath string. Therefore, three HTTP requests are needed to

complete the loading job.

Run a Loading Job

Request body:

Sample request:

5/13/25, 9:12 PM 3.3

2009

5/13/25, 9:12 PM 3.3

2010

Loading job
CREATE LOADING JOB load_data for GRAPH poc_graph {

 DEFINE FILENAME f1;
 DEFINE FILENAME f3;

 LOAD f1 to VERTEX person VALUES ($0, $0);
 LOAD "/home/data/company.csv" to VERTEX company VALUES ($0, $0);

 LOAD f3 to EDGE work_at VALUES ($0, $1, $3, $4, $5);
}

Provide data for for the second LOAD statement
curl -X POST --data-binary @./another_company.csv \
"http://localhost:9000/ddl/poc_graph?tag=load_data&filename=__GSQL_FILENAM

{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "sourceFileName": "Online_POST",
 "statistics": {
 "validLine": 7927,
 "rejectLine": 0,
 "failedConditionLine": 0,
 "notEnoughToken": 0,
 "invalidJson": 0,
 "oversizeToken": 0,
 "vertex": [
 {
 "typeName": "company",
 "validObject": 7,
 "noIdFound": 0,
 "invalidAttribute": 0,
 "invalidPrimaryId": 0,
 "invalidSecondaryId": 0,
 "incorrectFixedBinaryLength": 0
 }
],
 "edge": [],
 "deleteVertex": [],
 "deleteEdge": []

5/13/25, 9:12 PM 3.3

2011

 }
 }
],
 "code": "REST-0000"
}

Provide data for filename f1 for the first LOAD statement
curl -X POST --data-binary @./person.csv \
"http://localhost:9000/ddl/poc_graph?tag=load_data&filename=f1"

Provide data for filename f3 for the third LOAD statement
curl -X POST --data-binary @./work_at.csv \
"http://localhost:9000/ddl/poc_graph?tag=load_data&filename=f3"

Name Required Description

tag Yes
Loading job name defined in

your DDL loading job

filename Yes

File variable name or file

path for the file containing

the data

sep No

Separator of CSV data. If

your data is JSON, you do

not need to specify this

parameter. The default

separator is a comma ","

eol No

End-of-line character. Only

one or two characters are

allowed, except for the

special case "\r\n". The

default value is "\n"

ack No

"all" : request will return

after all GPE instances have

acknowledged the POST
request.

"none" : request will return

immediately after RESTPP

processed the POST
request.

Parameters:

5/13/25, 9:12 PM 3.3

2012

If there are special characters in your parameter values, the special characters

should use URL encoding . To avoid confusion about whether you should you one

or two backslashes, we do not support backslash escapes for the eol or sep

parameter.

The maximum size of data you can upload via this endpoint is controlled by the

Nginx.ClientMaxBodySize configuration parameter (default is 200 MB).

POST /builtins/{graph_name}

This endpoint runs a set of built-in functions and returns relevant statistics about a

graph.

This endpoint expects a data payload in the request body that specifies which

function to run on the graph. Depending on the function being run, different fields

timeout No

Timeout in seconds. If set to

0, use system-wide

endpoint timeout setting.

concise No

Boolean value that indicates

whether to return concise

results of the data loading

request. Concise results will

only include the number of

vertices and edges added

or deleted, and will omit

information such as the

number of valid and invalid

lines in the default

response.

Graphs

Run built-in functions on graph

Request body:

5/13/25, 9:12 PM 3.3

https://www.w3schools.com/tags/ref_urlencode.asp
https://www.w3schools.com/tags/ref_urlencode.asp

2013

may also be expected in the request body.

Here is a list of functions supported by this endpoint and their corresponding data

payload format.

• stat_vertex_attr

◦ Returns the minimum, maximum, and average values of the given vertex
type's int , uint , float and double attributes, and the count of true
and false of a boolean attribute.

◦ Data payload fields:

▪ "function": "stat_vertex_attr" : This specifies that the function to

run is stat_vertex_attr .

▪ "type" : The vertex type whose attribute values to report on. Required
field. It also accepts the value * (wild card), in which case, all vertex

types are included.

• stat_edge_attr

◦ Returns the minimum, maximum, and average values of the given edge

type's int , uint , float and double attributes, and the count of true
and false of a boolean attribute.

◦ Data payload fields:

▪ "function": stat_edge_attr

▪ "type" : The edge type whose attribute values to report on. Required

field. It also accepts the value * , in which case all edge types are

included.

▪ "from_type" : Optional. The source vertex type of the edges to report
on.

▪ "to_type" : Optional. The target vertex type of the edges to report on.

• stat_vertex_number

◦ Returns the number of vertices of the given vertex type.

◦ Data payload fields:

▪ "function" : "stat_vertex_number"

▪ "type" : Required field. The vertex type of the vertices to count. It also

accepts the value * (wild card), in which case, all vertex types are

included.

5/13/25, 9:12 PM 3.3

2014

• stat_edge_number

◦ Returns the number of edges of the given edge type

◦ Data payload fields:

▪ "function": "stat_edge_number"

▪ "type" : Required field. The edge type of the edges to count. It also

accepts the value * , in which case all edge types are included.

▪ "from_type" : Optional. The source vertex type of the edges to report

on.

▪ "to_type" : Optional. The target vertex type of the edges to report on.

Below is an example request running stat_vertex_attr on socialNet and its

output. The vertex type "Person" has a uint attribute "age" .

curl -X POST "http://localhost:9000/builtins/socialNet" \
-d '{"function":"stat_vertex_attr","type":"Person"}' | jq .

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "vertexName": "Person",
 "attributeStat": [
 {
 "vattrName": "age",
 "MAX": 64,
 "MIN": 15,
 "AVG": 36.5
 }
]
 }
]
}

Sample requests:

5/13/25, 9:12 PM 3.3

2015

Here is an example request running stat_edge_attr on socialNet and its output.

The edge type "Liked" has a float attribute "strength" .

Here is an example request running stat_vertex_number and its output.

curl -X POST "http://localhost:9000/builtins/socialNet" \
-d '{"function":"stat_edge_attr","type":"Liked", "from_type":"*", "to_typ

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "Liked",
 "attributes": {
 "weight": {
 "MAX": 2.5,
 "MIN": 1,
 "AVG": 1.375
 }
 }
 }
]
}

5/13/25, 9:12 PM 3.3

2016

curl -X POST "http://localhost:9000/builtins/socialNet" \
-d '{"function":"stat_vertex_number","type":"*"}' | jq .

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_type": "User",
 "count": 4
 },
 {
 "v_type": "Page",
 "count": 4
 },
 {
 "v_type": "Product",
 "count": 7
 },
 {
 "v_type": "DescWord",
 "count": 7
 },
 {
 "v_type": "NameUser",
 "count": 9
 },
 {
 "v_type": "VidUser",
 "count": 4
 },
 {
 "v_type": "Video",
 "count": 5
 },
 {
 "v_type": "AttributeTag",
 "count": 4
 }
]
}

5/13/25, 9:12 PM 3.3

2017

No parameters.

GET /gsqlserver/gsql/schema

Returns schema details about a vertex type, an edge type, or the entire graph

schema. This is a GSQL Server request sent to port 14240, and authentication

credentials need to be provided.

Parameters:

Show graph schema metadata

Sample request:

5/13/25, 9:12 PM 3.3

2018

$ curl -u tigergraph:tigergraph \
"localhost:14240/gsqlserver/gsql/schema?graph=workNet&type=company"

{
 "error": false,
 "message": "",
 "results": {
 "Config": {
 "STATS": "OUTDEGREE_BY_EDGETYPE",
 "PRIMARY_ID_AS_ATTRIBUTE": false
 },
 "Attributes": [
 {
 "AttributeType": {
 "Name": "STRING"
 },
 "IsPartOfCompositeKey": false,
 "PrimaryIdAsAttribute": false,
 "AttributeName": "id",
 "HasIndex": false,
 "IsPrimaryKey": false
 },
 {
 "AttributeType": {
 "Name": "STRING"
 },
 "IsPartOfCompositeKey": false,
 "PrimaryIdAsAttribute": false,
 "AttributeName": "country",
 "HasIndex": false,
 "IsPrimaryKey": false
 }
],
 "PrimaryId": {
 "AttributeType": {
 "Name": "STRING"
 },
 "IsPartOfCompositeKey": false,
 "PrimaryIdAsAttribute": false,
 "AttributeName": "clientId",
 "HasIndex": false,
 "IsPrimaryKey": false
 },
 "Name": "company"
 }
}

5/13/25, 9:12 PM 3.3

2019

Vertex schema object** fields:**

• Name : the vertex type name, same as the input parameter "type"

• PrimaryId : details about the primary id

• Attributes : details about each attribute, listed in order

• Config : details about global properties of the vertex type

**Edge schema object **fields:

• Name : the edge type name, same as the input parameter "type"

• FromVertexTypeName : source vertex type name

• ToVertexTypeName : target vertex type name

• Attributes : details about each attribute, listed in order

• IsDirected : whether the edge is directed

• Config : additional details about global properties of the edge type

Graph schema object** fields:**

• GraphName : the graph name, same as the input parameter "graph"

• VertexTypes : an array of vertex schema objects. Each vertex schema object is

exactly the JSON output if that specific vertex type had been specified.

• EdgeTypes : an array of edge schema objects. Each edge schema object is

exactly the JSON output if that specific edge type had been specified.

5/13/25, 9:12 PM 3.3

2020

{
 "error": false,
 "message": "",
 "results": {
 "GraphName": "workNet",
 "VertexTypes": [
 {
 "Config": {...},
 "Attributes": [...],
 "PrimaryId": {...},
 "Name": "person"},
 {
 "Config": {...},
 "Attributes": [...],
 "PrimaryId": {...},
 "Name": "company"}
],
 "EdgeTypes": [
 {
 "IsDirected": false,
 "ToVertexTypeName": "company",
 "Config": {},
 "Attributes": [...],
 "FromVertexTypeName": "person",
 "Name": "worksFor"
 }
]
 }
}

Name Required Description

graph Yes
The name of the graph

whose schema to retrieve.

type No

The vertex or edge type

whose details to retrieve. If

not provided, the endpoint

will provide a _graph

schema object _containing

the schema details of the

entire graph.

Parameters:

5/13/25, 9:12 PM 3.3

2021

POST /graph/{graph_name}

This endpoint upserts vertices and/or edges into a graph. To upsert means that if a

vertex or edge does not exist, it is inserted, and if it does exist, it is updated.

By default, the POST /graph/{graph_name} endpoint is not atomic. If something

goes wrong during the process of the request, the request data can be partially

consumed by the database.

You can append a query string parameter atomic_post to the URL of the request

and set its value to true to make the request an atomic transaction, which means

that updates to the database contained in the request are all-or-nothing. Either all

changes are successful, or none is successful.

For example, suppose we have the following request to upsert two vertices:

And the content of vertices.json is:

curl --data-binary @vertices.json http://localhost:9000/graph/social

Upsert data to graph

Atomic upsert transaction

5/13/25, 9:12 PM 3.3

2022

With the request above, if the vertex Kelly fails to be upserted due to a machine

failure, it is still possible that the vertex Velma is upserted to the database.

If you add the atomic_post parameter to the request URL and set its value to true,

the request becomes atomic and if any part of the request body fails to be upserted,

nothing will be upserted:

{
 "vertices": {
 "person": {
 "Velma": {
 "age": {
 "value": 30
 }
 },
 "Kelly": {
 "age": {
 "value": 22
 }
 }
 }
 }
}

This is an atomic request
curl --data-binary @vertices.json http://localhost:9000/graph/social?autom

Name Required Description

ack No

The value of this parameter

can either be "all" or

"none" .

"all" : request will return

after all GPE instances have

acknowledged the POST

"none" : request will return

immediately after RESTPP

processed the POST.

Parameters

5/13/25, 9:12 PM 3.3

2023

The response is the number of vertices and edges that were accepted. The API

uses JSON format to describe the vertices and edges to be upserted. The JSON

code can be stored in a text file or specified directly in a command line. There is a

maximum size for a POST data payload (see the Size Limits section). The JSON

format for describing a vertex set or edge set is summarized below.

The payload data should be in JSON according to the schema shown below:

new_vertex_only No

Boolean value that indicates

whether or not to update

existing vertices. If the

value is true, it will only

insert new vertices and not

update existing ones.

vertex_must_exist No

Boolean value that indicates

whether or not to insert new

edges when the FROM or

TO vertices don't exist.

If the value is true, the

request will only insert edge

if both the FROM and TO
vertices of the edge already

exist.

If the value is false, the

request will always insert

new edges, and create the

necessary vertices with

default values for their

attributes.

atomic_post No

Boolean value that indicates

whether or not this request

is an atomic transaction.

Default value is false.

update_vertex_only No

If update_vertex_only is

set to true, the request will

only update existing

vertices and not insert new

vertices. Default value is

Request body

5/13/25, 9:12 PM 3.3

2024

The fields in angle brackets (<>) are placeholder names or values, to be replaced

with actual values. The keys in angle brackets, such as <vertex_type> , can be

repeated to form a list of items. The keys which are not in angle brackets are exact

texts that must be used as they are. The nested hierarchy means that vertices are

grouped by type. Edges, on the other hand, are first grouped by source vertex type,

then vertex ID, then edge type.

The first example below shows two User vertices having an attribute called age :

"vertices": {
 "<vertex_type>": {
 "<vertex_id>": {
 "<attribute>": {
 "value": <value>,
 "op": <opcode>
 }
 }
 }
},
"edges": {
 "<source_vertex_type>": {
 "<source_vertex_id>": {
 "<edge_type>": {
 "<target_vertex_type>": {
 "<target_vertex_id>": {
 "<attribute>": {
 "value": <value>,
 "op": <opcode>
 }
 }
 }
 }
 }
 }
}

Request bodyd schema

Upsert Example Data 1: Two User vertices

5/13/25, 9:12 PM 3.3

2025

The second example starts with one User vertex. If id6 already exists, it is not

changed. If it doesn't yet exist, it is created with default attribute values. Then two

edges are created: a Liked edge from id1 to id6 , and then a Liked_By edge

from id6 to id1 .

 "vertices": {
 "User": {
 "id6": {
 "age": {
 "value": 30
 }
 },
 "id1": {
 "age": {
 "value": 22
 }
 }
 }
 }
}

Upsert Example Data 2:add_id6.json

5/13/25, 9:12 PM 3.3

2026

Follow the instructions in the Introduction section to format advanced data types.

For example, the following payload is used to upsert two User vertices with an

attribute coordinates of type LIST and an attribute measurements of type MAP :

{
 "vertices": {
 "User": {
 "id6": {
 }
 }
 },
 "edges": {
 "User":{
 "id1": {
 "Liked": {
 "User": {
 "id6" : {
 "weight" : {
 "value": 5.0
 }
 }
 }
 }
 },
 "id6": {
 "Liked_By": {
 "User": {
 "id1" : {
 "weight" : {
 "value": 1.0
 }
 }
 }
 }
 }
 }
 }
}

5/13/25, 9:12 PM 3.3

2027

Each attribute value may be accompanied by an operation (op) code, which

provides very sophisticated schemes for data update or insertion:

{
 "vertices": {
 "User": {
 "id4": {
 "coordinates": {
 "value": [51.3345, -7.2233]
 },
 "measurements": {
 "value": {
 "keylist": ["chest", "waist", "hip"],
 "valuelist": [35, 30, 35]
 }
 }
 },
 "id5": {
 "coordinates": {
 "value": [31.3245, -17.3292]
 },
 "measurements": {
 "value": {
 "keylist": ["chest", "waist", "hip"],
 "valuelist": [39, 35, 41]
 }
 }
 }
 }
 }
}

Type op Meaning

1
"ignore_if_exists" or

"~"

If the vertex/edge does not

exist, use the payload value

to initialize the attribute; but

if the vertex/edge already

exists, do not change this

attribute.

Operation codes

5/13/25, 9:12 PM 3.3

2028

If an attribute is not given in the payload, the attribute stays unchanged if the

vertex/edge already exists, or if the vertex/edge does not exist, a new vertex/edge

is created and assigned the default value for that data type. The default value is 0

for int/uint , 0.0 for float/double , and "" (empty string) for string.

The RESTPP server validates the request before updating the values. The following

schema violations will cause the entire request to fail and no change will be made to

a graph:

• For vertex upsert

◦ Invalid vertex type

◦ Invalid attribute data type

• For edge upsert:

◦ Invalid source vertex type

◦ Invalid edge type

◦ Invalid target vertex type

◦ Invalid attribute data type.

If an invalid attribute name is given, it is ignored.

2 "add" or "+"
Add the payload value to

the existing value.

3 "and" or "&"
Update to the logical AND of

the payload value and the

existing value.

4 "or" or "|"
Update to the logical OR of

the payload value and the

existing value.

5 "max" or ">"
Update to the higher value

between the payload value

and the existing value.

Update to the lower value

Invalid data types

5/13/25, 9:12 PM 3.3

2029

The response is the number of vertices and edges that were accepted. Additionally,

if new_vertex_only is true, the response will include two more fields:

• skipped_vertices : the number of vertices in the input data which already

existed in the graph

• vertices_already_exist : the id and type of the input vertices which were

skipped

If vertex_must_exist is true, the response will include two more fields:

• skipped_edges : the number of edges in the input data rejected because of

missing endpoint vertices

• miss_vertices : the id and type of the endpoint vertices which were missing

The example file add_id6.json (shown in the Request Body section) upserts one

User _ vertex with id = "id6" , one Liked edge, and one Liked_By edge. The

Liked edge is from "id1 " to "id6" ; the Liked_By _edge is from "id6" to

"id1" .

The following example submits an upsert request by using the payload data stored

in add_id6.json .

If we set the value of vertex_must_exist parameter to true , the endpoint will only

insert edges whose endpoint vertices both exist. This includes the vertices being

inserted in the same request. Therefore, inserting the content of add_id6.json to

an empty graph would cause the edges to be rejected:

$ curl -X POST --data-binary @add_id6.json \
"http://localhost:9000/graph"

{"accepted_vertices":1,"accepted_edges":2}

Output response

Example

5/13/25, 9:12 PM 3.3

2030

To support multiple graphs within one system, the graph data REST endpoint URLs
include an optional graph name.

To insert vertices or edges, use the Upsert data to graph endpoint.

$ curl -X POST --data-binary @add_id6.json \
"http://localhost:9000/graph?vertex_must_exist=true"

{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "accepted_vertices": 1,
 "accepted_edges": 0,
 "skipped_edges": 2,
 "edge_vertices_not_exist": [
 {
 "v_type": "User",
 "v_id": "id1"
 }
]
 }
],
 "code": "REST-0003"
}

Vertices

Insert vertices

List vertices

5/13/25, 9:12 PM 3.3

2031

GET /graph/{graph_name}/vertices/{vertex_type}

This endpoint returns all vertices having the type _ vertex_type in a graph. _

curl -X GET "http://localhost:9000/graph/socialNet/vertices/User"

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_id": "id1",
 "v_type": "User",
 "attributes": {}
 },
 {
 "v_id": "id2",
 "v_type": "User",
 "attributes": {}
 }
 // ... all vertices in graph socialNet of type User
]
}

Name Required Description

count_only No

Takes a boolean value. If

the value is true, the

results field will only

contain the count of how

many vertices were

selected. Default is false .

Attributes of the selected

vertices to return. The

Sample request:

Parameters

5/13/25, 9:12 PM 3.3

2032

select No
parameter takes a list,

which is a string of comma-

separated values, and will

only return the attributes

that are provided.

filter No

Conditions used to filter the

returned vertices. The

parameter takes a list of

conditions, which is a string

of comma-separated

values. If any filter

conditions are provided, the

endpoint will only return the

vertices that satisfy the

conditions. Six comparison

operators are supported for

this parameter: = , != , > ,

>= , < and <= . If the

value on the right side of an

operator is a string literal, it

should be enclosed in

double-quotes.

limit No

Integer value that specifies

the total number of vertices

to return

sort No

Attributes to sort the results

by. The parameter takes a

list, which is a string of

comma-separated values,

and will sort the returned

vertices based on the

attributes provided in the list

in order. Add "-" in front of

the attribute to sort in

descending order.

timeout No

Integer that specifies the

number of seconds after

which the query will time

out. If the parameter is set

to 0 or isn't provided, the

system-wide endpoint

timeout setting is applied.

5/13/25, 9:12 PM 3.3

2033

GET /graph/{graph_name}/vertices/{vertex_type}/{vertex_id}

This endpoint will return a single vertice by its vertex ID.

curl -X GET "http://localhost:9000/graph/socialNet/vertices/User/id1"

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_id": "id1",
 "v_type": "User",
 "attributes": {}
 }
]
}

Name Required Description

select No

Attributes of the selected

vertices to return. The

parameter takes a list,

which is a string of comma-

separated values, and will

only return the attributes

that are provided.

Integer that specifies the

number of seconds after

which the query will time

Retrieve a vertex

Sample request:

Parameters:

5/13/25, 9:12 PM 3.3

2034

DELETE /graph/{graph_name}/vertices/{vertex_type}

This endpoint deletes vertices by their vertex type. The delete operation is a

cascading deletion. If a vertex is deleted, then all of the edges connected to it are

automatically deleted as well.

The response object will contain a "deleted_vertices" field that indicates the

number of vertices that were deleted

timeout No out. If the parameter is set

to 0 or isn't provided, the

system-wide endpoint

timeout setting is applied.

curl -X DELETE "http://localhost:9000/graph/socialNet/vertices/User"

{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": {
 "v_type": "person",
 "deleted_vertices": 3
 }
}

Name Required Description

Takes a boolean value. If

the value is true, the deleted

Delete vertices

Sample request:

Parameters:

5/13/25, 9:12 PM 3.3

2035

permanent No vertex IDs can never be

inserted back, unless the

graph is dropped or the

graph store is cleared.

filter No

Conditions used to filter the

vertices to delete. The

parameter takes a list of

conditions, which is a string

of comma-separated

values. If any filter

conditions are provided, the

endpoint will only delete the

vertices that satisfy the

conditions. Six comparison

operators are supported for

this parameter: = , != , > ,

>= , < and <= . If the

value on the right side of an

operator is a string literal, it

should be enclosed in

double-quotes.

limit No

Integer value that specifies

the total number of vertices

to delete.

sort No

Attributes to sort the

vertices by. In delete

operations, sort should

always be used together

with limit . The endpoint

will delete the number of

vertices under the limit

specified in the order

specified. The parameter

takes a list of attributes, and

the endpoint will sort all

vertices based on the

attributes provided in the list

in order. Add "-" in front

of the attribute to sort by

that attribute in descending

order.

Integer that specifies the

number of seconds after

5/13/25, 9:12 PM 3.3

2036

DELETE /graph/{graph_name}/delete_by_type/vertices/{vertex_type}

This endpoint deletes all vertices of the given vertex type in a graph.

timeout No

which the query will time

out. If the parameter is set

to 0 or isn't provided, the

system-wide

endpoint timeout setting is

applied.

curl -X DELETE "http://localhost:9000/graph/poc_graph/delete_by_type/verti

Name Required Description

permanent No

Takes a boolean value. If

the value is true, the deleted

vertex IDs can never be

inserted back, unless the

graph is dropped or the

graph store is cleared.

ack No

If the parameter is set to

"none", the delete operation

doesn't need to get

acknowledgment from any

GPE. If it is set to "all"

(default), the operation

needs to get

acknowledgment from all

GPEs.

Delete vertices by type

Sample request:

Parameters:

5/13/25, 9:12 PM 3.3

2037

DELETE /graph/{graph_name}/vertices/{vertex_type}/{vertex_id}

curl -X DELETE "http://localhost:9000/graph/socialNet/vertices/User/id1"

{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": {
 "v_type": "User",
 "deleted_vertices": 1
 }
}

Name Required Description

timeout no

Integer that specifies the

number of seconds after

which the query will time

out. If the parameter is set

to 0 or isn't provided, the

system-wide endpoint

timeout setting is applied.

Delete a vertex

Sample request:

Parameters:

Edges

Insert edges

5/13/25, 9:12 PM 3.3

2038

To insert vertices or edges, use the Upsert data to graph endpoint.

GET /graph/{graph_name}/edges/{source_vertex_type}/{source_vertex_id}

This endpoint returns all edges which are connected to a given vertex ID in the

graph

List edges of a vertex

Sample request:

5/13/25, 9:12 PM 3.3

2039

curl -X GET "http://localhost:9000/graph/socialNet/edges/VidUser/0?limit=2

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "2",
 "to_type": "Video",
 "attributes": {
 "rating": 5.2,
 "date_time": 0
 }
 },
 {
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "0",
 "to_type": "Video",
 "attributes": {
 "rating": 6.8,
 "date_time": 0
 }
 }
]
}

Name Required Description

count_only No

Takes a boolean value. If

the value is true, the

results field will only

contain the count of how

Parameters:

5/13/25, 9:12 PM 3.3

2040

many edges were selected.

Default is false .

select No

Attributes of the selected

edges to return. The

parameter takes a list,

which is a string of comma-

separated values. If

select is provided, the

edges returned will only

show the attributes

provided.

filter No

Conditions used to filter the

edges to return. The

parameter takes a list of

conditions, which is a string

of comma-separated

values. If any filter

conditions are provided, the

endpoint will only return the

edges that satisfy the

conditions. Six comparison

operators are supported for

this parameter: = , != , > ,

>= , < and <= . If the

value on the right side of an

operator is a string literal, it

should be enclosed in

double-quotes.

limit No

Integer value that specifies

the maximum limit of the

total number of edges to

return.

sort No

Attributes to sort the results

by. The parameter takes a

list, which is a string of

comma-separated values,

and will sort all the edges

based on the attributes

provided in the list in order.

Add "-" in front of the

attribute to sort in

descending order.

5/13/25, 9:12 PM 3.3

2041

GET

/graph/{graph_name}/edges/{source_vertex_type}/{source_vertex_id}/{edge_type

}

This endpoint lists all the edges of a specified type connected to a given vertex ID in

the graph

timeout No

Integer that specifies the

number of seconds after

which the query will time

out. If the parameter is set

to 0 or isn't provided,

system-wide endpoint

List edges of a vertex by edge type

Sample request:

5/13/25, 9:12 PM 3.3

2042

curl -X GET "http://localhost:9000/graph/socialNet/edges/VidUser/0/User_Vi

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "2",
 "to_type": "Video",
 "attributes": {
 "rating": 5.2,
 "date_time": 0
 }
 },
 {
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "0",
 "to_type": "Video",
 "attributes": {
 "rating": 6.8,
 "date_time": 0
 }
 }
]
}

Name Required Description

count_only No

Takes a boolean value. If

the value is true, the

results field will only

contain the count of how

Parameters:

5/13/25, 9:12 PM 3.3

2043

many edges were selected.

Default is false .

select No

Attributes of the selected

edges to return. The

parameter takes a list,

which is a string of comma-

separated values. If

select is provided, the

edges returned will only

show the attributes

provided.

filter No

Conditions used to filter the

edges to return. The

parameter takes a list of

conditions, which is a string

of comma-separated

values. If any filter

conditions are provided, the

endpoint will only return the

edges that satisfy the

conditions. Six comparison

operators are supported for

this parameter: = , != , > ,

>= , < and <= . If the

value on the right side of an

operator is a string literal, it

should be enclosed in

double quotes.

limit No

Integer value that specifies

the maximum limit of the

total number of edges to

return.

sort No

Attributes to sort the results

by. The parameter takes a

list, which is a string of

comma-separated values,

and will sort all the edges

based on the attributes

provided in the list in order.

Add "-" in front of the

attribute to sort in

descending order.

5/13/25, 9:12 PM 3.3

2044

This endpoint lists edges connected to a given vertex by edge type and target

vertex type

Use "_" for edge_type in the URL to permit any edge type.

timeout No

Integer that specifies the

number of seconds after

which the query will time

out. If the parameter is set

to 0 or isn't provided,

system-wide endpoint

GET /graph/{graph_name}/edges/{source_vertex_type}/{source_vertex_id}/{edg

List edges of a vertex by edge type and target type

Sample request:

5/13/25, 9:12 PM 3.3

2045

curl -X GET "http://localhost:9000/graph/socialNet/edges/VidUser/0/User_Vi

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "2",
 "to_type": "Video",
 "attributes": {
 "rating": 5.2,
 "date_time": 0
 }
 },
 {
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "0",
 "to_type": "Video",
 "attributes": {
 "rating": 6.8,
 "date_time": 0
 }
 }
]
}

Name Required Description

count_only No

Takes a boolean value. If

the value is true, the

results field will only

contain the count of how

Parameters:

5/13/25, 9:12 PM 3.3

2046

many edges were selected.

Default is false .

not_wildcard No

Boolean value that indicates

whether or not "_"
supplied in the endpoint

URL is a wildcard. If the

parameter is true, "_" is

interpreted literally to select

only edges with edge type

name equal to underscore.

select No

Attributes of the selected

edges to return. The

parameter takes a list,

which is a string of comma-

separated values. If

select is provided, the

edges returned will only

show the attributes

provided.

filter No

Conditions used to filter the

edges to return. The

parameter takes a list of

conditions, which is a string

of comma-separated

values. If any filter

conditions are provided, the

endpoint will only return the

edges that satisfy the

conditions. Six comparison

operators are supported for

this parameter: = , != , > ,

>= , < and <= . If the

value on the right side of an

operator is a string literal, it

should be enclosed in

double-quotes.

limit No

Integer value that specifies

the maximum limit of the

total number of edges to

return.

Attributes to sort the results

by. The parameter takes a

5/13/25, 9:12 PM 3.3

2047

This endpoint returns the edge of a specified type between a source vertex and a

target vertex.

sort No

list, which is a string of

comma-separated values,

and will sort all the edges

based on the attributes

provided in the list in order.

Add "-" in front of the

attribute to sort in

descending order.

timeout No

Integer that specifies the

number of seconds after

which the query will time

out. If the parameter is set

to 0 or isn't provided, the

system-wide endpoint

timeout setting is applied.

GET /graph/{graph_name}/edges/{source_vertex_type}/{source_vertex_id}/{edg

Retrieve edge by source, target, and edge type

Sample request:

5/13/25, 9:12 PM 3.3

2048

curl -X GET "http://localhost:9000/graph/socialNet/edges/VidUser/0/User_Vi

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "2",
 "to_type": "Video",
 "attributes": {
 "rating": 5.2,
 "date_time": 0
 }
 }
]
 }

Name Required Description

select No

Attributes of the selected

edges to return. The

parameter takes a list,

which is a string of comma-

separated values. If

select is provided, the

edges returned will only

show the attributes

provided.

timeout No

Integer that specifies the

number of seconds after

which the query will time

out. If the parameter is set

to 0 or isn't provided, the

Parameters:

5/13/25, 9:12 PM 3.3

2049

Deletes an edge by its source vertex type and ID, target vertex type and ID, as well

as edge type.

system-wide endpoint

DELETE /graph/{graph_name}/edges/{source_vertex_type}/{source_vertex_id}/{

$ curl -X DELETE "https://crunch.i.tgcloud.io:9000/graph/CrunchBasePre_201

Response
{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "work_for_company",
 "deleted_edges": 1
 }
]
}

Name Required Description

timeout no

Integer that specifies the

number of seconds after

which the query will time

out. If the parameter is set

to 0 or isn't provided, the

Delete an edge

Sample request

Parameters:

5/13/25, 9:12 PM 3.3

2050

GET /gsqlserver/gsql/queryinfo

Returns metadata details about a query. In particular, it lists the input parameters

and output PRINT statement syntax. This endpoint exists on port 14240 and

requests are sent to the GSQL server. Therefore, you should provide authentication

credentials in the request.

system-wide endpoint

Queries

Get query metadata

Sample request:

5/13/25, 9:12 PM 3.3

2051

5/13/25, 9:12 PM 3.3

2052

$ curl -u tigergraph:tigergraph -X GET \
"http://localhost:14240/gsqlserver/gsql/queryinfo?graph=workNet&query=to_v

{
 "output": [
 {
 "v": "vertex"
 },
 {
 "@@v2": "SetAccum<vertex>"
 },
 {
 "S2": [
 {
 "v_id": "int",
 "attributes": {
 "interestList": "INT_LIST",
 "skillSet": "INT_SET",
 "skillList": "INT_LIST",
 "locationId": "STRING",
 "interestSet": "INT_SET",
 "id": "STRING"
 },
 "v_type": "person"
 },
 {
 "v_id": "int",
 "attributes": {
 "country": "STRING",
 "id": "STRING"
 },
 "v_type": "company"
 }
]
 },
 {
 "SDIFF.size()": "int"
 }
],
 "input": {
 "uid": "string",
 "uids": "set<string>",
 "vtype": "string"
 },
 "queryname": "to_vertex_setTest",
 "error": false,
 "message": "",
 "version": {

5/13/25, 9:12 PM 3.3

2053

The JSON response object contains three fields:

• queryname : name of the query, same as the query input parameter.

• input : unordered list of the input parameter names and data types.

• output : JSON object that follows the same structure of the query's output. For

each key-value pair, the key is the name that appears in the query output, while

the values are the data types of the output.

GET /query/{graph_name}/{query_name}

Each time a new TigerGraph query is installed, a dynamic endpoint is generated.

This new endpoint enables the user to run the new TigerGraph query through HTTP

requests and giving the parameters in URL or in a data payload. In the case of a

GET request, parameters should be passed in through the query string.

 "schema": 0,
 "edition": "DEVELOPER_EDITION",
 "api": "V2"
 }
}

Name Required Description

graph Yes Name of the graph

query Yes Name of the query

Name Required Description

Boolean value that indicates

whether to use read-

committed isolation level

Parameters:

Run an installed query (GET)

Parameters

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed

2054

When using a GET request to run an installed query, the query parameters are

passed in through the query string of the URL.

read_committed No

for the query. At the read

committed level, it is

guaranteed that any data

read is committed at the

moment it is read. By

default, it is off.

Parameter type Query string format Example

Set or bag of primitives
Assign multiple values to

the same parameter name.

A set p1 of integers:

p1=1&p1=5&p1=10

VERTEX<type>
Use the ID of the vertex:

parameterName=vertex_id

A vertex with parameter

name vp and an ID of

person2:

vp=person2

VERTEX

(type not pre-specified)

Use two query string

parameters:

parameterName=vertex_id

parameterName.type=verte
x_type

A vertex with parameter

name va , type person
and and ID person1 :

va=person1&va.type=perso
n

Set or bag of

VERTEX<type>

Assign multiple vertex IDs to

the same SET or BAG
parameter name.

A set parameter named vp
of vertices of type person:

vp=person3&vp=person4

Set or bag of VERTEX

(type not pre-specified)

The SET or BAG must be

treated as an array. A vertex

ID and type must be

provided for the vertex

element at each index.

A set parameter named vp
of vertices:

vp[0]=person1&vp[0].type
=person&vp[1]=11&vp[1].ty
pe=post

Query parameter passing

Specify replica

5/13/25, 9:12 PM 3.3

2055

If you have a TigerGraph HA cluster, you can specify a query to run on a particular

replica with the HTTP header GSQL-REPLICA . The value of the header needs to be

an integer within the range one to the replication factor of the cluster. If you supply a

invalid value for the header, the request will return an error.

When running a query through RESTPP, you can specify a limit on the number of

threads that the query is allowed to use on each node through the HTTP header

GSQL-THREAD-LIMIT . The number of threads used by a query means the number of

vCPUs used by the query. By default, a query will use all threads that are available

on a machine.

For example, if you have a cluster of three nodes, each with 8 vCPUs, then a query

will use all 8 threads available on a node in the cluster by default. By providing a

thread limit in the request header, you can limit the query to only use a number of

threads under the limit.

To run query hello on a graph named social , and the query parameter is of type

VERTEX<person> whose ID is "Tom"

curl -X GET "http://localhost:9000/query/social/hello?p=Tom"

Limiting the query to use under 4 threads
curl -x GET -H "GSQL-THREAD-LIMIT: 4" "http://localhost:9000/query/social/

Specifying the query to run on the first replica
curl -X GET -H "GSQL-REPLICA: 2" "http://localhost:9000/query/social/hello

Specifying the query to run on the primary cluster
curl -X GET -H "GSQL-REPLICA: 1" "http://localhost:9000/query/social/hello

Specify thread limit

Sample request:

Run an installed query (POST)

Running a query via HTTP request

5/13/25, 9:12 PM 3.3

2056

POST /query/{graph_name}/{query_name}

Users can also run queries through a POST request, which allows them to pass

query parameters in JSON. This is especially helpful when the query takes complex

parameters.

When using a POST request to run an installed query, the query parameters are

passed in through the request body and encoded in JSON format. The formatting

rules for the JSON payload is the same as using JSON to pass in parameters in the

RUN QUERY command.

Name Required Description

read_committed No

Boolean value that indicates

whether to use read-

committed isolation level

for the query. At the read

committed level, it is

guaranteed that any data

read is committed at the

moment it is read. By

default, it is off.

Parameter type Syntax Example

DATETIME
Use a string formatted as

"YYYY-MM-DD HH-MM-SS"
"2019-02-19 19:19:19"

Set or bag of primitives

Use a JSON array

containing the primitive

values

["a", "list", "of",
"args"]

Parameters

Query parameter Passing

5/13/25, 9:12 PM 3.3

https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Read_committed

2057

If you have a TigerGraph HA cluster, you can specify a query to run on a particular

replica with the HTTP header GSQL-REPLICA . The value of the header needs to be

an integer within the range one to the replication factor of the cluster. If you supply

an invalid value for the header, the request will return an error.

When running a query through RESTPP, you can specify a limit on the number of

threads that the query is allowed to use on each node through the HTTP header

GSQL-THREAD-LIMIT . The number of threads used by a query means the number of

vCPUs used by the query. By default, a query will use all threads that are available

on a machine.

For example, if you have a cluster of three nodes, each with 8 vCPUs, then a query

will use all 8 threads available on a node in the cluster by default. By providing a

thread limit in the request header, you can limit the query to only use a number of

threads under the limit.

The query in this sample request takes a parameter of type VERTEX<person> :

VERTEX<type>

Use a JSON object

containing a field "id" for

the vertex ID and a field

"type" for the type of the

vertex

{"id": "person1",

"type": "person"}

VERTEX (type not

specified)

Use a JSON object

containing a field "id" for

the vertex ID

{"id": "person1"}

Set or bag of

VERTEX<type>

Use a JSON array

containing a list of JSON

VERTEX<type> object

[{"id": "person1"},
{"id": "person2"}]

Specify replica

Specify thread limit

Sample request

5/13/25, 9:12 PM 3.3

2058

Installed queries can run in Detached Mode. To do this, use the GSQL-ASYNC header

and set its value to true . The results and status of the queries run in Detached Mode
can be retrieved with a query ID, which is returned immediately when queries are
executed in Detached Mode.

POST /gsqlserver/interpreted_query

This endpoint runs a GSQL query in Interpreted Mode. The query body should be

supplied at the data payload, and the query's parameters are supplied as the URL's

query string. This endpoint exists on the GSQL server on port 14240.

This request goes directly to the GSQL server (port 14240) instead of the RESTPP

server (port 9000), so the username and password must be specified in the header.

If you are using curl, you can use the -u option as shown below.

The request body for this endpoint should be the entire INTERPRET QUERY

statement.

curl -X POST -d '{"p":{"id":"Tom","type":"person"}}' \
"http://localhost:9000/query/social/hello"

Specify that the query run on the first replica
curl -X POST -d -H "GSQL-REPLICA: 2" '{"p":{"id":"Tom","type":"person"}}'
"http://localhost:9000/query/social/hello"

Specify that the query run on the primary cluster
curl -X POST -d -H "GSQL-REPLICA: 1" '{"p":{"id":"Tom","type":"person"}}'
"http://localhost:9000/query/social/hello"

Specify that the query run on
curl -X POST -d -H "GSQL-THREAD-LIMIT: 4" '{"p":{"id":"Tom","type":"person
"http://localhost:9000/query/social/hello"

Run an interpreted query

Request body:

Parameter passing:

5/13/25, 9:12 PM 3.3

2059

When running an interpreted query through this endpoint, the query parameters

should be passed in through the URL query string.

GET /showprocesslist/{graph_name}

This endpoint reports statistics of running queries of a graph: the query's request

ID, start time, expiration time, and the REST endpoint's URL.

curl --fail -u <my_username>:<my_password> -X POST \
"http://localhost:14240/gsqlserver/interpreted_query?a=10" \
-d 'INTERPRET QUERY (INT a) FOR GRAPH gsql_demo {
 PRINT a;
 }'

Sample request:

List running queries

Sample request:

5/13/25, 9:12 PM 3.3

2060

No Parameters.

GET /abortquery/{graph_name}

This endpoint safely aborts a selected query by ID or all queries of an endpoint by

endpoint URL of a graph.

curl -X GET "http://localhost:9000/showprocesslist/poc_graph" | jq .

{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "requestid": "65538.RESTPP_1_1.1558386411523.N",
 "startTime": "2019-05-20 14:06:51.523",
 "expirationTime": "2019-05-20 14:15:11.523",
 "url": "/sleepgpe?milliseconds=100001"
 },
 {
 "requestid": "196609.RESTPP_1_1.1558386401478.N",
 "startTime": "2019-05-20 14:06:41.478",
 "expirationTime": "2019-05-20 14:15:01.478",
 "url": "/sleepgpe?milliseconds=100000"
 }
],
 "code": "REST-0000"
}

Parameters:

Abort a query

Sample request:

5/13/25, 9:12 PM 3.3

2061

curl -X GET "localhost:9000/abortquery/poc_graph?requestid=16842763.RESTPP

{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "aborted_queries": [
 {
 "requestid": "16842763.RESTPP_1_1.1561401340785.N",
 "url": "/sleepgpe?milliseconds=110000"
 },
 {
 "requestid": "16973833.RESTPP_1_1.1561401288421.N",
 "url": "/sleepgpe?milliseconds=100000"
 }
]
 }
],
 "code": "REST-0000"
}

Name Required Description

requestid No

The ID of the query to abort.

It can take a single query ID

or the string "all" . If

requestid is set to all. It

will abort all running

queries.

url No

The endpoint whose

running queries to abort.

You must specify the base

of the endpoint's URL, but

then use a wildcard to allow

for different parameters. For

example, to abort all running

Parameters:

5/13/25, 9:12 PM 3.3

2062

GET /query_status

This endpoint allows you to check the status of a query run in detached mode.

queries for the endpoint

/sleepgpe , use

url=/sleepgpe.*

$ curl -s -X GET "http://localhost:9000/query_status?graph_name=poc_graph&

{
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [{
 "requestid": "4.RESTPP_1_1.1599672031541.N",
 "startTime": "2020-09-09 10:20:31.541",
 "expirationTime": "2020-09-09 10:20:47.541",
 "url": "/query/ldbc_snb/countIndirectFriends?pid=21990232555889",
 "elapsedTime": 19,
 "status": "success"
 }]
}

Field Description

url URL of the given query.

status
The status of the given query. Possible

values are “success” , “timeout” ,

“aborted” , or “running” .

startTime
The timestamp for the start time of the given

query.

Check query status (Detached Mode)

Sample request:

5/13/25, 9:12 PM 3.3

2063

If one or more of the provided query IDs (requestid) are invalid, the return JSON

will include an unknown_requestid field containing all the invalid query IDs. If a

query ID is marked as unknown, it means either the query does not exist or that it

was not run in Detached Mode.

requestid
The query ID associated with the given

query status JSON object.

expirationTime

The timestamp for when the given query

times out. The default timeout limit is 16

seconds and can be set using the GSQL-
TIMEOUT header.

elapsedTime

Elapsed real time of the given query

measured in milliseconds. For completed

queries, the value shows the total runtime of

the request. For ongoing queries, it shows

the amount of time taken so far.

Name Required Description

graph_name Yes

Name of the graph the

query belongs to. Required

parameter.

requestid No

String ID of the query. It also

accepts the value "all" ,

in which case it will return a

status report for every

running query. When

multiple requestid are

provided, it will return the

status of all corresponding

queries. If no requestid is

provided, or if the value of

requestid is "all" , it will

return the status of all

queries that are currently

running.

The output will contain one

JSON object for each query.

Parameters:

5/13/25, 9:12 PM 3.3

2064

GET /query_result

This endpoint allows you to check the results of queries run in Detached Mode if

they have finished running. If the query is still running, the endpoint will respond

with an error and a message saying "Unable to retrieve result for query

<requestid>" . Ensure that the query is finished before checking its result.

$ curl -s -X GET curl -s -X GET "http://localhost:9000/query_result?reques

{
 "error": false,
 "message": "",
 "version": {
 "edition": "enterprise",
 "api": "v2",
 "schema": 0
 },
 "results": [{"vSet": [{
 "v_id": "21990232555889",
 "attributes": {"vSet.@friendCount": 13677},
 "v_type": "Person"
 }]}]
}

Name Required Description

requestid Yes String ID of the query.

Check query results (Detached Mode)

Sample request:

Parameters:

Path-Finding Algorithms

5/13/25, 9:12 PM 3.3

2065

The TigerGraph platform comes with two built-in endpoints, /shortestpath and

/allpaths , which return either the shortest or all unweighted paths connecting a

set of source vertices to a set of target vertices. The table below summarizes the

two path-finding endpoints.

Each REST endpoint reads a JSON-formatted payload that describes the input

parameters. These parameters specify which vertices and edges may be on the

paths, additional conditions on the attributes of the vertices and edges, and the

maximum length of a path.

Each endpoint must have either a source or sources key and either a target or

targets parameter. The source and target parameters describe a single vertex. The

format for a vertex object is as follows: {"type" : "<vertex_type_name>", "id" :

"<vertex_id>"}. The sources and targets parameters are JSON arrays containing a

list of vertex objects.

Filters

The payload may also have an array of filter conditions, to restrict the vertices or

edges in the paths. Each individual filter is a JSON object which describes a

condition on one vertex type or edge type. A filter object has one or two key-value

pairs: {"type": "<vertex_or_edge_type>", "condition": "

<attribute_condition>"}

• "type": the vertex type or edge type to be filtered

• "condition" (optional): a boolean expression on one attribute of the given
vertex type or edge type. "AND" and "OR" may be used to make compound

expressions.

Example of a filter array:

[{"type": "bought", "condition": "price < \"100\" and quality == \"good\""
 {"type": "sold", "condition": "price > \"100\" or quality != \"good\""

Input Parameters and Output Format for Path-Finding

Source and target vertices

5/13/25, 9:12 PM 3.3

2066

Note that all filtering conditions in vertexFilters and edgeFilters are combined

with the "OR" relationship, i.e., if a vertex (or edge) fulfills any one of the filter

conditions, then this vertex (or edge) will be included in the resulting paths.

The JSON output is a list of vertices and a list of edges. Each vertex and each edge

is listed in full, with all attributes. The collections of vertices and edges are not in

path order.

POST /shortestpath/{graph_name}

This endpoint takes a source vertex or a set of source vertices, a target vertex or a

set of target vertices, and returns the shortest path between the source and the

target. If the source is a set of vertices, the resulting path will begin with one of the

vertices in the set. If the target is a set of vertices, the resulting path will end with

one of the vertices in the set.

This endpoint expects a request body that describes the source and target vertex or

vertex set. Below is a table of all the fields in the request body.

Key Type Description

source vertex object

Each path must start from

this vertex. Mutually

exclusive with sources .

sources vertex array

Each path must start from

one of these vertices.

Mutually exclusive with

source .

target vertex object

Each path must end at this

vertex. Mutually exclusive

Output

Find shortest path

Request body:

5/13/25, 9:12 PM 3.3

2067

with targets .

targets vertex array

Each path must end at one

of these vertices. Mutually

exclusive with target .

vertexFilters filter array

(OPTIONAL) Restrict the

paths to those whose

vertices satisfy any of the

given filters.

edgeFilters filter array

(OPTIONAL) Restrict the

paths to those whose edges

satisfy any of the given

filters. See details of filters

above.

Sample request:

5/13/25, 9:12 PM 3.3

2068

curl -s -X POST "http://localhost:9000/shortestpath/movieNet" \
-d '{
 "sources":[{"type":"VidUser","id":"2"}],
 "targets":[{"type":"VidUser","id":"0"}, {"type":"VidUser","id":"3"}],
 "edgeFilters":[{"type":"User_Video","condition":"rating > 5 and date_tim
 "maxLength":4
}'

Result is an array of vertex json objects and edge json objects,
describing the subgraph for all found vertices and edges.
{
 "version": { "edition": "developer", "api": "v2", "schema": 0 },
 "error": false,
 "message": "Cannot get 'vertex_filters' filters, use empty filter.",
 "results": [
 {
 "vertices": [
 { "v_id": "3","v_type": "VidUser","attributes": { "name": "Dale" }
 { "v_id": "0","v_type": "Video","attributes": { "name": "Solo", "y
 { "v_id": "0","v_type": "VidUser","attributes": { "name": "Angel"
],
 "edges": [
 {
 "e_type": "User_Video", "from_id": "0", "from_type": "Video",
 "to_id": "0", "to_type": "VidUser", "directed": false,
 "attributes": { "rating": 6.8, "date_time": 15000 }
 },
 {
 "e_type": "User_Video", "from_id": "0", "from_type": "Video",
 "to_id": "3", "to_type": "VidUser", "directed": false,
 "attributes": { "rating": 6.6, "date_time": 16000 }
 }
]
 }
]
}

Key Required Description

maxLength No

Integer that specified the

maximum length of a

shortest path. The default

value is 6.

Parameters:

5/13/25, 9:12 PM 3.3

2069

POST /allpaths/{graph_name}

This endpoint finds all paths between a source vertex (or vertex set) and target

vertex (or vertex set).

This endpoint expects a request body that describes the source and target vertex or

vertex set. Below is a table of all the fields in the request body.

allShortestPaths No

If true, the endpoint will

return all shortest paths

between the source and

target. Default is false,

meaning that the endpoint

will return only one path.

Key Type Description

source vertex object

Each path must start from

this vertex. Mutually

exclusive with sources .

sources vertex array

Each path must start from

one of these vertices.

Mutually exclusive with

source .

target vertex object

Each path must end at this

vertex. Mutually exclusive

with targets .

targets vertex array

Each path must end at one

of these vertices. Mutually

exclusive with target .

vertexFilters filter array

(OPTIONAL) Restrict the

paths to those whose

Find all paths

Request body:

5/13/25, 9:12 PM 3.3

2070

The current implementation of this endpoint will include paths with loops. Since it is
possible to go around a loop an infinite number of times, it is important that you select
the smallest value of maxLength which you consider appropriate. Even if there are no
loops in your graph, a smaller maxLength will allow your query to run faster.

The example below requests all paths between the source vertex set {Video 0} and

the target vertex set {AttributeTag "action"}, up to maximum length 3. The path may

only contain Video vertices where year >= 1984 . The result includes 3 paths:

AttrributeTag "action" -- Video 0

AttrributeTag "action" -- Video 3 -- VidUser 4 -- Video 0

AttrributeTag "action" -- Video 2 -- VidUser 0 -- Video 0

vertices satisfy any of the

given filters.

edgeFilters filter array

(OPTIONAL) Restrict the

paths to those whose edges

satisfy any of the given

filters. See details of filters

above.

Name Required Description

maxLength Yes Maximum path length.

Parameters:

Sample request:

5/13/25, 9:12 PM 3.3

2071

5/13/25, 9:12 PM 3.3

2072

curl -s -X POST "http://localhost:9000/allpaths/movieNet" \
-d '{
 "sources":[{"type":"Video","id":"0"}],
 "targets":[{"type": "AttributeTag", "id":"action"}],
 "vertexFilters":[{"type":"Video", "condition":"year >= 1984"}],
 "maxLength": 3
}'

Result is an array of vertex json objects and edge json objects,
indicating the subgraph for all found vertices and edges.
{
 "version": { "edition": "developer", "api": "v2", "schema": 0 },
 "error": false,
 "message": "Cannot get 'edge_filters' filters, use empty filter.",
 "results": [
 {
 "vertices": [
 { "v_id": "action","v_type": "AttributeTag","attributes": {}},
 { "v_id": "3","v_type": "VidUser","attributes": { "name": "Dale" }
 { "v_id": "0","v_type": "VidUser","attributes": { "name": "Angel"
 { "v_id": "0","v_type": "Video","attributes": { "name": "Solo", "y
 { "v_id": "2","v_type": "Video","attributes": { "name": "Thor", "y
 { "v_id": "4","v_type": "Video","attributes": { "name": "Ran", "ye
],
 "edges": [
 {
 "e_type": "Video_AttributeTag", "from_id": "0", "from_type": "Vi
 "to_id": "action", "to_type": "AttributeTag", "directed": false,
 "attributes": { "weight": 1, "date_time": 0 }
 },
 {
 "e_type": "Video_AttributeTag", "from_id": "4", "from_type": "Vi
 "to_id": "action", "to_type": "AttributeTag", "directed": false,
 "attributes": { "weight": 1, "date_time": 11000 }
 },
 {
 "e_type": "User_Video", "from_id": "3", "from_type": "VidUser",
 "to_id": "4", "to_type": "Video", "directed": false,
 "attributes": { "rating": 8.4, "date_time": 12000 }
 },
 {
 "e_type": "User_Video", "from_id": "3", "from_type": "VidUser",
 "to_id": "0", "to_type": "Video", "directed": false,
 "attributes": { "rating": 6.6, "date_time": 16000 }
 },
 {
 "e_type": "Video_AttributeTag", "from_id": "2", "from_type": "Vi
 "to_id": "action", "to_type": "AttributeTag", "directed": false,

5/13/25, 9:12 PM 3.3

2073

Other versions of pathfinding algorithms are available in the GSQL Graph Algorithm

Library.\

 "attributes": { "weight": 1, "date_time": 0 }
 },
 {
 "e_type": "User_Video", "from_id": "2", "from_type": "VidUser",
 "to_id": "0", "to_type": "Video", "directed": false,
 "attributes": { "rating": 7.4, "date_time": 17000 }
 },
 {
 "e_type": "User_Video", "from_id": "0", "from_type": "Video",
 "to_id": "0", "to_type": "VidUser", "directed": false,
 "attributes": { "rating": 6.8, "date_time": 15000 }
 }
]
 }
]
}

5/13/25, 9:12 PM 3.3

2074

Built-in Endpoints JSON Catalog
The request

generates the following output, appropriately 400 lines long when formatted. In

addition to listing each endpoint, the JSON output also lists all the required and

optional parameters for each endpoint. In turn, each parameter is described by

some or all of these attributes:

• default

• max_count

• min_count

• type

• max_length

• is_id

• id_type

While this information alone is not sufficient for a full understanding of each

endpoint, the descriptive names of parameters and the attribute values go a long

way towards this goal.

curl -X GET "http://server_ip:9000/endpoints?builtin=true"

5/13/25, 9:12 PM 3.3

2075

5/13/25, 9:12 PM 3.3

2076

{
 "DELETE /graph/{graph_name}/delete_by_type/vertices/{vertex_type}" : {
 "parameters" : {
 "ack" : {
 "default" : "all",
 "max_count" : 1,
 "min_count" : 1,
 "options" : ["all", "none"],
 "type" : "STRING"
 },
 "permanent" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 1,
 "type" : "BOOL"
 },
 "vertex_type" : {
 "type" : "TYPENAME"
 }
 }
 },
 "DELETE /graph/{graph_name}/edges/{source_vertex_type}/{source_vertex_i
 "parameters" : {
 "edge_type" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "STRING"
 },
 "filter" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "limit" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT64"
 },
 "not_wildcard" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "permanent" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 1,

5/13/25, 9:12 PM 3.3

2077

 "type" : "BOOL"
 },
 "select" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "sort" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "source_vertex_id" : {
 "id_type" : "$source_vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 256,
 "min_count" : 1,
 "type" : "STRING"
 },
 "source_vertex_type" : {
 "max_count" : 1,
 "min_count" : 1,
 "type" : "TYPENAME"
 },
 "target_vertex_id" : {
 "id_type" : "$target_vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 256,
 "min_count" : 0,
 "type" : "STRING"
 },
 "target_vertex_type" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "TYPENAME"
 },
 "timeout" : {
 "default" : "0",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT32"
 }
 }
 },

"DELETE /graph/{graph name}/vertices/{vertex type}/{vertex id}" : {

5/13/25, 9:12 PM 3.3

2078

 DELETE /graph/{graph_name}/vertices/{vertex_type}/{vertex_id} : {
 "parameters" : {
 "filter" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "limit" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT64"
 },
 "permanent" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 1,
 "type" : "BOOL"
 },
 "sort" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "timeout" : {
 "default" : "0",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT32"
 },
 "vertex_id" : {
 "id_type" : "$vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "vertex_type" : {
 "type" : "TYPENAME"
 }
 }
 },
 "GET /echo" : {
 "parameters" : {
 "sleep" : {
 "default" : "0",
 "type" : "INT32"

5/13/25, 9:12 PM 3.3

2079

 }
 }
 },
 "GET /endpoints" : {
 "parameters" : {
 "builtin" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "dynamic" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "static" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 }
 }
 },
 "GET /graph/{graph_name}/edges/{source_vertex_type}/{source_vertex_id}/{
 "parameters" : {
 "count_only" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "edge_type" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "STRING"
 },
 "filter" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "limit" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT64"
 },

5/13/25, 9:12 PM 3.3

2080

},
 "not_wildcard" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "select" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "sort" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "source_vertex_id" : {
 "id_type" : "$source_vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 256,
 "min_count" : 1,
 "type" : "STRING"
 },
 "source_vertex_type" : {
 "max_count" : 1,
 "min_count" : 1,
 "type" : "TYPENAME"
 },
 "target_vertex_id" : {
 "id_type" : "$target_vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 256,
 "min_count" : 0,
 "type" : "STRING"
 },
 "target_vertex_type" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "TYPENAME"
 },
 "timeout" : {
 "default" : "0",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT32"

}

5/13/25, 9:12 PM 3.3

2081

Data Loader User Guides
Data Loaders are interfaces built in to the TigerGraph system which enable users to

use the same high-level GSQL protocol for high-speed parallel data loading,

whether the data reside directly on the network file system, or come from one of

 }
 }
 },
 "GET /graph/{graph_name}/vertices/{vertex_type}/{vertex_id}" : {
 "parameters" : {
 "count_only" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "filter" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "limit" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT64"
 },
 "select" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "sort" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "timeout" : {
 "default" : "0",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT32"
 },
 "vertex_id" : {
 "id_type" : "$vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "vertex_type" : {

5/13/25, 9:12 PM 3.3

2082

several other supported data sources. When the data are coming from another data

source, some initial configuration is needed. Then you can use the same type of

loading jobs described in the GSQL Language Reference: Part 1 - Data Definition and

Loading.

To configure a data source, see the appropriate data loader user guide:

• AWS S3 Loader User Guide

• Kafka Loader User Guide

• Spark Connection Via JDBC Driver

 "type" : "TYPENAME"
 }
 }
 },
 "GET /statistics/{graph_name}" : {
 "parameters" : {
 "seconds" : {
 "default" : "10",
 "type" : "UINT32"
 },
 "segments" : {
 "default" : "10",
 "max" : "100",
 "min" : "1",
 "type" : "UINT32"
 }
 }
 },
 "GET /version" : null,
 "POST /builtins" : null,
 "POST /echo" : {
 "parameters" : {
 "sleep" : {
 "default" : "0",
 "type" : "INT32"
 }
 }
 },
 "POST /graph/{graph_name}" : {
 "parameters" : {
 "ack" : {
 "default" : "all",
 "max_count" : 1,
 "min_count" : 1,
 "options" : ["all", "none"],
 "type" : "STRING"
 }
 }
 }
}

5/13/25, 9:12 PM 3.3

2083

Spark Connection Via JDBC Driver
Apache Spark is a popular big data distributed processing system which is

frequently used in data management ETL process and Machine Learning

applications.

Using the open-source type 4 JDBC Driver for TigerGraph, you can read and write

data between Spark and TigerGraph. This is a two-way data connection.

The Github Link to the JDBC Driver is

https://github.com/tigergraph/ecosys/tree/master/tools/etl/tg-jdbc-driver

The README file there provides more details.

Note that the TigerGraph JDBC Driver has more use cases than just as a Spark

Connection. You can use TigerGraph's JDBC Driver for your Java and Python

applications. This is an open source project.

5/13/25, 9:12 PM 3.3

https://github.com/tigergraph/ecosys/tree/master/tools/etl/tg-jdbc-driver
https://github.com/tigergraph/ecosys/tree/master/tools/etl/tg-jdbc-driver

2084

AWS S3 Loader User Guide

AWS Simple Storage Service (S3) is a popular destination to store data in the cloud

and has become an essential component in the data pipeline of many enterprises. It

is an object storage service on the AWS platform which can be accessed through a

web service interface.

TigerGraph's S3 Loader makes it easier for you to integrate with an Amazon S3

service and ingest data from S3 buckets either in realtime or via one-time data

import into the TigerGraph System. Your TigerGraph cluster can be deployed either

on-premises or in a cloud environment.

From a high level, a user provides instructions to the TigerGraph system through

GSQL, and the external Amazon S3 data is loaded into TigerGraph's RESTPP server.

The following diagram demonstrates the S3 Loader data architecture.

Overview

Architecture

5/13/25, 9:12 PM 3.3

2085

• You should have uploaded your data to Amazon S3 buckets.

• Your S3 bucket policy is configured to give read permission to the TigerGraph

instance .

◦ At a minimum, the policy needs to allow the following actions on the

following resources:

▪ s3:ListAllMyBuckets on *

▪ ["s3:ListBucket","s3:GetBucketLocation"] on the bucket that holds
your data

▪ ["s3:GetObject","s3:GetObjectAcl","s3:GetObjectVersion"] on the

bucket that holds your data

Prerequisites

5/13/25, 9:12 PM 3.3

https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-policy-language-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-policy-language-overview.html

2086

There are three basic steps:

1. Define the Data Source

2. Create a Loading Job

3. Run the Loading Job

The GSQL syntax for the S3 Loader is designed to be consistent with the existing

GSQL loading syntax.

Before starting a S3 data loading job, you need to define the credentials to connect

to Amazons S3. The CREATE DATA_SOURCE statement defines a data_source type

variable, with a sub type S3:

After the data source is created, use the SET command to specify the path to a

configuration file for that data source.

This SET command reads, validates, and applies the configuration file, integrating

its settings into TigerGraph's dictionary. The data source configuration file's

content, structured as a JSON object, describes the S3 credential settings, including

CREATE DATA_SOURCE S3 data_source_name

SET data_source_name = "/path/to/s3.config";

Configuring and Using the S3 Loader

1. Define the Data Source

CREATE DATA_SOURCE

S3 Data Source Configuration File

5/13/25, 9:12 PM 3.3

2087

the access key and secret key, as well as the AWS region. If a specific AWS region is

not provided, TigerGraph will use the default region us-west-2 . A sample

configuration file is shown in the following example:

For simplicity, you can merge the CREATE DATA_SOURCE and SET statements:

• If you have a TigerGraph cluster, the configuration file must be on machine m1,

where the GSQL server and GSQL client both reside, and it must be in JSON

format. If the configuration file uses a relative path, the path should be relative to

the GSQL client working directory.

• Each time when the config file is updated, you must run "SET data_source_name"

to update the data source details in the dictionary.

To further simplify, instead of specifying the S3 data source config file path, you can

also directly provide the S3 data source configuration as a string argument, as

shown below:

Tip: The above simplified statement is useful for using S3 Data Loader in TigerGraph
Cloud when you are not loading S3 data through GraphStudio. In TigerGraph Cloud
(tgcloud.io), you can also use GSQL web shell to define and create S3 data sources,
without creating the S3 data source configuration file in the file system.

{
 "file.reader.settings.fs.s3a.access.key": "AKIAJ****4YGHQ",
 "file.reader.settings.fs.s3a.secret.key": "R8bli****p+dT4",
 "aws.region":"cn-north-1"
}

CREATE DATA_SOURCE S3 data_source_name = "/path/to/s3.config"

CREATE DATA_SOURCE S3 data_source_name = "{\"file.reader.settings.fs.s3a.a

ADVANCED: MultiGraph Support

s3.config

5/13/25, 9:12 PM 3.3

2088

The S3 Loader supports the TigerGraph MultiGraph feature. In the MultiGraph

context, a data source can be either global or local:

1. A global data source can only be created by a superuser, who can grant the

global data source to any graph.

2. An admin user can only create a local data source, which cannot be accessed

by other graphs.

The following are examples of permitted DATA_SOURCE operations.

1. A superuser may create a global level data source without assigning it to a

particular graph:

2. A superuser may grant/revoke a data source to/from one or more graphs:

3. An admin user may create a local data source for a specified graph which the

admin user administers:

In the above statement, the local data_source s1 is only accessible to graph test_graph.
A superuser cannot grant it to another graph.

A data_source variable can be dropped by a user who has the privilege. A global

data source can only be dropped by a superuser. A local data_source can only be

dropped by an admin for the relevant graph or by a superuser. The syntax for the

DROP command is as follows:

CREATE DATA_SOURCE S3 s1 = "/path/to/config"

GRANT DATA_SOURCE s1 TO GRAPH graph1, graph2
REVOKE DATA_SOURCE s1 FROM GRAPH graph1, graph2

CREATE DATA_SOURCE S3 s1 = "/path/to/config" FOR GRAPH test_graph

DROP DATA_SOURCE

5/13/25, 9:12 PM 3.3

2089

Below is an example with a few legal s3 data_source create and drop commands.

The SHOW DATA_SOURCE command will display a summary of all existing

data_sources for which the user has privilege:

The S3 Loader uses the same basic CREATE LOADING JOB syntax used for

standard GSQL loading jobs. A DEFINE FILENAME statement should be used to

assign a loader FILENAME variable to a S3 data source name and the path to its

config file.

In addition, the filename can be specified in the RUN LOADING JOB statement with

the USING clause. The filename value set by a RUN statement overrides the value

set in the CREATE LOADING JOB.

Below is the syntax for DEFINE FILENAME when using the S3 Loader. In the syntax,

$DATA_SOURCE_NAME is the S3 data source name, and the path points to a

DROP DATA_SOURCE <source1>[<source2>...] | * | ALL

CREATE DATA_SOURCE S3 s1 = "/home/tigergraph/s3.config"
CREATE DATA_SOURCE S3 s2 = "/home/tigergraph/s3_2.config"

DROP DATA_SOURCE s1, s2
DROP DATA_SOURCE *
DROP DATA_SOURCE ALL

$ GSQL SHOW DATA_SOURCE *

The sample output:
Data Source:
 - S3 s1 ("file.reader.settings.fs.s3a.access.key": "AKIAJ****4YGHQ", "fi
The global data source will be shown in global scope.
The graph scope will only show the data source it has access to.

SHOW DATA_SOURCE

2. Create a Loading Job

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#create-loading-job
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#create-loading-job

2090

configuration file which provides information about how to read an Amazon S3 file.

The S3 file configuration file must be in JSON format.

Example: Load a S3 Data Source s1, where the path to the file configuration file is

"~/files.conf":

The S3 file configuration file tells the TigerGraph system exactly which Amazon S3

files to read and how to read them. Similar to the data source configuration file

described above, the contents are in JSON object format. An example file is shown

below.

The "file.uris" key is required. It specifies one or more paths on your Amazon S3

bucket. Each path is either to an individual file or to a directory. If it is a directory,

then each file directly under that directory is included. You can specify multiple

paths by using a comma-separated list. An example with multiple paths is show

below:

Instead of specifying the config file path, you can also directly provide the S3 file

configuration as a string argument, as shown below:

DEFINE FILENAME filevar "=" [filepath_string | data_source_string];
data_source_string = $DATA_SOURCE_NAME":"<path_to_configfile>

DEFINE FILENAME f1 = "$s1:~/files.config";

{
 "file.uris": "s3://my-bucket/data.csv"
}

{
 "file.uris": "s3://my-bucket1/data1.csv,s3://my-bucket1/data2.csv,s3:/
}

S3 File Configuration File

files.config

files.config

5/13/25, 9:12 PM 3.3

2091

Besides the required "file.uris" key, you can further configure the S3 loader. A

sample full configuration is shown below:

Following is a detailed explanation of each option:

• "tasks.max" (default is 1): specifies the maximum number of tasks which can

run in parallel. E.g. if there are 2 files and 2 tasks, each task will handle 1 file. If

there are 2 files and 1 task, the single task will handle 2 files. If there is 1 file and

2 tasks, one of the tasks will handle the file.

• "file.uris": specifies the path(s) to the data files on Amazon S3. The path can

also be dynamic by using expressions to modify the URIs at runtime. These

expressions have the form ${XX} where XX represents a pattern from

DateTimeFormatter Java class.

if you want to ingest data dynamically, i.e. directories/files created every day and avoid
adding new URIs every time, you can include expressions in URIs to do that. For
example, for the URI s3://my-bucket/${yyyy} , it is converted to s3://my-
bucket/2019 when running the loader. You can use as many as you like in the URIs, for
instance: s3://my-bucket/${yyyy}/${MM}/${DD}/${HH}-${mm}

DEFINE FILENAME f1 = "$s1:~/files.config";
DEFINE FILENAME f1 = "$s1:{\"file.uris\":\"s3://my-bucket/data.csv\"}";

{
 "tasks.max": 1,
 "file.uris": "s3://my-bucket/data.csv",
 "file.regexp": ".*",
 "file.recursive": false,
 "file.scan.interval.ms": 60000,
 "file.reader.type": "text",
 "file.reader.batch.size": 10000,
 "file.reader.text.archive.type": "auto",
 "file.reader.text.archive.extensions.tar": "tar",
 "file.reader.text.archive.extensions.zip": "zip",
 "file.reader.text.archive.extensions.gzip": "tar.gz,tgz"
}

ADVANCED: Configure How to Read S3 File

files.config

5/13/25, 9:12 PM 3.3

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

2092

• "file.regexp" (default is .* which matches all files): the regular expression to

filter which files to read.

• "file.recursive" (default is false): whether to recursively access all files in a

directory.

• "file.scan.interval.ms" (default is 60000): the wait time in ms before starting

another scan of the file directory after finishing the current scan. Only applicable

in stream mode.

• "file.reader.type" (default is text): the type of file reader to use. If text, read the

file line by line as pure text. If parquet, read the file as parquet format.

• "file.reader.batch.size" (default is 1000): maximum number of lines to include
in a single batch.

• "file.reader.text.archive.type" (default is auto): the archive type of the file to be

read. If auto, determine the archive type automatically. If tar, read the file with

tar format. if zip, read the file with zip format. If gzip, read the file with gzip
format. If none, read the file normally.

• "file.reader.text.archive.extensions.tar" (default is tar): the list of file

extensions to be read with tar format.

• "file.reader.text.archive.extensions.zip" (default is zip): the list of file

extensions to be read with zip format.

• "file.reader.text.archive.extensions.gzip" (default is gzip): the list of file
extensions to be read with gzip format.

The archive type is applied to all files in "file.uris" when loading. If you have different
archive type files to be read at the same time, set auto for
"file.reader.text.archive.type" and configure how to detect each archive extensions by
providing the extensions list. Currently we support tar, zip and gzip archive types.

The S3 Loader uses the same RUN LOADING JOB statement that is used for GSQL

loading from files. Each filename variable can be assigned a string "DATA_SOURCE

Var:file configure", which will override the value defined in the loading job. In the

example below, the config files for f2 and f3 are being set by the RUN command,

whereas f1 is using the config which was specified in the CREATE LOADING JOB

statement.

3. Run the Loading Job

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#run-loading-job
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#run-loading-job

2093

A RUN LOADING JOB instance may only use one type of data source. E.g., you may
not mix both S3 data sources and regular file data sources in one loading job.

All filename variables in one loading job statement must refer to the same

DATA_SOURCE variable.

There are two modes for the S3 Loader: streaming mode and EOF mode. The

default mode is streaming mode. In streaming mode, loading will never stop until

the job is aborted. In EOF mode, loading will stop after consuming the provided

Amazon S3 file objects.

To set EOF mode, an optional parameter is added to the RUN LOADING JOB syntax:

S3 Loader loading jobs are managed the same way as native loader jobs. The three

key commands are

• SHOW LOADING STATUS

• ABORT LOADING JOB

• RESUME LOADING JOB

For example, the syntax for the SHOW LOADING STATUS command is as follows:

To refer to a specific job instance, use the job_id which is provided when RUN

LOADING JOB is executed. For each loading job, the above command reports the

RUN LOADING JOB job1 USING f1, f2="$s1:~/files1.config", f3="$s2:~/files2.

RUN LOADING JOB [-noprint] [-dryrun] [-n [i],j] jobname
 [USING filevar [="filepath_string"][, filevar [="filepath_string"]]*
 [, CONCURRENCY="cnum"][,BATCH_SIZE="bnum"]][, EOF="true"]

SHOW LOADING STATUS job_id|ALL

Manage Loading Jobs

5/13/25, 9:12 PM 3.3

2094

following information :

1. current loaded lines

2. average loading speed

3. loaded size

4. duration

See Inspecting and Managing Loading Jobs for more details.

Here is an example code for loading data through the S3 Loader:

USE GRAPH test_graph
DROP JOB load_person
DROP DATA_SOURCE s1

Create data_source s3 s1 = "s3_config.json" for graph test_graph.
CREATE DATA_SOURCE S3 s1 FOR GRAPH test_graph
SET s1 = "s3_config.json"

Define the loading jobs.
CREATE LOADING JOB load_person FOR GRAPH test_graph {
 DEFINE FILENAME f1 = "$s1:s3_file_config.json";
 LOAD f1
 TO VERTEX Person VALUES ($2, $0, $1),
 TO EDGE Person2Comp VALUES ($0, $1, $2)
 USING SEPARATOR=",";
}

load the data
RUN LOADING JOB load_person

S3 Loader Example

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#inspecting-and-managing-loading-jobs
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#inspecting-and-managing-loading-jobs

2095

Kafka Loader User Guide

Kafka is a popular pub-sub system in enterprise IT, offering a distributed and fault-

tolerant real-time data pipeline. TigerGraph's Kafka Loader feature lets you easily

integrate with a Kafka cluster and speed up your real-time data ingestion. It is easily

extensible using the many plugins available in the Kafka ecosystem.

The Kafka Loader consumes data in a Kafka cluster and loads data into the

TigerGraph system.

From a high level, a user provides instructions to the TigerGraph system through

GSQL, and the external Kafka cluster loads data into TigerGraph's RESTPP server.

The following diagram demonstrates the Kafka Loader data architecture.

Overview

Architecture

5/13/25, 9:12 PM 3.3

2096

You should have a Kafka cluster configured and set up in your environment.

Once you have the external Kafka cluster setup, you need to prepare the following

two configuration files and place them in your desired location in TigerGraph

system:

1. Kafka data source configuration file: This file includes the external Kafka

broker's domain name and port. Through the configuration file, TigerGraph

system knows the location and port of the external Kafka broker. Please see an
example in Step 1. Define the Data Source.

2. Kafka topic and partition configuration file: This file includes the Kafka topic,

partition list, and start offset for the loading messages. Please see an example

Kafka Data Loader Architecture

Prerequisites

5/13/25, 9:12 PM 3.3

2097

in Step 2. Create a Loading Job.

There are three basic steps:

1. Define the data source

2. Create a loading job

3. Run the loading job

The GSQL syntax for the Kafka Loader is designed to be consistent with the existing

GSQL loading syntax.

Before starting a Kafka data loading job, you need to define the Kafka server as a

data source. The CREATE DATA_SOURCE statement defines a data_source variable

with a subtype of KAFKA:

Specify Kafka Data Source Configuration File

After the data source is created, then use the SET command to specify the path to

a configuration file for that data source.

This SET command reads, validates, and applies the configuration file, integrating its

settings into TigerGraph's dictionary. The data source configuration file's content,

structured as a JSON object, describes the Kafka server's global settings, including

the data source IP and port. A sample kafka.conf is shown in the following example:

GSQL > CREATE DATA_SOURCE KAFKA data_source_name

GSQL > SET data_source_name = "/path/to/kafka.config"

Configuring and Using the Kafka Loader

1. Define the Data Source

5/13/25, 9:12 PM 3.3

2098

The "broker" key is required, and its value is composite of a fully qualified domain

name (or IP) and port. Additional Kafka configuration parameters may be provided

(see Kafka documentation) by using the optional "kafka_config" key. For its value,

provide a list of key-value pairs. For example:

For simplicity, you can merge the CREATE DATA_SOURCE and SET statements:

• If you have a TigerGraph cluster, the configuration file must be on machine m1,

where the GSQL server and GSQL client both reside, and it must be in JSON

format. If the configuration file uses a relative path, the path should be relative to

the GSQL client working directory.

• Each time when the config file is updated, you must run "SET data_source_name"

to update the data source details in the dictionary.

To further simplify, instead of specifying the Kafka data source config file path, you

can also directly provide the Kafka data source configuration as a string argument,

as shown below:

Tip: The above simplified statement is useful for using Kafka Data Loader in
TigerGraph Cloud. In TigerGraph Cloud (tgcloud.io), you can use GSQL web shell to
define and create Kafka data sources, without creating the Kafka data source
configuration file in filesystem.

{
 "broker": "192.168.1.11:9092",
}

{
 "broker": "localhost:9092",
 "kafka_config": {"group.id":"tigergraph"}
}

GSQL > CREATE DATA_SOURCE KAFKA data_source_name = "/path/to/kafka.config"

GSQL > CREATE DATA_SOURCE KAFKA data_source_name = "{\"broker\":\"broker.f

5/13/25, 9:12 PM 3.3

2099

Local data source vs global data source:

A data source can be either global or local:

• A global data source can only be created by a superuser, who can grant it to any

graph.

• An admin user can only create a local data source, which cannot be accessed

by other graphs.

The following are examples of permitted DATA_SOURCE operations.

• Users with the WRITE_DATASOURCE privilege on the global scope may create a

global level data source without assigning it to a particular graph:

• Users with the WRITE_DATASOURCE privilege on the global scope may
grant/revoke a data source to/from one or more graphs:

• Users with the WRITE_DATASOURCE privilege for a particular graph user may

create a local data source for that graph:

In the above statement, the local data_source k1 is only accessible to graph test_graph.
A superuser cannot grant it to another graph.

A data source variable can be dropped by a user who has privilege. A global data

source can only be dropped by a users with global WRITE_DATASOURCE privilege.

Users with WRITE_DATASOURCE privilege for one graph can drop data sources on that

graph. The syntax for the DROP DATA_SOURCE command is as follows:

GSQL > CREATE DATA_SOURCE KAFKA k1 = "/path/to/config"

GSQL > GRANT DATA_SOURCE k1 TO GRAPH graph1, graph2
GSQL > REVOKE DATA_SOURCE k1 FROM GRAPH graph1, graph2

GSQL > CREATE DATA_SOURCE KAFKA k1 = "/path/to/config" FOR GRAPH test_grap

DROP DATA_SOURCE

5/13/25, 9:12 PM 3.3

2100

Below are several examples of Kafka data source CREATE and DROP commands.

The SHOW DATA_SOURCE command will display a summary of all existing

data_sources for which the user has privilege:

The Kafka Loader uses the same basic CREATE LOADING JOB syntax used for

standard GSQL loading jobs. A DEFINE FILENAME statement should be used to

assign a loader FILENAME variable to a Kafka data source name and the path to its

config file.

In addition, the filename can be specified in the RUN LOADING JOB statement with

the USING clause. The filename value set by a RUN statement overrides the value

set in the CREATE LOADING JOB .

Below is the syntax for DEFINE FILENAME for use with the Kakfa Loader. In the

syntax, $DATA_SOURCE_NAME is the Kafka data source name, and the path points to a

GSQL > DROP DATA_SOURCE <source1>[<source2>...] | * | ALL

GSQL > CREATE DATA_SOURCE KAFKA k1 = "/home/tigergraph/kafka.conf"
GSQL > CREATE DATA_SOURCE KAFKA k2 = "/home/tigergraph/kafka2.conf"

GSQL > DROP DATA_SOURCE k1, k2
GSQL > DROP DATA_SOURCE *
GSQL > DROP DATA_SOURCE ALL

GSQL > SHOW DATA_SOURCE *

the sample output
Data Source:
 - KAFKA k1 ("127.0.0.1:9092")
The global data source will be shown in global scope. The graph scope will

SHOW DATA_SOURCE

2. Create a Loading Job

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#create-loading-job
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#create-loading-job

2101

configuration file with topic and partition information of the Kafka server. The Kafka

configuration file must be in JSON format.

Example: Load a Kafka Data Source k1, where the path to the topic-partition

configuration file is "~/topic_partition1_conf.json" :

Kafka Topic-Partition Configuration File

The topic-partition configuration file tells the TigerGraph system exactly which

Kafka records to read. Similar to the data source configuration file described above,

the contents are in JSON object format. An example file is shown below:

The "topic" key is required. Optionally, a "partition_list" array can be

included to specify which topic partitions to read and what start offsets to use. If

the "partition_list" key is missing or empty, all partitions in this topic will be

used for loading. The default offset for loading is "-1" , which means you will load

DEFINE FILENAME filevar "=" [filepath_string | data_source_string];
data_source_string = $DATA_SOURCE_NAME":"<path_to_configfile>

DEFINE FILENAME f1 = "$k1:~/topic_partition_config.json";

{
 "topic": "topicName1",
 "partition_list": [
 {
 "start_offset": -1,
 "partition": 0
 },
 {
 "start_offset": -1,
 "partition": 1
 },
 {
 "start_offset": -1,
 "partition": 2
 }
]
}

topic_partition_config.json

5/13/25, 9:12 PM 3.3

2102

data from the most recent message in the topic, i.e., the end of the topic. If you want

to load from the beginning of a topic, the " start_offset" value should be "-2".

You can also overwrite the default offset by setting "default_start_offset" in the

Kafka topic configuration file. For example,

Instead of specifying the config file path, you can also directly provide the topic-

partition configuration as a string argument, as shown below:

The Kafka Loader uses the same RUN LOADING JOB statement that is used for

GSQL loading from files. Each filename variable can be assigned a string

"DATA_SOURCE Var:topic_partition configure", which will override the value defined

in the loading job. In the example below, the config files for f3 and f4 are being set

by the RUN command, whereas f1 is using the config which was specified in the

CREATE LOADING JOB statement.

all partition will be used if no "partition_list" item
{
 "topic": "topicName1"
}

with empty "partition_list"
{
 "topic": "topicName1",
 "partition_list": []
}

overwrite the default start offset
{
 "topic": "topicName1",
 "default_start_offset": 0
}

DEFINE FILENAME f1 = "$k1:~/topic_partition_config.json";
DEFINE FILENAME f1 = "$k1:{\"topic\":\"zzz\",\"default_start_offset\":2,\"

RUN LOADING JOB job1 USING f1, f3="$k1:~/topic_part3_config.json", f4="$k1

3. Run the loading Job

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#run-loading-job
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#run-loading-job

2103

A RUN LOADING JOB command may only use one type of data source. E.g., you may
not mix both Kafka data sources and regular file data sources in one loading job.

All filename variables in one loading job statement must refer to the same

DATA_SOURCE variable.

There are two modes for the Kafka Loader: streaming mode and EOF mode. The

default mode is streaming mode. In streaming mode, loading will never stop until

the job is aborted. In EOF mode, loading will stop after consuming the current Kafka

message.

To set EOF mode, an optional parameter is added to the RUN LOADING JOB syntax:

To learn about each option and parameter of the RUN LOADING JOB command, see

Loading job options.

Kafka Loader loading jobs are managed the same way as regular loading jobs. The

three key commands are

• SHOW LOADING STATUS

• ABORT LOADING JOB

• RESUME LOADING JOB

For example, the syntax for the SHOW LOADING STATUS command is as follows:

RUN LOADING JOB [-noprint] [-dryrun] [-n [i],j] jobname
 [USING filevar [="filepath_string"][, filevar [="filepath_string"]]*
 [, CONCURRENCY="cnum"][,BATCH_SIZE="bnum"]][, EOF="true"]

SHOW LOADING STATUS job_id|ALL

Manage Loading Jobs

5/13/25, 9:12 PM 3.3

2104

To refer to a specific job instance, using the job_id which is provided when RUN

LOADING JOB is executed. For each loading job, the above command reports the

following information :

• Current loaded offset for each partition

• Average loading speed

• Loaded size

• Duration

See Inspecting and Managing Loading Jobs for more details.

Here is an example code for loading data through Kafka Loader:

USE GRAPH test_graph
DROP JOB load_person
DROP DATA_SOURCE k1

#create data_source kafka k1 = "kafka_config.json" for graph test_graph
CREATE DATA_SOURCE KAFKA k1 FOR GRAPH test_graph
SET k1 = "kafka_config.json"

define the loading jobs
CREATE LOADING JOB load_person FOR GRAPH test_graph {
 DEFINE FILENAME f1 = "$k1:topic_partition_config.json";
 LOAD f1
 TO VERTEX Person VALUES ($2, $0, $1),
 TO EDGE Person2Comp VALUES ($0, $1, $2)
 USING SEPARATOR=",";
}

load the data
RUN LOADING JOB load_person

Kafka Loader Example

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#inspecting-and-managing-loading-jobs
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#inspecting-and-managing-loading-jobs

2105

GSQL Cheat Sheets
GSQL Language quick reference manuals.

This page provides two cheat sheets for GSQL:

1. GSQL Cheat Sheet for Data Definition and Loading

2. GSQL Cheat Sheet for Querying

The cheat sheets are updated for TigerGraph v3.1.

63KB

DDL Language Cheatsheet.pdf
pdf

110KB

Query Language Cheatsheet.pdf
pdf

5/13/25, 9:12 PM 3.3

https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-MdZPQ_opcCDJR-Ixosn%2F-MdbmizmNnRaq87tyego%2FDDL%20Language%20Cheatsheet.pdf?alt=media&token=f097ca72-2a73-4f50-943c-37b203fdf253
https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-MdZPQ_opcCDJR-Ixosn%2F-MdbmqpmMB776gZwQd7j%2FQuery%20Language%20Cheatsheet.pdf?alt=media&token=4ba10204-e52a-4f90-a74e-e1bcc8225c8a

2106

Using a Remote GSQL Client

When the TigerGraph platform is installed, the GSQL client and server are on the

same machine. The client is packaged as a Java jar file, gsql_client.jar located

in the folder <TigerGraph_root_dir>/app/<VERSION_NUM>/dev/gdk/gsql/lib/ .

Installation consists of copying the file gsql_client.jar to the client machine and

storing it anywhere the user finds appropriate. The client machine needs to have

Java 7.0 or higher.

To run the client, execute the jar file each time that you would run gsql if you were

local to the GSQL server. That is, the command

takes the place of gsql. For example, the commands

would become

Therefore, it may be useful to define a Unix alias:

java -jar <path>gsql_client.jar

gsql DROP ALL
gsql create_my_schema.gsql
gsql LS

java -jar gsql_client.jar DROP ALL
java -jar gsql_client.jar create_my_schema.gsql
java -jar gsql_client.jar LS

alias gsql="java -jar <path>/gsql_client.jar"

Installation

Running the Client

5/13/25, 9:12 PM 3.3

2107

The java operation alone is not sufficient, however, because it does not tell the client

where to find the GSQL server. In addition, the client needs to satisfy three

conditions:

1. It must know the IP address of the GSQL server.

2. It must have the authorization to access the server in general and to execute the

requested GSQL commands in particular.

3. If a SSL/TLS encrypted connection (e.g., HTTPS) is used, then it must provide

the certificate chain.

There are two ways to provide the IP address of the GSQL Server.

• Method 1: Store the address in a file. Create a one-line file called

gsql_server_ip_config containing the ip address of the GSQL server. This file

needs to be in the same directory where you run GSQL.

• Method 2 : Every time you run the client jar, provide the ip address on the

command line, e.g., " gsql -ip 192.168.55.46 "

The GSQL server applies the same user authentication procedures to remote GSQL

users that it applies to local GSQL users. That is, if user authentication has been

enabled, then each gsql command line must include valid user credentials.

The client addresses the server at server port 14240. You need to make sure your

security policy allows the access to this port. If you want to use another port, use

the -ip option and specify the port at the end of the IP address.

It is strongly recommended that you enable user authentication. See the document
Managing User Privileges and Authentication v2.1#GSQLAuthentication for more

$ java -jar gsql.jar -ip ip_address:alternative_port

Specifying Server IP Address

Client Authorization and Authentication

5/13/25, 9:12 PM 3.3

2108

details.

If SSL/TLS is enabled for TigerGraph, to connect a GSQL remote client to the GSQL

server, each GSQL command line should provide the certificate chain file via the -

cacert option. This certificate file should be exactly the same as the file of entry

Nginx.SSL.Cert setting SSL for Nginx. See Encrypting Connections: Step 2.

Configure SSL with Gadmin. For example:

Data loading jobs always specify an input file location; logically the data should be

on the server side, not on the client side. Because the command request comes

from one machine and the target data file is on another machine, it no longer makes

sense to use a relative path.

Rule: If a remote GSQL client invokes an instruction containing a relative path, the
GSQL server considers the starting point of the path to be
<tigergraph_rootdir>/app/<VERSION_NUM>/dev/gdk/gsql on the GSQL server.

It is strongly recommended that remotely-run GSQL commands use absolute paths

only.

For example, if the data file cf_data.csv is in the folder

/home/tigergraph/example/cf/, then the command to run the loading job might look

like this:

gsql -cacert /path/to/certificate -ip hostname:port

java -jar gsql_client.jar 'RUN JOB load_cf USING FILENAME="/home/tigergrap

HTTPS Connection

File Path Semantics

5/13/25, 9:12 PM 3.3

2109

The GSQL Tutorials employ both GSQL and bash scripts to run the examples.

Typically, each example case contains 3 GSQL command files (for schema creation,

data loading, and querying) and one bash script to run all the parts together and to

display status information. Below is a simplified version of the Collaborative

Filtering (cf) bash script:

The bash script will not run from a remote GSQL client unless a few changes are

made: We need to invoke "java -jar gsql_client.jar" instead of "gsql", and need to

specify the server ip address. If we use the gsql_server_ip_config file, this file must

be in the same folder as the command file. The GSQL Tutorial has several different

folders, one for each example, so that suggests making several config files. Below

is an approach that minimizes the changes required and maximizes standardization.

A. Do initial client setup. This is done only once.

1. Store gsql_client.jar in a standard location, say ~/gsql_client/gsql_client.jar (e.g,,
/home/tigergraph/gsql_client/ gsql_client.jar)

#!/bin/bash
test='cf'
###
gsql 'DROP ALL'
gsql ../${test}/${test}_model.gsql
gsql 'CREATE GRAPH gsql_demo(*)'

Loading
gsql -g gsql_demo ../${test}/${test}_load.gsql
loading script contains this line:
RUN JOB load_cf USING FILENAME="../cf/data/cf_data.csv", SEPARATOR=",",

Querying
gsql -g gsql_demo ../${test}/${test}_query.gsql
gsql -g gsql_demo INSTALL QUERY ALL
gsql -g gsql_demo 'RUN QUERY topCoLiked("id1", 10)'

Example: Modifying a Bash Script for a
Remote GSQL Client

RUN_cf.sh: Bash script for Collaborative Filtering (cf) example

5/13/25, 9:12 PM 3.3

2110

2. Create a file called gsql_server_ip_config containing the GSQL server's IP

address, and store it a standard location, say ~/gsql_client/gsql_server_ip_config

.

3. In the .bashrc file in your home directory, add an alias for gsql which points to

the standard location:

B. Add a standard header to each bash script.

This header does the following:

1. Repeat the alias definition for the gsql command. The definition in .bashrc may

not be visible here.

2. By default, bash scripts ignore aliases. Instruct the script to use aliases.

3. Define softlinks from the current folder to the locations of the client jar and

config file.

C. Change any relative paths to absolute paths. This is the only step that must be

customized for each script.

Here is the resulting script. Four standard lines were added to the beginning, and

one line was edited in the cf_load.gsql file.

123.45.67.255

alias gsql='java -jar ~/gsql_client/gsql_client.jar'

alias gsql='java -jar gsql_client.jar'
shopt -s expand_aliases
ln -s ~/gsql_client/gsql_client.jar gsql_client.jar
ln -s ~/gsql_client/gsql_server_ip_config gsql_server_ip_config

Sample config file: /home/tigergraph/gsql_client/gsql_server_ip_config

standard which makes 'gsql' work on remote clients

RUN_cf_remote.sh: Modified bash script for Collaborative Filtering (cf) example

5/13/25, 9:12 PM 3.3

2111

#!/bin/bash
alias gsql='java -jar gsql_client.jar'
shopt -s expand_aliases
ln -s ~/gsql_client/gsql_client.jar gsql_client.jar
ln -s ~/gsql_client/gsql_server_ip_config gsql_server_ip_config
test='cf'
###
gsql 'DROP ALL'
gsql ../${test}/${test}_model.gsql
gsql 'CREATE GRAPH gsql_demo(*)'

Loading
gsql -g gsql_demo ../${test}/${test}_load.gsql
loading script contains this line:
RUN JOB load_cf USING FILENAME="/home/tigergraph/tigergraph/document/ex

Querying
gsql -g gsql_demo ../${test}/${test}_query.gsql
gsql -g gsql_demo INSTALL QUERY ALL
gsql -g gsql_demo 'RUN QUERY topCoLiked("id1", 10)'

5/13/25, 9:12 PM 3.3

2112

Legal

5/13/25, 9:12 PM 3.3

2113

Patents and Third Party Software
Patent and Third Party Notice for TigerGraph Platform v 3.2 Sep 2021

U.S. Pat. No. 9953106, 9977837, 10120956.

Additional Patents pending.

The TigerGraph software program uses some third-party software components that

are licensed under their own terms. The attached notices are provided for

information only.

• Section 1. List of third-party software in the TigerGraph platform.

• Section 2. List of additional third-party software in the TigerGraph Cloud Service
interface.

• Section 3. Table of license types.

A separate third-party disclosure is available for the GraphStudio Visual SDK. See

https://docs.tigergraph.com/ui/graphstudio/patent-and-third-party-notice

==

=========

==

=========

antlr Copyright (c) 2014 antlr. https://www.antlr.org/ Licensed under BSD3

commons-cli Copyright (c) 2002-2017 The Apache Software Foundation.

https://commons.apache.org/proper/commons-cli/ Licensed under Apache2

commons-codec Copyright (c) 2002-2017 The Apache Software Foundation.

https://commons.apache.org/proper/commons-codec/ Licensed under Apache2

Section 1. List of third-party software in the
TigerGraph platform

5/13/25, 9:12 PM 3.3

https://docs.tigergraph.com/ui/graphstudio/patent-and-third-party-notice
https://docs.tigergraph.com/ui/graphstudio/patent-and-third-party-notice
https://www.antlr.org/
https://www.antlr.org/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-codec/
https://commons.apache.org/proper/commons-codec/

2114

commons-lang3 Copyright (c) 2001-2018 The Apache Software Foundation.

https://commons.apache.org/proper/commons-lang/ Licensed under Apache2

diffutils Copyright (c) 2010 Free Software Foundation. https://github.com/java-diff-

utils/java-diff-utils Licensed under Apache2

grpc Copyright (c) 2018 The gRPC authors. https://grpc.io/ Licensed under

Apache2

guava Copyright (c) 2010-2016 OneLogin, Inc. https://github.com/google/guava

Licensed under Apache2

java-saml Copyright (c) 2010-2016 OneLogin, Inc. https://github.com/onelogin/java-

saml Licensed under MIT

jline Copyright (c) 2002-2018 Guillaume Nodet. https://github.com/jline/jline3

Licensed under BSD3

joda-time Copyright (c) 2002-2018 Joda. https://www.joda.org/joda-time/

Licensed under Apache2

json Copyright (c) 2002 JSON. https://github.com/stleary/JSON-java Licensed

under JSON

LDAP SDK Copyright (c) 2009 Ping Identity Corporation.

https://github.com/pingidentity/ldapsdk/blob/master/README.md Licensed under

LDAPSDK

log4j Copyright (c) 1999-2018 The Apache Software Foundation.

https://logging.apache.org/log4j/2.x/ Licensed under Apache2

netty Copyright (c) 2018 The Netty Project. https://netty.io/ Licensed under

Apache2

protobuf-java Copyright (c) 2008 Google. https://developers.google.com/protocol-

buffers/ Licensed under BSD3

slf4j Copyright (c) 2004-2017 QOS.ch. https://www.slf4j.org/ Licensed under MIT

5/13/25, 9:12 PM 3.3

https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/
https://github.com/java-diff-utils/java-diff-utils
https://github.com/java-diff-utils/java-diff-utils
https://github.com/java-diff-utils/java-diff-utils
https://grpc.io/
https://grpc.io/
https://github.com/google/guava
https://github.com/google/guava
https://github.com/onelogin/java-saml
https://github.com/onelogin/java-saml
https://github.com/onelogin/java-saml
https://github.com/jline/jline3
https://github.com/jline/jline3
https://www.joda.org/joda-time/
https://www.joda.org/joda-time/
https://github.com/stleary/JSON-java
https://github.com/stleary/JSON-java
https://github.com/pingidentity/ldapsdk/blob/master/README.md
https://github.com/pingidentity/ldapsdk/blob/master/README.md
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
https://netty.io/
https://netty.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.slf4j.org/
https://www.slf4j.org/

2115

stax2-api Copyright (c) 2013-2019 Tatu Saloranta.

https://github.com/FasterXML/stax2-api Licensed under BSD

woodstox-core-asl Copyright (c) 2014-2019 Tatu Saloranta.

https://github.com/FasterXML/woodstox Licensed under Apache2

xmlsec Copyright (c) 2002-2016 Aleksey Sanin. https://www.aleksey.com/xmlsec/

Licensed under MIT

yamlbeans Copyright (c) 2008 Nathan Sweet.

https://github.com/EsotericSoftware/yamlbeans Licensed under MIT

zookeeper Copyright (c) 2010-2018 The Apache Software Foundation.

https://zookeeper.apache.org/ Licensed under Apache2

gson Copyright (c) 2008-2019 Google. https://github.com/google/gson Licensed

under Apache2

javacc Copyright (c) 2006 Sun Microsystems. https://javacc.org/ Licensed under

BSD3

javacpp Copyright (c) 1989 Ty Coon. https://github.com/bytedeco/javacpp

Licensed under Apache

murmurhash Copyright (c) 2010-2019 aapleby.

https://github.com/aappleby/smhasher Licensed under MIT

kafka Copyright (c) 2017 The Apache Software Foundation.

https://kafka.apache.org/ Licensed under Apache2

librdkafka Copyright (c) 2012-2018 Magnus Edenhill.

https://github.com/edenhill/librdkafka Licensed under BSD2

libfcgi Copyright (c) 2012-2019 toshic. https://github.com/toshic/libfcgi Licensed

under FCGI

zlib Copyright (c) 1995-2017 Jean-loup Gailly. https://zlib.net/ Licensed under ZLIB

5/13/25, 9:12 PM 3.3

https://github.com/FasterXML/stax2-api
https://github.com/FasterXML/stax2-api
https://github.com/FasterXML/woodstox
https://github.com/FasterXML/woodstox
https://www.aleksey.com/xmlsec/
https://www.aleksey.com/xmlsec/
https://github.com/EsotericSoftware/yamlbeans
https://github.com/EsotericSoftware/yamlbeans
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://github.com/google/gson
https://github.com/google/gson
https://javacc.org/
https://javacc.org/
https://github.com/bytedeco/javacpp
https://github.com/bytedeco/javacpp
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://kafka.apache.org/
https://kafka.apache.org/
https://github.com/edenhill/librdkafka
https://github.com/edenhill/librdkafka
https://github.com/toshic/libfcgi
https://github.com/toshic/libfcgi
https://zlib.net/
https://zlib.net/

2116

libcurl Copyright (c) 1996-2019 Daniel Stenberg. https://curl.haxx.se/libcurl/

Licensed under CURL

zeromq Copyright (c) 2007-2016 various copyright holders. http://zeromq.org/

Licensed under LGPL3

libhttp_parser Copyright (c) 2009-2019 Joyent. https://github.com/nodejs/http-

parser Licensed under MIT

yaml-cpp Copyright (c) 2008-2015 Jesse Beder. https://github.com/jbeder/yaml-

cpp Licensed under MIT

cryptopp Copyright (c) 1995-2016 Wei Dai. https://www.cryptopp.com/ Licensed

under BOOST

boost Copyright (c) 1998-2005 Beman Dawes, David Abrahams.

https://www.boost.org/ Licensed under BOOST

snappy Copyright (c) 2011 Google, Inc. https://github.com/google/snappy

Licensed under BSD3

jsoncpp Copyright (c) 2007-2010 Baptiste Lepilleur. https://github.com/open-

source-parsers/jsoncpp Licensed under MIT

cereal Copyright (c) 2014 Randolph Voorhies, Shane Grant.

https://github.com/USCiLab/cereal Licensed under BSD3

nginx Copyright (c) 2011-2018 nginx. http://nginx.org/ Licensed under BSD2

jemalloc Copyright (c) 2002-2018 Jason Evans, (c) 2007-2012 Mozilla Foundation,

(c) 2009-2018 Facebook, Inc. http://jemalloc.net/ Licensed under BSD2

sparsehash Copyright (c) 2005 Google. https://github.com/sparsehash/sparsehash

 Licensed under BSD3

rapidjson Copyright (c) 2006-2013 Alexander Chemeris.

https://github.com/Tencent/rapidjson Licensed under MIT

5/13/25, 9:12 PM 3.3

https://curl.haxx.se/libcurl/
https://curl.haxx.se/libcurl/
http://zeromq.org/
http://zeromq.org/
https://github.com/nodejs/http-parser
https://github.com/nodejs/http-parser
https://github.com/nodejs/http-parser
https://github.com/jbeder/yaml-cpp
https://github.com/jbeder/yaml-cpp
https://github.com/jbeder/yaml-cpp
https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.boost.org/
https://www.boost.org/
https://github.com/google/snappy
https://github.com/google/snappy
https://github.com/open-source-parsers/jsoncpp
https://github.com/open-source-parsers/jsoncpp
https://github.com/open-source-parsers/jsoncpp
https://github.com/USCiLab/cereal
https://github.com/USCiLab/cereal
http://nginx.org/
http://nginx.org/
http://jemalloc.net/
http://jemalloc.net/
https://github.com/sparsehash/sparsehash
https://github.com/sparsehash/sparsehash
https://github.com/sparsehash/sparsehash
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson

2117

openjdk Copyright (c) 2019 Oracle. https://openjdk.java.net/ Licensed under

GPL2+CE GPL2 with Classpath Exception: Clarification that the using the licensed

code with other code does not require that other code to be GPL2 compatible.

gcc Copyright (c) 1992-2017 Free Software Foundation. https://gcc.gnu.org/ (gcc)

Licensed under GPL3, with Runtime Library Exception The GCC license provides an

exception to GPLv3 to allow compilation of non- GPL (including proprietary)

programs to use, in this way, the header files and runtime libraries covered by this

Exception. The complete terms are available at https://www.gnu.org/licenses/gcc-

exception.html

tsar Copyright (c) 2004 Apache. https://github.com/alibaba/tsar Licensed under

Apache2

gperftools Copyright (c) 2005 Google. https://github.com/gperftools/gperftools

(we use its tcmalloc) Licensed under BSD3

python 2.7 Copyright (c) 2001-2019 Python.

https://www.python.org/download/releases/2.7/license/ Licensed under Python2

Go github.com/GeertJohan/go.rice/embedded Licensed under BSD 2-clause

"Simplified" License

Gabs github.com/Jeffail/gabs Licensed under MIT License

Sarama github.com/Shopify/sarama Licensed under MIT License

Go Meta Linter github.com/alecthomas/gometalinter Licensed under MIT License

Units github.com/alecthomas/units Licensed under MIT License

Quantile github.com/beorn7/perks/quantile Licensed under MIT License

Readline github.com/chzyer/readline Licensed under MIT License

Misspell github.com/client9/misspell/cmd/misspell Licensed under MIT License

Client V3 github.com/coreos/etcd/clientv3 Licensed under Apache License 2.0

5/13/25, 9:12 PM 3.3

https://openjdk.java.net/
https://openjdk.java.net/
https://gcc.gnu.org/
https://gcc.gnu.org/
https://www.gnu.org/licenses/gcc-exception.html
https://www.gnu.org/licenses/gcc-exception.html
https://www.gnu.org/licenses/gcc-exception.html
https://github.com/alibaba/tsar
https://github.com/alibaba/tsar
https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools
https://www.python.org/download/releases/2.7/license/
https://www.python.org/download/releases/2.7/license/
http://github.com/GeertJohan/go.rice/embedded
http://github.com/GeertJohan/go.rice/embedded
http://github.com/Jeffail/gabs
http://github.com/Jeffail/gabs
http://github.com/Shopify/sarama
http://github.com/Shopify/sarama
http://github.com/alecthomas/gometalinter
http://github.com/alecthomas/gometalinter
http://github.com/alecthomas/units
http://github.com/alecthomas/units
http://github.com/beorn7/perks/quantile
http://github.com/beorn7/perks/quantile
http://github.com/chzyer/readline
http://github.com/chzyer/readline
http://github.com/client9/misspell/cmd/misspell
http://github.com/client9/misspell/cmd/misspell
http://github.com/coreos/etcd/clientv3
http://github.com/coreos/etcd/clientv3

2118

Journal github.com/coreos/go-systemd/journal Licensed under Apache License

2.0

Capnslog github.com/coreos/pkg/capnslog Licensed under Apache License 2.0

Zip github.com/daaku/go.zipexe Licensed under MIT License

Spew github.com/davecgh/go-spew/spew Licensed under ISC License

JWT github.com/dgrijalva/jwt-go Licensed under MIT License

Breaker github.com/eapache/go-resiliency/breaker Licensed under MIT License

Go xerial snappy github.com/eapache/go-xerial-snappy Licensed under MIT

License

Queue github.com/eapache/queue Licensed under MIT License

Color github.com/fatih/color Licensed under MIT License

Gorp github.com/go-gorp/gorp Licensed under MIT License

Oleutil github.com/go-ole/go-ole/oleutil Licensed under MIT License

Protobuf github.com/gogo/protobuf Licensed under BSD 3-clause "New" or

"Revised" License

Go Lint github.com/golang/lint/golint Licensed under BSD 3-clause "New" or

"Revised" License

Snappy github.com/golang/snappy Licensed under BSD 3-clause "New" or

"Revised" License

Renameio github.com/google/renameio Licensed under Apache License 2.0

RocksDB https://github.com/facebook/rocksdb/ Licensed under Apache License

2.0

5/13/25, 9:12 PM 3.3

http://github.com/coreos/go-systemd/journal
http://github.com/coreos/go-systemd/journal
http://github.com/coreos/pkg/capnslog
http://github.com/coreos/pkg/capnslog
http://github.com/daaku/go.zipexe
http://github.com/daaku/go.zipexe
http://github.com/davecgh/go-spew/spew
http://github.com/davecgh/go-spew/spew
http://github.com/dgrijalva/jwt-go
http://github.com/dgrijalva/jwt-go
http://github.com/eapache/go-resiliency/breaker
http://github.com/eapache/go-resiliency/breaker
http://github.com/eapache/go-xerial-snappy
http://github.com/eapache/go-xerial-snappy
http://github.com/eapache/queue
http://github.com/eapache/queue
http://github.com/fatih/color
http://github.com/fatih/color
http://github.com/go-gorp/gorp
http://github.com/go-gorp/gorp
http://github.com/go-ole/go-ole/oleutil
http://github.com/go-ole/go-ole/oleutil
http://github.com/gogo/protobuf
http://github.com/gogo/protobuf
http://github.com/golang/lint/golint
http://github.com/golang/lint/golint
http://github.com/golang/snappy
http://github.com/golang/snappy
http://github.com/google/renameio
http://github.com/google/renameio
https://github.com/facebook/rocksdb/
https://github.com/facebook/rocksdb/

2119

Shlex github.com/google/shlex Licensed under Apache License 2.0

UUID github.com/google/uuid Licensed under BSD 3-clause "New" or "Revised"

License

Ineffassign github.com/gordonklaus/ineffassign Licensed under MIT License

Backoffutils github.com/grpc-ecosystem/go-grpc-middleware/util/backoffutils

Licensed under Apache License 2.0

Prometheus github.com/grpc-ecosystem/go-grpc-prometheus Licensed under

Apache License 2.0

GRPC-gateway github.com/grpc-ecosystem/grpc-gateway Licensed under BSD

3-clause "New" or "Revised" License

Go-uuid github.com/hashicorp/go-uuid Licensed under Mozilla Public License 2.0

Go-fork github.com/jcmturner/gofork Licensed under BSD 3-clause "New" or

"Revised" License

Ansiterm github.com/juju/ansiterm Licensed under GNU Lesser General Public

License v3.0

Tabwriter github.com/juju/ansiterm/tabwriter Licensed under BSD 3-clause "New"

or "Revised" License

Compress github.com/klauspost/compress Licensed under BSD 3-clause "New"

or "Revised" License

Xxhash github.com/klauspost/compress/zstd/internal/xxhash Licensed under MIT

License

fs github.com/kr/fs Licensed under BSD 3-clause "New" or "Revised" License

Pretty github.com/kr/pretty Licensed under MIT License

Text github.com/kr/text Licensed under MIT License

5/13/25, 9:12 PM 3.3

http://github.com/google/shlex
http://github.com/google/shlex
http://github.com/google/uuid
http://github.com/google/uuid
http://github.com/gordonklaus/ineffassign
http://github.com/gordonklaus/ineffassign
http://github.com/grpc-ecosystem/go-grpc-middleware/util/backoffutils
http://github.com/grpc-ecosystem/go-grpc-middleware/util/backoffutils
http://github.com/grpc-ecosystem/go-grpc-prometheus
http://github.com/grpc-ecosystem/go-grpc-prometheus
http://github.com/grpc-ecosystem/grpc-gateway
http://github.com/grpc-ecosystem/grpc-gateway
http://github.com/hashicorp/go-uuid
http://github.com/hashicorp/go-uuid
http://github.com/jcmturner/gofork
http://github.com/jcmturner/gofork
http://github.com/juju/ansiterm
http://github.com/juju/ansiterm
http://github.com/juju/ansiterm/tabwriter
http://github.com/juju/ansiterm/tabwriter
http://github.com/klauspost/compress
http://github.com/klauspost/compress
http://github.com/klauspost/compress/zstd/internal/xxhash
http://github.com/klauspost/compress/zstd/internal/xxhash
http://github.com/kr/fs
http://github.com/kr/fs
http://github.com/kr/pretty
http://github.com/kr/pretty
http://github.com/kr/text
http://github.com/kr/text

2120

Vtclean github.com/lunixbochs/vtclean Licensed under MIT License

Go-colorable github.com/mattn/go-colorable Licensed under MIT License

Go-isatty github.com/mattn/go-isatty Licensed under MIT License

Go-sqlite3 github.com/mattn/go-sqlite3 Licensed under MIT License

Pbutil github.com/matttproud/golang_protobuf_extensions/pbutil Licensed under

Apache License 2.0

i18n github.com/nicksnyder/go-i18n/i18n Licensed under MIT License

Go-toml github.com/pelletier/go-toml Licensed under MIT License

xxh32 github.com/pierrec/lz4/internal/xxh32 Licensed under BSD 3-clause "New"

or "Revised" License

errors github.com/pkg/errors Licensed under BSD 2-clause "Simplified" License

sftp github.com/pkg/sftp Licensed under BSD 2-clause "Simplified" License

difflib github.com/pmezard/go-difflib/difflib Licensed under BSD 3-clause "New"

or "Revised" License

Go github.com/prometheus/client_model/go Licensed under Apache License 2.0

Common github.com/prometheus/common Licensed under Apache License 2.0

Procfs github.com/prometheus/procfs Licensed under Apache License 2.0

Go-metrics github.com/rcrowley/go-metrics Licensed under BSD 2-clause

"Simplified" License

Cron github.com/robfig/cron Licensed under MIT License

Gopsutil github.com/shirou/gopsutil Licensed under BSD 3-clause "New" or

"Revised" License

5/13/25, 9:12 PM 3.3

http://github.com/lunixbochs/vtclean
http://github.com/lunixbochs/vtclean
http://github.com/mattn/go-colorable
http://github.com/mattn/go-colorable
http://github.com/mattn/go-isatty
http://github.com/mattn/go-isatty
http://github.com/mattn/go-sqlite3
http://github.com/mattn/go-sqlite3
http://github.com/matttproud/golang_protobuf_extensions/pbutil
http://github.com/matttproud/golang_protobuf_extensions/pbutil
http://github.com/nicksnyder/go-i18n/i18n
http://github.com/nicksnyder/go-i18n/i18n
http://github.com/pelletier/go-toml
http://github.com/pelletier/go-toml
http://github.com/pierrec/lz4/internal/xxh32
http://github.com/pierrec/lz4/internal/xxh32
http://github.com/pkg/errors
http://github.com/pkg/errors
http://github.com/pkg/sftp
http://github.com/pkg/sftp
http://github.com/pmezard/go-difflib/difflib
http://github.com/pmezard/go-difflib/difflib
http://github.com/prometheus/client_model/go
http://github.com/prometheus/client_model/go
http://github.com/prometheus/common
http://github.com/prometheus/common
http://github.com/prometheus/procfs
http://github.com/prometheus/procfs
http://github.com/rcrowley/go-metrics
http://github.com/rcrowley/go-metrics
http://github.com/robfig/cron
http://github.com/robfig/cron
http://github.com/shirou/gopsutil
http://github.com/shirou/gopsutil

2121

W32 github.com/shirou/w32 Licensed under BSD 3-clause "New" or "Revised"

License

Cobra github.com/spf13/cobra Licensed under Apache License 2.0

Pflag github.com/spf13/pflag Licensed under BSD 3-clause "New" or "Revised"

License

Testify github.com/stretchr/testify Licensed under MIT License

Promptui github.com/tigergraph/promptui Licensed under BSD 3-clause "New" or

"Revised" License

Deadcode github.com/tsenart/deadcode Licensed under BSD 3-clause "New" or

"Revised" License

Etcd go.etcd.io/etcd Licensed under Apache License 2.0

Atomic go.uber.org/atomic Licensed under MIT License

Multierr go.uber.org/multierr Licensed under MIT License

Zap go.uber.org/zap Licensed under MIT License

Crypto https://pkg.go.dev/golang.org/x/crypto Licensed under BSD 3-clause

"New" or "Revised" License

Golint https://pkg.go.dev/golang.org/x/lint/golint Licensed under BSD 3-clause

"New" or "Revised" License

Net https://pkg.go.dev/golang.org/x/text Licensed under BSD 3-clause "New" or

"Revised" License

Errgroup https://pkg.go.dev/golang.org/x/sync/errgroup Licensed under BSD 3-

clause "New" or "Revised" License

Sys https://pkg.go.dev/golang.org/x/sys Licensed under BSD 3-clause "New" or

"Revised" License

5/13/25, 9:12 PM 3.3

http://github.com/shirou/w32
http://github.com/shirou/w32
http://github.com/spf13/cobra
http://github.com/spf13/cobra
http://github.com/spf13/pflag
http://github.com/spf13/pflag
http://github.com/stretchr/testify
http://github.com/stretchr/testify
http://github.com/tigergraph/promptui
http://github.com/tigergraph/promptui
http://github.com/tsenart/deadcode
http://github.com/tsenart/deadcode
http://go.etcd.io/etcd
http://go.etcd.io/etcd
http://go.uber.org/atomic
http://go.uber.org/atomic
http://go.uber.org/multierr
http://go.uber.org/multierr
http://go.uber.org/zap
http://go.uber.org/zap
https://pkg.go.dev/golang.org/x/crypto
https://pkg.go.dev/golang.org/x/crypto
https://pkg.go.dev/golang.org/x/lint/golint
https://pkg.go.dev/golang.org/x/lint/golint
https://pkg.go.dev/golang.org/x/text
https://pkg.go.dev/golang.org/x/text
https://pkg.go.dev/golang.org/x/sync/errgroup
https://pkg.go.dev/golang.org/x/sync/errgroup
https://pkg.go.dev/golang.org/x/sys
https://pkg.go.dev/golang.org/x/sys

2122

Text https://pkg.go.dev/golang.org/x/text Licensed under BSD 3-clause "New" or

"Revised" License

Genproto https://pkg.go.dev/google.golang.org/genproto Licensed under Apache

License 2.0

Grpc https://pkg.go.dev/google.golang.org/grpc Licensed under Apache License

2.0

Check.v1 gopkg.in/check.v1 Licensed under BSD 2-clause "Simplified" License

Aescts.v1 gopkg.in/jcmturner/aescts.v1 Licensed under Apache License 2.0

dnsutils.v1 gopkg.in/jcmturner/dnsutils.v1 Licensed under Apache License 2.0

gokrb5.v7 gopkg.in/jcmturner/gokrb5.v7 Licensed under Apache License 2.0

rpc.v1 gopkg.in/jcmturner/rpc.v1 Licensed under Apache License 2.0

jack.v2 gopkg.in/natefinch/lumberjack.v2 Licensed under MIT License

yaml.v2 gopkg.in/yaml.v2 Licensed under Apache License 2.0

Go Programming Language cloud.google.com/go Licensed under Apache2

go-semver github.com/coreos/go-semver Licensed under Apache2

Resty github.com/go-resty/resty Licensed under MIT license

flock github.com/gofrs/flock Licensed under BSD 3-clause "New" or "Revised"

License

protobuf github.com/golang/protobuf Licensed under BSD 3-clause "New" or

"Revised" License

client_golang github.com/prometheus/client_golang Licensed under Apache2

net golang.org/x/net Licensed under BSD 3-clause "New" or "Revised" License

5/13/25, 9:12 PM 3.3

https://pkg.go.dev/golang.org/x/text
https://pkg.go.dev/golang.org/x/text
https://pkg.go.dev/google.golang.org/genproto
https://pkg.go.dev/google.golang.org/genproto
https://pkg.go.dev/google.golang.org/grpc
https://pkg.go.dev/google.golang.org/grpc
http://gopkg.in/check.v1
http://gopkg.in/check.v1
http://gopkg.in/jcmturner/aescts.v1
http://gopkg.in/jcmturner/aescts.v1
http://gopkg.in/jcmturner/dnsutils.v1
http://gopkg.in/jcmturner/dnsutils.v1
http://gopkg.in/jcmturner/gokrb5.v7
http://gopkg.in/jcmturner/gokrb5.v7
http://gopkg.in/jcmturner/rpc.v1
http://gopkg.in/jcmturner/rpc.v1
http://gopkg.in/natefinch/lumberjack.v2
http://gopkg.in/natefinch/lumberjack.v2
http://gopkg.in/yaml.v2
http://gopkg.in/yaml.v2
http://cloud.google.com/go
http://cloud.google.com/go
http://github.com/coreos/go-semver
http://github.com/coreos/go-semver
http://github.com/go-resty/resty
http://github.com/go-resty/resty
https://github.com/gofrs/flock
https://github.com/gofrs/flock
http://github.com/golang/protobuf
http://github.com/golang/protobuf
http://github.com/prometheus/client_golang
http://github.com/prometheus/client_golang
http://golang.org/x/net
http://golang.org/x/net

2123

==

=========

The TigerGraph Cloud Service permits users to use the TigerGraph graph database

and analytics platform via a web interface. **TigerGraph does not copy or distribute

the TigerGraph Cloud software to the end user. **

In additional to having the third-party components of the TigerGraph Platform, the

TigerGraph Cloud Service interface includes the following additional third-party

software.

Netdata Copyright (c) 2016-2018, Costa Tsaousis. Copyright (c) 2018, Netdata Inc.

https://github.com/netdata/netdata Licensed under GPL v3 or later .

The following table explains the license abbreviations used in the list of TigerGraph

Third Party Software. A link is provided to an official source for each license.

Abbreviation License Name and Source

Apache2

Apache License version 2.0

https://www.apache.org/licenses/LICENSE-

2.0

BOOST
Boost Software License

http://www.boost.org/LICENSE_1_0.txt

BSD2

2-Clause BSD (Berkeley Standard

Distribution) License

Section 2. List of additional third-party
software in the TigerGraph Cloud Service
interface

Section 3. Table of license types.

5/13/25, 9:12 PM 3.3

https://github.com/netdata/netdata
https://github.com/netdata/netdata
https://github.com/netdata/netdata/tree/master/LICENSE
https://github.com/netdata/netdata/tree/master/LICENSE
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt

2124

https://opensource.org/licenses/BSD-2-

Clause

BSD3

3-Clause BSD (Berkeley Standard

Distribution) License

https://opensource.org/licenses/BSD-3-

Clause

CURL
Curl License

https://curl.haxx.se/docs/copyright.html

FCGI

FastCGI2 License

https://github.com/FastCGI-

Archives/fcgi2/blob/master/LICENSE.TERMS

GPL2

GNU General Public License version 2.0

https://www.gnu.org/licenses/old-

licenses/gpl-2.0.en.html

GPL2+CE

GNU General Public License, version 2, with

the Classpath Exception

https://openjdk.java.net/legal/gplv2+ce.html

GNU

General Public License version 3.0

https://www.gnu.org/licenses/gpl-

3.0.en.html

ISC
ISC License

https://opensource.org/licenses/ISC

JSON
JSON License

http://www.json.org/license.html

LDAPSDK

UnboundID LDAP SDK Free Use License

https://docs.ldap.com/ldap-

sdk/docs/LICENSE-UnboundID-

LDAPSDK.txt

LGPL3

GNU Lesser General Public License version

3.0

https://www.gnu.org/licenses/lgpl-

3.0.en.html

5/13/25, 9:12 PM 3.3

https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://curl.haxx.se/docs/copyright.html
https://curl.haxx.se/docs/copyright.html
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://openjdk.java.net/legal/gplv2+ce.html
https://openjdk.java.net/legal/gplv2+ce.html
https://openjdk.java.net/legal/gplv2+ce.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://opensource.org/licenses/ISC
https://opensource.org/licenses/ISC
http://www.json.org/license.html
http://www.json.org/license.html
https://docs.ldap.com/ldap-sdk/docs/LICENSE-UnboundID-LDAPSDK.txt
https://docs.ldap.com/ldap-sdk/docs/LICENSE-UnboundID-LDAPSDK.txt
https://docs.ldap.com/ldap-sdk/docs/LICENSE-UnboundID-LDAPSDK.txt
https://docs.ldap.com/ldap-sdk/docs/LICENSE-UnboundID-LDAPSDK.txt
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html

2125

MIT

MIT (Massachusetts Institute of Technology)

License

https://opensource.org/licenses/MIT

Mozilla
Mozilla Public License 2.0

https://www.mozilla.org/en-US/MPL/2.0/

MPICH

MPICH License

http://git.mpich.org/mpich.git/blob/HEAD:/C

OPYRIGHT

OPENSSL

OpenSSL License

https://www.openssl.org/source/license.htm

l

Python2

Python 2.7 License

https://www.python.org/download/releases/

2.7/license/

SLI_OFL1.1

SIL Open Font License version 1.1

http://scripts.sil.org/cms/scripts/page.php?

item_id=OFL_web

ZLIB
zlib License

5/13/25, 9:12 PM 3.3

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
https://www.openssl.org/source/license.html
https://www.openssl.org/source/license.html
https://www.openssl.org/source/license.html
https://www.python.org/download/releases/2.7/license/
https://www.python.org/download/releases/2.7/license/
https://www.python.org/download/releases/2.7/license/
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web

2126

Workshop

5/13/25, 9:12 PM 3.3

2127

Connected Data London 2019

• Computer Setup

◦ You will be using a Linux virtual server on the cloud.

◦ You will need a browser, other than Microsoft IE or Edge. Google Chrome has

been tested the most thoroughly.

◦ You need to remote login to the Linux server and use a shell console. If you

have a Linux or Mac, you can use your native shells and ssh. If you have a

Windows machine, you need to install a terminal emulator like PuTTY:

https://linuxacademy.com/guide/17385-use-putty-to-access-ec2-linux-

instances-via-ssh-from-windows/

◦ The instructor will tell you how to log into your particular machine.

• Exercise 1: Unsupervised Learning - Community Detection Graph Algorithm

• Exercise 2: Graph Database as a Neural Network

• Exercise 3: Extracting Graph Features to Train an Explainable AI Model

CDL'19 - Graphs, ML, and Exp

2MB

CDL19 - Graphs, ML, and Explainable AI.pdf
pdf

Graphs, Machine Learning, and Explainable
AI

5/13/25, 9:12 PM 3.3

https://linuxacademy.com/guide/17385-use-putty-to-access-ec2-linux-instances-via-ssh-from-windows/
https://linuxacademy.com/guide/17385-use-putty-to-access-ec2-linux-instances-via-ssh-from-windows/
https://linuxacademy.com/guide/17385-use-putty-to-access-ec2-linux-instances-via-ssh-from-windows/
https://docs.google.com/document/d/1sjL9IOdEfE43f7il8UTU47I_51ue3QP9EAO8Nkezsgo/edit?usp=sharing
https://docs.google.com/document/d/1sjL9IOdEfE43f7il8UTU47I_51ue3QP9EAO8Nkezsgo/edit?usp=sharing
https://docs.google.com/document/d/1qDVZ9HhTtk3brB94uljb6Kl129dXA-2BH-ATi0_zr5I/edit?usp=sharing
https://docs.google.com/document/d/1qDVZ9HhTtk3brB94uljb6Kl129dXA-2BH-ATi0_zr5I/edit?usp=sharing
https://docs.google.com/document/d/1HD5_qAUFtqf9YWkPBPQC7i84eDYRe7q6cD4nF3uUjoo/edit?usp=sharing
https://docs.google.com/document/d/1HD5_qAUFtqf9YWkPBPQC7i84eDYRe7q6cD4nF3uUjoo/edit?usp=sharing
https://224858808-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LqK_qZ4vNHMhVlpRDqC%2F-LqKab4zy3NTEVrUilkE%2FCDL19%20-%20Graphs%2C%20ML%2C%20and%20Explainable%20AI.pdf?alt=media&token=4f8c5746-bd84-41b1-9e21-ed2abb306f94

