
1

2.4

5/13/25, 1:39 PM TigerGraph Documentation

2

TigerGraph 2.4 Documentation

To switch to a different version, select the version you want at the top of the menu on the

left. For documentation of TigerGraph versions prior to 2.2, please contact TigerGraph

Support.

Major Sections Quick Links

Portal Developer Portal

Algorithm Library GSQL Graph Algorithm Library

Release Notes Release Notes-TigerGraph 2.4

Get Started

HW & SW Requirements

Platform Installation

GSQL 101 , GSQL 102

FAQs & Cheatsheets

Knowledge Base and FAQs

GSQL Cheatsheets

Comparing TigerGraph

Editions

GSQL

GSQL 101

GSQL 102 Pattern Matching

GSQL Demo Examples

GSQL Spec - Data Definition &

Loading

GSQL Spec - Querying

Interpreted GSQL

GraphStudio GraphStudio UI Guide

Connectors and APIs

RESTPP API User Guide

Kafka Loader User Guide

S3 Loader User Guide

GSQL JSON Output Spec

Connector Ecosystem

HA Cluster Configuration and

Cluster Expansion

5/13/25, 1:39 PM TigerGraph Documentation

https://www.tigergraph.com/developers/
https://www.tigergraph.com/developers/
https://github.com/tigergraph/ecosys/tree/master/etl
https://github.com/tigergraph/ecosys/tree/master/etl

3

Sys Mgmt and Admin

User Privileges and

Authentication

MultiGraph

LDAP and Single Sign-On

Data Encryption

Admin Portal

Backup and Restore

5/13/25, 1:39 PM TigerGraph Documentation

4

Comparing TigerGraph Editions

This document compares what is included in the Enterprise Edition vs. Developer Edition

of the TigerGraph platform.

To see what has been added or changed in different releases (versions) of TigerGraph, see

the Change Log.

OVERVIEW Developer Edition Enterprise Edition

Licensing
Free for non-production,

research, or educational use
Free 30-day trial

Includes

"TigerGraph For One"

single user, single graph,

single machine

All TigerGraph Database and

Enterprise features, including

+ Distributed Graph

+ MultiGraph

+ Security

+ User Management

Support Community forum ✅

How to Get It
www.tigergraph.com/develop

er

www.tigergraph.com/free-trial

DATABASE FEATURES Developer Edition Enterprise Edition

Native MPP Graph ✅ ✅

Real-Time Deep Link

Analytics
✅ ✅

Ultra-Fast Loading and

Updates
✅ ✅

Overview

Database Features

5/13/25, 1:39 PM TigerGraph Documentation

https://groups.google.com/a/opengsql.org/forum/#!forum/gsql-users
https://groups.google.com/a/opengsql.org/forum/#!forum/gsql-users
http://www.tigergraph.com/developer
http://www.tigergraph.com/developer
http://www.tigergraph.com/developer
http://www.tigergraph.com/free-trial
http://www.tigergraph.com/free-trial
http://www.tigergraph.com/free-trial

5

* = optional

GSQL Query and Loading

Language

SQL-like syntax and built-in

parallelism

✅ ✅

Graph Size
500 billion edges or

what fits in memory
Unlimited

Compressed Data Store ✅ ✅

Optimized In-Memory

Processing;

ACID Transactions

✅ ✅

GraphStudio Visual SDK and

UI

Design, Load, Explore, Query,

Visualize

✅ ✅ *

MultiGraph No ✅ *

Distributed, Auto-Partitioned

Graph
No ✅

HA Replication No ✅

ENTERPRISE FEATURES Developer Edition Enterprise Edition

Backup and Restore No ✅

Dynamic Schema Change No ✅

Multiple Users and

Role-Based Access Control
No (Single User) ✅

Enterprise User Management

LDAP and SSO
No ✅

Data Encryption

At Rest and In Motion
No ✅

Enterprise Features

5/13/25, 1:39 PM TigerGraph Documentation

6

GSQL Graph Algorithm Library

Updated Sep 14, 2019

Graph algorithms are functions for measuring characteristics of graphs, vertices, or

relationships. Graph algorithms can provide insights into the role or relevance of individual

entities in a graph. For example: How centrally located is this vertex? How much influence

does this vertex exert over the others?

Some graph algorithms measure or identify global characteristics: What are the natural

community groupings in the graph? What is the density of connections?

The GSQL Graph Algorithm Library is a collection of expertly written GSQL queries, each of

which implements a standard graph algorithm. Each algorithm is ready to be installed and

used, either as a stand-alone query or as a building block of a larger analytics application.

GSQL running on the TigerGraph platform is particularly well-suited for graph algorithms

for the several reasons:

• Turing-complete with full support for imperative and procedural programming, ideal

for algorithmic computation.

• Parallel and Distributed Processing, enabling computations on larger graphs.

• User-Extensible. Because the algorithms are written in standard GSQL and compiled

by the user, they are easy to modify and customize.

• Open-Source. Users can study the GSQL implementations to learn by example, and

they can develop and submit additions to the library.

You can download the library from github:

https://github.com/tigergraph/gsql-graph-algorithms

Using the GSQL Graph Algorithm Library

Library Structure

5/13/25, 1:39 PM TigerGraph Documentation

https://github.com/tigergraph/gsql-graph-algorithms
https://github.com/tigergraph/gsql-graph-algorithms

7

The library contains two main sections: algorithms and tests. The algorithms folder

contains template algorithms and scripts to help you customize and install them. The

tests folder contains small sample graphs that you can use to experiment with the

algorithms. In this document, we use the test graphs to show you the expected result for

each algorithm. The graphs are small enough that you can manually calculate and

sometimes intuitively see what the answers should be.

Remember that GSQL graph algorithms are simply GSQL queries. However, since we do

not know what vertices or edges you want to analyze, or how you want to receive output,

the algorithms are in a template format. You need to run a script to personalize your

algorithm and then to install it.

Make sure that the install.sh is owned by the tigergraph user.

1. Within the Algorithms folder is a script install.sh. When you run the script, it will first

ask you which graph schema you wish to work on. (The TigerGraph platform supports

multiple concurrent graphs.)

2. It then asks you to choose from a menu of available algorithms.

3. After knowing your graph schema and your algorithm, the installer will ask you some

questions for that particular algorithm:

a. the installer will guide you in selecting appropriate vertex types and edges types.

Note this does not have to be all the vertex or edge types in your graph. For

example, you may have a social graph with three categories of persons and five

types of relationships. You might decide to compute PageRank using Member and

Guest vertices and Recommended edges.

b. Some algorithms use edge weights as input information (such as Shortest Path

where each edge has a weight meaning the "length" of that edge. The installer will

ask for the name of that edge attribute.

4. Single Node Mode or Distributed Mode? Queries which will analyze the entire graph

(such PageRank and Community Detection) will run better in Distributed Mode, if you

have a cluster of machines.

Installing an Algorithm

5/13/25, 1:39 PM TigerGraph Documentation

8

5. It will then ask you what type of output you would like. It will proceed to create up to

three versions of your algorithm, based on the three ways of receiving the algorithm's

output:

a. Stream the output in JSON format, the default behavior for most GSQL queries.

b. Save the output value(s) in CSV format to a file. For some algorithms, this option

will add an input parameter to the query, to let the user specify how many total

values to output.

c. Store the results as vertex or edge attribute values. The attributes must already

exist in the graph schema, and the installer will ask you which attributes to use.

6. After creating queries for one algorithm, the installer will loop back to let you choose

another algorithm (returning to step 2 above).

7. If you choose to exit, the installer makes a last request: Do you want to install your

queries? Installation is when the code is compiled and bound into the query engine. It

takes a few minutes, so it is best to create all your personalized queries at once and

then install them as a group.

Example:

5/13/25, 1:39 PM TigerGraph Documentation

9

5/13/25, 1:39 PM TigerGraph Documentation

10

$ bash install.sh
*** GSQL Graph Algorithm Installer ***
Available graphs:
 - Graph social(Person:v, Friend:e, Also_Friend:e, Coworker:e)
Graph name? social

Please enter the number of the algorithm to install:
1) EXIT
2) Closeness Centrality
3) Connected Components
4) Label Propagation
5) Community detection: Louvain
6) PageRank
7) Shortest Path, Single-Source, Any Weight
8) Triangle Counting(minimal memory)
9) Triangle Counting(fast, more memory)
#? 6
 pageRank() works on directed edges

Available vertex and edge types:
 - VERTEX Person(PRIMARY_ID id STRING, name STRING, score FLOAT, tag STRI
 - DIRECTED EDGE Friend(FROM Person, TO Person, weight FLOAT, tag STRING)
 - DIRECTED EDGE Also_Friend(FROM Person, TO Person, weight FLOAT, tag ST
 - UNDIRECTED EDGE Coworker(FROM Person, TO Person, weight FLOAT, tag STR

Please enter the vertex type(s) and edge type(s) for running PageRank.
 Use commas to separate multiple types [ex: type1, type2]
 Leaving this blank will select all available types
 Similarity algorithms only take single vertex type

Vertex types: Person
Edge types: Friend
The query pageRank is dropped.
The query pageRank_file is dropped.
The query pageRank_attr is dropped.

Please choose query mode:
1) Single Node Mode
2) Distributed Mode
#? 1

Please choose a way to show result:
1) Show JSON result 3) Save to Attribute/Insert Edge
2) Write to File 4) All of the above
#? 4

gsql -g social ./templates/pageRank.gsql
The query pageRank has been added!

5/13/25, 1:39 PM TigerGraph Documentation

11

After the algorithms are installed, you will see them listed among the rest of your GSQL

queries.

gsql -g social ./templates/pageRank_file.gsql
The query pageRank_file has been added!

If your graph schema has appropriate vertex or edge attributes,
 you can update the graph with your results.
Do you want to update the graph [yn]? y
Vertex attribute to store FLOAT result (e.g. pageRank): score
gsql -g social ./templates/pageRank_attr.gsql
The query pageRank_attr has been added!
Created the following algorithms:
 - pageRank(float maxChange, int maxIter, float damping, bool display, in
 - pageRank_attr(float maxChange, int maxIter, float damping, bool displa
 - pageRank_file(float maxChange, int maxIter, float damping, bool displa

Please enter the number of the algorithm to install:
1) EXIT
2) Closeness Centrality
3) Connected Components
4) Label Propagation
5) Community detection: Louvain
6) PageRank
7) Shortest Path, Single-Source, Any Weight
8) Triangle Counting(minimal memory)
9) Triangle Counting(fast, more memory)
#? 1
Exiting
Algorithm files have been created. Do want to install them now [yn]? y
Start installing queries, about 1 minute ...
c
pageRank query: curl -X GET 'http://127.0.0.1:9000/query/social/pageRank?m
pageRank_file query: curl -X GET 'http://127.0.0.1:9000/query/social/pageR
pageRank_attr query: curl -X GET 'http://127.0.0.1:9000/query/social/pageR

[===
$

5/13/25, 1:39 PM TigerGraph Documentation

12

We will soon update the library so that most of schema choices can be made when running

the algorithm, rather than when installing the algorithm.

Running an algorithm is the same as running a GSQL query. For example, if you selected

the JSON option for pageRank, you could run it from GSQL as below:

Installing a query also creates a REST endpoint. The same query could be run thus:

GSQL lets you run queries from within other queries. This means you can use a library

algorithm as a building block for more complex analytics.

GSQL > ls
...
Queries:
 - cc_subquery(vertex v, int numVert, int maxHops) (installed v2)
 - closeness_cent(bool display, int outputLimit) (installed v2)
 - closeness_cent_attr(bool display) (installed v2)
 - closeness_cent_file(bool display, file f) (installed v2)
 - conn_comp() (installed v2)
 - conn_comp_attr() (installed v2)
 - conn_comp_file(file f) (installed v2)
 - label_prop(int maxIter) (installed v2)
 - label_prop_attr(int maxIter) (installed v2)
 - label_prop_file(int maxIter, file f) (installed v2)
 - louvain() (installed v2)
 - louvain_attr() (installed v2)
 - louvain_file(file f) (installed v2)
 - pageRank(float maxChange, int maxIter, float damping, bool display, in
 - pageRank_attr(float maxChange, int maxIter, float damping, bool displa
 - pageRank_file(float maxChange, int maxIter, float damping, bool displa
 - tri_count() (installed v2)
 - tri_count_fast() (installed v2)

GSQL > RUN QUERY pageRank(0.001, 25, 0.85, 10)

curl -X GET 'http://127.0.0.1:9000/query/alg_graph/pageRank?maxChange=0.00

Running an Algorithm

5/13/25, 1:39 PM TigerGraph Documentation

13

The following algorithms are currently available. The algorithms are grouped into five

classes:

• Path

• Centrality

• Community

• Similarity

• Classification (NEW)

Moreover, each algorithm may or may be be currently available for a graph with Undirected

Edges, Directed Edges, and Weighted Edges.

• Coming soon means that TigerGraph plans to release this variant of the algorithm

soon.

• n/a means that this variant of the algorithm is typically not used

Algorithm Class
Undirected

Edges

Directed

Edges

Weighted

Edges

Single-Source

Shortest Path
Path Yes Yes Yes

All Pairs

Shortest Path
Path Yes Yes Yes

Minimum

Spanning Tree
Path Yes n/a Yes

Cycle Detection Path no Yes n/a

PageRank Centrality n/a Yes Coming soon

Personalized

PageRank
Centrality n/a Yes Coming soon

Closeness

Centrality
Centrality Yes n/a Coming soon

Library Overview

5/13/25, 1:39 PM TigerGraph Documentation

14

Computational Complexity is a formal mathematical term, referring to how an algorithm's

time requirements scale according to the size of the data or other key parameters. For

graphs, there are two key data parameters:

• V (or sometimes n), the number of vertices

Betweenness

Centrality
Centrality Coming soon n/a Coming soon

Weakly

Connected

Components

Community Yes n/a n/a

Strongly

Connected

Components

Community n/a Coming soon n/a

Label

Propagation
Community Yes n/a n/a

Louvain

Modularity
Community Yes n/a n/a

Triangle

Counting
Community Yes n/a n/a

Cosine

Similarity of

Neighborhoods

(single-source

and all-pairs)

Similarity Yes Yes Yes

Jaccard

Similarity of

Neighborhoods

(single-source

and all-pairs)

Similarity Yes Yes No

K-Nearest

Neighbors (with

cosine similarity

for "nearness")

Classification Yes Yes Yes

Computational Complexity

5/13/25, 1:39 PM TigerGraph Documentation

15

• E (or sometimes m), the number of edges

The notation O(V^2) (read "big O V squared") means that when V is large, the

computational time is proportional to V^2.

These algorithms help find the shortest path or evaluate the availability and quality of

routes.

The algorithm we are discussing here finds an unweighted shortest path from one source

vertex to each possible destination vertex in the graph. That is, it finds n paths.

If you just want to know the shortest path between two particular vertices, S and T in a graph

with unweighted edges, we have described that query in detail in our tutorial document GSQL

Demo Examples .

If your graph has weighted edges, see the next algorithm.

If a graph has unweighted edges, then finding the shortest path from one vertex to another

is the same as finding the path with the fewest hops. Think of Six Degrees of Separation

and Friend of a Friend. Unweighted Shortest Path answers the question "How are you two

related?" The two entities do not have to be persons. Shortest Path is useful in a host of

applications, from estimating influences or knowledge transfer, to criminal investigation.

When the graph is unweighted, we can use a "greedy" approach to find the shortest path.

In computer science, a greedy algorithm makes intermediate choices based on the data

being considered at the moment, and then does not revisit those choices later on. In this

case, once the algorithm finds any path to a vertex T, it is certain that that is a shortest

path.

Path Algorithms

Single-Source Shortest Path, Unweighted

Description and Uses

5/13/25, 1:39 PM TigerGraph Documentation

https://doc.tigergraph.com/2.1.3/GSQL-Demo-Examples.html#GSQLDemoExamplesv2.1-3.Bi-DirectionalShortestPathSearchAlgorithm
https://doc.tigergraph.com/2.1.3/GSQL-Demo-Examples.html#GSQLDemoExamplesv2.1-3.Bi-DirectionalShortestPathSearchAlgorithm
https://doc.tigergraph.com/2.1.3/GSQL-Demo-Examples.html#GSQLDemoExamplesv2.1-3.Bi-DirectionalShortestPathSearchAlgorithm

16

In the below graph, we do not consider the weight on edge. Using vertex A as the source

vertex, the algorithm discovers that the shortest path from A to B is A-B, and the shortest

path from A to C is A-D-C, etc.

shortest_ss_no_wt(VERTEX v, BOOL display)
shortest_ss_no_wt_file(VERTEX v, BOOL display, STRING filepath)
shortest_ss_no_wt_attr(VERTEX v, BOOL display)

Characteristic Value

Result

Computes a shortest distance (INT) and

shortest path (STRING) from vertex v to each

other vertex T. The result is available in 3 forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as two vertex attribute values.

Input Parameters

• v: id of the source vertex

• display: If true, include the graph's edges in

the JSON output, so that the full graph can

be displayed.

• filepath (for file output only): the path to

the output file

Result Size V = number of vertices

Computational Complexity O(E), E = number of edges

Graph Types
Directed or Undirected edges, Unweighted

edges

Specifications

Example

5/13/25, 1:39 PM TigerGraph Documentation

17

generic graph with shortest_pos5 choice, not considering weight

5/13/25, 1:39 PM TigerGraph Documentation

18

5/13/25, 1:39 PM TigerGraph Documentation

19

[
 {
 "ResultSet": [
 {
 "v_id": "B",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 1,
 "ResultSet.@path": [
 "A",
 "B"
]
 }
 },
 {
 "v_id": "A",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 0,
 "ResultSet.@path": [
 "A"
]
 }
 },
 {
 "v_id": "C",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 2,
 "ResultSet.@path": [
 "A",
 "D",
 "C"
]
 }
 },
 {
 "v_id": "E",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 2,
 "ResultSet.@path": [
 "A",
 "D",
 "E"
]
 }
 },

5/13/25, 1:39 PM TigerGraph Documentation

20

Finding shortest paths in a graph with weighted edges is algorithmically harder than in an

unweighted graph because just because you find a path to a vertex T, you cannot be

certain that it is a shortest path. If edge weights are always positive, then you must keep

trying until you have considered every in-edge to T. If edge weights can be negative, then

it's even harder. You must consider all possible paths.

A classic application for weighted shortest path is finding the shortest travel route to get

from A to B. (Think of route planning "GPS" apps.) In general, any application where you

are looking for the cheapest route is a possible fit.

The shortest path algorithm can be optimized if we know all the weights are nonnegative.

If there can be negative weights, then sometimes a longer path will have a lower

cumulative weight. Therefore, we have two versions of this algorithm

 {
 "v_id": "D",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 1,
 "ResultSet.@path": [
 "A",
 "D"
]
 }
 }
]
 }
]

shortest_path_pos_wt(VERTEX v, BOOL display)
shortest_path_pos_wt_file(VERTEX v, BOOL display, STRING filepath)
shortest_path_pos_wt_attr(VERTEX v, BOOL display)

Single-Source Shortest Path, Weighted

Description and Uses

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

21

The shortest_path_neg_wt library query is an implementation of the Bellman-Ford algorithm.

If there is more than one path with the same total weight, the algorithm returns one of them.

The graph below has only positive edge weights. Using vertex A as the source vertex, the

algorithm discovers that the shortest weighted path from A to B is A-D-B, with distance 8.

The shortest weighted path from A to C is A-D-B-C with distance 9.

shortest_path_neg_wt(VERTEX v, BOOL display)
shortest_path_neg_wt_file(VERTEX v, BOOL display, STRING filepath)
shortest_path_neg_wt_attr(VERTEX v, BOOL display)

Characteristic Value

Result

Computes a shortest distance (INT) and

shortest path (STRING) from vertex v to each

other vertex T. The result is available in 3 forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as two vertex attribute values.

Input Parameters

• v: id of the source vertex

• display: If true, include the graph's edges in

the JSON output, so that the full graph can

be displayed.

• filepath (for file output only): the path to

the output file

Result Size V = number of vertices

Computational Complexity
O(V*E), V = number of vertices, E = number of

edges

Graph Types Directed or Undirected edges, Weighted edges

Example

5/13/25, 1:39 PM TigerGraph Documentation

22

generic graph with shortest_pos5 choice

5/13/25, 1:39 PM TigerGraph Documentation

23

5/13/25, 1:39 PM TigerGraph Documentation

24

[
 {
 "ResultSet": [
 {
 "v_id": "B",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 8,
 "ResultSet.@path": [
 "D",
 "B"
]
 }
 },
 {
 "v_id": "A",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 0,
 "ResultSet.@path": []
 }
 },
 {
 "v_id": "C",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 9,
 "ResultSet.@path": [
 "D",
 "B",
 "C"
]
 }
 },
 {
 "v_id": "E",
 "v_type": "Node",
 "attributes": {
 "ResultSet.@dis": 7,
 "ResultSet.@path": [
 "D",
 "E"
]
 }
 },
 {
 "v_id": "D",
 "v_type": "Node",

5/13/25, 1:39 PM TigerGraph Documentation

25

The graph below has both positive and negative edge weights. Using vertex A as the

source vertex, the algorithm discovers that the shortest weighted path from A to E is A-D-

C-B-E, with a cumulative score of 7 - 3 - 2 - 4 = -2.

The Single-Pair Shortest Path task seeks the shortest path between a source vertex S and

a target vertex T. If the edges are unweighted, then use the query in our tutorial document

 "attributes": {
 "ResultSet.@dis": 5,
 "ResultSet.@path": [
 "D"
]
 }
 }
]
 }
]

shortest_path_wt(A, -1, true, "json") on shortest_neg5 graph

Single-Pair Shortest Path

5/13/25, 1:39 PM TigerGraph Documentation

26

GSQL Demo Examples .

If the edges are weighted, then use the Single-Source Shortest Path algorithm. In the

worst case, it takes the same computational effort to find the shortest path for one pair as

to find the shortest paths for all pairs from the same source S. The reason is that you

cannot know whether you have found the shortest (least weight) path until you have

explored the full graph. If the weights are always positive, however, then a more efficient

algorithm is possible. You can stop searching when you have found paths that use each of

the in-edges to T.

The All-Pairs Shortest Path algorithm is costly for large graphs, because the computation

time is O(V^3) and the output size is O(V^2). Be cautious about running this on very large

graphs.

The All-Pairs Shortest Path (APSP) task seeks to find shortest paths between every pair of

vertices in the entire graph. In principle, this task can be handled by running the Single-

Source Shortest Path (SSSP) algorithm for each input vertex, e.g.,

This example highlights one of the strengths of GSQL: treating queries as stored

procedures which can be called from within other queries.

For large graphs (with millions of vertices or more), however, this is an enormous task.

While the massively parallel processing of the TigerGraph platform can speed up the

computation by 10x or 100x, consider what it takes just to store or report the results. If

there are 1 million vertices, then there are nearly 1 trillion output values.

CREATE QUERY all_pairs_shortest(INT maxDepth, BOOL display, STRING fileBas
{
 Start = {Node.*};
 Result = SELECT s FROM Start:s
 POST-ACCUM
 shortest_ss_any_wt_file(s, maxDepth, display, fileBase+s);
}

All-Pairs Shortest Path

5/13/25, 1:39 PM TigerGraph Documentation

https://doc.tigergraph.com/2.1.3/GSQL-Demo-Examples.html#GSQLDemoExamplesv2.1-3.Bi-DirectionalShortestPathSearchAlgorithm
https://doc.tigergraph.com/2.1.3/GSQL-Demo-Examples.html#GSQLDemoExamplesv2.1-3.Bi-DirectionalShortestPathSearchAlgorithm

27

There are more efficient methods than calling the single-source shortest path algorithm n

times, such as the Floyd-Warshall algorithm, which computes APSP in O(V^3) time.

Our recommendation:

• If you have a smaller graph (perhaps thousands or tens of thousands of vertices), the

APSP task may be tractable.

• If you have a large graph, avoid using APSP.

Given an undirected and connected graph, a minimum spanning tree is a set of edges

which can connect all the vertices in the graph with the minimal sum of edge weight. A

parallel version of the PRIM algorithm is implemented in the library:

1. Start with a set A = { an arbitrary vertex r }

2. For all vertices in A, find another vertex y in the graph not A and y is connected to a

vertex x in A such that the weight on the edge e(x,y) is the smallest among all such

edges from a vertex in A to a vertex not in A. Add y to A, and add the edge (x,y) to MST

3. Repeat 2 until A has all vertices in the graph.

mst (VERTEX source)
mst_file (VERTEX source, FILE f)
mst_attr (VERTEX source)

Characteristic Value

Result

Computes a MST. The result is available in 3

forms:

• streamed out in JSON format

• written to a file in tabular format, or

Minimum Spanning Tree (MST)

Description and Uses

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

28

Example

In social10 graph, we consider only the undirected Coworker edges.

This graph has 3 components. Minimum Spanning Tree finds a tree for one component, so

which component it will work on depends on what vertex we give as the starting point. If

• stored as an edge attribute value.

Input Parameters

• source: id of the source vertex

• filepath (for file output only): the path to

the output file

Result Size V - 1 = number of vertices - 1

Computational Complexity

Graph Types Undirected edges and connected

social10 graph with Coworker edges

5/13/25, 1:39 PM TigerGraph Documentation

29

we select Fiona, George, Howard, or Ivy as the start vertex, then it work on the 4-vertex

component on the left. You can start from any vertex in the component and get the same

or an equivalent MST result.

The figure below shows the result of mst(("Ivy", "Person")). Note that the value for the one

vertex is ("Ivy","Person"). In GSQL, this 2-tuple format which explicitly gives the vertex type

is used when the query is written to accept a vertex of any type.

File output:

mst(("Ivy","Person")) on social10 graph, with Coworker edges

From,To,Weight
Ivy,Fiona,6
Ivy,Howard,4
Ivy,George,4

5/13/25, 1:39 PM TigerGraph Documentation

30

The attribute version requires a boolean attribute on the edge, and it will assign the

attribute to "true" if that edge is selected in the MST:

The Cycle Detection problem seeks to find all the cycles (loops) in a graph. We apply the

usual restriction that the cycles must be "simple cycles", that is, they are paths that start

and end at the same vertex but otherwise never visit any vertex twice.

mst_attr(("Ivy","Person")) on social10 graph, with Coworker edges & edge attribute "flag"

Cycle Detection

Description and Uses

5/13/25, 1:39 PM TigerGraph Documentation

31

There are two versions of the task: for directed graphs and undirected graphs. The GSQL

algorithm library currently supports only directed cycle detection. The Rocha–Thatte

algorithm is an efficient distributed algorithm, which detects all the cycles in a directed

graph. The algorithm will self-terminate, but it is also possible to stop at k iterations, which

finds all the cycles having lengths up to k edges.

The basic idea of the algorithm is to (potentially) traverse every edge in parallel, again and

again, forming all possible paths. At each step, if a path forms a cycle, it records it and

stops extending it. More specifically:

Initialization:

For each vertex, record one path consisting of its own id. Mark the vertex as Active.

Iteration steps:

Fo each Active vertex v:

1. Send its list of paths to each of its out-neighbors.

2. Inspect each path P in the list of the paths received:

• If the first id in P is also id(v), a cycle has been found:

◦ Remove P from its list.

◦ If id(v) is the least id of any id in P , then add P to the Cycle List.

(The purpose is to count each cycle only once.)

• Else, if id(v) is somewhere else in the path, then remove P from the path list

(because this cycle must have been counted already).

• Else, append id(v) to the end of each of the remaining paths in its list.

The algorithm traverses all edges. A user could modify the GSQL algorithm so that it

traverse only edges of a certain type.

cycle_detection (INT depth)
cycle_detection_file (INT depth, FILE f)

Characteristic Value

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

https://en.wikipedia.org/wiki/Rocha%E2%80%93Thatte_cycle_detection_algorithm
https://en.wikipedia.org/wiki/Rocha%E2%80%93Thatte_cycle_detection_algorithm
https://en.wikipedia.org/wiki/Rocha%E2%80%93Thatte_cycle_detection_algorithm

32

Example

In the social10 graph, there are 5 cycles, all with the Fiona-George-Howard-Ivy cluster.

Result

Computes a list of vertex id lists, each of which

is a cycle. The result is available in 2 forms:

• streamed out in JSON format

• written to a file in tabular format

Input Parameters

• depth: the maximum cycle length to search

for = maximum number of iterations

• filepath (for file output only): the path to

the output file

Result Size

Number of cycles * average cycle length

Both of these measures are not known in

advance.

Computational Complexity
O(E *k), E = number of edges.

k = min(max. cycle length, depth paramteter)

Graph Types Directed

5/13/25, 1:39 PM TigerGraph Documentation

33

cycle_detection(10) on social10 graph

5/13/25, 1:39 PM TigerGraph Documentation

34

Centrality algorithms determine the importance of each vertex within a network. Typical

applications:

PageRank is designed for directed edges. The classic interpretation is to find the most

"important" web pages, based on hyperlink referrals, but it can be used for another

network where entities make positive referrals of one another.

Closeness Centrality and Betweenness Centrality both deal with the idea of "centrally

located."

[
 {
 "@@cycles": [
 [
 "Fiona",
 "Ivy"
],
 [
 "George",
 "Ivy"
],
 [
 "Fiona",
 "George",
 "Ivy"
],
 [
 "George",
 "Howard",
 "Ivy"
],
 [
 "Fiona",
 "George",
 "Howard",
 "Ivy"
]
]
 }
]

Centrality Algorithms

5/13/25, 1:39 PM TigerGraph Documentation

35

The PageRank algorithm measures the influence of each vertex on every other vertex.

PageRank influence is defined recursively: a vertex's influence is based on the influence of

the vertices which refer to it. A vertex's influence tends to increase if (1) it has more

referring vertices or if (2) its referring vertices have higher influence. The analogy to social

influence is clear.

A common way of interpreting PageRank value is through the Random Network Surfer

model. A vertex's pageRank score is proportional to the probability that a random

network surfer will be at that vertex at any given time. A vertex with a high pageRank

score is a vertex that is frequently visited, assuming that vertices are visited according to

the following Random Surfer scheme:

• Assume a person travels or surfs across a network's structure, moving from vertex to

vertex in a long series of rounds.

• The surfer can start anywhere. This start-anywhere property is part of the magic of

PageRank, meaning the score is a truly fundamental property of the graph structure

itself.

• Each round, the surfer randomly picks one of the outward connections from the

surfer's current location. The surfer repeats this random walk for a long time.

• But wait. The surfer doesn't always follow the network's connection structure. There is

a probability (1-damping, to be precise), that the surfer will ignore the structure and

will magically teleport to a random vertex.

pageRank(FLOAT maxChange, INT maxIter, FLOAT damping, BOOL display, INT ou
pageRank_file(FLOAT maxChange, INT maxIter, FLOAT damping, FILE f)
pageRank_attr(FLOAT maxChange, INT maxIter, FLOAT damping)

Characteristic Value

PageRank

Description and Uses

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

36

Result

Computes a PageRank value (FLOAT type) for

each vertex. The result is available in 3 forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• maxChange: PageRank will stop iterating

when the largest difference between any

vertex's current score and its previous

score ≤ maxChange. That is, the scores

have become very stable and are changing

by less that maxChange from one iteration

to the next.

Suggested value: 0.001 or less.

• maxIter: maximum number of iterations.

Suggested value: between 10 and 100.

• damping: fraction of score that is due to

the score of neighbors. The balance (1 -

damping) is a minimum baseline score

that every vertex receives.

Suggested value: 0.85.

• f (for file output only): the path to the

output file

• display (for JSON output only): If true,

include the graph's edges in the JSON

output, so that the full graph can be

displayed.

• outputLimit (for JSON output only):

maximum number of vertex values to

output. Values will be sorted with highest

value first.

Result Size V = number of vertices

Computational Complexity

O(E*k), E = number of edges, k = number of

iterations.

The number of iterations is data-dependent, but

the user can set a maximum. Parallel

processing reduces the time needed for

computation.

5/13/25, 1:39 PM TigerGraph Documentation

37

We ran pageRank on our test10 graph (using Friend edges) with the following parameter

values: damping=0.85, maxChange=0.001, and maxIter=25. We see that Ivy (center

bottom) has the highest pageRank score (1.12). This makes sense, since there are 3

neighboring persons who point to Ivy, more than for any other person. Eddie and Justin

have scores have exactly 1, because they do not have any out-edges. This is an artifact of

our particular version pageRank. Likewise, Alex has a score of 0.15, which is (1-damping),

because Alex has no in-edges.

pageRank_attr(0.001, 25, 0.85,"json",10) on social10 graph, with Friend edges

Example

5/13/25, 1:39 PM TigerGraph Documentation

38

In the original PageRank, the damping factor is the probability of the surfer continues

browsing at each step. The surfer may also stop browsing and start again from a random

vertex. In personalized PageRank, the surfer can only start browsing from a given set of

source vertices both at the beginning and after stopping.

pageRank_pers(Set<Vertex> source, FLOAT maxChange, INT maxIter, FLOAT damp
pageRank_pers_file(Set<Vertex> source, FLOAT maxChange, INT maxIter, FLOAT
pageRank_pers_attr(Set<Vertex> source, FLOAT maxChange, INT maxIter, FLOAT

Characteristic Value

Result

Computes a personalized PageRank value

(FLOAT type) for each vertex. The result is

available in 3 forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• source: a set of source vertices

• maxChange: personalized PageRank will

stop iterating when the largest difference

between any vertex's current score and its

previous score ≤ maxChange. That is, the

scores have become very stable and are

changing by less that maxChange from

one iteration to the next.

Suggested value: 0.001 or less.

• maxIter: maximum number of iterations.

Suggested value: between 10 and 100.

• damping: fraction of score that is due to

the score of neighbors. The balance (1 -

damping) is a minimum baseline score

Personalized PageRank

Description and Uses

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

39

We ran Personalized PageRank on our test10 graph using Friend edges with the following

parameter values: damping=0.85, maxChange=0.001, maxIter=25, and source="Fiona". In

this case, the random walker can only start or restart walking from Fiona. In the figure

below, we see that Fiona has the highest pageRank score in the result. Ivy and George

have the next highest scores, because they are direct out-neighbors of Ivy and there are

looping paths that lead back to them again. Half of the vertices have a score of 0, since

they can not be reached from Fiona.

that every vertex receives.

Suggested value: 0.85.

• f (for file output only): the path to the

output file

• outputLimit (for JSON output only):

maximum number of vertex values to

output. Values will be sorted with highest

value first.

Result Size V = number of vertices

Computational Complexity

O(E*k), E = number of edges, k = number of

iterations.

The number of iterations is data-dependent, but

the user can set a maximum. Parallel

processing reduces the time needed for

computation.

Graph Types Directed edges

Example

5/13/25, 1:39 PM TigerGraph Documentation

40

We all have an intuitive understanding when we say a home, an office, or a store is

"centrally located." Closeness Centrality provides a precise measure of how "centrally

located" is a vertex. The steps below show the steps for one vertex v.

pageRank_pers_attr([("Fiona","Person")],0.001,25,0.85) on social10 graph, with Friend edges

Description of Steps Mathematical Formulation

1. Compute the average distance from

vertex v to every other vertex:
d (v) =avg dist(v,u)/(n −∑u=v 1)

Closeness Centrality

5/13/25, 1:39 PM TigerGraph Documentation

41

These steps are repeated for every vertex in the graph.

Parameters

2. Invert the average distance, so we have

average closeness of v:
CC(v) = 1/d (v)avg

closeness_cent(BOOL display, INT maxOutput)
closeness_cent_file(BOOL display, STRING filepath)
closeness_cent_attr(BOOL display)

Characteristic Value

Result

Computes a Closeness Centrality value (FLOAT

type) for each vertex. The result is available in

3 forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Required Input Parameters

• display: If true, include the graph's edges in

the JSON output, so that the full graph can

be displayed.

filepath (for file output only): the path to

the output file

• maxOutput (for JSON output only):

maximum number of vertex values to

output. Values will be sorted with highest

value first.

Result Size V = number of vertices

Computational Complexity

O(E*k), E = number of edges, k = number of

iterations.

The number of iterations is data-dependent, but

the user can set a maximum. Parallel

processing reduces the time needed for

computation.

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

42

Closeness centrality can be measured for either directed edges (from v to others) or for

undirected edges. Directed graphs may seem less intuitive, however. because if the

distance from Alex to Bob is 1, it does not mean the distance from Bob to Alex is also 1.

For our example, we wanted to use the topology of the Likes graph, but to have undirected

edges. We emulated an undirected graph by using both Friend and Also_Friend (reverse

direction) edges.

Graph Types
Directed or Undirected edges, Unweighted

edges

closeness_cent("json",10) on social10 graph, with Friend and Also_Friend edges

Example

5/13/25, 1:39 PM TigerGraph Documentation

43

These algorithms evaluate how a group is clustered or partitioned, as well as its tendency

to strengthen or break apart.

A component is the maximal set of vertices, plus their connecting edges, which are

interconnected. That is, you can reach each vertex from each other vertex. In the example

figure below, there are three components.

This particular algorithm deals with undirected edges. If the same definition (each vertex

can reach each other vertex) is applied to directed edges, then the components are called

Strongly Connected Components. If you have directed edges but ignore the direction

(permitting traversal in either direction), then the algorithm finds Weakly Connected

Components.

conn_comp()
conn_comp_file(STRING filepath)
conn_comp_attr()

Characteristic Value

Result

Assigns a component id (INT) to each vertex,

such that members of the same component

have the same id value. The result is available

in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Community Algorithms

Connected Components

Description and Uses

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

44

It is easy to see in this small graph that the algorithm correctly groups the vertices:

• Alex, Bob and Justin all have Community ID = 2097152

• Chase, Damon, and Eddie all have Community ID = 5242880

• Fiona, George, Howard, and Ivy all have Community ID = 0

Our algorithm uses the TigerGraph engine's internal vertex ID numbers; they cannot be

predicted.

Input Parameters • filepath (for file output only): the path to

the output file

Result Size V = number of vertices

Computational Complexity
O(E*d), E = number of edges, d = max(diameter

of components)

Graph Types Undirected edges

Example

5/13/25, 1:39 PM TigerGraph Documentation

45

Label Propagation is a heuristic method for determining communities. The idea is simple:

If the plurality of your neighbors all bear the label X, then you should label yourself as also

a member of X. The algorithm begins with each vertex having its own unique label. Then

we iteratively update labels based on the neighbor influence described above. It is

important that they the order for updating the vertices be random. The algorithm is

conn_comp(true, "json") on social10 graph with Coworker edges

Label Propagation

Description and Uses

5/13/25, 1:39 PM TigerGraph Documentation

46

favored for its efficiency and simplicity, but it is not guaranteed to produce the same

results every time.

In a variant version, some vertices could initially be known to belong to the same

community,. If they are well-connected to one another, they are likely to preserve their

common membership and influence their neighbors,

This is the same graph that was used in the Connected Component example. The results

are different, though. The quartet of Fiona, George, Howard, and Ivy have been split into 2

label_prop(INT maxIter)
label_prop_file(INT maxIter, FILE filepath)
label_prop_attr(INT maxIter)

Characteristic Value

Result

Assigns a component id (INT) to each vertex,

such that members of the same component

have the same id value. The result is available

in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• maxIter: the maximum number of update

iterations.

• filepath (for file output only): the path to

the output file

Result Size V = number of vertices

Computational Complexity
O(E*k), E = number of edges, k = number of

iterations.

Graph Types Undirected edges

Specifications

Example

5/13/25, 1:39 PM TigerGraph Documentation

47

groups. See can see the symmetry:

• (George & Ivy) each connect to (Fiona & Howard) and to one another.

• (Fiona & Howard) each connect to (George & Ivy) but not to one another.

Label Propagation tries to find natural clusters and separations within connected

components. That is, it looks at the quality and pattern of connections. The Component

Component algorithm simply asks the Yes or No question: Are these two vertices

connected?

We set maxIter to 10, but the algorithm reached steady state after 3 iterations.

label_prop(10) on social10 graph with Coworker edges

5/13/25, 1:39 PM TigerGraph Documentation

48

This algorithm is deprecated because a much higher performance algorithm

(louvain_parallel) should be used instead of the original louvain algorithm.

The modularity score for a partitioned graph assesses the difference in density of links

within a partition vs. the density of links crossing from one partition to another. The

assumption is that if a partitioning is good (that is, dividing up the graph into communities

or clusters), then the within-density should be high and the inter-density should be low.

Also, we use changes in modularity to guide optimization of the partitioning. That is, we

begin with a candidate partitioning and measure its modularity. Then we make an

incremental change and confirm that the modularity has improved.

The most most efficient and empirically effective method for calculating modularity was

published by a team of researchers at the University of Louvain. The Louvain method uses

agglomeration and hierarchical optimization:

1. Optimize modularity for small local communities.

2. Treat each optimized local group as one unit, and repeat the modularity operation for

groups of these condensed units.

louvain()
louvain_file(FILE filepath)
louvain_attr()

Louvain Modularity for Community Detection (Deprecated)

Description and Uses

Specifications

Louvain Method with Parallelism and Refinement

5/13/25, 1:39 PM TigerGraph Documentation

49

The Louvain Method for community detection [1] partitions the vertices in a graph by

approximately maximizing the graph's modularity score. The modularity score for a

partitioned graph assesses the difference in density of links within a partition vs. the

density of links crossing from one partition to another. The assumption is that if a

partitioning is good (that is, dividing up the graph into communities or clusters), then the

within-density should be high and the inter-density should be low.

The most efficient and empirically effective method for calculating modularity was

published by a team of researchers at the University of Louvain. The Louvain method uses

agglomeration and hierarchical optimization:

1. Optimize modularity for small local communities.

2. Treat each optimized local group as one unit, and repeat the modularity operation for

groups of these condensed units.

The original Louvain Method contains two phases. The first phase incrementally

calculates the modularity change of moving a vertex into every other community, and

moves the vertex to the community with highest modularity change. The second phase

coarsens the graph by aggregating the vertices which are assigned in the same

community into one vertex. The first phase and second phase make up a pass. The

Louvain Method performs the passes iteratively. In other words, the algorithm assigns an

initial community label to every vertex, then performs the first phase, during which the

community labels are changed, until there is no modularity gain. Then it aggregates the

vertices with same labels into one vertex, and calculates the aggregated edge weights

between new vertices. For the coarsened graph, the algorithm conducts first phase again

to move the vertices into new communities. The algorithm continues until the modularity

is not increasing, or runs to the preset iteration limits.

However, phase one is sequential, and thus slow for large graphs. An improved Parallel

Louvain Method Louvain Method (PLM) calculates the best community to move to for

each vertex in parallel [2]. In Parallel Louvain Method(PLM), the positive modularity gain is

not guaranteed, and it may also swap two vertices to each other’s community. After

finishing the passes, there is an additional refinement phase, which is running the first

phase again on each vertex to do some small adjustments for the resulting communities.

[3].

Description and Uses

5/13/25, 1:39 PM TigerGraph Documentation

50

[1] Blondel, Vincent D., et al. "Fast unfolding of communities in large networks." Journal of

statistical mechanics: theory and experiment 2008.10 (2008): P10008.

[2] Staudt, Christian L., and Henning Meyerhenke. "Engineering parallel algorithms for

community detection in massive networks." IEEE Transactions on Parallel and Distributed

Systems 27.1 (2016): 171-184.

[3] Lu, Hao, Mahantesh Halappanavar, and Ananth Kalyanaraman. "Parallel heuristics for

scalable community detection." Parallel Computing 47 (2015): 19-37.

louvain_parallel(INT iter1 = 10, INT iter2 = 10, INT iter3 = 10, INT split
louvain_parallel_file(INT iter1 = 10, INT iter2 = 10, INT iter3 = 10, INT
louvain_parallel_attr(INT iter1 = 10, INT iter2 = 10, INT iter3 = 10, INT

Characteristic Value

Result

Assigns a component id (INT) to each vertex,

such that members of the same component

have the same id value. The result is available

in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• iter1: the max number of iterations for the

first phase. Default value is 10

• iter2: the max number of iterations for the

second phase. Default value is 10

• iter3: the max number of iterations for the

refinement phase. Default value is 10

• split: the number of splits in phase 1.

Increase the number to save memory, at

the expense of having longer running time.

Default value is 10.

• outputLevel: different detail level of

community distribution shown in the

result. Choice "0" only lists number of

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

51

If we use louvain_parallel for social10 graph, it will give the same result as the result of as

the connected components algorithm. The social26 graph is a connected graph which is

quite dense. The connected components algorithm groups all the vertices into the same

community, and label propagation does not consider the edge weight. On the contrary,

louvain_parallel detects 7 communities in total, and the cluster distribution is shown

below (csize is cluster size):

communities grouped by community size,

while choice "1" also lists the members

• fComm(for file output only): the path to the

output file for community labels

• fDist(for file output only): the path to the

output file for community distribution

Result Size V = number of vertices

Computational Complexity
O(V^2*L), V = number of vertices, L = (iter1 *

iter2 + iter3) = total number of iterations

Graph Types Undirected, unweighted edges

{
 "@@clusterDist": [
 {
 "csize": 2,
 "number": 1
 },
 {
 "csize": 3,
 "number": 2
 },
 {
 "csize": 4,
 "number": 2
 },
 {
 "csize": 5,
 "number": 2
 }
]

Example

5/13/25, 1:39 PM TigerGraph Documentation

52

Why triangles? Think of it in terms of a social network:

• If A knows B, and A also knows C, then we complete the triangle if B knows C. If this

situation is common, it indicates a community with a lot of interaction.

• The triangle is in fact the smallest multi-edge "complete subgraph," where every vertex

connects to every other vertex.

Triangle count (or density) is a measure of community and connectedness. In particular, it

addresses the question of transitive relationships: If A--> B and B-->C, then what is the

likelihood of A--> C?

Note that it is computing a single number: How many triangles are in this graph? It is not

finding communities within a graph.

It is not common to count triangles in directed graphs, though it is certainly possible. If

you choose to do so, you need to be very specific about the direction of interest: In a

directed graph, If A--> B and B--> C, then

• if A-->C, we have a "shortcut".

• if C-->A, then we have a feedback loop.

We present two different algorithms for counting triangles. The first, tri_count(), is the

classic edge-iterator algorithm. For each edge and its two endpoint vertices S and T, count

the overlap between S's neighbors and T's neighbors.

tri_count()
tri_count_file(FILE filepath)
tri_count_attr()

Triangle Counting

Description and Uses

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

53

One side effect of the simple edge-iterator algorithm is that it ends up considering each of

the three sides of a triangle. The count needs to be divided by 3, meaning we did 3 times

more work than a smaller algorithm would have.

tri_count_fast() is a smarter algorithm which does two passes over the edges. In the first

pass we mark which of the two endpoint vertices has fewer neighbors. In the second

pass, we count the overlap only between marked vertices. The result is that we eliminate

1/3 of the neighborhood matching, the slowest 1/3, but at the cost of some additional

memory.

In the social10 graph with Coworker edges, there are clearly 4 triangles.

tri_count_fast()
tri_count_fast_file(FILE filepath)
tri_count_fast_attr()

Characteristic Value

Result Returns the number of triangles in the graph.

Input Parameters None

Result Size 1 integer

Computational Complexity
O(V * E), V = number of vertices, E = number of

edges

Graph Types Undirected edges

Example

5/13/25, 1:39 PM TigerGraph Documentation

54

{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"num_triangles": 4}
]
}

Similarity Algorithms

5/13/25, 1:39 PM TigerGraph Documentation

55

There are many ways to measure the similarity between two vertices in a graph, but all of

them compare either (1) the features of the vertices themselves, (2) the relationships of

each of the two vertices, or (3) both. We use a graph called movie to demonstrate our

similarity algorithms.

To compare two vertices by cosine similarity, first selected properties of each vertex are

represented as a vector. For example, a property vector for a Person vertex could have the

elements (age, height, weight). Then the cosine function is applied to the two vectors.

The cosine similarity of two vectors A and B is defined as follows:

If A and B are identical, then cos(A, B) = 1. As expected for a cosine function, the value can

also be negative or zero. In fact, cosine similarity is closely related to the Pearson

correlation coefficient.

For this library function, the feature vector is the set of edge weights between the the two

vertices and their neighbors.

In the movie graph shown in the figure below, there are Person vertices and Movie

vertices. Every person may give rating to some of the movies. The rating score is stored

on the Likes edge using the weight attribute. For example, in the graph below, Alex give a

rating of 10 to the movie "Free Solo".

cos(A,B) = =
∣∣A∣∣ ⋅ ∣∣B∣∣
A ⋅ B

 A ∑i i
2 B ∑i i

2

 A B ∑i i i

Cosine Similarity of Neighborhoods, Single Source

Description and Uses

5/13/25, 1:39 PM TigerGraph Documentation

56

movie graph

cosine_nbor_ss(VERTEX source, INT topK)
cosine_nbor_ss_file(VERTEX source, INT topK, FILE filepath)
cosine_nbor_ss_attr(VERTEX source)

Characteristic Value

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

57

The output size is always K (if K <= N), so the algorithm may arbitrarily chose to output

one vertex over another, if there are tied similarity scores.

Given one person's name, this algorithm calculates the cosine similarity between this

person and each other person where there is at one movie they have both rated..

In the previous example, if the input is Alex, and topK is set to 5, then we calculate the

cosine similarity between him and two other persons, Jing and Kevin. The JSON output

shows the top k similar vertices and their similarity score in descending order. The output

limit is 5 persons, but we have only 2 qualified persons:

Result

the topK vertices in the graph which have the

highest similarity scores, along with their

scores.

The result is available in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• source: the source vertex

• topK: the number of vertices

• filepath (for file output only): the path to

the output file

Result Size topK

Computational Complexity O(D^2), D = outdegree of vertex v

Graph Types Undirected or directed edges, weighted edges

Example

5/13/25, 1:39 PM TigerGraph Documentation

58

The FILE version output is not necessarily in descending order. It looks like the following:

The ATTR version inserts an edge into the graph with the similarity score as an edge

attribute whenever the score is larger than zero. The result looks like this:

[
 {
 "@@result_topk": [
 {
 "vertex1": "Alex",
 "vertex2": "Jing",
 "score": 0.42173
 },
 {
 "vertex1": "Alex",
 "vertex2": "Kevin",
 "score": 0.14248
 }
]
 }
]

Vertex1,Vertex2,Similarity
Alex,Kevin,0.142484
Alex,Jing,0.421731

5/13/25, 1:39 PM TigerGraph Documentation

59

This algorithm computes the same similarity scores as the cosine similarity of

neighborhoods, single source algorithm (cosine_nbor_ss), except that it considers ALL

pairs of vertices in the graph (for the vertex and edge types selected by the user).

Naturally, this algorithm will take longer to run. For very large and very dense graphs, this

may not be a practical choice.

Cosine Similarity of Neighborhoods, All Pairs

Description and Uses

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

60

Using the movie graph, calculate the cosine similarity between all pairs and show the top 5

pairs: cosine_nbor_ap(5). This is the JSON result:

cosine_nbor_ap(INT topK)
cosine_nbor_ap_file(INT topK, FILE filepath)
cosine_nbor_ap_attr(INT topK)

Characteristic Value

Result

the topK vertex pairs in the graph which have

the highest similarity scores, along with their

scores.

The result is available in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• topK: the number of vertex pairs

• filepath (for file output only): the path to

the output file

Result Size topK

Computational Complexity
O(E^2 / V), V = number of vertices, E = number

of edges

Graph Types Undirected or directed edges, weighted edges

Example

5/13/25, 1:39 PM TigerGraph Documentation

61

The FILE output is similar to the output of cosine_nbor_file.

The ATTR version will create k edges:

[
 {
 "@@total_result": [
 {
 "vertex1": "Kat",
 "vertex2": "Neil",
 "score": 0.67509
 },
 {
 "vertex1": "Jing",
 "vertex2": "Neil",
 "score": 0.46377
 },
 {
 "vertex1": "Kevin",
 "vertex2": "Neil",
 "score": 0.42436
 },
 {
 "vertex1": "Jing",
 "vertex2": "Alex",
 "score": 0.42173
 },
 {
 "vertex1": "Kat",
 "vertex2": "Kevin",
 "score": 0.3526
 }
]
 }
]

5/13/25, 1:39 PM TigerGraph Documentation

62

The Jaccard index measures the relative overlap between two sets. To compare two

vertices by Jaccard similarity, first select a set of values for each vertex. For example, a

set of values for a Person could be the cities the Person has lived in. Then the Jaccard

index is computed for the two vectors.

The Jaccard index of two sets A and B is defined as follows:

Jaccard(A,B) =

∣A ∪ B∣
∣A ∩ B∣

Jaccard Similarity of Neighborhoods, Single Source

Description and Uses

5/13/25, 1:39 PM TigerGraph Documentation

63

The value ranges from 0 to 1. If A and B are identical, then Jaccard(A, B) = 1. If both A and

B are empty, we define the value to be 0.

In the current

The algorithm will not output more than K vertices, so the algorithm may arbitrarily chose

to output one vertex over another, if there are tied similarity scores.

jaccard_nbor_ss(VERTEX source, INT topK)
jaccard_nbor_ss_file(VERTEX source, INT topK, FILE filepath)
jaccard_nbor_ss_attr(VERTEX source, INT topK)

Characteristic Value

Result

the topK vertices in the graph which have the

highest similarity scores, along with their

scores.

The result is available in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• source: the source vertex

• topK: the number of vertices

• filepath (for file output only): the path to

the output file

Result Size topK

Computational Complexity O(D^2), D = outdegree of vertex v

Graph Types
Undirected or directed edges, unweighted

edges

Specifications

Example

5/13/25, 1:39 PM TigerGraph Documentation

64

Using the movie graph, we run jaccard_nbor_ss("Neil", 5):

If the source vertex (person) doesn't have any common neighbors (movies) with any other

vertex (person), such as Elena in our example, the result will be an empty list:

[
 {
 "@@result_topK": [
 {
 "vertex1": "Neil",
 "vertex2": "Kat",
 "score": 0.5
 },
 {
 "vertex1": "Neil",
 "vertex2": "Kevin",
 "score": 0.4
 },
 {
 "vertex1": "Neil",
 "vertex2": "Jing",
 "score": 0.2
 }
]
 }
]

[
 {
 "@@result_topK": []
 }
]

Jaccard Similarity of Neighborhoods, All Pairs

Description and Uses

5/13/25, 1:39 PM TigerGraph Documentation

65

This algorithm computes the same similarity scores as the Jaccard similarity of

neighborhoods, single source algorithm (jaccard_nbor_ss), except that it considers ALL

pairs of vertices in the graph (for the vertex and edge types selected by the user).

Naturally, this algorithm will take longer to run. For very large and very dense graphs, this

algorithm may not be a practical choice

The algorithm will not output more than K vertex pairs, so the algorithm may arbitrarily

chose to output one vertex pair over another, if there are tied similarity scores.

jaccard_nbor_ap(INT topK)
jaccard_nbor_ap_file(INT topK, FILE filepath)
jaccard_nbor_ap_attr(INT topK)

Characteristic Value

Result

the topK vertex pairs in the graph which have

the highest similarity scores, along with their

scores.

The result is available in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• topK: the number of vertices

• filepath (for file output only): the path to

the output file

Result Size topK

Computational Complexity
O(E^2 / V), V = number of vertices, E = number

of edges

Graph Types
Undirected or directed edges, unweighted

edges

Specifications

Example

5/13/25, 1:39 PM TigerGraph Documentation

66

For the movie graph, calculate the Jaccard similarity between all pairs and show the 5

most similar pairs: jaccard_nbor_ap(5). This is the JSON output :

Classification algorithms, or classifiers, are one of the simplest forms of machine

learning. They seek to prediction the classification of a given entity, based on the evidence

of previously classified entities. Classification is closely related to similarity and

clustering; all of them deal with finding and using the commonalities among entities.

[
 {
 "@@total_result": [
 {
 "vertex1": "Kat",
 "vertex2": "Neil",
 "score": 0.5
 },
 {
 "vertex1": "Kevin",
 "vertex2": "Neil",
 "score": 0.4
 },
 {
 "vertex1": "Jing",
 "vertex2": "Alex",
 "score": 0.25
 },
 {
 "vertex1": "Kat",
 "vertex2": "Kevin",
 "score": 0.25
 },
 {
 "vertex1": "Jing",
 "vertex2": "Neil",
 "score": 0.2
 }
]
 }
]

Classification Algorithms

5/13/25, 1:39 PM TigerGraph Documentation

67

The k-Nearest Neighbors (kNN) algorithm is one of the simplest classification algorithms.

It assumes that some or all the vertices in the graph have already been classified. The

classification is stored as an attribute called the label. The goal is to predict the label of a

given vertex, by seeing what are the labels of the nearest vertices.

Given a source vertex in the dataset and a positive integer k, the algorithm calculates the

distance between this vertex and all other vertices, and selects the k vertices which are

nearest. The prediction of the label of this node is the majority label among its k-nearest

neighbors.

The distance can be physical distance as well as the reciprocal of similarity score, in

which case "nearest" means "most similar". In our algorithm, the distance is the reciprocal

of cosine neighbor similarity. The similarity calculation used here is the same as the

calculation in Cosine Similarity of Neighborhoods, Single Source . Note that in this

algorithm, vertices with zero similarity to the source node are not considered in prediction.

For example, if there are 5 vertices with non-zero similarity to the source vertex, and 5

vertices with zero similarity, when we pick the top 7 neighbors, only the label of the 5

vertices with non-zero similarity score will be used in prediction.

kNN is often used for machine learning. In this case, we start with a training phase. Given

a training set of data where all the labels are known, we pick a value of k and run the

algorithm repeatedly using every vertex (or a random sample of them) as the source

vertex. We assess the accuracy of the predictions for that value of k, and then repeat for

different values of k. The goal is to learn the optimal value of k, for that dataset.

knn_cosine_ss(VERTEX source, INT topK)
knn_cosine_ss_file(VERTEX source, INT topK, FILE f)
knn_cosine_ss_attr(VERTEX source, INT topK)

k-Nearest Neighbors, Cosine Neighbor Similarity, single

vertex

Description and Uses

Specifications

5/13/25, 1:39 PM TigerGraph Documentation

https://app.gitbook.com/@tigergraph/s/document/~/edit/drafts/-LhrD9J_UpLvgqsxbKx9/v/2.4/graph-algorithm-library#cosine-similarity-of-neighborhoods-single-source
https://app.gitbook.com/@tigergraph/s/document/~/edit/drafts/-LhrD9J_UpLvgqsxbKx9/v/2.4/graph-algorithm-library#cosine-similarity-of-neighborhoods-single-source

68

The algorithm will not output more than K vertex pairs, so the algorithm may arbitrarily

chose to output one vertex pair over another, if there are tied similarity scores.

For the movie graph, we add the following labels to the Person vertices.

Characteristic Value

Result

The predicted label for the source vertex.

The result is available in three forms:

• streamed out in JSON format

• written to a file in tabular format, or

• stored as a vertex attribute value.

Input Parameters

• source: the vertex which you want to

predict the label

• topK: the number of vertices

• filepath (for file output only): the path to

the output file

Result Size 1

Computational Complexity O(D^2), D = outdegree of vertex v

Graph Types Undirected or directed edges, weighted edges

Example

5/13/25, 1:39 PM TigerGraph Documentation

69

We then run kNN, using Neil as the source person and k=3. This is the JSON output :

Movie graph with labels

[
 {
 "chosenLabel": "a"
 }
]

5/13/25, 1:39 PM TigerGraph Documentation

70

If we run cosine_nbor_ss, using Neil as the source person and k=3, we can see the

persons with the top 3 similarity score:

Kat has a label "b", Kevin has a label "a", and Jing does not have a label. Since "a" and "b" is

tied, the prediction for Neil is just one of the labels.

If Jing had label "b", then there would be 2 "b"s, so "b" would be the prediction.

If Jing had label "a", then there would be 2 "a"s, so "a" would be the prediction.

[
 {
 "neighbours": [
 {
 "v_id": "Kat",
 "v_type": "Person",
 "attributes": {
 "neighbours.@similarity": 0.67509
 }
 },
 {
 "v_id": "Jing",
 "v_type": "Person",
 "attributes": {
 "neighbours.@similarity": 0.46377
 }
 },
 {
 "v_id": "Kevin",
 "v_type": "Person",
 "attributes": {
 "neighbours.@similarity": 0.42436
 }
 }
]
 }
]

5/13/25, 1:39 PM TigerGraph Documentation

71

Release Notes, Change Log

For documentation of TigerGraph versions prior to 2.2, please see doc-

archive.tigergraph.com .

• Release Notes - TigerGraph 2.4

• Release Notes - TigerGraph 2.3

• Release Notes - TigerGraph 2.2

• Change Log

5/13/25, 1:39 PM TigerGraph Documentation

https://doc-archive.tigergraph.com/
https://doc-archive.tigergraph.com/
https://doc-archive.tigergraph.com/
https://docs.tigergraph.com/v/2.4/release-notes-change-log/release-notes-tigergraph-2.4
https://docs.tigergraph.com/v/2.4/release-notes-change-log/release-notes-tigergraph-2.4
https://docs.tigergraph.com/v/2.3/release-notes-change-log/release-notes-tigergraph-2.3
https://docs.tigergraph.com/v/2.3/release-notes-change-log/release-notes-tigergraph-2.3
https://docs.tigergraph.com/v/2.2/release-notes-change-log/release-notes-for-tigergraph-2.2
https://docs.tigergraph.com/v/2.2/release-notes-change-log/release-notes-for-tigergraph-2.2

72

Release Notes - TigerGraph 2.4

Release Date: 2019-06-25

• Release Notes-TigerGraph 2.3

• Release Notes-TigerGraph 2.2

• For v2.1 and older, contact TigerGraph Support.

For the running log of bug fixes, see the Change Log.

• ✅ Describe a multi-hop, variable length graph patterns in one line of GSQL

• ✅ More compact and expressive syntax, for faster application development

• 📄 Learn to use Pattern Matching: GSQL 102 Pattern Matching

• ✅ Run queries immediately, without waiting for installing/compiling

• ✅ Ideal for ad hoc exploration or when making frequent changes

• 📄 See INTERPRET QUERY in the GSQL Language Reference

Release Notes for Previous Versions:

Key New Features

Pattern Matching

Interpreted Mode for GSQL

System Integration

S3 Connector

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.tigergraph.com/v/2.3/release-notes-change-log/release-notes-tigergraph-2.3
https://docs.tigergraph.com/v/2.3/release-notes-change-log/release-notes-tigergraph-2.3
https://docs.tigergraph.com/v/2.2/release-notes-change-log/release-notes-for-tigergraph-2.2
https://docs.tigergraph.com/v/2.2/release-notes-change-log/release-notes-for-tigergraph-2.2

73

• ✅ Easily connect to AWS S3 storage to load into TigerGraph

• ✅ GSQL or GraphStudio

• ✅ Type 4 driver, converting JDBC calls directly into TigerGraph database commands.

• ✅ Phase 1: Supports REST endpoints of built-in and compiled queries, returns JSON.

• ✅ Part of the Open-Source TigerGraph Ecosystem

• ✅ New Loading control panel to Start/Pause/Resume/Stop loading jobs

• ✅ NEW location for code on Github:

https://github.com/tigergraph/ecosys/tree/master/graph_algorithms

• ✅ NEW k Nearest Neighbors (kNN) Classifier algorithm

• Documentation at GSQL Graph Algorithm Library

• ✅ Installation: option for advanced customization

• ✅ GSQL Loading: Additional functions for time data

• ✅ GSQL: Improved performance when performing many DELETEs

• ✅ GSQL: Nested queries can now return more accumulator types (Heap, Map,

GroupBy)

• ✅ GraphStudio: New Loading control panel to Start/Pause/Resume/Stop loading jobs

• ✅ GraphStudio: Display detailed loading statistics for a particular data file

• ✅ Built-in endpoints/queries: New functions Count(*) and Approx_count(*)

• ✅ REST endpoints: New vertex_must_exist parameter added to POST /graph

JDBC Driver

GraphStudio

Analytics and Solutions - Graph Algorithm Library

Additional Enhancements and Changes

5/13/25, 1:39 PM TigerGraph Documentation

https://github.com/tigergraph/ecosys/tree/master/etl/tg-jdbc-driver
https://github.com/tigergraph/ecosys/tree/master/etl/tg-jdbc-driver
https://github.com/tigergraph/ecosys/tree/master/graph_algorithms
https://github.com/tigergraph/ecosys/tree/master/graph_algorithms
https://github.com/tigergraph/ecosys/tree/master/graph_algorithms

74

• ✅ Backup and Restore: Improved security for operator's credentials

• ℹ Logs: GSQL log location has been moved, to be consistent with other logs

• ℹ Logs: Include user identify for each principal action

• ℹ REST endpoints: POST /ddl output is now formatted to be consistent with other

endpoints

• ℹ Data loading: Clarify/correct how quotation marks override the separator character

• ✅ All of the spec changes and new algorithms are described in the relevant

selections of the documentation at docs.tigergraph.com:

◦ GSQL 102 - Pattern Matching

◦ GSQL Graph Algorithm Library

◦ Data Loader User Guides

◦ GSQL Language Reference Part 1 - Data Definition and Loading

◦ GSQL Language Reference Part 2 - Querying

◦ RESTPP API User Guide

◦ GraphStudio UI Guide

◦ Knowledge Base and FAQs

Documentation Additions and Improvements

5/13/25, 1:39 PM TigerGraph Documentation

75

Release Notes-TigerGraph 2.3

Release Date: April 1, 2019

• Release Notes-TigerGraph 2.2

• For v2.1 and older, see doc-archive.tigergraph.com .

For the running log of bug fixes, see the Change Log.

• Load real-time streaming data using industry standard Apache Kafka

• Easy to configure: CREATE, GRANT... ready to use!

• Fault-tolerant and distributed

• For full details, see the Kafka Loader User Guide.

• ✅ More universal: vertex type & edge type can be specified at runtime.

• ✅ Similarity: New algorithms: Cosine and Jaccard

• ✅ Path: More variations of Shortest Path

• ✅ Community: More accurate implementation of Louvain modularity

• ✅ Code on Github:

https://github.com/tigergraph/ecosys/tree/master/graph_algorithms

• Documentation at GSQL Graph Algorithm Library

Release Notes for Previous Versions:

New Features

Kafka Loader

Analytics and Solutions - Graph Algorithm Library

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.tigergraph.com/v/2.2.0/release-notes-change-log/release-notes-for-tigergraph-2.2
https://docs.tigergraph.com/v/2.2.0/release-notes-change-log/release-notes-for-tigergraph-2.2
https://doc-archive.tigergraph.com/
https://doc-archive.tigergraph.com/
https://github.com/tigergraph/ecosys/tree/master/graph_algorithms
https://github.com/tigergraph/ecosys/tree/master/graph_algorithms
https://github.com/tigergraph/ecosys/tree/master/graph_algorithms

76

• ✅ Schema: Vertex Attribute as PRIMARY_KEY

◦ In classic GSQL, vertex Primary_ID is special, not consider an attribute. This

minimizes storage space.

◦ New option to treat the Primary_ID as a regular attribute.

• ✅ MultiGraph: Different graphs can use the same query names and job names.

• ✅ Loading: User can choose how to handle edges with missing source or target

vertex.

◦ Default: If either the source id or target id of a new edge refers to a nonexistent

text, then the system will create the necessary vertices with default values.

◦ New option: If the source or target vertex doesn't exist, don't create the edge.

• ✅ Catalog Display: Enhanced SHOW command

◦ Show vertices, edges, jobs, or queries.

◦ Accepts a regEx or glob pattern argument to show only selected items

See the relevant sections of the GraphStudio UI Guide

• Design Schema:

◦ ✅ User-defined tuples as attributes are supported (already supported in GSQL).

• Explore Graph:

◦ ✅ When displaying a directed edge, only show the forward edge and not its

companion reverse edge.

◦ ✅ Text size of vertex and edge label is adjustable.

• Write Queries:

◦ ✅ After a query is compiled, show its REST endpoint.

◦ ✅ See graph schema while writing GSQL queries.

◦ ✅ Better editing and installing experience for queries with dependencies.

GSQL Enhancements

GraphStudio Enhancements

5/13/25, 1:39 PM TigerGraph Documentation

77

• ⚠ Single Sign On: The security.sso.saml.sp.hostname parameter is replaced by

security.sso.saml.sp.url, which must be a full URL, not just a local path.

• ✅ If a query is issued while another query is being installed, the query will wait rather

than exit.

• ✅ CHANGE: PRIMARY_ID as INT or UINT is no longer deprecated. To support more

general use of attributes as PRIMARY_ID, the following data types may be used:

STRING, INT, UINT

• ℹ The keyword COMMENT is no longer reserved.

• ⚠ The built-in REST endpoint POST /ddl (Online Post) is deprecated. Its functionality

is already covered by the improved and unified LOADING JOB introduced in v2.0

• ✅ NEW: Kafka Loader User Guide

• ✅ All of the spec changes and new algorithms are described in the relevant

selections of the documentation at docs.tigergraph.com:

◦ GraphStudio UI Guide

◦ GSQL Graph Algorithm Library

◦ GSQL Language Reference Part 1 - Data Definition and Loading

◦ GSQL Language Reference Part 2 - Querying

◦ RESTPP API User Guide

◦ Single Sign-On

Other Spec Changes

Documentation Additions and Improvements

5/13/25, 1:39 PM TigerGraph Documentation

78

Change Log

Distributed Graph support, MultiGraph, and certain enterprise features are available in the

Enterprise Edition only. They do not pertain to the Developer Edition..

Release Date 2019-07-23

• To select pattern matching support in a query, the syntax is now

CREATE QUERY ... SYNTAX v2
instead of

CREATE QUERY ... SYNTAX("v2")

• GPE: Fix uint32 overflow

• Loader: Allow temp_table to be used without flatten function

• IDS: Disable empty UID

• ZMQ: Fix crash on ill-formed message

• Util: Fix Unix domain socket file not generated correctly in cron job

• Util: Extend data size for GoutputStreamBuffer beyond 4GB

• Connector: Fix first line is not ignored with has_header enabled

• Connector: Fix failures on retrieving connector status

• GSQL: Fix syntax version setting inconsistency issues

• GSQL: Fix schema change with USING primary_id_as_attribute

• GSQL: Fix JSON output format of requesttoken API

• Admin Portal: Display correct counts of physical vertices and edges on each machine

TigerGraph 2.4.1

Changes

Fixed

5/13/25, 1:39 PM TigerGraph Documentation

79

Release Date 2019-06-25

• GSQL: The built-in count() function gives the correct value in all cases.

• GPE: startup hang

• GSQL server start/stop command not working

• LDAP config truncated by space

• GSE: boolean values are not displayed correctly

• Security issue CVE-2013-7459 caused by unused python crypto library

• IUM status is displayed incorrectly in some cases;

Release Date 2019-04-01

• GSQL: The built-in count() function may give the incorrect value for clustered systems

after some vertices have been deleted.

• GraphStudio: Send query pre-install dependency analysis result through WebSocket

• GraphStudio: filter out improper attributes in when building filter expressions

• GPE: fix wrong enumerator id issue

• GPE: avoid using /tmp

TigerGraph 2.4.0

Fixed

TigerGraph 2.3.2

Issues

Fixed

5/13/25, 1:39 PM TigerGraph Documentation

80

• GPE: handle exceptions for LIKE <expr>

• GPE: Fix crash due to writing wrong size of STRING_LIST

• GPE: Fix global schema change error which added local vertex twice

• GSE (Developer Edition): Keep one copy of segment

Release Date 2019-02-19

See Release Notes-TigerGraph 2.3

• GSQL: The built-in count() function may give the incorrect value for clustered systems

after some vertices have been deleted.

• Install: The IP list fetched by the installer could be incomplete.

• Loading: Speed up batch-delta loading.

• GraphStudio: Disable Install Query button for queryreader users.

• GraphStudio: Re-initialize the database after import.

• GraphStudio: Could not drop query with non-default username/password.

• AdminPortal: Queries-Per-Second display didn't work if RESTPP authorization was

enabled.

• Schema change: Improve schema change stability by reducing schema change history

and increasing gRPC max message limit.

• GPE: Improve query HA stability.

• GPE: Fix crash under certain conditions.

TigerGraph 2.3.1

New Features

Issues

Fixed

5/13/25, 1:39 PM TigerGraph Documentation

81

• Core: Memory leak due to yamlcpp.

• Core: compatibility issue between libc and ssh utility.

• IUM: Fix exceptions due to legacy config entries.

Release Date: 2018-12-13

• Distributed System: Fix possible deadlock and race conditions

• GSE Storage Engine: Fix disk seek overflow

• RESTPP: Optimize the memory consumption when system is idle

• RESTPP: Optimize config reload time

• GSQL: Fix query installation error with option -optimize

• GSQL: Fix a code generation bug related to static variable

• GSQL: Fix a compilation error when a statement is in nested if statement

• GraphStudio: Security update for npm-run-all

• GraphStudio: Change Help button to point to new docs.tigergraph.com site

• Gadmin: Fix gadmin/ts3 restart and status error after changing port of TS3

Release Date: 2018-11-30

• GraphStudio: Fix schema change bug (Note: In 2.2, GraphStudio now does not drop all

data when making a schema change.)

• GraphStudio: Fix display issue in Graph Explore when switch to a new graph

TigerGraph 2.2.4

Fixed

TigerGraph 2.2.3

Fixed

5/13/25, 1:39 PM TigerGraph Documentation

82

• GraphStudio: Improve password security

• GraphStudio: Modify URL to AdminPortal for better universal support

• IUM: Fix kafka-loader configuration after cluster expansion

• IUM: Resolve python module name conflict

• IUM: Fix ssh_port is always 1 under bash interactive mode

• GSE Storage Engine: Reduce memory consumption

• RESTPP: Improve logging messages

Release Date: 2018-11-05

See Release Notes-TigerGraph 2.2

• GraphStudio: When both a query draft and an installed query exist, Export Solution will

keep the installed query code instead of the query draft

• Admin Portal: Number of nodes in the cluster is reported as 0 when no graph yet

exists

Release Date: 2018-11-05

• GBAR Backup fails if HA is enabled

TigerGraph 2.2

New Features

Fixed

TigerGraph 2.1.8

Issues

5/13/25, 1:39 PM TigerGraph Documentation

83

• GSE status shows unknown with HA enabled

• TS3 fails to collect QPS when RESTPP Authentication is enabled (Admin Portal QPS

monitor will be unavailable in this case).

• GraphStudio: When both a query draft and an installed query exist, Export Solution will

keep the installed query code instead of the query draft.

• Admin Portal: Number of cluster nodes is reported as 0 when no graph exists.

• GSQL server error if schema is too large

• In a cluster, not all servers may be aware of deleted vertices.

• PAM limit set-up issue in installer

• In MultiGraph, a local (FROM *, TO *) local edge has global side effects.

• RESTPP's default API version is not set after installation

• An engine bug which occasionally causes crash

• SSH port configuration in installer.

• Installation script checks that the machine meets the minimum RAM (8GB) and CPU

(2-core) requirements.

• For Ubuntu 16.04/18.04, support logon with systemd service.

Release Date: 2018-08-20

• GBAR backup fails if HA is enabled.

Fixed

Added

TigerGraph 2.1.7

Issues

5/13/25, 1:39 PM TigerGraph Documentation

84

• TS3 fails to collect QPS when RESTPP Authentication is enabled (Admin Portal QPS

monitor will be unavailable in this case).

• GraphStudio: When both a query draft and an installed query exist, Export Solution will

keep the installed query code instead of the query draft.

• Admin Portal: Number of cluster nodes is reported as 0 when no graph exists.

• Cluster configuration with HA enabled is wrong if the number of nodes is odd (3, 5, 7,

9...).

• GraphStudio and GSQL inconsistent checking for some keywords

• GBAR backup and restore fail if special character is in tag name

Release Date: 2018-08-15

• Cluster configuration with HA enabled is wrong if the number of nodes is odd (3, 5, 7,

9...).

• GraphStudio: When both a query draft and an installed query exist, Export Solution will

keep the installed query code instead of the query draft.

• TS3 fails to collect QPS when RESTPP Authentication is enabled (Admin Portal QPS

monitor will be unavailable in this case).

• Admin Portal: Number of cluster nodes is reported as 0 when no graph exists.

• GSQL null pointer exception during schema change if a directed edge is dropped but

its partner reverse edge is kept.

• Some complex attribute types cannot be correctly posted via /graph endpoint.

Fixed

TigerGraph 2.1.6

Issues

Fixed

5/13/25, 1:39 PM TigerGraph Documentation

85

• In some cases, tuple on reverse edge crashes GPE.

• GraphStudio throws an authentication error if RESTPP authentication is enabled.

• License level control of MultiGraph functionality.

Release Date: 2018-07-24

• GSQL null pointer exception during schema change if a directed edge is dropped but

its partner reverse edge is kept.

• Some complex attribute types cannot be correctly posted via /graph endpoint.

• In some cases, tuple on reverse edge crashes GPE.

• GraphStudio Export package is occasionally incomplete.

• GSE status is always "not ready" if schema is too large.

• Cannot modify RESTPP port configuration.

• IUM error in a cluster when not running on node m1

Added

Tigergraph 2.1.5

Known Issues

Fixed

5/13/25, 1:39 PM TigerGraph Documentation

86

Introduction and Overview

5/13/25, 1:39 PM TigerGraph Documentation

87

GET STARTED with TigerGraph

Welcome to the TigerGraph™ Platform - the first real-time, Native Parallel Graph data

analytics platform. We have a quick Overview and Glossary to help you understand the

TigerGraph environment and its GraphStudio UI.

1. CHECK Hardware and Software Requirements

2. DOWNLOAD the TigerGraph platform: www.tigergraph.com/download

3. INSTALL the Platform

a. For simple single-server installation:

Assuming your downloaded file is called <your_tigergraph_package>:

b. For additional options, see TigerGraph Platform Installation Guide

4. Enterprise Edition: Consider other System Administration issues, such as Security.

Also, if you have a GraphStudio license, activate GraphStudio.

• BUILD your first graph application and start to learn the GSQL language with GSQL

101 .

• GET ANSWERS to basic questions from the Knowledge Base and FAQs .

tar xzf <your_tigergraph_package>.tar.gz
cd tigergraph*/

to install enterprise edition
sudo ./install.sh -s

to install developer edition
sudo ./install.sh

Quick Start Guide for New Users

Installation Checklist

You’re ready to go!

5/13/25, 1:39 PM TigerGraph Documentation

https://www.tigergraph.com/download
https://www.tigergraph.com/download

88

• DISCUSS and share with your fellow TigerGraph users:

https://groups.google.com/a/opengsql.org/forum/#!forum/gsql-users

• LEARN more GSQL through additional use cases: GSQL Demo Examples .

◦ Demo scripts are located in <your_install_folder>/document/examples

◦ Sample use cases, used in our Test Drive demo systems, are located in

<your_install_folder>/document/examples/test_drive

• Do you want an architectural overview? TigerGraph Platform Overview

• The new Admin Portal dashboard lets you see how your system is running.

• The full documentation is at docs.tigergraph.com .

Our GraphStudio UI lets beginners and pros alike set up and perform analytics with a

TigerGraph database, all from a graphical user interface. The only code you'll need to write

is for queries themselves; everything else is managed graphically.

• Schema Designer - Describe your graph data model.

• Loading Builder - Select your input files, then drag-and-drop to link input data to vertex

and edge fields.

• Graph Explorer - display and explore your graph data, in an intuitive and visual way.

• Query Editor - view, edit, and run queries. Display the results graphically.

Note: GraphStudio is included in your Developer Edition but is licensed separately.

If you have any questions or suggestions, please contact us at tigergraph.freshdesk.com

GraphStudio

5/13/25, 1:39 PM TigerGraph Documentation

https://groups.google.com/a/opengsql.org/forum/#!forum/gsql-users
https://groups.google.com/a/opengsql.org/forum/#!forum/gsql-users
https://tigergraph.freshdesk.com/
https://tigergraph.freshdesk.com/
https://tigergraph.freshdesk.com/

89

GSQL 101

Version 2.3. Copyright (c) 2019 TigerGraph. All Rights Reserved.

In this exercise, we will go through the 3-step process of writing GSQL-- define a schema,

load data, and write a query.

This tutorial is written so that you can follow along and perform the steps on your

TigerGraph system as your read.

Get Set

Define a Schema

Load Data

Run Built-in Queries

Develop Parameterized Queries

Review

5/13/25, 1:39 PM TigerGraph Documentation

90

Get Set

In this tutorial, we will show you how to create a graph schema, load data in your graph,

write simple parameterized queries, and run your queries. Before you start, you need to

have installed the TigerGraph system, verified that it is working, and cleared out any

previous data. It'll also help to become familiar with our graph terminology.

A graph is a collection of data entities and the connections between them. That is, it's a

network of data entities.

Many people call a data entity a node ; at TigerGraph we called it a vertex. The plural is

vertices. We call a connection an edge. Both vertices and edges can have properties or

attributes. The figure below is a visual representation of a graph containing 7 vertices

(shown as circles) and 7 edges (the lines).

Introduction

What is a Graph?

5/13/25, 1:39 PM TigerGraph Documentation

91

A graph schema is the model which describes the types of vertices (nodes) and edge

(connections) which can appear in your graph. The graph above has one type of vertex

(person) and one type of edge (friendship).

A schema diagram looks like a small graph, except each node represents one type of

vertex, and each link represents one type of edge.

The friendship loop shows that a friendship is between a person and another person.

Friendship Social Graph

Friendship Social Graph Schema

5/13/25, 1:39 PM TigerGraph Documentation

92

For this tutorial, we will create and query the simple friendship social graph shown in

Figure Friendship Social Graph. The data for this graph consists of two files in csv

(comma-separated values) format. To follow along with this tutorial, please save these

two files, person.csv and friendship.csv, to your TigerGraph local disk. In our running

example, we use the /home/tigergraph/ folder to store the two csv files.

First, let's check that you can access GSQL.

1. Open a Linux shell.

2. Type gsql as below. A GSQL shell prompt should appear as below.

name,gender,age,state
Tom,male,40,ca
Dan,male,34,ny
Jenny,female,25,tx
Kevin,male,28,az
Amily,female,22,ca
Nancy,female,20,ky
Jack,male,26,fl

person1,person2,date
Tom,Dan,2017-06-03
Tom,Jenny,2015-01-01
Dan,Jenny,2016-08-03
Jenny,Amily,2015-06-08
Dan,Nancy,2016-01-03
Nancy,Jack,2017-03-02
Dan,Kevin,2015-12-30

$ gsql
GSQL >

Data Set

Prepare Your TigerGraph Environment

person.csv

friendship.csv

Linux Shell

5/13/25, 1:39 PM TigerGraph Documentation

93

3. If the GSQL shell does not launch, try resetting the system with "gadmin start". If you

need further help, please see the TigerGraph Knowledge Base and FAQs .

If this is your first time using GSQL, the TigerGraph data store is probably empty. However,

if you or someone else has already been working on the system, there may already be a

database. You can check by listing out the database catalog with the "ls" command. This

is what should look like if it is empty:

If the data catalog is not empty, you will need to empty it to start this tutorial. We'll assume

you have your coworkers' permission. Use the command DROP ALL to delete all the

database data, its schema, and all related definitions. This command takes about a

minute to run.

Restarting TigerGraph

If you need to restart TigerGraph for any reason, use the following command sequence:

GSQL > ls
---- Global vertices, edges, and all graphs
Vertex Types:
Edge Types:

Graphs:
Jobs:

Json API version: v2

GSQL > drop all

Dropping all, about 1 minute ...
Abort all active loading jobs
[ABORT_SUCCESS] No active Loading Job to abort.

Shutdown restpp gse gpe ...
Graph store /usr/local/tigergraph/gstore/0/ has been cleared!
Everything is dropped.

GSQL shell - an empty database catalog

GSQL shell - DROP ALL

Linux Shell - Restarting TigerGraph services

5/13/25, 1:39 PM TigerGraph Documentation

94

Running GSQL commands from Linux

You can also run GSQL commands from a Linux shell. To run a single command, just use

"gsql" followed by the command line enclosed in single quotes. (The quotes aren't necessary

if there is no parsing ambiguity; it's safer to just use them.) For example,

You can also execute a series of commands which you have stored in a file, by simply

invoking "gsql" following by the name of the file.

When you are done, you can exit the GSQL shell with the command "quit" (without the

quotes).

Switch to the user account set up during installation
The default is user=tigergraph, password=tigergraph
$ su tigergraph
Password:tigergraph

Start all services
$ gadmin restart -fy

"-g graphname" is need for a given graph
gsql -g social 'ls'
gsql 'drop all'
gsql 'ls'

Linux shell - GSQL commands from a Linux shell

5/13/25, 1:39 PM TigerGraph Documentation

95

Define a Schema

For this tutorial, we will work mostly in the GSQL shell, in interactive mode. A few

commands will be from a Linux shell. The first step in creating a GSQL graph is to define

its schema. GSQL provides a set of DDL (Data Definition Language) commands, similar to

SQL DDL commands, to model vertex types, edge types and a graph.

Use CREATE VERTEX command to define a vertex type named person. Here, PRIMARY_ID

is required: each person must have a unique identifier. The rest is the optional list of

attributes which characterize each person vertex, in the format attribute_name

data_type, attribute_name data_type, ...

We show GSQL keywords in ALL CAPS to highlight them, but they are case-insensitive.

GSQL will confirm the creation of the vertex type.

You can create as many vertex types as you need.

CREATE VERTEX person (
 PRIMARY_ID name STRING,
 name STRING, age INT,
 gender STRING, state STRING
)

GSQL > CREATE VERTEX person (PRIMARY_ID name STRING, name STRING, age INT,
The vertex type person is created.
GSQL >

Introduction

Create a Vertex Type

GSQL command

GSQL shell

5/13/25, 1:39 PM TigerGraph Documentation

96

Next, use the CREATE ... EDGE command to create an edge type named friendship. The

keyword UNDIRECTED indicates this edge is a bidirectional edge, meaning that

information can flow starting from either vertex. If you'd rather have a unidirectional

connection where information flows only from the FROM vertex, use the DIRECTED

keyword in place of UNDIRECTED. Here, FROM and TO are required to specify which two

vertex types the edge type connects. An individual edge is specifying by giving the

primary_ids of its source (FROM) vertex and target (TO) vertex. These are followed by an

optional list of attributes, just as in the vertex definition.

GSQL will confirm the creation of the edge type.

You can create as many edge types as you need.

Next, use the CREATE GRAPH command to create a graph named social. Here, we just list

the vertex types and edge types that we want to include in this graph.

GSQL will confirm the creation of the first graph after several seconds, during which it

pushes the catalog information to all services, such as the GSE, GPE and RESTPP.

CREATE UNDIRECTED EDGE friendship (FROM person, TO person, connect_day DAT

GSQL > CREATE UNDIRECTED EDGE friendship (FROM person, TO person, connect_
The edge type friendship is created.
GSQL >

CREATE GRAPH social (person, friendship)

Create an Edge Type

Create a Graph

GSQL command

GSQL shell

GSQL command

5/13/25, 1:39 PM TigerGraph Documentation

97

At this point, we have created a person vertex type, a friendship edge type, and a social

graph that includes them. You've now built your first graph schema! Let's take a look

what's in the catalog by typing the ls command in the GSQL shell.

GSQL > CREATE GRAPH social (person, friendship)

Restarting gse gpe restpp ...

Finish restarting services in 16.554 seconds!
The graph social is created.

GSQL > ls
---- Global vertices, edges, and all graphs
Vertex Types:
 - VERTEX person(PRIMARY_ID name STRING, name STRING, age INT, gender STR
Edge Types:
 - UNDIRECTED EDGE friendship(FROM person, TO person, connect_day DATETIM

Graphs:
 - Graph social(person:v, friendship:e)
Jobs:

Json API version: v2

GSQL shell

GSQL shell

5/13/25, 1:39 PM TigerGraph Documentation

98

Load Data

After creating a graph schema, the next step is to load data into it. The task here is to

instruct the GSQL loader how to associate ("map") the fields in a set of data files to the

attributes in your vertex types and edge types of the graph schema we just defined.

You should have the two data files person.csv and friendship.csv on your local disk. It's

not necessary that they are in the same folder with you.

If you need to exit the GSQL shell for any reason, you can do so by typing "quit" without the

quotes. Type gsql to enter again.

The loading job below assumes that your data files are in the folder /home/tigergraph .

If they are elsewhere, then in the loading job script below replace

/home/tigergraph/person.csv and /home/tigergraph/friendship.csv with their

corresponding file path respectively. Assuming you're (back) in the GSQL shell, enter the

following set of commands.

Let's walk through the commands:

• USE GRAPH social :

Tells GSQL which graph you want to work with.

USE GRAPH social
BEGIN
CREATE LOADING JOB load_social FOR GRAPH social {
 DEFINE FILENAME file1="/home/tigergraph/person.csv";
 DEFINE FILENAME file2="/home/tigergraph/friendship.csv";

 LOAD file1 TO VERTEX person VALUES ($"name", $"name", $"age", $"gender"
 LOAD file2 TO EDGE friendship VALUES ($0, $1, $2) USING header="true",
}
END

Define a Loading Job

GSQL commands to define a loading job

5/13/25, 1:39 PM TigerGraph Documentation

99

• BEGIN ... END :

Indicates multiple-line mode. The GSQL shell will treat everything between these

markers as a single statement. These is only needed for interactive mode. If you run

GSQL statements that are stored in a command file, the command interpreter will

study your whole file, so it doesn't need the BEGIN and END hints.

• CREATE LOADING JOB :

One loading job can describe the mappings from multiple files to multiple graph

objects. Each file must be assigned to a filename variable. The field labels can be

either by name or by position. By-name labelling requires a header line in the source

file. By-position labelling uses integers to indicate source column position 0, 1,... In the

example above, the first LOAD statement refers to the source file columns by name,

whereas the second LOAD statement refers to the source file columns by position.

Note the following details:

◦ The column "name" in file1 gets mapped to two fields, both the PRIMARY_ID and

the "name" attribute of the person vertex.

◦ In file1, gender comes before age. In the person vertex, gender comes after age.

When loading, state your attributes in the order needed by the target object (in this

case, the person vertex).

◦ Each LOAD statement has a USING clause. Here it tells GSQL that both files

contain a header (whether we choose to use the names or not, GSQL still needs to

know whether to consider the first line as data or not). It also says the column

separator is comma. GSQL can handle any single-character separator, not just

commas.

When you run the CREATE LOADING JOB statement, GSQL checks for syntax errors and

checks that you have data files in the locations specified. If it detects no errors, it

compiles and saves your job.

GSQL shell

5/13/25, 1:39 PM TigerGraph Documentation

100

You can now run your loading job to load data into your graph:

The result is shown below.

GSQL > USE GRAPH social
Using graph 'social'
GSQL > BEGIN
GSQL > CREATE LOADING JOB load_social FOR GRAPH social {
GSQL > DEFINE FILENAME file1="/home/tigergraph/person.csv";
GSQL > DEFINE FILENAME file2="/home/tigergraph/friendship.csv";
GSQL >
GSQL > LOAD file1 TO VERTEX person VALUES ($"name", $"name", $"age", $"
GSQL > LOAD file2 TO EDGE friendship VALUES ($0, $1, $2) USING header="
GSQL > }
GSQL > END
The job load_social is created.

RUN LOADING JOB load_social

GSQL > run loading job load_social
[Tip: Use "CTRL + C" to stop displaying the loading status update, then us
[Tip: Manage loading jobs with "ABORT/RESUME LOADING JOB jobid"]
Starting the following job, i.e.
 JobName: load_social, jobid: social_m1.1528095850854
 Loading log: '/home/tigergraph/tigergraph/logs/restpp/restpp_loader_logs

Job "social_m1.1528095850854" loading status
[FINISHED] m1 (Finished: 2 / Total: 2)
 [LOADED]
 +---
 | FILENAME | LOADED LINES | AVG SPEED | DURA
 |/home/tigergraph/friendship.csv | 8 | 8 l/s | 1.
 | /home/tigergraph/person.csv | 8 | 7 l/s | 1.
 +---

Run a Loading Job

GSQL command

GSQL shell

5/13/25, 1:39 PM TigerGraph Documentation

101

Notice the location of the loading log file. The example assumes that you installed

TigerGraph in the default location, /home/tigergraph/ . In your installation folder is the

main product folder, tigergraph. Within the tigergraph folder are several subfolders, such

as logs, document, config, bin, and gstore. If you installed in a different location, say

/usr/local/ , then you would find the product folder at /usr/local/tigergraph .

5/13/25, 1:39 PM TigerGraph Documentation

102

Run Built-in Queries

You now have a graph with data! You can run some simple built-in queries to inspect the

data.

The following GSQL command reports the total number of person vertices. The

person.csv data file had 7 lines after the header.

Similarly, the following GSQL command reports the total number of friendship edges. The

friendship.csv file also had 7 lines after the header.

The results are illustrated below.

Counting Undirected Edges

SELECT count(*) FROM person

SELECT count(*) FROM person-(friendship)->person

GSQL > SELECT count(*) FROM person
[{
 "count": 7,
 "v_type": "person"
}]
GSQL > SELECT count(*) FROM person-(friendship)->person
[{
 "count": 7,
 "e_type": "friendship"
}]
GSQL >

Select Vertices

GSQL command

GSQL command

GSQL shell

5/13/25, 1:39 PM TigerGraph Documentation

103

As of TG 2.4, undirected edges are counted once per edge. Previously, they were counted

once per endpoint. E.g., the example above now returns 7 instead of 14.

If you want to see the details about a particular set of vertices, you can use "SELECT *"

and the WHERE clause to specify a predicate condition. Here are some statements to try:

The result is in JSON format as shown below.

SELECT * FROM person WHERE primary_id=="Tom"
SELECT name FROM person WHERE state=="ca"
SELECT name, age FROM person WHERE age > 30

GSQL command

GSQL shell

5/13/25, 1:39 PM TigerGraph Documentation

104

GSQL > SELECT * FROM person WHERE primary_id=="Tom"
[{
 "v_id": "Tom",
 "attributes": {
 "gender": "male",
 "name": "Tom",
 "state": "ca",
 "age": 40
 },
 "v_type": "person"
}]
GSQL > SELECT name FROM person WHERE state=="ca"
[
 {
 "v_id": "Amily",
 "attributes": {"name": "Amily"},
 "v_type": "person"
 },
 {
 "v_id": "Tom",
 "attributes": {"name": "Tom"},
 "v_type": "person"
 }
]
GSQL > SELECT name, age FROM person WHERE age > 30
[
 {
 "v_id": "Tom",
 "attributes": {
 "name": "Tom",
 "age": 40
 },
 "v_type": "person"
 },
 {
 "v_id": "Dan",
 "attributes": {
 "name": "Dan",
 "age": 34
 },
 "v_type": "person"
 }
]

Select Edges

5/13/25, 1:39 PM TigerGraph Documentation

105

In similar fashion, we can see details about edges. To describe an edge, you name the

types of vertices and edges in the three parts, with some added punctuation to represent

the traversal direction:

Note that the arrow -> is always used, whether it's an undirected or directed edge. That is

because we are describing the direction of the query's traversal (search) through the

graph, not the direction of the edge itself.

We can use the from_id predicate in the WHERE clause to select all friendship edges

starting from the vertex identified by the "from_id". The keyword ANY to indicate that any

edge type or any target vertex type is allowed. The following two queries have the same

result

Restrictions on built-in edge select queries

To prevent queries which might return an excessive number of output items, built-in edge

queries have the following restrictions:

1. The source vertex type must be specified.

2. The from_id condition must be specified.

There is no such restriction for user-defined queries.

The result is shown below.

source_type -(edge_type)-> target_type

SELECT * FROM person-(friendship)->person WHERE from_id =="Tom"
SELECT * FROM person-(ANY)->ANY WHERE from_id =="Tom"

GSQL syntax

GSQL command

GSQL

5/13/25, 1:39 PM TigerGraph Documentation

106

Another way to check the graph's size is using one of the options of the administrator tool,

gadmin . From a Linux shell, enter the command

gadmin status graph -v

GSQL > SELECT * FROM person-(friendship)->person WHERE from_id =="Tom"
[
 {
 "from_type": "person",
 "to_type": "person",
 "directed": false,
 "from_id": "Tom",
 "to_id": "Dan",
 "attributes": {"connect_day": "2017-06-03 00:00:00"},
 "e_type": "friendship"
 },
 {
 "from_type": "person",
 "to_type": "person",
 "directed": false,
 "from_id": "Tom",
 "to_id": "Jenny",
 "attributes": {"connect_day": "2015-01-01 00:00:00"},
 "e_type": "friendship"
 }
]

[tigergraph@localhost ~]$ gadmin status graph -v
verbose is ON
=== graph ===
[m1][GRAPH][MSG] Graph was loaded (/usr/local/tigergraph/gstore/0/pa
[m1][GRAPH][INIT] True
[INFO][GRAPH][MSG] Above vertex and edge counts are for internal use w
[SUMMARY][GRAPH] graph is ready

Linux shell

5/13/25, 1:39 PM TigerGraph Documentation

107

Develop Parameterized Queries
Develop, install, and run parameterized GSQL queries

We just saw how easy and quick it is to run simple built-in queries. However you'll

undoubtedly want to create more customized or complex queries. GSQL puts maximum

power in your hands through parameterized vertex set queries. Parameterized queries let

you traverse the graph from one vertex set to an adjacent set of vertices, again and again,

performing computations along the way, with built-in parallel execution and handy

aggregation operations. You can even have one query call another query. But we'll start

simple.

A GSQL parameterized query has three steps.

1. Define your query in GSQL. This query will be added to the GSQL catalog.

2. Install one or more queries in the catalog, generating a REST endpoint for each query.

3. Run an installed query, supplying appropriate parameters, either as a GSQL command

or by sending an HTTP request to the REST endpoint.

Now, let's write our first GSQL query. We'll display all the direct (1-hop) neighbors of a

person, given as an input parameter.

This query features one SELECT statement. The SELECT statements here are much more

powerful than the ones in built-in queries. Here you can do the following:The query starts

by seeding a vertex set "Start" with the person vertex identified by parameter p passed in

USE GRAPH social
CREATE QUERY hello(VERTEX<person> p) FOR GRAPH social{
 Start = {p};
 Result = SELECT tgt
 FROM Start:s-(friendship:e) ->person:tgt;
 PRINT Result;
}

A Simple 1-Hop Query

GSQL command

5/13/25, 1:39 PM TigerGraph Documentation

108

from the query call. The curly braces tell GSQL to construct a set containing the enclosed

items.

Next, the SELECT statement describes a 1-hop traversal according to the pattern

described in the FROM clause:

Start:s -(friendship:e)-> person:tgt

This is basically the same syntax we used for the built-in select edges query. Namely, we

select all edges beginning from the given source set (Start), which have the given edge

type (friendship) and which end at the given vertex type (person). A feature we haven't

seen before is the use of vertex and edge set aliases defined by ":alias": "s" is the alias for

the source vertex set, "e" is the edge set alias, and "tgt" is the target vertex set alias.

Refer back to the initial clause and the assignment (" Result = SELECT tgt "). Here we

see the target set's alias tgt. This means that the SELECT statement should return the

target vertex set (as filtered and processed by the full set of clauses in the SELECT query

block) and assign that output set to the variable called Result.

Last, we print out the Result vertex set, in JSON format.

Rather than defining our query in interactive mode, we can store the query in a file and

invoke the file from within the GSQL shell, using the @filename syntax. Copy and paste the

above query into a file /home/tigergraph/hello.gsql . Then, enter the GSQL shell and

invoke the file using @hello.qsql (Note that if you are not in the /home/tigergraph folder

when you start gsql, then you can use the absolute path to invoke a gsql file. e.g.,

@/home/tigergraph/hello.gsql) Then run the "ls" command to see that the query is

now in the catalog.

Create A Query

GSQL shell

5/13/25, 1:39 PM TigerGraph Documentation

109

However, the query is not installed yet; it is not ready to run. In the GSQL shell, type the

following command to installed the just added query "hello".

GSQL > @hello.gsql
Using graph 'social'
The query hello has been added!
GSQL > ls
---- Graph social
Vertex Types:
 - VERTEX person(PRIMARY_ID name STRING, name STRING, age INT, gender STR
Edge Types:
 - UNDIRECTED EDGE friendship(from person, to person, connect_day DATETIM

Graphs:
 - Graph social(person:v, friendship:e)
Jobs:
 - CREATE LOADING JOB load_social FOR GRAPH social {
 DEFINE FILENAME file2 = "/home/tigergraph/friendship.csv";
 DEFINE FILENAME file1 = "/home/tigergraph/person.csv";

 LOAD file1 TO VERTEX person VALUES($"name", $"name", $"age", $"gende
 LOAD file2 TO EDGE friendship VALUES($0, $1, $2) USING SEPARATOR=","
 }

Queries:
 - hello(vertex<person> p)

INSTALL QUERY hello

GSQL > INSTALL QUERY hello
Start installing queries, about 1 minute ...
hello query: curl -X GET 'http://127.0.0.1:9000/query/social/hello?p=VALUE

[===

Install a Query

GSQL command

GSQL shell

5/13/25, 1:39 PM TigerGraph Documentation

110

It takes about 1 minute for the database to install this new query. Be patient! For queries

on large datasets, this small investment pays off many times over in faster query

execution, particularly if you will run the query many times, with different parameters. The

installation will generate machine instructions and a REST endpoint. After the progress

bar reaches 100%, we are ready to run this query.

To run a query in GSQL, use "RUN QUERY" followed by the query name and a set of

parameter values.

The result is presented in JSON format. Tom has two 1-hop neighbors, namely Dan and

Jenny.

RUN QUERY hello("Tom")

Run a Query in GSQL

GSQL command - run query examples

GSQL shell

5/13/25, 1:39 PM TigerGraph Documentation

111

Under the hood, installing a query will also generate a REST endpoint, so that the

parameterized query can be invoked by an http call. In Linux, the curl command is the

most popular way to submit an http request. In the example below, the portion that is

standard for all queries is shown in bold ; the portion in normal weight pertains to this

particular query and parameter value. The JSON result will be returned to the Linux shell's

standard output. So, our parameterized query becomes a http service!

GSQL > RUN QUERY hello("Tom")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [
 {
 "v_id": "Dan",
 "attributes": {
 "gender": "male",
 "name": "Dan",
 "state": "ny",
 "age": 34
 },
 "v_type": "person"
 },
 {
 "v_id": "Jenny",
 "attributes": {
 "gender": "female",
 "name": "Jenny",
 "state": "tx",
 "age": 25
 },
 "v_type": "person"
 }
]}]
}

Run a Query as a REST Endpoint

5/13/25, 1:39 PM TigerGraph Documentation

112

Finally, to see the GSQL text of a query in the catalog, you can use

Congratulations! At this point, you have gone through the whole process of defining,

installing, and running a query.

Now, let's do a more advanced query. This time, we are going to learn to use the powerful

built-in accumulators, which serves as the runtime attributes (properties) attachable to

each vertex visited during our traversal on the graph. Runtime means they exist only while

the query is running; they are called accumulators because they are specially designed to

gather (accumulate) data during an implicitly parallel processing of the query.

curl -X GET 'http://localhost:9000/query/social/hello?p=Tom'

#SHOW QUERY query_name. E.g.
SHOW QUERY hello

A More Advanced Query

Linux shell

GSQL command - show query example

GSQL command file - hello2.gsql

5/13/25, 1:39 PM TigerGraph Documentation

113

In this query we will find all the persons which are exactly 2 hops away from the

parameterized input person. Just for fun, let's also compute the average age of those 2-

hop neighbors.

In the standard approach for this kind of graph traversal algorithm, you use a boolean

variable to mark the first time that the algorithm "visits" a vertex, so that it knows not to

count it again. To fit this need, we'll define a local accumulator of the type OrAccum. To

declare a local accumulator, we prefix an identifier name with a single "@" symbol. Each

accumulator type has a default initial value; the default value for boolean accumulators is

false. Optionally, you can specify an initial value.

We also want to compute one average, so we will define a global AvgAccum. The identifier

for a global accumulator begins with two "@"s.

After defining the Start set, we then have our first one 1-hop traversal. The SELECT and

FROM clauses are the same as in our first example, but there is an additional ACCUM

clause. The += operator within an ACCUM clause means that for each edge matching the

FROM clause pattern, we accumulate the right-hand-side expression (true) to the left-

hand-accumulator (tgt.@visited as well as s.@visited). Note that a source vertex or target

vertex may be visited multiple times. Referring to Figure 1, if we start at vertex Tom, there

USE GRAPH social
CREATE QUERY hello2 (VERTEX<person> p) FOR GRAPH social{
 OrAccum @visited = false;
 AvgAccum @@avgAge;
 Start = {p};

 FirstNeighbors = SELECT tgt
 FROM Start:s -(friendship:e)-> person:tgt
 ACCUM tgt.@visited += true, s.@visited += true;

 SecondNeighbors = SELECT tgt
 FROM FirstNeighbors -(:e)-> :tgt
 WHERE tgt.@visited == false
 POST_ACCUM @@avgAge += tgt.age;

 PRINT SecondNeighbors;
 PRINT @@avgAge;
}
INSTALL QUERY hello2
RUN QUERY hello2("Tom")

5/13/25, 1:39 PM TigerGraph Documentation

114

are two edges incidents to Tom, so the ACCUM clause in the first SELECT statement will

visit Tom two times. Since the accumulator type is OrAccum, the cumulative effect of the

two traversals is the following:

Tom.@visited <== (initial value: false) OR (true) OR (true)

Note that it does not matter which of the two edges was processed first, so this operation

is suitable for multithreaded parallel processing. The net effect is that as long as a vertex

is visited at least once, it will end up with @visited = true. The result of this first SELECT

statement is assigned to the variable FirstNeighbors.

The second SELECT block will do one hop further, starting from the FirstNeighbors vertex

set variable, and reaching the 2-hop neighbors. Note that this time, we have omitted the

edge type friendship and the target vertex type person from the FROM clause, but we

retained the aliases. If no type is mentioned for an alias, then it is interpreted as ALL

types. Since our graph has only one vertex type and one edge type, it is logically the same

as if we had specified the types. The WHERE clause filters out the vertices which have

been marked as visited before (the 1-hop neighbors and the starting vertex p). This

SELECT statement uses POST_ACCUM instead of ACCUM. The reason is that

POST_ACCUM traverses the vertex sets instead of the edge sets, guaranteeing that we do

not double-count any vertices. Here, we accumulate the ages of the 2-hop neighbors to

get their average.

Finally, the SecondNeighbors of p are printed out.

This time, we put all of the following GSQL commands into one file hello2.gsql:

• USE GRAPH social

• The query definition

• Installing the query

• Running the query

We can execute this full set of commands without entering the GSQL shell. Please copy

and paste the above GSQL commands into a Linux file named

/home/tigergraph/hello2.gsql.

In a Linux shell, under /home/tigergraph, type the following:

5/13/25, 1:39 PM TigerGraph Documentation

115

The result is shown as below.

• Queries are installed in the catalog and can have one or more input parameters,

enabling reuse of queries.

• A GSQL query consists of a series of SELECT query blocks, each generating a named

vertex set.

• Each SELECT query block can start traversing the graph from any of the previously

defined vertex sets (that is, the sequence does not have to form a linear chain).

• Accumulators are runtime variables with built-in accumulation operations, for efficient

multithreaded computation.

• Output is in JSON format.

gsql hello2.gsql

GSQL Query Summary:

Linux shell

5/13/25, 1:39 PM TigerGraph Documentation

116

Review

You have learned a lot in GSQL 101!

With just the knowledge from GSQL 101 and a little practice, you should be able to do the

following:

• Create a graph schema containing multiple vertex types and edge types.

• Define a loading job that takes one or more CSV files and maps the data directly to the

vertices and edges of your graph.

• Write and run simple parameterized queries which start at one vertex and then

traverse one or more hops to generate a final vertex set. Make a simple additive

computation and return the results.

Want to learn more?

• To learn to do the same types of operations using the GraphStudio Visual SDK and UI,

see the TigerGraph GraphStudio UI Guide.

• To see more GSQL examples, see GSQL Demo Examples .

• To get answers to common questions, see the TigerGraph Knowledge Base and FAQs .

• To see the full GSQL specification (whose table of contents with give you and idea of

what is available) see

◦ GSQL Language Reference Part 1 - Defining Graphs and Loading Data

◦ GSQL Language Reference Part 2 - Querying

5/13/25, 1:39 PM TigerGraph Documentation

117

GSQL 102 - Pattern Matching

5/13/25, 1:39 PM TigerGraph Documentation

118

Get Set

In this tutorial, we will show you how to write and run Pattern Matching queries. Pattern

Matching is available in TigerGraph 2.4+.

We assume you have finished GSQL 101. If not, please complete GSQL 101 first.

Pattern is a traversal trace on the graph schema. For repetitive traversal on the schema,

we can use some regular expression to represent the repeating step(s). A pattern can be

a linear trace, or a non-linear trace (tree, circle etc.). For example, imagine a simple

schema consisting of a Person vertex type and a Friendship edge type. A pattern could be

a trace on this simple schema,

or, use *2 to denote the two consecutive Friendship edges,

Pattern matching is the process of finding subgraphs in a data graph that conforms to a

given query pattern.

Person - (Friendship) - Person - (Friendship) - Person

Person - (Friendship*2) - Person

Introduction

What is a Graph Pattern?

What is Pattern Matching?

Prepare Your TigerGraph Environment

5/13/25, 1:39 PM TigerGraph Documentation

119

We're assuming you are running Developer Edition as the sole user with full privileges. If

you are on a multiuser Enterprise Edition, consult with your DB administrator. You need to

have Designer or Admin privilege on an empty graph. There are also links to download

files at various points in the tutorial. Most are small, but the graph data file is 1GB when

uncompressed.

First, let's check that you can access GSQL, and that your version is 2.4 or higher.

1. Open a Linux shell.

2. Type gsql as below. A GSQL shell prompt should appear as below.

3. Type version in GSQL shell. It should show 2.4 or higher as below. If not, please

download and install the latest developer version from

https://www.tigergraph.com/download/

4. If the GSQL shell does not launch, try resetting the system with "gadmin start". This

will take some time to launch each service if they have not been started yet. If you

need further help, please see the TigerGraph Knowledge Base and FAQs.

5. You need to start from an empty data catalog. If necessary, run "drop all" to clear the

catalog first.

The following general use commands were introduced in GSQL 101.

• The % prefix indicates Linux shell commands. You need TigerGraph admin privilege to

run most gadmin commands.

• The GSQL> prefix indicates GSQL shell commands.

$ gsql
GSQL > version
GSQL version: 2.4

Command Description

% gsql Enter the GSQL shell in interactive mode

% gsql '<GSQL command string>' Run one GSQL command

Cheatsheet

Linux Shell

5/13/25, 1:39 PM TigerGraph Documentation

https://www.tigergraph.com/download/
https://www.tigergraph.com/download/

120

% gadmin status

Check the status of TigerGraph services

(If your graph store is empty, it is normal for

some statuses to be flagged in red.)

% gadmin restart -fy Force all TigerGraph services to restart

GSQL> ls
List the graph schema, loading jobs, and

queries

GSQL> show user Show your user name and roles

GSQL> drop all
Delete the current graph and all its associated

jobs and queries

GSQL> exit Exit GSQL interactive shell

5/13/25, 1:39 PM TigerGraph Documentation

121

Define the Schema

We will use the LDBC Social Network Benchmark (LDBC SNB) data set. This data set

models a twitter-like social forum. It comes with a data generator, which allows you to

generate data at different scale factors. Scale factor 1 generates roughly 1GB raw data,

scale factor 10 generates roughly 10GB raw data, etc.

Figure 1 shows the schema (from the LDBC SNB specification). It models the activities

and relationships of social forum participants. For example, a forum Member can publish

Posts on a Forum, and other Members of the Forum can make a Comment on the Post or

on someone else's Comment. A Person's home location is a hierarchy

(Continent>Country>City), and a person can be affiliated with a University or a Company.

Figure 1. LDBC SNB Schema

Data Set

5/13/25, 1:39 PM TigerGraph Documentation

http://ldbcouncil.org/developer/snb
http://ldbcouncil.org/developer/snb
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf

122

Tags can be used to classify a Forum and a Person's interests. Tags can belong to a

TagClass. The relationships between entities are modeled as directed edges. For example,

Person connects to Tag by the hasInterest edge. Forum connects to Person by two

different edges, hasMember and hasModerator.

LDBC SNB schema uses inheritance to model certain entity type relationships:

• Message is the superclass of Post and Comment.

• Place is the superclass of City, Country, and Continent.

• Organization is the superclass of University and Company.

We do not use the superclasses in our graph model. When there is an edge type connecting

an entity to a superclass, we instead create an edge type from the entity to each of the

subclasses of the superclass. For example, Message has an isLocatedIn relationship to

Country. Since Message has two subclasses, Post and Comment, we create two edge types

to Country:

• Post_IS_LOCATED_IN_Country

• Comment_IS_LOCATED_IN_Country

Vertex Type

For each entity in Figure 1 (the rectangular boxes), we create a vertex type with the entity's

name.

• Person is a person who participates in a forum.

• Forum is a place where persons discuss topics.

• City, Country, and Continent are geographic locations of other entities.

• Company and University are organizations related to a person's affiliation.

• Comment and Post are the interaction messages created by persons in a forum.

• Tag is a topic or a concept.

• TagClass is a class or a category. TagClass can form a hierarchy of tags.

Edge Type

Schema Naming Conventions

5/13/25, 1:39 PM TigerGraph Documentation

123

For each relationship in Figure 1, we create an edge type whose name consists of the source

entity name, the edge name (all capitalized), and the target entity name. The three parts are

connected by underscores.

• SourceEntityName_EDGENAME_TargetEntityName

For example,

• Person_KNOWS_Person: Person is the source and target entity names, and Knows is the

edge name.

• Person_LIKES_Comment: Person is the source entity name, Comment is the target entity

name, and Likes is the edge name.

When the edge name has two or more words, we separate words by an underscore as well.

For example:

• Tag_HAS_TYPE_TagClass: Tag is the source entity name, TagClass is the target entity

name, and hasType is the edge name (which is written as HAS_TYPE).

• Forum_HAS_MODERATOR_Person: Forum is the source entity name, Person is the

target entity name, and hasModerator is the edge name (which is written as

HAS_MODERATOR).

The GSQL script below can be downloaded from this link .

GSQL Schema DDL

GSQL script

5/13/25, 1:39 PM TigerGraph Documentation

https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/2.4/setup_schema.gsql
https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/2.4/setup_schema.gsql

124

//clear the current catalog.
// It may take a while since it restarts the subsystem services.
DROP ALL

//vertex types
CREATE VERTEX Comment (PRIMARY_ID id UINT, id UINT, creationDate DATETIME,
CREATE VERTEX Post (PRIMARY_ID id UINT, id UINT, imageFile STRING, creatio
CREATE VERTEX Company (PRIMARY_ID id UINT, id UINT, name STRING, url STRIN
CREATE VERTEX University (PRIMARY_ID id UINT, id UINT, name STRING, url ST
CREATE VERTEX City (PRIMARY_ID id UINT, id UINT, name STRING, url STRING)
CREATE VERTEX Country (PRIMARY_ID id UINT, id UINT, name STRING, url STRIN
CREATE VERTEX Continent (PRIMARY_ID id UINT, id UINT, name STRING, url STR
CREATE VERTEX Forum (PRIMARY_ID id UINT, id UINT, title STRING, creationDa
CREATE VERTEX Person (PRIMARY_ID id UINT, id UINT, firstName STRING, lastN
CREATE VERTEX Tag (PRIMARY_ID id UINT, id UINT, name STRING, url STRING)
CREATE VERTEX TagClass (PRIMARY_ID id UINT, id UINT, name STRING, url STRI

//edge types
CREATE DIRECTED EDGE Forum_CONTAINER_OF_Post (FROM Forum, TO Post) WITH RE
CREATE DIRECTED EDGE Comment_HAS_CREATOR_Person (FROM Comment, TO Person)
CREATE DIRECTED EDGE Post_HAS_CREATOR_Person (FROM Post, TO Person) WITH R
CREATE DIRECTED EDGE Person_HAS_INTEREST_Tag (FROM Person, TO Tag) WITH RE
CREATE DIRECTED EDGE Forum_HAS_MEMBER_Person (FROM Forum, TO Person, joinD
CREATE DIRECTED EDGE Forum_HAS_MODERATOR_Person (FROM Forum, TO Person) WI
CREATE DIRECTED EDGE Comment_HAS_TAG_Tag (FROM Comment, TO Tag) WITH REVER
CREATE DIRECTED EDGE Post_HAS_TAG_Tag (FROM Post, TO Tag) WITH REVERSE_EDG
CREATE DIRECTED EDGE Forum_HAS_TAG_Tag (FROM Forum, TO Tag) WITH REVERSE_E
CREATE DIRECTED EDGE Tag_HAS_TYPE_TagClass (FROM Tag, TO TagClass) WITH RE
CREATE DIRECTED EDGE Company_IS_LOCATED_IN_Country (FROM Company, TO Count
CREATE DIRECTED EDGE Comment_IS_LOCATED_IN_Country (FROM Comment, TO Count
CREATE DIRECTED EDGE Post_IS_LOCATED_IN_Country (FROM Post, TO Country) WI
CREATE DIRECTED EDGE Person_IS_LOCATED_IN_City (FROM Person, TO City) WITH
CREATE DIRECTED EDGE University_IS_LOCATED_IN_City (FROM University, TO Ci
CREATE DIRECTED EDGE City_IS_PART_OF_Country (FROM City, TO Country) WITH
CREATE DIRECTED EDGE Country_IS_PART_OF_Continent (FROM Country, TO Contin
CREATE DIRECTED EDGE TagClass_IS_SUBCLASS_OF_TagClass (FROM TagClass, TO T
CREATE DIRECTED EDGE Person_KNOWS_Person (FROM Person, TO Person, creation
CREATE DIRECTED EDGE Person_LIKES_Comment (FROM Person, TO Comment, creati
CREATE DIRECTED EDGE Person_LIKES_Post (FROM Person, TO Post, creationDate
CREATE DIRECTED EDGE Comment_REPLY_OF_Comment (FROM Comment, TO Comment) W
CREATE DIRECTED EDGE Comment_REPLY_OF_Post (FROM Comment, TO Post) WITH RE
CREATE DIRECTED EDGE Person_STUDY_AT_University (FROM Person, TO Universit
CREATE DIRECTED EDGE Person_WORK_AT_Company (FROM Person, TO Company, work

//LDBC SNB graph schema
CREATE GRAPH ldbc_snb (*)

5/13/25, 1:39 PM TigerGraph Documentation

125

5/13/25, 1:39 PM TigerGraph Documentation

126

Load Data

Below, we use GSQL loading language to define a loading job script, which encodes all the

mappings from the source csv file from the LDBC SNB benchmark data generator to our

schema .

You can download the below loading script from here .

Define the Loading Job

GSQL Loading Script

5/13/25, 1:39 PM TigerGraph Documentation

https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/2.4/setup_schema.gsql
https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/2.4/setup_schema.gsql
https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/2.4/load_data.sh
https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/2.4/load_data.sh

127

5/13/25, 1:39 PM TigerGraph Documentation

128

USE GRAPH ldbc_snb
CREATE LOADING JOB load_ldbc_snb FOR GRAPH ldbc_snb {
 // define vertex source files
 DEFINE FILENAME v_comment_file;
 DEFINE FILENAME v_post_file;
 DEFINE FILENAME v_organisation_file;
 DEFINE FILENAME v_place_file;
 DEFINE FILENAME v_forum_file;
 DEFINE FILENAME v_person_file;
 DEFINE FILENAME v_tag_file;
 DEFINE FILENAME v_tagclass_file;

 // define edge source files
 DEFINE FILENAME forum_containerOf_post_file;
 DEFINE FILENAME comment_hasCreator_person_file;
 DEFINE FILENAME post_hasCreator_person_file;
 DEFINE FILENAME person_hasInterest_tag_file;
 DEFINE FILENAME forum_hasMember_person_file;
 DEFINE FILENAME forum_hasModerator_person_file;
 DEFINE FILENAME comment_hasTag_tag_file;
 DEFINE FILENAME post_hasTag_tag_file;
 DEFINE FILENAME forum_hasTag_tag_file;
 DEFINE FILENAME tag_hasType_tagclass_file;
 DEFINE FILENAME organisation_isLocatedIn_place_file;
 DEFINE FILENAME comment_isLocatedIn_place_file;
 DEFINE FILENAME post_isLocatedIn_place_file;
 DEFINE FILENAME person_isLocatedIn_place_file;
 DEFINE FILENAME place_isPartOf_place_file;
 DEFINE FILENAME tagclass_isSubclassOf_tagclass_file;
 DEFINE FILENAME person_knows_person_file;
 DEFINE FILENAME person_likes_comment_file;
 DEFINE FILENAME person_likes_post_file;
 DEFINE FILENAME comment_replyOf_comment_file;
 DEFINE FILENAME comment_replyOf_post_file;
 DEFINE FILENAME person_studyAt_organisation_file;
 DEFINE FILENAME person_workAt_organisation_file;

 // load vertex
 LOAD v_comment_file
 TO VERTEX Comment VALUES ($0, $0, $1, $2, $3, $4, $5) USING header="tr
 LOAD v_post_file
 TO VERTEX Post VALUES ($0, $0, $1, $2, $3, $4, $5, $6, $7) USING heade
 LOAD v_organisation_file
 TO VERTEX Company VALUES ($0, $0, $2, $3) WHERE $1=="company",
 TO VERTEX University VALUES ($0, $0, $2, $3) WHERE $1=="university" US
 LOAD v_place_file
 TO VERTEX City VALUES ($0, $0, $1, $2) WHERE $3=="city",
 TO VERTEX Country VALUES ($0, $0, $1, $2) WHERE $3=="country",

5/13/25, 1:39 PM TigerGraph Documentation

129

We have generated scale-factor 1 data set (approximate 1GB). You can download it from

https://s3-us-west-1.amazonaws.com/tigergraph-benchmark-dataset/LDBC/SF-

1/ldbc_snb_data-sf1.tar.gz

After downloading the raw file, you can run tar command below to decompress the

downloaded file.

After decompressing the file, you will see a folder named "ldbc_snb_data". Enter it, you will

see two subfolders

• social_network

• substitution_parameters

The raw data is under the social_network folder.

 TO VERTEX Continent VALUES ($0, $0, $1, $2) WHERE $3=="continent" USIN
 LOAD v_forum_file
 TO VERTEX Forum VALUES ($0, $0, $1, $2) USING header="true", separator
 LOAD v_person_file
 TO VERTEX Person VALUES ($0, $0, $1, $2, $3, $4, $5, $6, $7, SPLIT($8,
 LOAD v_tag_file
 TO VERTEX Tag VALUES ($0, $0, $1, $2) USING header="true", separator="
 LOAD v_tagclass_file
 TO VERTEX TagClass VALUES ($0, $0, $1, $2) USING header="true", separa

 // load edge
 LOAD forum_containerOf_post_file
 TO EDGE Forum_CONTAINER_OF_Post VALUES ($0, $1) USING header="true", s
 LOAD comment_hasCreator_person_file
 TO EDGE Comment_HAS_CREATOR_Person VALUES ($0, $1) USING header="true"
 LOAD post_hasCreator_person_file
 TO EDGE Post_HAS_CREATOR_Person VALUES ($0, $1) USING header="true", s
 LOAD person_hasInterest_tag_file
 TO EDGE Person_HAS_INTEREST_Tag VALUES ($0, $1) USING header="true", s
 LOAD forum_hasMember_person_file
 TO EDGE Forum_HAS_MEMBER_Person VALUES ($0, $1, $2) USING header="true
 LOAD forum_hasModerator_person_file
 TO EDGE Forum_HAS_MODERATOR_Person VALUES ($0, $1) USING header="true"
 LOAD comment_hasTag_tag_file
 TO EDGE Comment_HAS_TAG_Tag VALUES ($0, $1) USING header="true", separ
 LOAD post_hasTag_tag_file
 TO EDGE Post_HAS_TAG_Tag VALUES ($0, $1) USING header="true", separato
 LOAD forum_hasTag_tag_file
 TO EDGE Forum_HAS_TAG_Tag VALUES ($0, $1) USING header="true", separat
 LOAD tag_hasType_tagclass_file
 TO EDGE Tag_HAS_TYPE_TagClass VALUES ($0, $1) USING header="true", sep
 LOAD organisation_isLocatedIn_place_file
 TO EDGE Company_IS_LOCATED_IN_Country VALUES ($0, $1) WHERE to_int($1)
 TO EDGE University_IS_LOCATED_IN_City VALUES ($0, $1) WHERE to_int($1)
 LOAD comment_isLocatedIn_place_file
 TO EDGE Comment_IS_LOCATED_IN_Country VALUES ($0, $1) USING header="tr
 LOAD post_isLocatedIn_place_file
 TO EDGE Post_IS_LOCATED_IN_Country VALUES ($0, $1) USING header="true"
 LOAD person_isLocatedIn_place_file
 TO EDGE Person_IS_LOCATED_IN_City VALUES ($0, $1) USING header="true",
 LOAD place_isPartOf_place_file
 TO EDGE Country_IS_PART_OF_Continent VALUES ($0, $1) WHERE to_int($0)
 TO EDGE City_IS_PART_OF_Country VALUES ($0, $1) WHERE to_int($0) > 110
 LOAD tagclass_isSubclassOf_tagclass_file
 TO EDGE TagClass_IS_SUBCLASS_OF_TagClass VALUES ($0, $1) USING header=
 LOAD person_knows_person_file
 TO EDGE Person_KNOWS_Person VALUES ($0, $1, $2) USING header="true", s
 LOAD person_likes_comment_file

TO EDGE Person LIKES Comment VALUES ($0, $1, $2) USING header="true",

wget https://s3-us-west-1.amazonaws.com/tigergraph-benchmark-dataset/LDBC/

tar -xzf ldbc_snb_data-sf1.tar.gz

Prepare The Raw Data

Run The Loading Job

Linux Bash

Linux Bash

5/13/25, 1:39 PM TigerGraph Documentation

https://s3-us-west-1.amazonaws.com/tigergraph-benchmark-dataset/LDBC/SF-1/ldbc_snb_data-sf1.tar.gz
https://s3-us-west-1.amazonaws.com/tigergraph-benchmark-dataset/LDBC/SF-1/ldbc_snb_data-sf1.tar.gz
https://s3-us-west-1.amazonaws.com/tigergraph-benchmark-dataset/LDBC/SF-1/ldbc_snb_data-sf1.tar.gz

130

Download the setup_schema.gsql file, and run the script in the shell command line to

setup the schema and the loading job.

Setup the environment variable LDBC_SNB_DATA_DIR pointing to your raw file folder un-

tarred in the previous section. In the example below, the raw data is in

/home/tigergraph/ldbc_snb_data/social_network. Note, the folder should have the name

social_network.

Download the loading job script and invoke it on the command line.

 TO EDGE Person_LIKES_Comment VALUES ($0, $1, $2) USING header true ,
 LOAD person_likes_post_file
 TO EDGE Person_LIKES_Post VALUES ($0, $1, $2) USING header="true", sep
 LOAD comment_replyOf_comment_file
 TO EDGE Comment_REPLY_OF_Comment VALUES ($0, $1) USING header="true",
 LOAD comment_replyOf_post_file
 TO EDGE Comment_REPLY_OF_Post VALUES ($0, $1) USING header="true", sep
 LOAD person_studyAt_organisation_file
 TO EDGE Person_STUDY_AT_University VALUES ($0, $1, $2) USING header="t
 LOAD person_workAt_organisation_file
 TO EDGE Person_WORK_AT_Company VALUES ($0, $1, $2) USING header="true"
}

gsql setup_schema.gsql

#change the directory to your raw file directory
export LDBC_SNB_DATA_DIR=/home/tigergraph/ldbc_snb_data/social_network/

#start all TigerGraph services
gadmin start

#setup schema and loading job
gsql setup_schema.gsql

./load_data.sh

Linux Bash

Linux Bash

Linux Bash

Sample Loading Progress Output

5/13/25, 1:39 PM TigerGraph Documentation

https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/2.4/setup_schema.gsql
https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/2.4/setup_schema.gsql
https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/2.4/load_data.sh
https://raw.githubusercontent.com/tigergraph/ecosys/ldbc/ldbc_benchmark/tigergraph/gsql102/2.4/load_data.sh

131

tigergraph/gsql102$./load_data.sh
[Tip: Use "CTRL + C" to stop displaying the loading status update, then us
[Tip: Manage loading jobs with "ABORT/RESUME LOADING JOB jobid"]
Starting the following job, i.e.
 JobName: load_ldbc_snb, jobid: ldbc_snb.load_ldbc_snb.file.m1.1558053156
 Loading log: '/mnt/data/tigergraph/logs/restpp/restpp_loader_logs/ldbc_s

Job "ldbc_snb.load_ldbc_snb.file.m1.1558053156447" loading status
[FINISHED] m1 (Finished: 31 / Total: 31)
 [LOADED]
 +---
 |
 | /mnt/data/download/ldbc_snb_data/social_network/
 | /mnt/data/download/ldbc_snb_data/social_network/comment_hasCreator
 | /mnt/data/download/ldbc_snb_data/social_network/comment_has
 | /mnt/data/download/ldbc_snb_data/social_network/comment_isLocatedI
 | /mnt/data/download/ldbc_snb_data/social_network/comment_replyOf_
 | /mnt/data/download/ldbc_snb_data/social_network/comment_reply
 | /mnt/data/download/ldbc_snb_data/social_networ
 | /mnt/data/download/ldbc_snb_data/social_network/forum_container
 | /mnt/data/download/ldbc_snb_data/social_network/forum_hasMember
 | /mnt/data/download/ldbc_snb_data/social_network/forum_hasModerator
 | /mnt/data/download/ldbc_snb_data/social_network/forum_has
 | /mnt/data/download/ldbc_snb_data/social_network/organ
 |/mnt/data/download/ldbc_snb_data/social_network/organisation_isLocatedI
 | /mnt/data/download/ldbc_snb_data/social_network
 | /mnt/data/download/ldbc_snb_data/social_network/person_hasInter
 | /mnt/data/download/ldbc_snb_data/social_network/person_isLocatedI
 | /mnt/data/download/ldbc_snb_data/social_network/person_knows
 | /mnt/data/download/ldbc_snb_data/social_network/person_likes_
 | /mnt/data/download/ldbc_snb_data/social_network/person_lik
 | /mnt/data/download/ldbc_snb_data/social_network/person_studyAt_organ
 | /mnt/data/download/ldbc_snb_data/social_network/person_workAt_organ
 | /mnt/data/download/ldbc_snb_data/social_networ
 | /mnt/data/download/ldbc_snb_data/social_network/place_isPartO
 | /mnt/data/download/ldbc_snb_data/social_netwo
 | /mnt/data/download/ldbc_snb_data/social_network/post_hasCreator
 | /mnt/data/download/ldbc_snb_data/social_network/post_has
 | /mnt/data/download/ldbc_snb_data/social_network/post_isLocatedI
 | /mnt/data/download/ldbc_snb_data/social_netw
 | /mnt/data/download/ldbc_snb_data/social_network/tag_hasType_t
 | /mnt/data/download/ldbc_snb_data/social_network/t
 |/mnt/data/download/ldbc_snb_data/social_network/tagclass_isSubclassOf_t
 +---

5/13/25, 1:39 PM TigerGraph Documentation

132

After loading, you can check the graph's size using one of the options of the administrator

tool, gadmin . From a Linux shell, enter the command

gadmin status graph -v

You should see VertexCount: 3,181,724 and EdgeCount 34,512,076.

gadmin status graph -v
verbose is ON
=== graph ===
[m1][GRAPH][MSG] Graph was loaded (/mnt/data/tigergraph/gstore/0/par
[m1][GRAPH][INIT] True
[INFO][GRAPH][MSG] Above vertex and edge counts are for internal use w
[SUMMARY][GRAPH] graph is ready

Linux shell

5/13/25, 1:39 PM TigerGraph Documentation

133

Basic Pattern Concepts

Pattern matching by nature is declarative. It enables users to focus on specifying what

they want from a query without worrying about the underlying query processing.

A pattern usually appears in the FROM clause, the most fundamental part of the query

structure. The pattern specifies sets of vertex types and how they are connected by edge

types. A pattern can be refined further with conditions in the WHERE clause. In this

tutorial, we'll focus on the linear pattern.

Currently, pattern matching may only be used in read-only queries.

The easiest way to understand patterns is to start with a simple 1-Hop pattern. Even a

single hop has several options. After we've tackled single hops, then we'll see how to add

repetition to make variable length patterns and how to connect single hops to form bigger

patterns.

In classic GSQL queries, described in GSQL 101, we used the punctuation -()-> in the

FROM clause to indicate a 1-hop query, where the arrow specifies the vertex flow from left

to right, and () encloses the edge types.

In pattern matching, we use the punctuation -()- to denote a 1-hop pattern, where the

edge type(s) is enclosed in the parentheses () and the hyphens - symbolize

connection without specifying direction. Instead, directionality is explicitly stated for

each edge type.

• For an undirected edge E, no added decoration: E

Person:p -(LIKES:e)-> Message:m /* Classic GSQL example */

Introduction

1-Hop Pattern

5/13/25, 1:39 PM TigerGraph Documentation

134

• For a directed edge E from left to right, use a suffix: E>

• For a directed edge E from right to left, use a prefix: <E

For example, in the LDBC SNB schema, there are two directed relationships between

Person and Message: person LIKES message, and message HAS_CREATOR person.

Despite the fact that these relationships are in opposite directions, we can include both of

them in the same pattern very concisely:

The underscore _ is a wildcard meaning any edge type. Arrowheads are still used to

indicate direction, e.g., _> or <_ or _

The empty parentheses () means any edge, directed or undirected.

1. FROM X:x - (E1:e1) - Y:y

• E1 is an undirected edge. x and y bind to the end points of E1. e1 is the alias of E1.

2. FROM x - (E2>:e2) - Y:y

• Right directed edge, x binds to the source of E2, y binds to the target of E2.

3. FROM X:x - (<E3:e3) - Y:y

• Left directed edge, y binds to the source of E3, x binds to the target of E3.

4. FROM X:x - (_:e) - Y:y

• Any undirected edge between a member of X and a member of Y.

5. FROM X:x - (_>:e) - Y:y

• Any right directed edge with source in X and target in Y.

6. FROM X:x - (<_:e) - Y:y

• Any left directed edge with source in Y and target in X.

7. FROM X:x - ((<_|_):e) - Y:y

• Any left directed or any undirected. "|" means OR, and parentheses enclose the

group of edge descriptors. e is the alias for the edge pattern (<_|_).

Person:p -((LIKES>|<HAS_CREATOR):e)- Message:m /* Pattern example

Edge Type Wildcards

Examples of 1-Hop Patterns

5/13/25, 1:39 PM TigerGraph Documentation

135

8. FROM X:x - ((E1|E2>|<E3):e) - Y:y

• Any one of the three edge patterns.

9. FROM X:x - () - Y:y

• any edge (directed or undirected)

• Same as (<_|_>|_)

To use the pattern match syntax, you need to either set a session parameter or specify it

in the query. There are currently two syntax versions for queries:

• "v1" is the classic syntax, traversing one hop per SELECT statement. This is the default

mode.

• "v2" enhances the v1 syntax with pattern matching.

You can use the SET command to assign a value to the syntax_version session parameter:

v1 for classic syntax; v2 for pattern matching. If the parameter is never set, the classic v1

syntax is enabled. Once set, the selection remains valid for the duration of the GSQL client

session, or until it is changed with another SET command.

You can also select the syntax by using the new SYNTAX option in the CREATE QUERY

statement: v1 for classic syntax (default); v2 for pattern matching. The Query-Level

SYNTAX option overrides the syntax_version session parameter.

#v2 syntax allow mixed of old syntax - () -> and
#the pattern match syntax - () -
SET syntax_version="v2"

How To Enter Pattern Match Syntax Mode

syntax_version Session Parameter

Query-Level SYNTAX option

GSQL: Set Syntax Version By A Session Parameter

5/13/25, 1:39 PM TigerGraph Documentation

136

CHANGE ADVISORY

The punctuation used with the SYNTAX keyword has been streamlined in Version 2.4.1. It is

now

CREATE QUERY <query_name><parameters> FOR GRAPH <graph_name> SYNTAX v2

The TigerGraph 2.4.0 punctuation

CREATE QUERY ... SYNTAX("v2")
has been discontinued.

In this tutorial, we will use the new Interpreted Mode for GSQL, also introduced in

TigerGraph 2.4. Interpreted mode lets us skip the INSTALL step, and even to run a query

as soon as we create it, to offer a more interactive experience. These one-step interpreted

queries are unnamed (anonymous) and parameterless, just like SQL.

To send an anonymous query to the interpret engine, replace the keyword CREATE with

INTERPRET. Remember, no parameters:

Recommendation: Increase the query timeout threshold.

Interpreted queries may run slower than installed queries, so we recommend increasing the

query timeout threshold:

CREATE QUERY test10 (string str) FOR GRAPH ldbc_snb SYNTAX("v2")
{
 ...
}

INTERPRET QUERY () FOR GRAPH graph_name SYNTAX ("v2") { <query body> }

set query time out to 1 minutes
1 unit is 1 milli-second
SET query_timeout = 60000

Running Anonymous Queries Without Installing

GSQL: Set Syntax Version By Specifying The Version After Graph Name In The Query

GSQL: Set Longer Timeout

5/13/25, 1:39 PM TigerGraph Documentation

137

Example 1. Find persons who know the person named "Viktor Akhiezer" and return the top

3 oldest such persons.

You can copy the above GSQL script to a file named example1.gsql and invoke this script

file in Linux.

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {
 #start with all persons.
 Seed = {Person.*};
 #1-hop pattern.
 friends = SELECT p
 FROM Seed:s - (<Person_KNOWS_Person:e) - Person:p
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 ORDER BY p.birthday ASC
 LIMIT 3;

 PRINT friends[friends.firstName, friends.lastName, friends.birthday];
}

gsql example1.gsql

Examples of 1-Hop Fixed Length Query

Example 1. Left Directed Edge Pattern

Linux Bash

Output of Example 1

5/13/25, 1:39 PM TigerGraph Documentation

138

Example 2. Do the same as Example 1, but use a right-directed edge pattern.

{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "developer",
 "api": "v2"
 },
 "results": [{"friends": [
 {
 "v_id": "10995116279461",
 "attributes": {
 "friends.birthday": "1980-05-13 00:00:00",
 "friends.lastName": "Cajes",
 "friends.firstName": "Gregorio"
 },
 "v_type": "Person"
 },
 {
 "v_id": "4398046517846",
 "attributes": {
 "friends.birthday": "1980-04-24 00:00:00",
 "friends.lastName": "Glosca",
 "friends.firstName": "Abdul-Malik"
 },
 "v_type": "Person"
 },
 {
 "v_id": "6597069776731",
 "attributes": {
 "friends.birthday": "1981-02-25 00:00:00",
 "friends.lastName": "Carlsson",
 "friends.firstName": "Sven"
 },
 "v_type": "Person"
 }
]}]
}

Example 2. Right Directed Edge Pattern

5/13/25, 1:39 PM TigerGraph Documentation

139

You can copy the above GSQL script to a file named example2.gsql, and invoke this script

file in Linux.

The output should be the same as example1's output.

Example 3. Find Viktor Akhiezer's total number of comments, total number of posts, and

total number of persons he knows. A Person can reach Comments, Posts and other

Persons via a directed edge.

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {
 #start with all persons.
 Seed = {Person.*};
 #1-hop pattern.
 friends = SELECT s
 FROM Seed:s - (Person_KNOWS_Person>:e) - Person:p
 WHERE p.firstName == "Viktor" AND p.lastName == "Akhiezer"
 ORDER BY s.birthday ASC
 LIMIT 3;

 PRINT friends[friends.firstName, friends.lastName, friends.birthday];
}

gsql example2.gsql

Linux Bash

Example 3. Right Directed Any Edge Pattern.

5/13/25, 1:39 PM TigerGraph Documentation

140

You can copy the above GSQL script to a file named example3.gsql, and invoke this script

file in Linux.

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {
 SumAccum<int> @commentCnt= 0;
 SumAccum<int> @postCnt= 0;
 SumAccum<int> @personCnt= 0;

 #start with all persons.
 Seed = {Person.*};
 #1-hop pattern.
 Result = SELECT s
 FROM Seed:s - (_>:e) - :tgt
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 ACCUM CASE WHEN tgt.type == "Comment" THEN
 s.@commentCnt += 1
 WHEN tgt.type == "Post" THEN
 s.@postCnt += 1
 WHEN tgt.type == "Person" THEN
 s.@personCnt += 1
 END;

 PRINT Result[Result.@commentCnt, Result.@postCnt, Result.@personCnt];
}

gsql example3.gsql

Linux Bash

Output of Example 3.

5/13/25, 1:39 PM TigerGraph Documentation

141

Example 4. Do the same as Example 3, but use a left-directed edge pattern.

Note below (line 10) that the Seed is now {Person.*, Comment.*, Post.* }, the three types

of entities that are targets of edges from a Person.

In the current version, the vertex set on the left side of the pattern must be defined in a

previous statement (e.g., a seed statement), the same requirement as in v1 syntax FROM

clauses. In the example below, the current version of pattern matching would not permit

FROM _:s -(<:e) - Person:tgt

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "28587302323577",
 "attributes": {
 "Result.@personCnt": 25,
 "Result.@commentCnt": 152,
 "Result.@postCnt": 96
 },
 "v_type": "Person"
 }]}]
}

Example 4. Left Directed Any Edge Pattern

5/13/25, 1:39 PM TigerGraph Documentation

142

You can copy the above GSQL script to a file named example4.gsql, and invoke this script

file in linux command line. The output should be the same as in Example 3.

Example 5. Find the two oldest persons who either know "Viktor Akhiezer" or are known by

"Vicktor Akhiezer". KNOWS is a directed relationship, so we need to include both directions

in the pattern.

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {
 SumAccum<int> @commentCnt= 0;
 SumAccum<int> @postCnt= 0;
 SumAccum<int> @personCnt= 0;

 #start with all persons, comments, and posts
 Seed = {Person.*, Comment.*, Post.*};
 #1-hop pattern.
 Result = SELECT tgt
 FROM Seed:s - (<_:e) - Person:tgt
 WHERE tgt.firstName == "Viktor" AND tgt.lastName == "Akhiezer"
 ACCUM CASE WHEN s.type == "Comment" THEN
 tgt.@commentCnt += 1
 WHEN s.type == "Post" THEN
 tgt.@postCnt += 1
 WHEN s.type == "Person" THEN
 tgt.@personCnt += 1
 END;

 PRINT Result[Result.@commentCnt, Result.@postCnt, Result.@personCnt];
}

Example 5. Disjunctive 1-hop edge pattern.

5/13/25, 1:39 PM TigerGraph Documentation

143

You can copy the above GSQL script to a file named example5.gsql, and invoke this script

file in Linux:

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {
 #start with all persons.
 Seed = {Person.*};
 #1-hop pattern.
 friends = SELECT p
 FROM Seed:s - ((<Person_KNOWS_Person|Person_KNOWS_Person>):e)
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 ORDER BY p.birthday ASC
 LIMIT 2;

 PRINT friends;
}

gsql example5.gsql

Linux Bash

Output of Example 5.

5/13/25, 1:39 PM TigerGraph Documentation

144

5/13/25, 1:39 PM TigerGraph Documentation

145

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"friends": [
 {
 "v_id": "10995116279461",
 "attributes": {
 "birthday": "1980-05-13 00:00:00",
 "firstName": "Gregorio",
 "lastName": "Cajes",
 "gender": "male",
 "speaks": [
 "en",
 "tl"
],
 "browserUsed": "Firefox",
 "locationIP": "110.55.251.62",
 "id": 10995116279461,
 "creationDate": "2010-12-16 18:12:57",
 "email": ["Gregorio10995116279461@gmail.com"],
 "@multPropagAcc_1": 0
 },
 "v_type": "Person"
 },
 {
 "v_id": "4398046517846",
 "attributes": {
 "birthday": "1980-04-24 00:00:00",
 "firstName": "Abdul-Malik",
 "lastName": "Glosca",
 "gender": "male",
 "speaks": [
 "ar",
 "en"
],
 "browserUsed": "Chrome",
 "locationIP": "109.200.168.137",
 "id": 4398046517846,
 "creationDate": "2010-05-21 00:07:05",
 "email": [
 "Abdul-Malik4398046517846@gmail.com",
 "Abdul-Malik4398046517846@gmx.com",

5/13/25, 1:39 PM TigerGraph Documentation

146

Example 6. Find the total comments or posts created by "Viktor Akhiezer". Again, we

include two types of edges, but in this case, we count them together.

You can copy the above GSQL script to a file named example6.gsql, and invoke this script

file in Linux:

 "Abdul-Malik4398046517846@land.ru"
],
 "@multPropagAcc_1": 0
 },
 "v_type": "Person"
 }
]}]
}

USE GRAPH ldbc_snb
#pattern match syntax version is v2
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {
 SumAccum<int> @@cnt = 0;
 Seed = {Person.*};

 friends = SELECT t
 FROM Seed:s-((<Comment_HAS_CREATOR_Person|<Post_HAS_CREATOR_P
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 ACCUM @@cnt += 1 ;

 PRINT @@cnt;
}

gsql example6.gsql

Example 6. Disjunctive 1-hop edge pattern.

Linux Bash

Output of Example 6.

5/13/25, 1:39 PM TigerGraph Documentation

147

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"@@cnt": 89}]
}

5/13/25, 1:39 PM TigerGraph Documentation

148

Repeating a 1-Hop Pattern

A common pattern is the two-step "Friend of a Friend". Or, how many entities might receive

a message if it is passed up to three times? Do you have any known change of

connections to a celebrity?

GSQL pattern matching makes it easy to express such variable-length patterns which

repeat a single-hop. Everything else stays the same as introduced in the previous section,

except we append an asterisk (or Kleene star for you regular expressionists) and an

optional min..max range to an edge pattern.

• (E*) means edge type E repeats any number of times (including zero!)

• (E*1..3) means edge type E occurs one to three times.

Below are more illustrative examples:

• 1-hop star pattern — repetition of an edge pattern 0 or more times

1. FROM X:x - (E1*) - Y:y

2. FROM X:x - (E2>*) - Y:y

3. FROM X:x - (<E3*) - Y:y

4. FROM X:x - (_*) - Y:y

• Any undirected edge can be chosen at each repetition.

5. FROM X:x - (_>*) - Y:y

• Any right-directed edge can be chosen at each repetition.

6. FROM X:x - (<_*) - Y:y

• Any left-directed edge can be chosen at each repetition.

7. FROM X:x - ((E1|E2>|<E3)*) - Y:y

• Either E1, E2> or <E3 can be chosen at each repetition.

• 1-hop star pattern with bounds

1. FROM X:x - (E1*2..) - Y:y

• Lower bounds only. There is a chain of at least 2 E1 edges.

2. FROM X:x - (E2>*..3) - Y:y

• Upper bounds only. There is a chain of between 0 and 3 E2 edges.

5/13/25, 1:39 PM TigerGraph Documentation

149

3. FROM X:x - (<E3*3..5) - Y:y

• Both Lower and Upper bounds. There is a chain of 3 to 5 E3 edges.

4. FROM X:x - ((E1|E2>|<E3)*3) - Y:y

• Exact bound. There is a chain of exactly 3 edges, where each edge is either E1,

E2>, or <E3.

• No alias allowed for edge with Kleene star

An edge alias may not be used when a Kleene star is used. The reason is that when

there are a variable number of edges, we cannot associate or bind the alias to a

specific edge in the pattern.

• Shortest path semantics

When an edge is repeated with a Kleene star, only the shortest matching occurrences

are selected. See the example below:

In Figure 2, for Pattern 1 - (E>*) - 4 , any of the following paths reach 4 from 1.

• 1->2->3->4

• 1->2->3->5->6->2->3->4

• any path that goes through the cycle 2->3->5->6->2 two or more times and jumps out

at 3.

The first path is shorter than the rest; it is considered the only match.

Figure 2 Shortest Path Illustration.

Remarks

5/13/25, 1:39 PM TigerGraph Documentation

150

In this tutorial, we will use the new Interpreted Mode for GSQL, introduced in TigerGraph

2.4. Interpreted mode lets us skip the INSTALL step, and even to run a query as soon as

we create it, to offer a more interactive experience. These one-step interpreted queries are

unnamed (anonymous) and parameterless, just like SQL.

Example 1. Find the direct or indirect superclass (including the self class) of the TagClass

whose name is "TennisPlayer".

You can copy the above GSQL script to a file named example1.gsql, and invoke this script

file in a Linux shell.

Note below that the starting vertex s, whose name is TennisPlayer, is also a match, using

a path with zero hops.

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {

 TagClass1 = {TagClass.*};

 TagClass2 = SELECT t
 FROM TagClass1:s - (TagClass_IS_SUBCLASS_OF_TagClass>*)-Tag
 WHERE s.name == "TennisPlayer";

 PRINT TagClass2;
}

gsql example1.gsql

Examples of Variable Hop Queries

Example 1. Directed Edge Pattern Unconstrained Repetition

Linux Bash

Output of Example 1

5/13/25, 1:39 PM TigerGraph Documentation

151

5/13/25, 1:39 PM TigerGraph Documentation

152

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [
 {
 "v_id": "211",
 "attributes": {
 "name": "Person",
 "id": 211,
 "url": "http://dbpedia.org/ontology/Person"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "0",
 "attributes": {
 "name": "Thing",
 "id": 0,
 "url": "http://www.w3.org/2002/07/owl#Thing"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "149",
 "attributes": {
 "name": "Athlete",
 "id": 149,
 "url": "http://dbpedia.org/ontology/Athlete"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "59",
 "attributes": {
 "name": "TennisPlayer",
 "id": 59,
 "url": "http://dbpedia.org/ontology/TennisPlayer"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "239",

5/13/25, 1:39 PM TigerGraph Documentation

153

Example 2. Find the immediate superclass of the TagClass whose name is "TennisPlayer".

(This is equivalent to a 1-hop non-repeating pattern.)

You can copy the above GSQL script to a file named example2.gsql, and invoke this script

file in a Linux shell.

 "attributes": {
 "name": "Agent",
 "id": 239,
 "url": "http://dbpedia.org/ontology/Agent"
 },
 "v_type": "TagClass"
 }
]}]
}

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {

 TagClass1 = {TagClass.*};

 TagClass2 = SELECT t
 FROM TagClass1:s - (TagClass_IS_SUBCLASS_OF_TagClass>*1)-Ta
 WHERE s.name == "TennisPlayer";

 PRINT TagClass2;
}

gsql example2.gsql

Exmaple 2. Exactly 1 Repetition of A Directed Edge

Linux Bash

Output of Example 2

5/13/25, 1:39 PM TigerGraph Documentation

154

Example 3. Find the 1 to 2 hops direct and indirect superclasses of the TagClass whose

name is "TennisPlayer".

You can copy the above GSQL script to a file named example3.gsql, and invoke this script

file in a Linux shell.

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [{
 "v_id": "149",
 "attributes": {
 "name": "Athlete",
 "id": 149,
 "url": "http://dbpedia.org/ontology/Athlete"
 },
 "v_type": "TagClass"
 }]}]
}

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {

 TagClass1 = {TagClass.*};

 TagClass2 = SELECT t
 FROM TagClass1:s - (TagClass_IS_SUBCLASS_OF_TagClass>*1..2)
 WHERE s.name == "TennisPlayer";

 PRINT TagClass2;
}

Example 3. 1 to 2 Repetition Of A Directed Edge.

Linux Bash

5/13/25, 1:39 PM TigerGraph Documentation

155

Example 4. Find the superclasses within 2 hops of the TagClass whose name is

"TennisPlayer".

gsql example3.gsql

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [
 {
 "v_id": "149",
 "attributes": {
 "name": "Athlete",
 "id": 149,
 "url": "http://dbpedia.org/ontology/Athlete"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "211",
 "attributes": {
 "name": "Person",
 "id": 211,
 "url": "http://dbpedia.org/ontology/Person"
 },
 "v_type": "TagClass"
 }
]}]
}

Output of Example 3

Example 4. Up-to 2 Repetition Of A Directed Edge.

5/13/25, 1:39 PM TigerGraph Documentation

156

You can copy the above GSQL script to a file named example4.gsql, and invoke this script

file in a Linux shell.

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {

 TagClass1 = {TagClass.*};

 TagClass2 = SELECT t
 FROM TagClass1:s - (TagClass_IS_SUBCLASS_OF_TagClass>*..2)-
 WHERE s.name == "TennisPlayer";

 PRINT TagClass2;
}

gsql example4.gsql

Linux Bash

Output of Example 4

5/13/25, 1:39 PM TigerGraph Documentation

157

Example 5. Find the superclasses at least one hop from the TagClass whose name is

"TennisPlayer".

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [
 {
 "v_id": "211",
 "attributes": {
 "name": "Person",
 "id": 211,
 "url": "http://dbpedia.org/ontology/Person"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "149",
 "attributes": {
 "name": "Athlete",
 "id": 149,
 "url": "http://dbpedia.org/ontology/Athlete"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "59",
 "attributes": {
 "name": "TennisPlayer",
 "id": 59,
 "url": "http://dbpedia.org/ontology/TennisPlayer"
 },
 "v_type": "TagClass"
 }
]}]
}

Example 5. At Least 1 Repetition Of A Directed Edge.

5/13/25, 1:39 PM TigerGraph Documentation

158

You can copy the above GSQL script to a file named example5.gsql, and invoke this script

file in a Linux shell.

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {

 TagClass1 = {TagClass.*};

 TagClass2 =SELECT t
 FROM TagClass1:s - (TagClass_IS_SUBCLASS_OF_TagClass>*1..)-Ta
 WHERE s.name == "TennisPlayer";

 PRINT TagClass2;
}

gsql example5.gsql

Linux Bash

Output of Example 5

5/13/25, 1:39 PM TigerGraph Documentation

159

5/13/25, 1:39 PM TigerGraph Documentation

160

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [
 {
 "v_id": "211",
 "attributes": {
 "name": "Person",
 "id": 211,
 "url": "http://dbpedia.org/ontology/Person"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "0",
 "attributes": {
 "name": "Thing",
 "id": 0,
 "url": "http://www.w3.org/2002/07/owl#Thing"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "149",
 "attributes": {
 "name": "Athlete",
 "id": 149,
 "url": "http://dbpedia.org/ontology/Athlete"
 },
 "v_type": "TagClass"
 },
 {
 "v_id": "239",
 "attributes": {
 "name": "Agent",
 "id": 239,
 "url": "http://dbpedia.org/ontology/Agent"
 },
 "v_type": "TagClass"
 }
]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

161

Example 6. Find the 3 most recent comments that are liked or created by Viktor Akhiezer,

and the total number of comments related to (created or liked by) Viktor Akhiezer.

You can copy the above GSQL script to a file named example6.gsql, and invoke this script

file in a Linux shell.

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {
 SumAccum<int> @@commentCnt = 0;

 #start with all persons.
 Seed = {Person.*};

 # find top 3 latest comments that is liked or created by Viktor Akhiezer
 # and the total number of comments related to Viktor Akhiezer
 Top3Comments = SELECT p
 FROM Seed:s - ((<Comment_HAS_CREATOR_Person|Person_LIKES_Comment>)*1)
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 ACCUM @@commentCnt += 1
 ORDER BY p.creationDate DESC
 LIMIT 3;

 PRINT Top3Comments;
 # total number of comments related to Viktor Akhiezer
 PRINT @@commentCnt;
}

gsql example6.gsql

Example 6. Disjunctive 1-Repetition Directed Edge.

Linux Bash

Output of Example 6

5/13/25, 1:39 PM TigerGraph Documentation

162

5/13/25, 1:39 PM TigerGraph Documentation

163

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [
 {"Top3Comments": [
 {
 "v_id": "2061584720640",
 "attributes": {
 "browserUsed": "Chrome",
 "length": 4,
 "locationIP": "194.62.64.117",
 "id": 2061584720640,
 "creationDate": "2012-09-06 06:46:31",
 "content": "fine"
 },
 "v_type": "Comment"
 },
 {
 "v_id": "2061586872389",
 "attributes": {
 "browserUsed": "Chrome",
 "length": 90,
 "locationIP": "31.216.177.175",
 "id": 2061586872389,
 "creationDate": "2012-08-28 14:54:46",
 "content": "About Hector Berlioz, his compositions Symphonie fan
 },
 "v_type": "Comment"
 },
 {
 "v_id": "2061590804929",
 "attributes": {
 "browserUsed": "Chrome",
 "length": 83,
 "locationIP": "194.62.64.117",
 "id": 2061590804929,
 "creationDate": "2012-09-04 16:16:56",
 "content": "About Muttiah Muralitharan, mit by nine degrees, fiv
 },
 "v_type": "Comment"
 }
]},

5/13/25, 1:39 PM TigerGraph Documentation

164

 {"@@commentCnt": 152}
]
}

5/13/25, 1:39 PM TigerGraph Documentation

165

Multiple Hop Patterns

Repeating the same hop is useful sometimes, but the real power of pattern matching

comes from expressing multi-hop patterns, with specific characteristics for each hop. For

example, the well-known product recommendation phrase "People who bought this

product also bought this other product", is expressed by the following 2-hop pattern:

As you see, a 2-hop pattern is a simple concatenation and merging of two 1-hop patterns

where the two patterns share a common endpoint. Below, Y:y is the connecting end point.

Similarly, a 3-hop pattern concatenates three 1-hop patterns in sequence, each pair of

adjacent hops sharing one end point. Below, Y:y and Z:z are the connecting end points.

In general, we can connect n 1-hop patterns into a n-hop pattern. The database will search

the graph topology to find subgraphs that match this n-hop pattern.

A multi-hop pattern has two endpoint vertex sets and one or more intermediate vertex

sets. If the query does not need to express any conditions for an intermediate vertex set,

FROM This_Product:p -(<Bought:b1)- Customer:c -(Bought>:b2)- Product:p2
WHERE p2 != p

FROM X:x - (E1:e1) - Y:y - (E2>:e2) - Z:z

FROM X:x - (E2>:e2) -Y:y - (<E3:e3) - Z:z - (E4:e4) - U:u

Multiple Hop Pattern Shortest Path Semantics

2-hop pattern

3-hop pattern

Unnamed Intermediate Vertex Set

5/13/25, 1:39 PM TigerGraph Documentation

166

then the vertex set can be omitted and the two surrounding edge sets can be joined with a

simple "." For example, in the 2-hop pattern example above, if we did not need to specify

that the intermediate vertex type is Y, nor need to refer to that vertex set in any of the

query's other clauses (such as WHERE or ACCUM), then the pattern can be reduced as

follows:

If a pattern has a Kleene star to repeat an edge, GSQL pattern matching selects only the

shortest paths which match the pattern. If we did not apply this restriction, computer

science theory tells us that the computation time could be unbounded or extreme (NP, to

be technical). If we instead matched ALL paths regardless of length when a Kleene star is

used without an upper bound, there could be an infinite number of matches, if there are

loops in the graph. Even without loops or with an upper bound, the number of paths to

check grows exponentially with the number of hops.

For the pattern 1 - (_*) - 5 in Figure 3 above, you can see the following:

FROM X:x - (E1:e1.E2>:e2) - Z:z

Figure 3. Shortest Path Illustration

Shortest paths Only for Variable Length Patterns

5/13/25, 1:39 PM TigerGraph Documentation

167

• There are TWO shortest paths: 1-2-3-4-5 and 1-2-6-4-5

◦ These have 4 hops, so we can stop searching after 4 hops. This makes the task

tractable.

• If we search for ALL paths which do not repeat any vertices:

◦ There are THREE non-repeated-vertex paths: 1-2-3-4-5, 1-2-6-4-5, and 1-2-9-10-11-

12-4-5

◦ The actual number of matches is small, but number of paths to consider is NP.

• If we search for ALL paths which do not repeat any edges:

◦ There are FOUR non-repeated-edge paths: 1-2-3-4-5, 1-2-6-4-5, 1-2-9-10-11-12-4-5,

and 1-2-3-7-8-3-4-5

◦ The actual number of matches is small, but number of paths to consider is NP.

• If we search for ALL paths with no restrictions:

◦ There are infinite matches, because we can go around the 3-7-8-3 cycle any

number of times.

Each vertex set or edge set in a pattern (except edges with Kleene stars) can have an alias

variable associated with it. When the query runs and finds matches, it associates, or binds,

each alias to the matching vertices or edges in the graph.

TigerGraph 2.4 has certain restrictions on how accumulators and aliases can be used. Some

or all of these restrictions will be lifted in future releases. We elaborate on them below.

The SELECT clause specifies the output vertex set of a SELECT statement. For a multiple-

hop pattern, we can only select one of the two endpoints of the pattern. None of the

intermediate aliases can be selected. The example below shows the two possible choices

for the given pattern:

Additional Details about Pattern Matching

SELECT Clause

SELECT Clause Can Select End Points Only

5/13/25, 1:39 PM TigerGraph Documentation

168

For a multiple-hop pattern, if you don't need to refer to the intermediate vertex points, you

can just use "." to connect the edge patterns, giving a more succinct representation. For

example, below we remove y and z, and connect E2, <E3 and E4 using the period symbol.

Note that you cannot have an alias for a multi-hop sequence like E2>.<E3.E4.

In a multiple-hop pattern, the WHERE clause is a conjunction of local hop predicates

(conditions), with the exception that the starting end point can appear in the last hop local

predicate.

Consider a pattern

• Local hop predicate means a predicate can refer to a single hop’s alias (x_i, e_i,

x_(i+1)) only.

#select starting end point x
SELECT x
FROM X:x-(E2>:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u;

#select ending end point u
SELECT u
FROM X:x-(E2>:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u;

#select starting end point x
SELECT x
FROM X:x-(E2>:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u;

#if we don't need to access y, z, we can write
SELECT u
FROM X:x-(E2>.<E3.E4)-U:u;

X1:x1-(E1:e1)-X2:x2-(E2:e2)-X3:x3-(E3:e3)-X4:x4

FROM Clause

WHERE Clause

Omitting

5/13/25, 1:39 PM TigerGraph Documentation

169

• Last hop local predicate can refer to the pattern's starting end point. I.e. (x1, x3, e3,

x4).

• A WHERE clause is a conjunction (AND) of local hop predicates.

• Kleene Star breaks local hop predicate. When a local hop's edge has kleene star, we

cannot compose a local predicate using the local alias'.

In the current version of GSQL, only certain parts of a pattern (and their corresponding

aliases) are available in ACCUM and POST-ACCUM clauses. Refer to the example pattern

and its highlighted parts in Figure 4 below.

1. Accumulators can only be attached to the pattern's endpoints (x and u in the figure).

The accumulation statements may only access data from either the left endpoint (x)

or the rightmost hop (z, e4, and u). Below is an example of a valid ACCUM clause.

(x, e2, y) belongs to the 1-hop
(y, e3, z) belongs to the 2-hop
(x, z, e4, u) is the last hop local predicate
SELECT x
FROM X:x-(E2>:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u
WHERE x.age > y.age AND y.name != z.name AND (x.salary + z.salary) < u.sal

(x,y) belongs to the 1-hop
which has *, then semantic error will be given
SELECT x
FROM X:x-(E2>*:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u
WHERE x.age > y.age AND y.name != z.name AND (x.salary + z.salary) < u.sal

Figure 4. Example pattern to show ACCUM behavior

ACCUM and POST-ACCUM Clauses

WHERE Clause Support "AND" of Local Predicate

Kleene Star Break Local Predicate

5/13/25, 1:39 PM TigerGraph Documentation

170

2. In the POST-ACCUM clause, only the pattern's endpoints can be accessed.

3. For queries in Distributed mode, accumulators may only be on the right endpoint (x in

the figure).

The example below shows a valid ACCUM clause:

Example 1. Find the 3rd superclass of the Tag class whose name is "TennisPlayer".

You can copy the above GSQL script to a file named example1.gsql, and invoke this script

file in a Linux shell.

(z,e4, u) belongs to the last-hop aliass
(x, u) are the end points of the pattern
SELECT x
FROM X:x-(E2>*:e2)-Y:y-(<E3:e3)-Z:z-(E4:e4)-U:u
ACCUM x.@cnt += z.id, u.@cnt += e4.id

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {

 TagClass1 = {TagClass.*};

 TagClass2 = SELECT t
 FROM TagClass1:s - (TagClass_IS_SUBCLASS_OF_TagClass>.TagClass_IS_SUBC
 WHERE s.name == "TennisPlayer";

 PRINT TagClass2;
}

gsql example1.gsql

Examples of Multiple Hop Pattern Match

ACCUM To The Two End Points of A Pattern

Example1. Succict Representation Of Multiple-hop Pattern

Linux Bash

5/13/25, 1:39 PM TigerGraph Documentation

171

Example 2. Find in which continents were the 3 most recent messages in Jan 2011

created.

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"TagClass2": [{
 "v_id": "239",
 "attributes": {
 "name": "Agent",
 "id": 239,
 "url": "http://dbpedia.org/ontology/Agent"
 },
 "v_type": "TagClass"
 }]}]
}

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {

 SumAccum<String> @continentName;

 msg = {Comment.*, Post.*};

 accMsgContinent =
 SELECT s
 FROM msg:s-((Post_IS_LOCATED_IN_Country>|Comment_IS_LOCATED_IN_Country
 WHERE year(s.creationDate) == 2011 AND month(s.creationDate) == 1
 ACCUM s.@continentName = t.name
 ORDER BY s.creationDate DESC
 LIMIT 3;

 PRINT accMsgContinent;
}

Output of Example 1

Example1. Disjunction In A Succict Representation Of Multiple-hop Pattern

5/13/25, 1:39 PM TigerGraph Documentation

172

You can copy the above GSQL script to a file named example2.gsql, and invoke this script

file in a Linux shell.

gsql example2.gsql

Linux Bash

Output of Example 2

5/13/25, 1:39 PM TigerGraph Documentation

173

5/13/25, 1:39 PM TigerGraph Documentation

174

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"accMsgContinent": [
 {
 "v_id": "824640012997",
 "attributes": {
 "browserUsed": "Firefox",
 "length": 7,
 "locationIP": "27.112.21.246",
 "@continentName": "Asia",
 "id": 824640012997,
 "creationDate": "2011-01-31 23:54:28",
 "content": "no way!"
 },
 "v_type": "Comment"
 },
 {
 "v_id": "824636727408",
 "attributes": {
 "browserUsed": "Firefox",
 "length": 3,
 "locationIP": "31.2.225.17",
 "@continentName": "Europe",
 "id": 824636727408,
 "creationDate": "2011-01-31 23:57:46",
 "content": "thx"
 },
 "v_type": "Comment"
 },
 {
 "v_id": "824634837528",
 "attributes": {
 "imageFile": "",
 "browserUsed": "Internet Explorer",
 "length": 115,
 "locationIP": "87.251.6.121",
 "@continentName": "Asia",
 "id": 824634837528,
 "creationDate": "2011-01-31 23:58:03",
 "lang": "tk",
 "content": "About Adolf Hitler, iews. His writings and methods wer

5/13/25, 1:39 PM TigerGraph Documentation

175

Example 3. Find Viktor Akhiezer's favorite author of 2012 whose last name begins with

character 'S', and how many LIKES Viktor give to the author's post or comment.

You can copy the above GSQL script to a file named example3.gsql, and invoke this script

file in a Linux shell.

 },
 "v_type": "Post"
 }
]}]
}

USE GRAPH ldbc_snb
SET syntax_version="v2"

INTERPRET QUERY () FOR GRAPH ldbc_snb {
 SumAccum<int> @likesCnt;
 PersonAll = {Person.*};

 FavoriteAuthors = SELECT t
 FROM PersonAll:s-((Person_LIKES_Comment>|Person_LIKES_Post>
 WHERE s.firstName == "Viktor" AND s.lastName == "Akhiezer"
 ACCUM t.@likesCnt +=1;

 PRINT FavoriteAuthors[FavoriteAuthors.firstName, FavoriteAuthors.lastNa
}

gsql example3.gsql

Example 3. Multiple-hop Pattern With Accumulator Applied To All Matched Paths

Linux Bash

Output of Example 3

5/13/25, 1:39 PM TigerGraph Documentation

176

Using graph 'ldbc_snb'
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"FavoriteAuthors": [
 {
 "v_id": "8796093025410",
 "attributes": {
 "FavoriteAuthors.firstName": "Priyanka",
 "FavoriteAuthors.lastName": "Singh",
 "FavoriteAuthors.@likesCnt": 1
 },
 "v_type": "Person"
 },
 {
 "v_id": "2199023260091",
 "attributes": {
 "FavoriteAuthors.firstName": "Janne",
 "FavoriteAuthors.lastName": "Seppala",
 "FavoriteAuthors.@likesCnt": 1
 },
 "v_type": "Person"
 },
 {
 "v_id": "15393162796846",
 "attributes": {
 "FavoriteAuthors.firstName": "Mario",
 "FavoriteAuthors.lastName": "Santos",
 "FavoriteAuthors.@likesCnt": 1
 },
 "v_type": "Person"
 }
]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

177

Application And Benchmark Queries

We have demonstrated the basic pattern match syntax. You should have mastered the

basics by this point. The next step is to see more examples and practice more.

In this example, we want to recommend some messages (comments or posts) to the

person Viktor Akhiezer.

How do we do this?

One way is to find Others who likes the same messages Viktor likes. And then recommend

the messages that Others like but Viktor have not seen. The pattern is roughly like below

• Viktor - (Likes>) - Message - (<Likes) - Others

• Others - (Likes>) - NewMessage

• Recommend NewMessage to Viktor

However, this is too fine granularity, and we are overfitting the message level data with a

collaborative filtering algorithm. The intuition is that two persons are similar to each other

when their "liked" messages fall into the same category (tag). This makes more sense and

common than finding two persons that "likes" the same set of messages. As a result, one

way to avoid this overfitting is to go one level above. That is, instead of finding common

messages as a similarity base, we find common messages' tags as a similarity base.

Person A and Person B are similar if they like messages that belong to the same tag. This

scheme fixes the overfitting problem. In pattern match vocabulary, we have

• Viktor - (Likes>) - Message - (Has>) - Tag - (<Has) - Message - (<Likes) - Others

• Others - (Likes>) - NewMessage

• Recommend NewMessage to Viktor

GSQL. RecommendMessage Application.

A Recommendation Application

5/13/25, 1:39 PM TigerGraph Documentation

178

This time, we create the query first, and interpret the query by calling the query name with

parameters.

If we are satisfied with this query, we can use "install query queryName" to get the

compiled query installed which has the best performance.

GSQL Recommendation Algorithm

5/13/25, 1:39 PM TigerGraph Documentation

179

use graph ldbc_snb
set syntax_version="v2"
set query_timeout=60000

DROP QUERY RecommendMessage

CREATE QUERY RecommendMessage (String fn, String ln) FOR GRAPH ldbc_snb {

 SumAccum<int> @TagInCommon;
 SumAccum<float> @SimilarityScore;
 SumAccum<float> @Rank;
 OrAccum @Liked = false;

 Seed = {Person.*};

 #mark messages liked by Viktor
 MessageLiked =
 SELECT msg
 FROM Seed:s-((Person_LIKES_Comment>|Person_LIKES_Post>))-:msg
 WHERE s.firstName == fn AND s.lastName == ln
 ACCUM msg.@Liked = true;

 #calculate log similarity score for each persons share the same interes
 Others =
 SELECT p
 FROM Seed:s-((Person_LIKES_Comment>|Person_LIKES_Post>).(Comment_HA
 - ((<Comment_HAS_TAG_Tag|<Post_HAS_TAG_Tag).(<Person_LIKES_Comment
 WHERE s.firstName == fn AND s.lastName == ln
 ACCUM p.@TagInCommon +=1
 POST-ACCUM p.@SimilarityScore = log (1 + p.@TagInCommon);

 #recommend new messages to Viktor that have not liked by him.
 RecommendedMessage =
 SELECT msg
 FROM Others:o-((Person_LIKES_Comment>|Person_LIKES_Post>)) -
 WHERE msg.@Liked == false
 ACCUM msg.@Rank +=o.@SimilarityScore
 ORDER BY msg.@Rank DESC
 LIMIT 10;

 PRINT RecommendedMessage[RecommendedMessage.content, RecommendedMessag
}

INTERPRET QUERY RecommendMessage ("Viktor", "Akhiezer")
#try the second person with just parameter change.
INTERPRET QUERY RecommendMessage ("Adriaan", "Jong")

5/13/25, 1:39 PM TigerGraph Documentation

180

You can copy the above GSQL script to a file named app1.gsql, and invoke this script file in

linux command line.

gsql app1.gsql

Linux Bash

Output of App1

5/13/25, 1:39 PM TigerGraph Documentation

181

5/13/25, 1:39 PM TigerGraph Documentation

182

Using graph 'ldbc_snb'
The query RecommendMessage is dropped.
The query RecommendMessage has been added!
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"RecommendedMessage": [
 {
 "v_id": "1374394016924",
 "attributes": {
 "RecommendedMessage.@Rank": 4483.98584,
 "RecommendedMessage.content": "About Valley of the Damned, more, a
 },
 "v_type": "Comment"
 },
 {
 "v_id": "549760297481",
 "attributes": {
 "RecommendedMessage.@Rank": 4739.81299,
 "RecommendedMessage.content": "About Commonwealth of Independent S
 },
 "v_type": "Comment"
 },
 {
 "v_id": "2061588778928",
 "attributes": {
 "RecommendedMessage.@Rank": 4780.34961,
 "RecommendedMessage.content": "About Jonas Björkman, months, Björk
 },
 "v_type": "Comment"
 },
 {
 "v_id": "962077156194",
 "attributes": {
 "RecommendedMessage.@Rank": 4394.83643,
 "RecommendedMessage.content": "About Karl Marx, and a lower clAbou
 },
 "v_type": "Comment"
 },
 {
 "v_id": "549760294602",
 "attributes": {
 "RecommendedMessage.@Rank": 4855.49316,

5/13/25, 1:39 PM TigerGraph Documentation

183

 "RecommendedMessage.content": "About Indira Gandhi, Gandhi establi
 },
 "v_type": "Post"
 },
 {
 "v_id": "962077157761",
 "attributes": {
 "RecommendedMessage.@Rank": 4439.33496,
 "RecommendedMessage.content": "About Pliny the Elder, , wrote of h
 },
 "v_type": "Post"
 },
 {
 "v_id": "549756189846",
 "attributes": {
 "RecommendedMessage.@Rank": 4263.9873,
 "RecommendedMessage.content": "About Józef Piłsudski, l (from 1920
 },
 "v_type": "Post"
 },
 {
 "v_id": "1374394021321",
 "attributes": {
 "RecommendedMessage.@Rank": 4811.09473,
 "RecommendedMessage.content": "About Virtual Insanity, 3 on the UK
 },
 "v_type": "Comment"
 },
 {
 "v_id": "1374394013160",
 "attributes": {
 "RecommendedMessage.@Rank": 4637.67285,
 "RecommendedMessage.content": "About Peggy Lee, singing with Benny
 },
 "v_type": "Comment"
 },
 {
 "v_id": "549760292109",
 "attributes": {
 "RecommendedMessage.@Rank": 4828.72559,
 "RecommendedMessage.content": "About Ho Chi Minh, nam, as an anti-
 },
 "v_type": "Post"
 }
]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

184

When you are satisfied with your query in the GSQL interpret mode, you can now install it

as a generic service which has a much faster speed. Since we have been using "CREATE

QUERY .." syntax, the query is added into the catalog, we can set the syntax version and

install it.

#before install the query, need to set the syntax version
SET syntax_version="v2"
USE GRAPH ldbc_snb

#install query
INSTALL QUERY RecommendMessage

Install the query

GSQL Prepare Install Query

GSQL Run the Installed Query

5/13/25, 1:39 PM TigerGraph Documentation

185

5/13/25, 1:39 PM TigerGraph Documentation

186

GSQL > install query RecommendMessage
Start installing queries, about 1 minute ...
RecommendMessage query: curl -X GET 'http://127.0.0.1:9000/query/ldbc_snb/

[===
GSQL > run query RecommendMessage("Viktor", "Akhiezer")
{
 "error": false,
 "message": "",
 "version": {
 "schema": 0,
 "edition": "enterprise",
 "api": "v2"
 },
 "results": [{"RecommendedMessage": [
 {
 "v_id": "549760294602",
 "attributes": {
 "RecommendedMessage.@Rank": 4855.49414,
 "RecommendedMessage.content": "About Indira Gandhi, Gandhi establi
 },
 "v_type": "Post"
 },
 {
 "v_id": "549760292109",
 "attributes": {
 "RecommendedMessage.@Rank": 4828.72607,
 "RecommendedMessage.content": "About Ho Chi Minh, nam, as an anti-
 },
 "v_type": "Post"
 },
 {
 "v_id": "1374394021321",
 "attributes": {
 "RecommendedMessage.@Rank": 4811.09668,
 "RecommendedMessage.content": "About Virtual Insanity, 3 on the UK
 },
 "v_type": "Comment"
 },
 {
 "v_id": "2061588778928",
 "attributes": {
 "RecommendedMessage.@Rank": 4780.35107,
 "RecommendedMessage.content": "About Jonas Björkman, months, Björk
 },
 "v_type": "Comment"
 },

5/13/25, 1:39 PM TigerGraph Documentation

187

The above use log-cosine as a similarity measurement. We can also use cosine similarity

by using two persons liked messages.

 {
 "v_id": "549760297481",
 "attributes": {
 "RecommendedMessage.@Rank": 4739.81396,
 "RecommendedMessage.content": "About Commonwealth of Independent S
 },
 "v_type": "Comment"
 },
 {
 "v_id": "1374394013160",
 "attributes": {
 "RecommendedMessage.@Rank": 4637.67334,
 "RecommendedMessage.content": "About Peggy Lee, singing with Benny
 },
 "v_type": "Comment"
 },
 {
 "v_id": "1374394016924",
 "attributes": {
 "RecommendedMessage.@Rank": 4483.98633,
 "RecommendedMessage.content": "About Valley of the Damned, more, a
 },
 "v_type": "Comment"
 },
 {
 "v_id": "962077157761",
 "attributes": {
 "RecommendedMessage.@Rank": 4439.33447,
 "RecommendedMessage.content": "About Pliny the Elder, , wrote of h
 },
 "v_type": "Post"
 },
 {
 "v_id": "962077156194",
 "attributes": {
 "RecommendedMessage.@Rank": 4394.83594,
 "RecommendedMessage.content": "About Karl Marx, and a lower clAbou
 },
 "v_type": "Comment"
 },
 {
 "v_id": "549756189846",
 "attributes": {
 "RecommendedMessage.@Rank": 4263.98633,
 "RecommendedMessage.content": "About Józef Piłsudski, l (from 1920
 },
 "v_type": "Post"
 }

]}]

#when you are not using the TigerGraph System on your laptop,
to save resource, you can stop it by
gadmin stop
#when you need to start it again, use
gadmin start

Linux Bash: Shutdown The System

GSQL Recommendation Algorithm 2

5/13/25, 1:39 PM TigerGraph Documentation

188

]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

189

USE GRAPH ldbc_snb
SET syntax_version="v2"
SET query_timeout=60000

DROP QUERY RecommendMessage

CREATE QUERY RecommendMessage (String fn, String ln) FOR GRAPH ldbc_snb {

 SumAccum<int> @MsgInCommon = 0;
 SumAccum<int> @MsgCnt = 0 ;
 SumAccum<int> @@InputPersonMsgCnt = 0;
 SumAccum<float> @SimilarityScore;
 SumAccum<float> @Rank;
 SumAccum<float> @TagCnt = 0;
 OrAccum @Liked = false;
 float sqrtOfInputPersonMsgCnt;

 Seed = {Person.*};

 #mark messages liked by input user
 InputPerson =
 SELECT s
 FROM Seed:s-((Person_LIKES_Comment>|Person_LIKES_Post>))-:msg
 WHERE s.firstName == fn AND s.lastName == ln
 ACCUM msg.@Liked = true, @@InputPersonMsgCnt += 1;

 sqrtOfInputPersonMsgCnt = sqrt(@@InputPersonMsgCnt);

 #find common msg between input user and other persons
 Others =
 SELECT p
 FROM InputPerson:s-((Person_LIKES_Comment>|Person_LIKES_Post>))-:ms
 -((<Person_LIKES_Comment|<Person_LIKES_Post))-:p
 ACCUM p.@MsgInCommon += 1;

 #calculate cosine similarity score.
 #|AxB|/(sqrt(Sum(A_i^2)) * sqrt(Sum(B_i^2)))
 Others =
 SELECT o
 FROM Others:o-((Person_LIKES_Comment>|Person_LIKES_Post>))-:msg
 ACCUM o.@MsgCnt += 1
 POST-ACCUM o.@SimilarityScore = o.@MsgInCommon/(sqrtOfInputPersonM

 #recommend new messages to input user that have not liked by him.
 RecommendedMessage =
 SELECT msg
 FROM Others:o-((Person_LIKES_Comment>|Person_LIKES_Post>)) -
 WHERE msg.@Liked == false

5/13/25, 1:39 PM TigerGraph Documentation

190

We have made available all LDBC SNB benchmark queries translated into GSQL pattern

matching syntax. The benchmark queries are described in Sections 4 and 5 of the LDBC

Social Network Benchmark Reference .

You can find our GSQL pattern match translations of these queries on Github:

https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_patt

ern_match

Note we use CREATE/INSTALL/RUN QUERY instead of INTERPRET QUERY so that these

queries can be optimized and installed as REST services. There are three sets of queries:

• Interactive Short Queries

• Complex Short Queries

• Business Intelligence Queries

Also, you may want to use the GraphStudio UI to help you visualize and explore the graph

and to try your hand at writing your own queries.

 ACCUM msg.@Rank +=o.@SimilarityScore
 ORDER BY msg.@Rank DESC
 LIMIT 10;

 PRINT RecommendedMessage[RecommendedMessage.content, RecommendedMessag
}

INTERPRET query RecommendMessage("Viktor", "Akhiezer")

LDBC SNB Benchmark Queries

5/13/25, 1:39 PM TigerGraph Documentation

http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
http://ldbc.github.io/ldbc_snb_docs/ldbc-snb-specification.pdf
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_pattern_match
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_pattern_match
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_pattern_match
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_pattern_match/interactive_short
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_pattern_match/interactive_short
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_pattern_match/interactive_complex
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_pattern_match/interactive_complex
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_pattern_match/business_intelligence
https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph/queries_pattern_match/business_intelligence

191

TigerGraph Platform Overview

Version 2.1 to 2.3. Copyright (c) 2019 TigerGraph. All RIghts Reserved.

As the world’s first and only Native Parallel Graph (NPG) system, TigerGraph is a complete,

distributed, graph analytics platform supporting web-scale data analytics in real time. The

TigerGraph NPG is built around both local storage and computation, supports real-time

graph updates, and works like a parallel computation engine. These capabilities provide

the following unique advantages:

• Fast data loading speed to build graphs - able to load 50 to 150 GB of data per hour,

per machine

• Fast execution of parallel graph algorithms - able to traverse hundreds of million of

vertices/edges per second per machine

• Real-time updates and inserts using REST - able to stream 2B+ daily events in real-

time to a graph with 100B+ vertices and 600B+ edges on a cluster of only 20

commodity machines

• Ability to unify real-time analytics with large scale offline data processing - the first

and only such system

See the Resources section of our main website www.tigergraph.com to find white

papers and other technical reports about the TigerGraph system.

The TigerGraph Platform runs on standard, commodity-grade Linux servers. The core

components (GSE and GPE) are implemented in C++ for optimal performance. TigerGraph

system is designed to fit into your existing environment with a minimum of fuss.

• Data Sources : The platform includes a flexible, high-performance data loader which

can stream in tabular or semi-structured data, while the system is online.

• Infrastructure : The platform is available for on-premises, cloud, or hybrid use.

• Integration : REST APIs are provided to integrate your TigerGraph with your existing

enterprise data infrastructure and workflow.

System Overview

5/13/25, 1:39 PM TigerGraph Documentation

https://www.tigergraph.com/resources/
https://www.tigergraph.com/resources/
https://www.tigergraph.com/
https://www.tigergraph.com/

192

The figure below takes a c loser loo k at the TigerGraph platform itself:

5/13/25, 1:39 PM TigerGraph Documentation

193

Within the TigerGraph system, a message-passing design is used to coordinate the

activities of the components. RESTPP, an enhanced RESTful server, is central to the task

management. Users can choose how they wish to interact with the system:

• GSQL client. One TigerGraph instance can support multiple GSQL clients, on remote

nodes.

• GraphStudio - our graphical user interface, which provides most of the basic GSQL

functionality, with a graphical and intuitive interface.

• REST API. Enterprise applications which need to run the same queries many times can

maximize their efficiency by communicating directly with RESTPP.

• gAdmin is used for system adminstration.

5/13/25, 1:39 PM TigerGraph Documentation

194

Name Refers to

DDL

Data Definition Language - a generic term for a

set of commands used to define a database

schema. The GSQL Language includes DDL

commands. In GraphStudio, the Design Schema

function.

Dictionary (DICT)

The shared storage space for storing metadata

about the graph store's configuration and state,

including the catalog (graph schema, loading

jobs, and queries).

DML

Data Manipulation Language - a generic term

for a set of commands used to add, modify,

and delete data from a database. Query

commands are often considered a part of DML,

even a pure query statement does not

manipulate (change) the data. The GSQL

Language includes full DML capability for

query, add (insert), delete, and modify (update)

commands.

gadmin

The system utility for configuring and

managing the TigerGraph System. Analogous

to mysqladmin.

gbar

Graph Backup and Restore. TigerGraph's utility

program for backing up and restoring system

data.

GPE

Graph Processing Engine. The server

component which accepts requests from the

REST++ server for querying and updating the

graph store and which returns data.

Graph Store

The component which logically and physically

stores the graph data and provides access to

the data in a fast and memory-efficient way. We

use the term graph store to distinguish it from

conventional graph databases.

Glossary

5/13/25, 1:39 PM TigerGraph Documentation

195

GraphStudio UI

The browser-based User Interface that enables

the user to interact with the TigerGraph system

in a visual and intuitive way, as an alternative to

the GSQL Shell. The GraphStudio UI includes

the following components: Schema Designer,

Data Mapper, Data Loader, Graph Explorer, and

Query Editor.

GSE
Graph Storage Engine. The processing

component which manages the Graph Store.

GSQL

The user program which interprets and

executes graph processing operations,

including (a) schema definition, (b) data

loading, and (c) data updates, and (d) data

queries.

GSQL Language
The language used to instruct and

communicate with the GSQL program.

GSQL Shell
The interactive command shell which may be

used when running the GSQL program.

HA

High Availability - a generic term describing a

computer system which has been architected

to a higher level of operational performance

(e.g., throughput and uptime) than would be

expected from a traditional single server node.

IDS

ID Service. A subcomponent of the GSE which

translates between user (external) IDs for data

objects and graph store (internal) IDs.

IUM
Installation, Upgrade, and Maintenance (generic

term). These functions are handled by gadmin.

Kafka

A free open-source "high-throughput distributed

messaging system" from the Apache Software

Foundation. Our distributed system

architecture is based on message

passing/queuing. Kafka is automatically

included during TigerGraph system installation

as one implementation of messaging passing.

https://kafka.apache.org/

A graph architecture and feature set which

enables one global graph to be viewed as

5/13/25, 1:39 PM TigerGraph Documentation

https://kafka.apache.org/
https://kafka.apache.org/

196

MultiGraph multiple logical subgraphs, each with its own

set of user privileges. The subgraphs can

overlap, meaning each subgraph can support

both shared and private data.

Native Parallel Graph

An architecture and technology which provides

for inherently highly-parallel and highly-scalable

graph data storage and analytics. The use of

vertex-level data+compute functionality is a key

component of Native Parallel Graph design.

Nginx

A free, open-source, high-performance HTTP

server and reverse proxy. Nginx is automatically

included during TigerGraph system installation.

https://nginx.org/en/

REST++ or

RESTPP

A server component which accepts RESTful

requests from clients, validates the requests,

invokes the GPE, and sends responses back to

the client. Additionally, REST++ provides a zero-

coding interface for users to define RESTful

endpoints.REST++ offers easy-to-use APIs for

customizing the logic of handling requests and

processing responses.

Single Sign-On (SSO)

A user authentication service that permits a

user to use one set of login credentials to

access multiple applications.

TigerGraph

Platform

The TigerGraph real-time graph data analytics

software system. The TigerGraph Platform

offers complete functionality for creating and

managing a graph database and for performing

data queries and analyses. The platform

includes the Graph Store and GSE , GPE,

REST++, GSQL, GraphStudio, plus some third-

party components, such as Apache Kafka and

Zookeeper.

TigerGraph

System

The TigerGraph platform and its languages.

Based on context, the term may also include

additional optional TigerGraph components

which have been installed.

A free open-source program from the Apache

Software Foundation, providing "a centralized

service for maintaining configuration

information, naming, providing distributed

5/13/25, 1:39 PM TigerGraph Documentation

https://nginx.org/en/
https://nginx.org/en/

197

Zookeeper
synchronization, and providing group services."

Used for running the TigerGraph system on a

cluster or other distributed system. Zookeeper

is automatically included during TigerGraph

system installation.

5/13/25, 1:39 PM TigerGraph Documentation

198

Knowledge Base and FAQs

Version 2.1 to 2.3. Copyright © 2015-2019 TigerGraph. All Rights Reserved.

If you have a problem with the procedure described in the TigerGraph Platform

Installation Guide, please contact support@tigergraph.com and summarize your issue

in the email subject.

Use the following command:

$ gsql --version

To see the version numbers of individual components of the platform:

$ gadmin version

Each release comes with documentation addressing how to perform an upgrade. Contact

support@tigergraph.com for help in your specific situation. As of this writing (May

2018), the TigerGraph Platform is releasing version 2.0, which is a major revision.

If you correctly installed the system and are now logged in as the TigerGraph system user,

you should be able to enter the GSQL shell by typing the gsql command from an

Getting Started and Basics

I need help installing the system.

What version of the TigerGraph platform am I running?

How do I upgrade from an earlier version?

I'm not sure how to run the TigerGraph system.

5/13/25, 1:39 PM TigerGraph Documentation

mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com

199

operating system prompt. If this command has never worked, then probably the

installation was not successful. If it works but you are not sure what to do next, please

see the GSQL Demo Examples guide.

If you believe you have installed the system correctly (e.g., you followed the TigerGraph

Platform Installation Guide and received no errors, and the gsql and gadmin

commands are now recognized), then please contact support@tigergraph.com and

summarize your issue in the email subject.

Different servers are needed for different purposes, but the TigerGraph should

automatically turn services on and off as needed. Please be sure that the Dictionary (dict)

server is on when using the TigerGraph system:

To check the status of servers:

$ gadmin status

Yes. For the GSQL shell and language, first enter the shell (type gsql from an operating

system prompt). Then type the help command, e.g.,

HELP

This gives you a short list of commands. Note that "help" itself is one of the listed

commands; there are help options to get more details about BASIC , QUERY

commands. For example,

HELP QUERY

The system does not seem to be running correctly.

Do I need to start the TigerGraph servers (e.g., GPE, GSE) to

run the system?

Does the TigerGraph system have in-tool help?

5/13/25, 1:39 PM TigerGraph Documentation

mailto:support@tigergraph.com
mailto:support@tigergraph.com

200

lists the command syntax for queries. See the "System Basics" section of the GSQL

Language Reference, Part 1: Defining Graphs and Loading Data. The gadmin

administration tool also has a help menu and a manual page:

$ gadmin -h

$ man gadmin

User-defined identifiers are case-sensitive. For example, the names User and user are

different. The GSQL language keywords (e.g., CREATE, LOAD, VERTEX) are not case-

sensitive, but in our documentation examples, we generally show keywords in ALL CAPS

to make them easy to distinguish.

An identifier consists of letters, digits, and the underscore. Identifiers may not begin with

a digit. Identifiers are case sensitive. Special naming rules apply to accumulators (see

the Query section).

The general rule is that string literals within the GSQL language are enclosed in double

quotation marks. For data that is to be imported (not yet in the GSQL data store), the

GSQL loading language lets the user specify how data fields are delimited within your

input files. The loading language has an option to specify whether single quotes or double

quotes are used to mark strings. For more help on loading, see the "Loading Data" section

of this document or of the GSQL Language Reference, Part 1: Defining Graphs and

Loading Data .

Is the GSQL language case sensitive?

What are the rules for naming identifiers?

When are quotation marks required? Single or double

quotes?

Can I run GSQL Shell commands in batch command?

5/13/25, 1:39 PM TigerGraph Documentation

201

Yes. You can create a text file containing a sequence of GSQL commands and then

execute that file. To execute from outside the shell:

To execute the command file from within the shell:

See also the "Language Basics" and "System Basics" sections of the GSQL Language

Reference, Part 1: Defining Graphs and Loading Data document.

Yes. Normally, an end-of-line character triggers execution of a line. You can use the

BEGIN and END keywords to mark off a multi-line block of text that should not be

executed until END is encountered.

This is an example of a loading statement split into multiple lines using BEGIN and END:

$ gsql filename

@filename

BEGIN
CREATE ONLINE_POST JOB load1 FOR GRAPH LaborForce {
 LOAD
 TO VERTEX user VALUES ($0, _, _, _),
 TO VERTEX occupation VALUES ($0, _),
 TO EDGE user_occupation VALUES ($0, $1);
}
END

I have a long command line. Can I split it into multiple lines?

Defining a Graph Schema

What are the components of a graph schema?

5/13/25, 1:39 PM TigerGraph Documentation

202

A TigerGraph graph schema consists of (A) one or more vertex types, (B) one or more

edge types, and (C) a graph type. Each edge type is defined to be either DIRECTED or

UNDIRECTED. The graph type is simply the list of vertex types and edges types which may

exist in the graph. For more: See the section "Defining a Graph Schema" in the GSQL

Language Reference, Part 1: Defining Graphs and Loading Data . Below is an example of

a graph schema containing two vertex types, one edge type, and one graph type:

Alternately, a generic CREATE GRAPH statement can be used:

Property graphs can model data fields ("properties") as either a property of a vertex or

edge or as a vertex linked to other vertices. If your property relates to an edge, it should be

an attribute of that edge (for example, a Date attribute of a CustomerBoughtProduct

edge). If your property relates to a vertex, you have a choice. The optimal choice depends

on how you will typically use this attribute in your application. If you will frequently search

or filter based on that data, we suggest your treat it as a separate vertex type. Otherwise,

we recommend modeling this data as an attribute of the principal vertex.

Each attribute of a vertex or edge has an assigned data type. v0.8 of the TigerGraph adds

support for many more attribute types.: DATETIME, UDT, and container types LIST, SET,

and MAP. The following is an abbreviated list. For a complete list and description, see the

section "Attribute Data Types" of the GSQL Language Reference, Part 1: Defining Graphs

and Loading Data .

CREATE VERTEX user (PRIMARY_ID user_id UINT, age UINT, gender STRING, post
CREATE VERTEX occupation (PRIMARY_ID occ_id STRING, occ_name STRING)
CREATE UNDIRECTED EDGE user_occupation (FROM user, TO occupation)
CREATE GRAPH LaborForce (user, occupation, user_occupation)

CREATE GRAPH LaborForce (*)

Should I model this data field as an attribute or as a vertex

type?

What data types do you support for vertex and edge

attributes?

5/13/25, 1:39 PM TigerGraph Documentation

203

Discontinued Feature

The UINT_SET and STRING_SET COMPRESS types have been discontinued since there is now

equivalent functionality from the more general SET and SET types.

Starting with v1.2, the TigerGraph MultiGraph service, an add-on option, supports logical

partitions of one unified master graph. Each partition is treated as an independent graph,

with its own set of user privileges. Graphs can overlap, to create a shared data space.

For performance reasons, we recommend to keep the number of different vertex and edge

types under 5,000. The upper limit for the number of different vertex and edge types is

approximately 10,000, depending on the complexity of the types.

From within the GSQL Shell, the ls command lists the catalog : the vertex type, edge

type, and graph type definitions, job definitions, query definitions, and some system

configuration settings. If you have not set your active graph, then ls will show only item

which have global scope. To see graph-specific items (including loading jobs and

queries), you must define an active graph.

Primitive Types Advanced Types Complex Types

INT

UINT

FLOAT

DOUBLE

BOOL

STRING

STRING COMPRESS

DATETIME

User-Defined Tuple (UDT)

LIST

SET

MAP

Can I define and load multiple graph schemas?

How many vertex and edge types can I include in a graph?

How do I check the definition of the current schema?

5/13/25, 1:39 PM TigerGraph Documentation

204

The GSQL language includes ADD, ALTER, and DROP commands. See the section "Update

Your Data" in the GSQL Demo Examples or the section "Modifying a Graph Schema" in the

GSQL Language Reference, Part 1: Defining Graphs and Loading Data for details. Note

that altering the graph schema will invalidate your old data loading and query jobs. You

should create and install new loading and query jobs.

To delete your entire catalog, containing not just your vertex, edge, and graph type

definitions, but also your loading job and query definitions, use the following command:

GSQL> DROP ALL

To delete just your graph schema, use the DROP GRAPH command:

GSQL> DROP GRAPH g1

UPDATE Deleting the graph schema also erases the contents of the graph store. To erase

the graph store without deleting the graph schema, use the following command:

GSQL> CLEAR GRAPH STORE

See also " How do I erase all data? "

See the GSQL Demo Examples for introductory examples. See GSQL Language Reference,

Part 1: Defining Graphs and Loading Data for the complete specifications. We also have a

cheatsheets: see GSQL Cheatsheets.

• Which loading method should I use?

How do I modify my graph schema?

How do I delete my entire graph schema?

Loading Data

How do I load data?

5/13/25, 1:39 PM TigerGraph Documentation

205

Created 01 May 2018

Beginning with v2.0, the TigerGraph platform introduces an extended syntax for defining

and running loading jobs which offers several advantages:

• The TigerGraph platform can handle concurrent loading jobs, which can greatly

increase throughput.

• The data file locations can be specified at compile time or at run time. Run-time

settings override compile-time settings.

• A loading job definition can include several input files. When running the job, the user

can choose to run only part of the job by specifying only some of the input files.

• Loading jobs can be monitored, aborted, and restarted.

The syntax for pre-v2.0 online loading and offline loading will be supported through v2.x,

but they are deprecated.

• Why has Offline loading been deprecated?

Online loading is preferred. Online loading can do everything that offline loading can do,

plus it has the following advantages:

1. Can run while other graph operations are in progress.

2. Uses multithreaded execution for faster performance.

3. Does not need to turn the GPE off, which saves time.

4. Its data source is specified at run time rather than at compile time.

5. Can add data to an existing graph.

Offline loading is deprecated and is now being emulated by online loading. Therefore,

there is no performance difference.

Here are the main differences between the styles. Note that v2.0 is superficially similar to

old offline loading, but it also supports run-time filenames. The actual behavior and

What are the syntax differences between v2.0 loading and

older online & offline loading?

5/13/25, 1:39 PM TigerGraph Documentation

206

performance of v2.0 loading is online loading with concurrency.

Syntax Detail v2.0 Loading Online Offline

CREATE JOB

statement

Keyword LOADING is

used:

CREATE LOADING
JOB job_name FOR
GRAPH graph_name
{...

Keyword

ONLINE_POST is

used:

CREATE
ONLINE_POST JOB
job_name FOR GRAPH
graph_name {...

Keyword LOADING is

used:

CREATE LOADING
JOB job_name FOR
GRAPH graph_name
{...

input source filename

LOAD statement

must refer to a valid

filepath or to a file

variable. LOAD
"myFile1" TO ...
LOAD fileVar2 TO
... Filepath can

specify one or more

machines in a

cluster. Optional

DEFINE FILENAME

statement to define a

file variable. File

variables can be

set/overridden at run

time: RUN myJob
USING
f1="myFile1",
f2="myFile2"

Filename appears in

the USING clause in

the RUN statement,

so one JOB can

handle only one input

file: RUN myJob
USING
FILENAME="myFile"

Filename appears in

the LOAD statement,

so one JOB can

handle multiple input

files if it has multiple

LOAD statements:

LOAD "myFile1" TO
... LOAD "myFile2"
TO ...

HEADER,

SEPARATOR, EOL,

QUOTE parameters

These parameters

appear at the end of

the LOAD statement:

LOAD "myFile" TO
... USING
SEPARATOR=",",
QUOTE="double"

These parameters

appear at the end of

the RUN statement:

RUN myJob USING
FILENAME="myFile",
SEPARATOR=",",
QUOTE="double"

These parameters

appear at the end of

the LOAD statement:

LOAD "myFile" TO
... USING
SEPARATOR=",",
QUOTE="double"

How do I convert an offline loading job to an online loading

job?

5/13/25, 1:39 PM TigerGraph Documentation

207

See the offline2online command, described in GSQL Language Reference, Part 1: Defining

Graphs and Loading Data .

The GSQL data loader reads text files organized in tabular or JSON format . Each field may

represent numeric, boolean, string, or binary data. Each data field may contain a single

value or a list of values (see How do I split a data field containing a list of values into

separate vertices and edges?).

Each tabular input data file should be structured as a table, in which each line represents a

row, and each row is a sequence of data fields, or columns. A data field can contain string

or numeric data. To represent boolean values, 0 or 1 is expected. A header line may be

included, to associate a name with each column. A designated character separates

columns. For example, if the designated separator character is the comma, this format is

commonly called CSV, for Comma-Separated Values. Below is an example of a CSV file

with a header. The uid column is int type, name is string type, avg_score is float type,

and is_member is boolean type. See simple examples in Real-Life Data Loading and

Querying Examples and a complete specification in the section "Creating a Loading Job" in

GSQL Language Reference, Part 1: Defining Graphs and Loading Data .

The loader does not filter out extra white space (spaces or tabs). The user should filter out

extra white space from the files before loading into the TigerGraph system.

uid,name,avg_score,is_member
100,"Lee, Tom",48.5,1
101,"Wu, Ming",33.9,0
102,"Gables, Anne", 72.2,1

What types of data can be read?

What is the format of an tabular input data file?

How should data fields be separated?

5/13/25, 1:39 PM TigerGraph Documentation

208

The data field (or token) separator can be any single ASCII character, including one of the

non-printing characters. The separator is specified with the SEPARATOR phrase in the

USING clause. For example, to specify the semicolon as the separator:

USING SEPARATOR=";"

To specify the tab character, use \t . To specify any ASCII character, use \nn where nn

is the character's ASCII code, in decimal. For example, to specify ASCII 30, the Record

Separator (RS):

USING SEPARATOR="\30"

TigerGraph does not require fields to be enclosed in quotation marks, but is it

recommended for string fields. If the QUOTE option is enabled, and if the loader finds a

pair of quotation marks, then the loader treats the text within the quotation marks as one

value, regardless of any separation characters that may occur in the value. The user must

specify whether strings are marked by single quotation marks or double quotation marks.

USING QUOTE="single"

or

USING QUOTE="double"

For example, if SEPARATOR="," and QUOTE="double" are set, then when the following

data are read,

"Lee, Tom" will be read as a single field. The comma between Lee and Tom will not

separate the field.

No. You must specify either QUOTE="single" or QUOTE="double" .

uid,name,avg_score,is_member
100,"Lee, Tom",48.5,1
101,"Wu, Ming",33.9,0
102,"Gables, Anne,"72.2,1

Should fields be enclosed in quotation marks?

Does the GSQL Loader automatically interpret quotation

marks as enclosing strings?

5/13/25, 1:39 PM TigerGraph Documentation

209

The following three parameters should be considered for every loading job from a tabular

input file:

The next two parameters, FILENAME and EOL are required if the job is an ONLINE_POST

job:

Parameter Meaning of value Allowed values Comments

SEPARATOR

specifies the special

character that

separates tokens

(columns) in the data

file

any single ASCII

character

Required.

"\t" for tab

"\nn" for ASCII

decimal code nn

HEADER

whether the data

file's first line is a

header line which

assigns names to the

columns.

In offline loading, the

Loader reads the

header line to obtain

mnemonic names for

the columns. In

online loading, the

Loader just skips the

header line.

"true", "false" Default = "false"

QUOTE

specifies whether

strings are enclosed

in

single quotation

marks: 'a string'
or double quotation

marks: "a string"

"single",
"double"

Optional; no default

value.

Parameter Meaning of value Allowed values Comments

What are the parameters (in the USING clause) for a loading

job?

5/13/25, 1:39 PM TigerGraph Documentation

210

All of the these five parameters are combined into one USING clause with a list of

parameter/value pairs. The parameters may appear in any order.

The location of the USING clause depends on whether the job is an offline loading job or

an online loading job. For offline loading, the USING clause appears at the end of the LOAD

statement. For example:

For online loading, the USING clause appears at the end of the RUN statement

You can define a header line (a sequence of column names) within a loading job using a

DEFINE HEADER statement, such as the following:

FILENAME
name of input data

file

any valid path to a

data file

Required for online

loading.

Not allowed for

offloading loading

EOL
the end-of-line

character
any ASCII sequence

Default = "\n"
(system-defined

newline character or

USING parameter1="value1", parameter2="value2",... , parameterN="valueN"

CREATE LOADING JOB load1 FOR GRAPH LaborForce{
 LOAD "jobs.csv" TO VERTEX occupation VALUES ($0, $1) USING HEADER="true"
}

CREATE ONLINE_POST JOB load2 FOR GRAPH LaborForce{
 LOAD TO VERTEX occupation VALUES ($0, $1);
}
RUN JOB load2 USING FILENAME="./jobs.csv", HEADER="true", SEPARATOR="|", Q

DEFINE HEADER head1 = "jobId", "jobName";

My data file doesn't have a header but I still want to name the

columns.

5/13/25, 1:39 PM TigerGraph Documentation

211

This statement must appear before the LOAD statement that wishes to use the header

definition. Then, the LOAD statement must set the USER_DEFINED_HEADER parameter in

the USING clause. A brief example is shown below:

Input data fields can always be referenced by position. They can also be referenced by

name, if a header has been defined.

•
◦ Position-based reference: The leftmost field is $0 , the next one is $1 , and so on.

◦ Name-based reference: $"name" , where name is one of the header column

names.

For example, if the header is

abc,def,ghi

then the third field can be referred to as either $2 or $"ghi" .

First, to clarify the task, consider a graph schema with two vertex types, Book and Genre,

and one edge type, book_genre:

CREATE ONLINE_POST JOB load2 FOR GRAPH LaborForce{
 DEFINE HEADER head1 = "jobId", "jobName";
 LOAD TO VERTEX occupation VALUES ($"jobId", $"jobName") USING USER_DEFIN
}

CREATE VERTEX Book (PRIMARY_ID bookcode STRING, title STRING)
CREATE VERTEX Genre (PRIMARY_ID genre_id STRING, genre_name STRING)
CREATE UNDIRECTED EDGE book_genre (FROM Book, TO Genre)
CREATE GRAPH book_rating (Book, Genre, book_genre)

How do I identify and refer to the input data fields?

How do I split (flatten) a data field containing a list of values

into separate vertices and edges?

create_book_schema.gsql

5/13/25, 1:39 PM TigerGraph Documentation

212

Further, each row of the input data file contains three fields: bookcode , title , and genres ,

where genres is a list of strings associated with the book. For example, the first few lines

of the data file could be the following:

The data line for bookcode 101 should generate one Book instance ("Harry Potter and the

Philosopher's Stone"), four Genre instances ("fiction", "adventure", "fantasy", "young adult"),

and four Book_Genre instances, connecting the Book instance to each of the Genre

instances. This process of creating multiple instances from a list field (e.g., the genres

field) is called flattening .

To flatten the data, we use a two-step load. The first LOAD statement uses the flatten()

function to split the multi-value field and stores the results in a TEMP_TABLE. The second

LOAD statement takes the TEMP_TABLE contents and writes them to the final edge type.

The flatten function has three arguments: (field_to_split, separator,

number_of_parts_in_one_field). In this example, we want to split $2 (genres), the

separator is the comma, and each field has only 1 part. So, the flatten function is called

with the following arguments: flatten($2, ",",1) . Using the example of data file ,

TEMP_TABLE t1 will then contain the following:

bookcode|title|genres
101|"Harry Potter and the Philosopher's Stone"|fiction,fantasy,young adult
102|"The Three-Body Problem"|fiction,science fiction,Chinese

CREATE ONLINE_POST JOB load_books FOR GRAPH book_rating {
 LOAD
 TO VERTEX Book VALUES ($0, $1),
 TO TEMP_TABLE t1(bookcode,genre) VALUES ($0, flatten($2,",",1));

 LOAD TEMP_TABLE t1
 TO VERTEX Genre VALUES($"genre", $"genre"),
 TO EDGE book_genre VALUES($"bookcode", $"genre");
}
RUN JOB load_books USING FILENAME="book.dat", SEPARATOR="|", HEADER="true"

bookcode genre

book.dat

load_books.gsql

5/13/25, 1:39 PM TigerGraph Documentation

213

The second LOAD statement uses the TEMP_TABLE t1 to generates Genre vertex

instances and book_genre_instances. While there are 7 rows shown in the sample

TEMP_TABLE, only 6 Genre vertices will be generated, because there are only 6 unique

values; "Fiction" appears twice. Seven book_genre edges will be generated, one for

each row in the TEMP_TABLE.

There is another version of the flatten function which has four arguments and which

supports a two-level grouping. That is, the field contains a list of groups, each group

composed of N subfields. The arguments are (field_to_split, group_separator,

sub_field_separator, number_of_parts_in_one_group). For example, suppose the data line

were organized this way instead:

Then the following loading statements would be appropriate:

101 fiction

101 adventure

101 fantasy

101 young adult

102 fiction

102 science fiction

102 Chinese

bookcode|title|genres
101|"Harry Potter and the Philosopher's Stone"|FIC:fiction,ADV:adventure,F
102|"The Three-Body Problem"|FIC:fiction,SF:science fiction,CHN:Chinese"

book2.dat

load_books2.gsql

5/13/25, 1:39 PM TigerGraph Documentation

214

Yes. Use online loading. Specifically, online loading lets you define a general loading

process without naming the data source. Every time you call an online loading job, you

name the source file. It can be a different file each time, or it can be the same file, if the

contents of the file are changing over time. Also, if it happens that the loader re-reads a

data line that it has encountered before, it will just reload the data (except for container

attributes, e.g., a LIST attribute, using a reduce() loading function. In that case, there is an

accumulative effect for re-reading a data line).

The GSQL Loading includes some built-in token functions (a token is one column or field

of a data input line.) A user can also define custom token functions. Please see the

section "Built-In Loader Token Functions" in the GSQL Language Reference, Part 1:

Defining Graphs and Loading Data .

No. One of the advantages of the TigerGraph loading system is the flexible relationship

between input files and resulting vertex and edge instances. In general, there is a many-to-

CREATE ONLINE_POST JOB load_books2 FOR GRAPH book_rating {
 LOAD
 TO VERTEX Book VALUES ($0, $1),
 TO TEMP_TABLE t1(bookcode,genre_id,genre_name) VALUES ($0, flatten($

 LOAD TEMP_TABLE t1
 TO VERTEX Genre VALUES($"genre_id", $"genre_name"),
 TO EDGE book_genre VALUES($"bookcode", $"genre_id");
}
RUN JOB load_books2 USING FILENAME="book2.dat", SEPARATOR="|", EOL="\n"

Can the TigerGraph system load data from a streaming

source?

I want to compute an attribute value. What built-in functions

are available?

Do I need a one-to-one correspondence between input files

and vertex types and edge types?

5/13/25, 1:39 PM TigerGraph Documentation

215

many relationship: one input file can generate many vertex and edge types.

From the LOAD statement perspective for a online loading job:

• Each LOAD statement refers to one input file.

• Each LOAD statement can have one or more resulting vertex types and one or more

resulting edge types.

• Hence, one LOAD statement can potentially describe the one-to-many mapping from

one input file to many resulting vertex and edge types.

• It is not necessary for every input line to always generate the same set of vertex types

and edge types. The WHERE clause in each TO VERTEX | TO EDGE clause can be used

to selectively choose and filter which input lines generate which resulting types.

If there is already data in the graph store and you wish to insert more data, you have a few

options. First, if you have bulk data stored in a file (local disk, remote or distributed

storage), you can us e Online Loading .

Second, if you have a few specific insertions, you can use the Upsert da ta command in

the RESTPP API User Guide . For Upsert, the data must be formatted in JSON format.

Third, you can write a query containing INSERT statements. The syntax is similar to SQL

INSERT. (See GSQL Language Reference Part 2 - Querying .) The advantage of query-

based INSERT is that the details (id values and attribute values) can be determined at run

LOAD
 TO VERTEX vertex_type VALUES (attr_expr...) [WHERE conditions],
 ...,
 TO VERTEX vertex_typeN VALUES (attr_expr...) [WHERE conditions],
 TO EDGE edge_type VALUES (attr_expr...) [WHERE conditions] [OPTION (opt
 ...,
 TO EDGE edge_typeN VALUES (attr_expr...) [WHERE conditions] [OPTION (opt
 [Parsing_Conditions];

Updating and Modifying Data

How can I insert / load more data?

5/13/25, 1:39 PM TigerGraph Documentation

216

time and even can be based on an exploration and analysis of the existing graph. The

disadvantage is that the query-insert job must be compiled first and data values must

either be hardcoded or supposed as input parameters.

You can modify the schema in several ways:

• Add new vertex or edge types

• Drop existing vertex or edge types

• Add or drop attributes from an existing vertex or edge type

Any schema change can invalidate existing loading jobs and queries.

See the section "Modifying a Graph Schema" in GSQL Language Reference Part 1 -

Defining Graphs and Loading Data .

To make a known modification of a known vertex or edge:

Option 1) Make a RESTPP endpoint request, to the POST /graph or DELETE /graph

endpoint. See the RESTPP API User Guide .

Option 2) The Loading language includes an upsert command. The UPSERT statement

performs a combined modify-or-add operation, depending on whether the indicated vertex

or edge already exists. Examples of UPSERT are described in the GSQL Demo Examples

document. The GSQL Language Reference Part 1 - Defining Graphs and Loading Data

provides a full specification .

Option 3) The query language now includes an UPDATE statement which enables

sophisticated selection of which vertices and edges to update and how to update them.

Likewise, there is an INSERT statement in the query language. See the GSQL Language

Reference Part 2 - Querying .

How can I modify the graph schema?

How do I modify data?

5/13/25, 1:39 PM TigerGraph Documentation

217

You can write a query which selects vertices or edges to be deleted. See the DELETE

subsections of the "Data Modification Statements" section in GSQL Language Reference

Part 2 - Querying .

If you wish to completely clear all the data in the graph store, use the CLEAR GRAPH STORE

-HARD command. Be very careful using this command; deleted data cannot be restored

(except from a Backup). Note that clearing the data does not erase the catalog definitions

of vertex, edge, and graph types. See also " How do I delete my entire graph schema? "

-HARD must be in all capital letters.

Yes. The GSQL Query Language is a full-featured graph query-and-data-computation

language. In addition, there is a small lightweight set of built-in query commands that can

inspect the set of stored vertices and edges, but these built-in commands do not support

graph traversal (moving from one vertex to another via edges). We refer to this as the

Standard Data Manipulation API or the Built-in Query Language (described in RESTPP API

User Guide and the GSQL Demo Examples)

For a first-time user: See the documents GSQL Demo Examples and then GSQL Language

Reference Part 2 - Querying .

For users with some experience, a reference card is now available: GSQL Query Language

Reference Card.

How do I selectively delete data?

How do I erase all the data?

Querying

Is there more than one TigerGraph query language?

What is the basic syntax for the TigerGraph query language?

5/13/25, 1:39 PM TigerGraph Documentation

218

The GSQL Query Language supports powerful graph querying, but it is also designed to

perform powerful computations. GSQL is Turing-complete, so it can be considered a

programming language. It can be used for simple SQL-like queries, but it also features

control flow (IF, WHILE, FOREACH), procedural calls, local and global variables, complex

data types, and accumulators to enable much more sophisticated use.

Three new types were introduced in v0.8: GroupByAccum, BitwiseAndAccum, and

BitwiseOrAccum. Version 0.8.1. added ArrayAccum. This is a quick summary. For a more

detailed explanation, see the "Accumulator Types" section of GSQL Language Reference

Part 2 - Querying .

In the following table, baseType means any of the following: INT, UINT, FLOAT, DOUBLE,

STRING, BOOL, VERTEX, EDGE, JSONARRAY, JSONOBJECT, DATETIME

Accumulators data types

SumAccum INT, UINT, FLOAT, DOUBLE, STRING

MaxAccum, MinAccum INT, UINT, FLOAT, DOUBLE, VERTEX

AvgAccum INT, UINT, FLOAT, DOUBLE (output is DOUBLE)

AndAccum, OrAccum BOOL

BitwiseAndAccum, BitwiseOrAccum INT (acting as a sequence of bits)

ListAccum, SetAccum, BagAccum baseType, TUPLE, STRING COMPRESS

ArrayAccum
accumulator, other than MapAccum,

HeapAccum, or GroupByAccum

MapAccum

key: baseType, TUPLE, STRING COMPRESS

value: baseType, TUPLE, STRING COMPRESS,

ListAccum, SetAccum, BagAccum, MapAccum,

HeapAccum

Is GSQL a query language or a programming language?

What types of accumulators are available?

5/13/25, 1:39 PM TigerGraph Documentation

219

See the section "Accumulators" in the GSQL Language Reference Part 2 - Querying

document.

Vertex and edge IDs (i.e., the unique identifier for each vertex or edge) are treated

differently than user-defined attributes. Special keywords must be used to refer to the

PRIMARY_ID, FROM, or TO id fields.

Vertices :

In a CREATE VERTEX statement, the PRIMARY_ID is required and is always listed first.

User-defined attributes are optional and come after the required ID fields.

In a built-in query, if you wish to select vertices by specifying an attribute value, you use

the attribute name (e.g., title):

In contrast, if you wish to reference vertices by the id value, the lowercase keyword

primary_id must be used. Note that that query does not use the id name pid .

HeapAccum< tuple_type >(heapSize, sortKey [,

sortKey_i]*)
TUPLE

GroupByAccum

key: baseType, TUPLE, STRING COMPRESS

accumulator: ListAccum, SetAccum,

CREATE VERTEX Book (PRIMARY_ID bookcode STRING, title STRING)
CREATE VERTEX Genre (PRIMARY_ID genre_id STRING, genre_name STRING)
CREATE UNDIRECTED EDGE book_genre (FROM Book, TO Genre)
CREATE GRAPH book_rating (Book, Genre, book_genre)

SELECT * FROM Book WHERE title=="The Three-Body Problem"

How do I use accumulators?

How do I reference the ID fields of a vertex or edge in a built-

in query?

5/13/25, 1:39 PM TigerGraph Documentation

220

Edges :

In a CREATE EDGE statement, the FROM and TO vertex identifiers are required and are

always listed first. The FROM and TO values should match the PRIMARY_ID values of a

source vertex and a target vertex. In the example below, rating and date_time are

user-defined optional attributes.

In a query, if you wish to select edges by specifying their FROM or TO vertex values, you

must use the lowercase keywords from_id or to_id .

The data are in JSON format. See the section "Output Statements" in the GSQL Language

Reference Part 2 - Querying .

Yes. The maximum output size for a query is 2GB. If the result of a query would be larger

than 2GB, the system may return no data. No error message is returned.

Also, for built-in queries (using the Standard Data Manipulation REST API), queries return

at most 10240 vertices or edges.

SELECT * FROM Book WHERE primary_id=="101"

CREATE UNDIRECTED EDGE book_genre (FROM Book, TO Genre, rating uint, date_

SELECT * FROM Book-(book_genre)->Genre WHERE from_id=="101"

What is the format of data returned by a query?

Is there an output size limit for a data query?

How and when do I use INSTALL QUERY and INSTALL

QUERY -OPTIMIZE?

5/13/25, 1:39 PM TigerGraph Documentation

221

INSTALL QUERY query_name is required for each GSQL query, after its initial CREATE

QUERY query_name statement and before using RUN QUERY query_name . After INSTALL

query has been executed, RUN QUERY can now be used.

Anytime after INSTALL QUERY, another statement, INSTALL QUERY -OPTIMIZE can be

executed once. This operation optimizes all previously installed queries, reducing their run

times by about 20%.

Optimize a query if query run time is more important to you than query installation time.

The initial INSTALL QUERY operation runs quickly. This is good for the development

phase.

The optional additional operation INSTALL QUERY -OPTIMIZE will take more time, but it

will speed up query run time. This makes sense for production systems.

Legal:

Illegal:

In short, yes. They will not be executed at the same time, but the installations will be

queued by the order in which they were received.

CREATE QUERY query1...
INSTALL QUERY query1
RUN QUERY query1(...)
...
INSTALL QUERY -OPTIMIZE # (optional) optimizes run time performance for
RUN QUERY query1(...) # runs faster than before

INSTALL QUERY -OPTIMIZE query_name

Should I run INSTALL QUERY -OPTIMIZE?

Can multiple users install queries at the same time?

5/13/25, 1:39 PM TigerGraph Documentation

222

Yes. A ListAccum is like an array, a 1-dimensional array. If you nest ListAccums as the

elements within an outer ListAccum, you have effectively made a 2-dimensional array.

Please read Section "Nested Accumulators" in the GSQL Language Reference Part 2 -

Querying for more details. Here is an example:

CREATE QUERY nestedAccumEx() FOR GRAPH anyGraph {
 ListAccum<ListAccum<INT>> @@_2d_list;
 ListAccum<ListAccum<ListAccum<INT>>> @@_3d_list;
 ListAccum<INT> @@_1d_list;
 SumAccum <INT> @@sum = 4;

 @@_1d_list += 1;
 @@_1d_list += 2;
 // add 1D-list to 2D-list as element
 @@_2d_list += @@_1d_list;

 // add 1D-enum-list to 2D-list as element
 @@_2d_list += [@@sum, 5, 6];
 // combine 2D-enum-list and 2d-list
 @@_2d_list += [[7, 8, 9], [10, 11], [12]];

 // add an empty 1D-list
 @@_1d_list.clear();
 @@_2d_list += @@_1d_list;

 // combine two 2D-list
 @@_2d_list += @@_2d_list;

 PRINT @@_2d_list;

 // test 3D-list
 @@_3d_list += @@_2d_list;
 @@_3d_list += [[7, 8, 9], [10, 11], [12]];
 PRINT @@_3d_list;
}

Can I make a 2-dimensional (or multi-dimensional) array?

Can I make nested container Accumulators?

5/13/25, 1:39 PM TigerGraph Documentation

223

Yes, please read Section "Nested Accumulators" in the GSQL Language Reference Part 2 -

Querying for more details. There are seven types of container accumulators: ListAccum,

SetAccum, BagAccum, MapAccum, ArrayAccum HeapAccum, and GroupByAccum. Here

the allowed combinations:

• ListAccum can contain ListAccum.

• MapAccum and GroupByAccum can contain any container accumulator except

HeapAccum.

• ArrayAccum is always nested.

Here is an example:

To write a loading job, you must know the format of the input data files, so that you can

describe to GSQL how to parse each data line and convert it into vertex and edge

attributes. To validate a loading job, that is, to check that the actual input data meet your

expectations, and that they produce the expected vertices and edges, you can use two

features of the RUN JOB command: the -DRYRUN option and loading a specified range of

data lines.

CREATE QUERY nestedMap() FOR GRAPH anyGraph
{
 MapAccum<String, MapAccum<int, String>> @@testMap;

 @@testMap += ("m1" -> (0 -> "value1"));
 @@testMap += ("m1" -> (1 -> "value2"));
 @@testMap += ("m2" -> (2 -> "value3"));

 IF @@testMap.containsKey("m1") THEN
 PRINT @@testMap.get("m1");
 END;
 //for map, we can get it's value, and then, get the value's key.
 PRINT @@testMap.get("m1").get(0);
}

Testing and Debugging

How can I validate a loading job?

5/13/25, 1:39 PM TigerGraph Documentation

224

The full syntax for an (offline) loading job is the following:

RUN JOB [-DRYRUN] [-n [first_line_num ,] last_line_num] job_name

The -DRYRUN option will read input files and process data as instructed by the job, but it

does not store data in the graph store.

The -n option limits the loading job to processing only a range of lines of each input

data file. The selected data will be stored in the graph store, so the user can check the

results. The -n flag accepts one or two arguments. For example,

-n 50 means read lines 1 to 50.

-n 10,50 means read lines 10 to 50.

The special symbol $ is interpreted as "last line", so -n 10,$ means reads from line 10

to the end.

The following command lists the log locations of the log files:

If the platform has been installed with default file locations, so that <TigerGraph_root_dir>

= /home/tigergraph/tigergraph, then the output would be the following:

As of v2.4, the GSQL log files have been moved in order to keep all logs in a standard

directory.

gadmin log

GPE : /home/tigergraph/tigergraph/logs/gpe/gpe1.out
GPE : /home/tigergraph/tigergraph/logs/GPE_1_1/log.INFO
GSE : /home/tigergraph/tigergraph/logs/gse/gse1.out
GSE : /home/tigergraph/tigergraph/logs/GSE_1_1/log.INFO
RESTPP : /home/tigergraph/tigergraph/logs/restpp/restpp1.out
RESTPP : /home/tigergraph/tigergraph/logs/RESTPP_1_1/log.INFO
RESTPP : /home/tigergraph/tigergraph/logs/RESTPP-LOADER_1_1/log.INFO
GSQL : /home/tigergraph/tigergraph/logs/gsql_server_log/GSQL_LOG

Where are the logs?

5/13/25, 1:39 PM TigerGraph Documentation

225

GPE : general system performance logs.

GSE : Graph services logs.

RESTPP : REST API call logs.

GSQL : General GSQL logs.

Each loading run creates a log file, stored in the folder

<TigerGraph_root_dir>/dev/gdk/gsql/output. The filename load_output.log is a link to the

most recent log file. This file contains summary statistics on the number of lines read, the

vertices created, and various types of errors encountered. Or, you can type a shell

command to find log paths "gadmin log".

The log files record detailed internal operations and state information in response to user

actions. They provide vital information for diagnosing and debugging your system. All log

files can be found in the /home/tigergraph/tigergraph/logs directory. Through typing the

command gadmin log, you will be given all the file paths of the most commonly used log

files.

GPE Logs - Graph Processing Engine Logs

GSE Logs - Graph Storage Engine Logs

GSQL Logs - System & Query Logs

RESTPP Logs - API call Logs

NGINX Logs - HTTP Request Logs

VIS Logs - GraphStudio Logs

Where are the log files of loading runs?

What are in the log files?

5/13/25, 1:39 PM TigerGraph Documentation

226

MultiGraph Overview

Version 1.2 to 2.3. Copyright © 2019. All Rights Reserved.

• Multiple Tenancy : Use one TigerGraph instance to support several completely

separate data sets, each with its own set of users. Each user community cannot see

the other user communities or other data sets.

• Fine-grained privileges on the same set of data : Role-based access control, available

on single graphs, grants permission for the privilege to run queries (include data

modification queries). In a single graph scheme, there is not a way to say "Query X can

be run by some users but not by others." Using multiple graphs defined over the same

set of data, each graph can have its own set of queries and own set of users, in effect

customizing who can run which queries.

• Overlapping graphs : Graphs can partially overlap, to enable a combination of shared

and private data.

• Hierarchical subgraphs : A Graph X can be defined to cover the domains of Graphs Y

and Z, that is, Graph X = (Graph Y) U (Graph Z). This provides an interesting way to

describe a data partitioning or parent-child structure. (This is not the same as defining

sub-classes of data types; data types are still independent.)

MultiGraph service is available in the Enterprise Edition only.

Beginning with Version 1.2, one TigerGraph instance can manage multiple graphs, each

with its own set of user privileges. This first-of-its-kind capability, dubbed MultiGraph, is

available as an optional service in the Enterprise Edition of the TigerGraph platform.

MultiGraph enables several powerful use cases:

If you implement only one graph now, you can upgrade to MultiGraph and add additional

graphs at any time, without having to redo your existing design.

While the system has the inherent capability of managing multiple graphs, the ability of users

to create more than one graph may depend on your license key.

To support the new MultiGraph capabilities, a few changes to the previous specifications are

necessary. These changes affect all users, even if only a single graph is deployed. We advise

all users to read the Concepts and Modified Specifications below.

5/13/25, 1:39 PM TigerGraph Documentation

227

There are also several New Commands .

A graph is a defined as a set of vertex types and edge types. More precisely, it is all the

vertices and edges of that collection of types. The domain of a graph is its set of vertex

types and edge types. Each graph contains its own data loading jobs and queries, which

do not affect and are not visible to other graphs.

NEW

• It is possible to define multiple graphs. The domains of two graphs may be completely

separate, may overlap, or may coincide exactly.

• A TigerGraph instance with a basic license key can have one graph. A TigerGraph

instance with a MultiGraph license key can create multiple graphs.

• A vertex type or edge type created by a superuser is a global type.

• A superuser can include a global vertex or edge type in one or more graphs. Global types

can be shared among multiple graphs.

• The admin users or designer users for a particular graph can add local vertex types and

edge types to their own graph.

The TigerGraph system includes several predefined roles. Each role is a fixed and logical

set of privileges to perform operations. In order to access a graph, a user must be granted

a role on that graph. Without a role, a user has no meaningful access.

CHANGES

CREATE GRAPH <gname> (<list of vertex types and edge types>)

Concepts

Graphs and Graph Domains

Graph-Specific Roles and Privileges

5/13/25, 1:39 PM TigerGraph Documentation

228

• User roles are granted or revoked on a per-graph basis . Each GRANT or REVOKE

statement specifies not only a role but also a graph.

• A user may be granted different roles on different graphs .

• A new top-level role is added: superuser . The superuser automatically has admin

privilege on every graph, and has additional global privileges.

Previously, there was only one graph, and so all users were automatically able to use that

graph.

NEW

• A user must set their working graph in order to access that graph.

• Users who have privileges on more than one graph (including superusers) may only work

with one graph at a time. The GLOBAL SCHEMA_CHANGE JOB stretches this rule.

Note that the CREATE commands for queries, loading jobs, and schema_change jobs have

always required that the graph name be specified, even when there was support for only

one graph. Now, it is clear that these definitions are graph-specific.

If you are a user of an earlier TigerGraph system (v1.1 or earlier), please note the following

specifications have changed.

1. Set the working graph in GSQL: You must always set the working graph, either using

the -g flag with the gsql command, or by using the USE GRAPH command.

2. RESTPP Endpoint changes: Endpoints which pertain to the graph data have been

modified to include the name of the graph in the request URL.

See RESTPP API User Guide .

Setting a Working Graph

New and Modified Specifications

Modified Specifications

5/13/25, 1:39 PM TigerGraph Documentation

229

3. User Authentication secrets and tokens: The way in which secrets and tokens are

created and used has changed, in order to follow OAuth standards more closely.

See Managing User Privileges and Authentication.

4. Changes to privileges of certain roles: If you had been using only the single default

user with admin privilege, you will not notice any difference. That user has been

promoted to superuser status. If you are making use of users with different roles, note

the following changes in privileges:

• A new top-level role, superuser , is defined. The superuser has admin privilege on

all graphs, and is the only role who can create and modify shared vertex types,

shared edge types, and graphs.

• The architect role is renamed designer .

• The public role is renamed observer .

• The following commands are now shifted from admin and designer roles to the

superuser role:

◦ CREATE / DROP VERTEX|EDGE|GRAPH

◦ CLEAR GRAPH STORE

◦ DROP ALL

• Newly created users no longer automatically have the observer role. They have no

role until explicitly granted one.

5. In the CREATE VERTEX statement, the WITH STATS option "outdegree" is no longer

available. "outdegree_by_edgetype" is still supported and is the default.

There are many other details about using the MultiGraph feature, especially if your

application has mulitple users with different roles. In the documentation, the Multiple

Graph logo is placed next to relevant topics:

The following commands are new. This section provides only a summary list. For full

details and examples, see the main documentation for the relevant topics.

New Commands

USE GRAPH <graph_name>

5/13/25, 1:39 PM TigerGraph Documentation

230

• For all users

• Sets the given graph as the user's working graph.

• For superusers

• Must be set to have privilege to create and assign global vertex and edge types.

• For superusers

USE GLOBAL

CREATE GLOBAL SCHEMA_CHANGE JOB

5/13/25, 1:39 PM TigerGraph Documentation

231

System Administration

5/13/25, 1:39 PM TigerGraph Documentation

232

TigerGraph Administrators Guide

5/13/25, 1:39 PM TigerGraph Documentation

233

Hardware and Software Requirements

Version 2.2 - 2.3 Copyright © 2019 TigerGraph. All Rights Reserved.

Actual hardware requirements will vary based on your data size, workload and features

you choose to install.

*Actual needs depend on data size. Consult our solution architects for an estimate of

memory and storage needs.

Comments:

• The TigerGraph system is optimized to take advantage of multiple cores.

• Performance is optimal when the memory is large enough to store the full graph and

to perform computations.

• The platform works excellently as a single node. For high availability or scaling, a

multi-node configuration is possible.

Component Minimum Recommended

CPU
1.8 GHz (64-bit processor) or

faster multi-core

Dual-socket multi-core, 2.0

GHz (64-bit processors) or

faster

Memory* 8 GB ≥ 64GB

Storage* 20 GB

≥ 1TB, RAID10 volumes for

better I/O throughput.

SSD storage is recommended.

Network 1 Gigabit Ethernet adapter
10Gigabit Ethernet adapter for

inter-node communication

Hardware Requirements

Certified Operating Systems

5/13/25, 1:39 PM TigerGraph Documentation

234

The TigerGraph Software Suite is built on 64-bit Linux. It can run on a variety of Linux 64-

bit distributions. The software has been tested on the operating systems listed below.

When a range of versions is given, it has been tested on the two endpoints, oldest and

newest. We continually evaluate the operating systems on the market and work to update

our set of supported operating systems as needed. The TigerGraph installer will install its

own copies of Java JDK and GCC , accessible only to the TigerGraph user account, to

avoid interfering with any other applications on the same server.

Additionally, we offer Amazon Machine Images (AMI) to run on Amazon EC2. Please

contact us regarding recommended configurations.

Before offline installation, the TigerGraph system needs a few basic software packages to

be present.

On-Premises hosting Java JDK version GCC version (C/C++)

RedHat 6.5 to 6.9

(x64)
Yes 1.8.0_141 4.8.2

RedHat 7.0 to 7.4

(x64)
Yes 1.8.0_141 4.8.2

Centos 6.5 to 6.9

(x64)
Yes 1.8.0_141 4.8.2

Centos 7.0 to 7.4

(x64)
Yes 1.8.0_141 4.8.2

Ubuntu 14.04 LTS

Ubuntu 16.04 LTS

Ubuntu 18.04 LTS

(x64)

Yes 1.8.0_141 4.8.4

Debian 8 (jessie) Yes 1.8.0_141 4.8.4

Prerequisite Software

Utilities

5/13/25, 1:39 PM TigerGraph Documentation

235

1. tar, to extract files from the offline package

2. curl, an alternative way to send query request to TigerGraph

3. crontab, a basic OS software module which TigerGraph relies on

4. uuidgen, a tool to creates an universally unique identifier of the server

5. ip, to configure the network

6. ssh/sshd, to connect to the server

7. more, a tool to display the License Agreement

8. netstat, a basic OS tool to check the network status

9. semanage, to manage SELinux context of ssh

10. sshpass, if you intend to use password login method (P method) instead of ssh key

login method (K method) to install the TigerGraph platform.

If they are not present, contact your system administrator to have them installed on your

target system. For example, they can be installed with one of the following commands.

If you are running TigerGraph on a multi-node cluster, you must install, configure and run

the NTP (Network Time Protocol) daemon service. This service will synchronize system

time among all cluster nodes.

If you are running TigerGraph on a multi-node cluster, you must configure the

iptables/firewall rules to make all tcp ports open among all cluster nodes.

Centos or RedHat:
sudo yum install tar curl cronie iproute util-linux-ng net-tools coreutils

Ubuntu or Debian:
sudo apt install tar curl cron iproute util-linux uuid-runtime net-tools c

NTP

Firewall

Browser

5/13/25, 1:39 PM TigerGraph Documentation

236

In an on-premises installation, the system is fully functional without a web browser. To run

the optional browser-based TigerGraph GraphStudio User Interface or Admin Portal, you

need an appropriate browser:

Browser Chrome Safari Firefox Opera

Supported

version
54.0+ 11.1+ 59.0+ 52.0+

5/13/25, 1:39 PM TigerGraph Documentation

237

Installation and Configuration
Installation, Cluster Configuration and Scale-out, License Activation

5/13/25, 1:39 PM TigerGraph Documentation

238

Installation Guide
Installing Single-machine and Multi-machine systems

This guide describes how to install the TigerGraph platform either as a single node or as a

multi-node cluster. Please use the Table of Contents to go to the appropriate section of

this guide.

• Single Node Installation

• Cluster Installation and Configuration

If you are installing the Developer Edition, you can also install a Docker image or a virtual

machine (VirtualBox) image. Your welcome email message will direct you to the appropriate

resources.

This section is for New Installations. If you are updating from a previous version of the

TigerGraph platform, first read the section below on Upgrading an Existing Installation .

Before you can install the TigerGraph system, you need the following:

1. One or more servers that meets the minimum Hardware and Software Requirements

with regard to operating system, memory and hard disk space, as well as enough

memory and storage to store your graph data.

2. sudo or root privilege.

3. A license key provided by TigerGraph (not applicable to Developer Edition)

4. A TigerGraph system package .

5. If your package is a *tar.gz file, you may need to install some software prerequisites.

Use a BASH shell, otherwise there may be installation issues.

Preparation

5/13/25, 1:39 PM TigerGraph Documentation

239

If you do not yet have a TigerGraph system package, you can request one at

www.tigergraph.com/download/ .

If your package is a *tar.gz file, you also need to insure your machine has the following

software prerequisites.

1. Pre-install these basic Linux utilities on your server, if necessary:

• tar

• curl

• ip

• more

• uuidgen

• crontab

• ssh/sshd

• netstat

• semanage

2. I f you are installing a cluster, you also need the following:

• ntpd

• iptables/firewalld

3. If you will use the password login method (P method) instead of ssh key login method

(K method) to install the TigerGraph platform, you will also need the following:

• sshpass

Obtaining a TigerGraph Package

Software Prerequisites for *.tar.gz Packages

Single Node Installation

5/13/25, 1:39 PM TigerGraph Documentation

https://www.tigergraph.com/download/
https://www.tigergraph.com/download/

240

The name of your package may vary, depending on the product edition (e.g., developer or

enterprise) and the version (e.g., 2.0.1). For the examples here, we will assume the name

is tigergraph-x.y.z.tar.gz. Substitute the name of your actual package file.

1. Extract the package:

 2. A folder named tigergraph-<version>-offline (or tigergraph-<version>-

developer) will be created. Change into this folder. To Install with default settings, run

the install.sh script with commands:

The installer will ask you a few questions:

• Do you agree to the License Terms and Conditions?

• What is your license key? (not applicable to Developer Edition)

• Do you want to use the default TigerGraph user name or select/create your own?

• Do you want to use the default TigerGraph user password or create your own?

• Do you want to use the default installation folder or select/create your own?

To see what are the default settings, and to see how customize the installation, read the

Installation Options section below.

Some license keys are long – over 100 characters long. If you copy-and-paste the license

key, be careful not to accidentally include an end-of-line character.

tar -xzf tigergraph-x.y.z.tar.gz

to install enterprise edition
cd tigergraph-*/
sudo ./install.sh -s

to install developer edition
cd tigergraph-*/
sudo ./install.sh

Example: extract for <version> = x.y.z

Example: Default single-server installation for <version> = 2.0.0

5/13/25, 1:39 PM TigerGraph Documentation

241

3. The installer concludes by using 'su' to switch to the tigergraph user account.

To confirm correct operation:

1. Try the command gadmin status

If the system installed correctly, the command should report that zk , kafka , dict, ts3,

nginx, gsql, and Visualization are up and ready. Since there is no graph data loaded yet,

gse , gpe , and restpp are not initialized.

2. Try the command gsql --version

4. Basic installation is now finished! Please see Post-Installation Notes below.

The following default settings will be applied if no parameters specified:

• The installer will create a user called tigergraph , with password tigergraph .

• The root directory for the installation (referred to as <TigerGraph.Root.Dir>) is a folder

called tigergraph located in the tigergraph user's home directory, i.e.,

/home/tigergraph/tigergraph .

The installation can be customized by running command line options with the install.sh

script:

Installation Options

5/13/25, 1:39 PM TigerGraph Documentation

242

TigerGraph cluster configuration enables the graph database to be partitioned and

distributed across multiple server nodes in a local network (not available in the Developer

Edition). The cluster can either be a physical cluster or a network virtual cluster from a

cloud service such as Amazon EC2 or Microsoft Azure.

1. The installation of TigerGraph 2.x has been validated on Amazon EC2 and Microsoft

Azure and on a physical on-premises cluster. For Amazon EC2, please make sure all tcp

Installation options of enterprise edition
Usage:
./install.sh (-s|-c) [-u <user>] [-p <password>] [-r <tigergraph_root_dir>
./install.sh -c -n
./install.sh -h
Options:
 -h -- show the help
 -u -- TigerGraph user [default: tigergraph]
 -p -- TigerGraph password [default: tigergraph]
 -r -- TigerGraph.Root.Dir [default: <tigergraph_user_home>/tigergraph]
 -l -- TigerGraph license key
 -s -- Single server option: install the tigergraph platform on a singl
 -c -- Cluster option: install the tigergraph platform on a cluster
 -n -- Non-interactive option: suppress prompts, and continue installat
 -a -- Advanced configuration: apply adv_config.cfg provided by user

[NOTE]: Using option '-c -n' together will non-interactively install t
on a cluster with all configurations from config file "cluster_config.json
In this case, the config file should be modified before installation, and

Installation options of developer edition
Usage:
./install.sh [-u <user>] [-p <password>] [-r <tigergraph_root_dir>]
./install.sh -h
Options:
 -h -- show the help
 -u -- TigerGraph user [default: tigergraph]
 -p -- TigerGraph password [default: tigergraph]
 -r -- TigerGraph.Root.Dir [default: <tigergraph_user_home>/tigergraph]
 -n -- Non-interactive option: suppress prompts, and continue installat

Cluster Installation and Configuration
(Enterprise Edition Only)

5/13/25, 1:39 PM TigerGraph Documentation

243

ports are open among all cluster nodes, otherwise service may not start.

2. In TigerGraph 2.x, the installation machine can be within or outside the cluster. If outside

the cluster, the installation machine should be a Linux machine.

3. Currently, every machine in the cluster must have a sudo user with the same username

and password or SSH key .

4. To install a high-availability cluster (with at least 3 nodes), please set HA.option to be

"true" for non-interactive installation or answer "yes" to HA question for interactive

installation.

5. Do not run the cluster installation script in sudo mode.

During cluster configuration, the user provides the following information:

• The IP address for each server node, e.g., 172.30.3.2

• The login credentials for the nodes.

Cluster installation begins by the user downloading the TigerGraph software package to

any Linux machine in the cluster or with access to the cluster nodes (see notes above).

When the user runs the installation script with the cluster option, it will either prompt the

user for cluster configuration information described above, or if the user requests non-

interactive installation, it will read the configuration information from a file

cluster_config.json located in the same folder with the platform package. The

installer then proceeds to install the product on each of the cluster nodes and to configure

the cluster.

The two installation methods, interactive and non-interactive, are described below.

In interactive mode, the installer will first ask the same basic questions it asks for single-

node installation. It will then ask how many machines are in your cluster. Then it will

prompt for the IP addresses of the machines, assigning each machine an alias m1, m2,

m3, etc. Next it will ask for sudo user name and credentials information. Last, it will ask

the user if they accept some changes to the system. (See non-interactive mode

Cluster Installation Overview

Interactive Mode Installation

5/13/25, 1:39 PM TigerGraph Documentation

244

installation below for details about user credentials.) A screenshot of interactive

installation is shown below.

For non-interactive mode installation, the user must put all the settings into the file

cluster_config.json before running the installer. This file is in the folder with your

install.sh file and other TigerGraph package files.

the two key parameters to set are the following:

1. nodes.ip

Each machine in the cluster is defined as a key:value pair, where the key is a machine

alias m1, m2, m3, etc. NOTE: If you chose names other than m1, m2, etc., be sure to

Non-Interactive Mode Installation

5/13/25, 1:39 PM TigerGraph Documentation

245

list them in alphanumeric order in the config file. The first machine ("m1") has a

special role in some cases. Use as many key:value pairs as you need, placing the

public IP addresses next to each key. The installer will auto detect the local IP

addresses and use them to configure the system. If the installer detects more than

one local IP address, it will ask the user to select one for configuration.

2. nodes.login

Two login methods are supported:

• SSH with password

• SSH with key file

For SSH with password, you must input the sudo/root user and its password. For SSH

with key file, you may specify the AWS ec2 key file or other key file. If nothing provided,

the installer will use default ssh key file such as ~/.ssh/id_rsa .

3. HA.option

If enable.HA is set to "true", then the system will be configured for a replication factor

of 2. For example, if your cluster has 6 machines, 3 will be used for one copy of the

data, and 3 will be used for a replica copy of the data. More advanced configuration is

possible after initial setup. See Configuring a High Availability Cluster v2.1

Below is a sample cluster_config.json file.

The node names (e.g., m1, m2, etc.) MUST be given in alphanumeric order, because the first

machine has a special role in some situations. In our documentation we will refer to this

machine as m1.

cluster_config.json example

5/13/25, 1:39 PM TigerGraph Documentation

246

Sometimes you may want further control over configuration details, such as replication

factor of individual components, security settings, and others. You may also want to

install a new TigerGraph system to match your existing TigerGraph system's setup.

TigerGraph supports advanced configuration with the -a option. This option can be used

in either interactive mode or non-interactive mode.

Advanced configuration will override the default configuration, and the related configuration

in cluster_config.json .

{
 "tigergraph.user.name": "tigergraph",
 "tigergraph.user.password": "tigergraph",
 "tigergraph.root.dir": "/home/tigergraph/tigergraph",
 "license.key": "91583b19abf850cee381168e0e0cd41fcaceba2d734cd3a9e6f5fd39
 "nodes.ip": {
 "m1": "172.30.3.2",
 "m2": "172.30.3.3",
 "m3": "172.30.3.4",
 "m4": "172.30.3.5"
 },
 "nodes.login": {
 "supported.methods (this is a comment)": "P. SSH with password; K. SSH
 "notes (this is a comment)": "All nodes must use the same sudo user, s
 "chosen.method": "K",
 "P": {
 "sudo.user.name": "sudoUserName",
 "sudo.user.password": "sudoUserPassword"
 },
 "K": {
 "sudo.user.name": "centos",
 "ssh.key.file": "/home/centos/.ssh/gsql_east.pem"
 }
 },
 "HA.option": {
 "Notes of HA.option (this is a comment)": "option to install high-avai
 "enable.HA": "false"
 }
}

Advanced Configuration

5/13/25, 1:39 PM TigerGraph Documentation

247

First, create a configuration file named adv_config.cfg . You can manually create this

file, or if you have an existing TigerGraph system, you can generate a file representing its

configuration, with the following command: gadmin --dump-config |grep replicas >>

adv_config.cfg)

If you manually create it, make sure it's a valid YAML file.

For example, the adv_config.cfg file below sets up TigerGraph as a 3-node cluster with

HA replications factor of 3.

Second, in the installation command, add the -a option. Once the installation is done,

verify the system has the configuration as specified.

Do not run the cluster installation script with sudo permission.

After you have planned out your cluster configuration, you are ready to run the installer.

1. Extract the package.

dictserver.servers: m1,m2,m3
gpe.servers: m1,m2,m3
gse.servers: m1,m2,m3
kafka-loader.servers: m1,m2,m3
kafka.servers: m1,m2,m3
restpp-loader.servers: m1,m2,m3
restpp.servers: m1,m2,m3
zk.servers: m1,m2,m3
gpe.replicas: 3
gse.replicas: 3
kafka.num.replicas: 3

tar -xzf tigergraph-x.y.z.tar.gz

Cluster Installation Commands

Example: extract for <version> = 2.0.0

5/13/25, 1:39 PM TigerGraph Documentation

248

2. A folder named tigergraph-<version>-offline will be created. Change into this

folder. To run cluster installation in interactive mode, use the -c option:

To run cluster installation in non-interactive mode, using the settings in the

cluster_config.json file, use the -c and -n (or merged -cn) options:

By default, non-interactive mode installation does not set up NTP or a firewall. To direct

the installation to set them up explicitly, using SETUP_NTP and SETUP_FILEWALL

environmental variables.

3. The installer concludes by prompting the user to login to node m1 of the cluster and

use 'su' to switch to the tigergraph user account.

To confirm correct operation:

1. Try the command gadmin status from any machine in the cluster.

If the system installed correctly, the command should report that zk , kafka , dict,

nginx, gsql, and Visualization are up and ready. Since there is no graph data loaded

yet, gse , gpe , and restpp are not

cd tigergraph-*/

Method 1. Interactive mode
./install.sh -c

cd tigergraph-*/

Method 2. non-interactive
 # step 1: modify the config file "cluster_config.json"
 # step 2:
 ./install.sh -cn

cd tigergraph-*/

Method 2. non-interactive with setting up NTP, but not firewall
 # step 1: modify the config file "cluster_config.json"
 # step 2:
SETUP_NTP=y SETUP_FIREWALL=n ./install.sh -cn

Example: Installation with interactive cluster configuration for <version> = 2.0.0

Example: Installation with non-interactive cluster configuration <version> = 2.0.0

5/13/25, 1:39 PM TigerGraph Documentation

249

2. Try the command gsql --version

The gsql command must be run on node m1 of the cluster because the gsql server

is installed on m1 only.

4. Basic installation is now finished! Please see Post-Installation Notes below.

If you installed with the default password, we recommend that you change it now.

To perform additional customization, run gadmin --configure (must be on node m1 if

it is cluster), followed by gadmin config-apply . The ' gadmin config-apply '

command must be run on node m1 if it is cluster, since only node m1 contians

pkg_poolresources. If you configured one or more items of gpe.servers, gse.servers,

restpp.servers, kafka.servers, zk.servers, dictserver.servers, gpe.replicas, or gse.replicas,

you must reinstall the package by running command gadmin pkg-install reset on

node m1.

see the appropriate sections of the TigerGraph System Administrators Guide v2.1 .

If you are a first-time user:

• See our GSQL language tutorial for first-timer users: GSQL 101

• Start designing, using our visual interface. see the TigerGraph GraphStudio UI Guide .

• To see more GSQL examples, see GSQL Demo Examples .

• To get answers to common questions, see TigerGraph Knowledge Base and FAQs .

Post-Installation Notes

Change Your Password

Additional Customization

Learning To Use TigerGraph

5/13/25, 1:39 PM TigerGraph Documentation

250

Developer Edition upgrade is not supported

The Developer Edition is not designed for upgrade from one version to another

It is not possible to upgrade a Developer Edition installation to Enterprise Edition.

If your specific versions are not listed below, please upgrade by :

1. Download the latest version of TigerGraph to your system.

2. Extract the tarball.

3. Run the TigerGraph.bin file that was extracted from the tarball.

These steps are assuming that v2.1.7 is installed. To upgrade to v2.2 from a version older

than v2.1.7 , please upgrade to v2.1.7 first. If the tigergraph username and password have

been changed, please have them ready as you will need them in order to update the

system.

1. Download tigergraph-2.2.x-offline.tar.gz with user “tigergraph” and extract the tarball

file.

2. Download the post_upgrade.sh script that is attached here .

3. Run tigergraph.bin under the same folder to upgrade to 2.2.x

4. Run the post-upgrade script that was downloaded in step 2 : post_upgrade.sh -u

<sudoUser> [-P <sudoPass> | -K <sshKey>] -p <tigergraphUserPass>

v2.0 can be upgraded to v2.1 Enterprise Edition. The data store format and GSQL language

scripts in v2.0 are forward compatible to v2.1.

Upgrading an Existing Installation

Updating from v2.1.7 to v2.2.x

Updating from v2.0 to v2.1

5/13/25, 1:39 PM TigerGraph Documentation

https://tigergraph.freshdesk.com/support/solutions/articles/5000810844-v2-1-7-v2-2-x-upgrade-instructions
https://tigergraph.freshdesk.com/support/solutions/articles/5000810844-v2-1-7-v2-2-x-upgrade-instructions

251

The data store format between 1.x and 2.x for single servers is forward compatible but not

backward compatible. For a single server platform, users can upgrade from 1.x to 2.x

without reloading data or recreating the graph schema. Some details of the GSQL

language have changed, so some loading jobs and queries will need to be revised and

reinstalled.

For a cluster configuration, direct upgrade from 1.x to 2.x is not supported at this time.

Users interested in migrating from 1.x to 2.x need to export their data and metadata,

install v2.x, and then reload data and metadata, with some small modifications. Please

contact support@tigergraph.com for assistance.

Please consult the Release Notes for all the versions between your current version and

your target version (e.g., v2.1) to see a summary of specification changes. Contain

support@tigergraph.com for assistance.

1. Verify that your data store is compatible and is eligible for direct update / upgrade.

2. Review the specification changes and how they may affect your applications (loading

jobs and queries).

3. Stop issuing new commands to your TigerGraph system and allow any operations to

complete.

4. (Recommended) Backup your data, as a precaution.

5. Follow the procedure at the beginning of this document for installing a new system.

The installer will automatically shut down your system and start it again.

Be sure to specify the same username as your current installation. Otherwise, if you use a

different user name, it will be treated as a new installation, with an empty graph.

1. Pay attention to output messages during the installation process which may alert you

to additional tasks or checks you should perform.

Upgrading from v1.x to v2.x

Workflow for Direct Upgrade

5/13/25, 1:39 PM TigerGraph Documentation

mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com

252

2. Run the command gsql to start the GSQL shell. The first time after an update, gsql

performs two important operations:

a. Copies your catalog from your old installation to the new installation .

b. Compares the files in the backup /dev_<datetime>/gdk/gsql/src folder to the new

/dev/gdk/gsql/src folder. Pay attention to any files residing in the old folder but

not in the new folder. Review them and copy them to the new folder if appropriate.

See the example below.

3. Revise and reinstall loading jobs and queries as needed.

5/13/25, 1:39 PM TigerGraph Documentation

253

HA Cluster Configuration

Version 2.2 - 2.3 Copyright © 2019 TigerGraph. All Rights Reserved.

A TigerGraph system with High Availability (HA) is a cluster of server machines which

uses replication to provide continuous service when one or more servers are not available

or when some service components fail. TigerGraph HA service provides loading balancing

when all components are operational, as well as automatic failover in the event of a

service disruption. One TigerGraph server consists of several components (e.g., GSE, GPE,

RESTPP). The default HA configuration has a replication factor of 2, meaning that a fully-

functioning system maintains two copies of the data, stored on separate machines. In

advanced HA setup, users can set a higher replication factor.

• An HA cluster needs at least 3 server machines . Machines can be physical or virtual.

This is true even the system only has one graph partition.

• For a distributed system with N partitions (where N > 1), the system must have at least

2N machines.

• The same version of the TigerGraph software package is installed on each machine.

1. HA configuration should be done immediately after system installation and before

deploying the system for database use.

2. To convert a non-HA system to an HA system, the current version of TigerGraph

requires that all the data and metadata be cleared, and all TigerGraph services be

stopped. This limitation will be removed in a future release.

System Requirements

Limitations

Workflow

5/13/25, 1:39 PM TigerGraph Documentation

254

Starting from version 2.1, configuring a HA cluster is integrated into platform installation,

please check the document TigerGraph Platform Installation Guide for detail.

Follow the instructions in the document TigerGraph Platform Installation Guide to install

the TigerGraph system in your cluster.

In the instructions below, all the commands need to be run as the tigergraph OS user, on the

machine designated "m1" during the cluster installation.

Be sure you are logged in as the tigergraph OS user on machine "m1". Before setting up

HA or changing HA configuration, the current TigerGraph system must be fully stopped. If

the system has any graph data, clear out the data (e.g., with "gsql DROP ALL").

After the cluster installation, create an HA configuration using the following command:

gadmin stop ts3 -fy
gadmin stop all -fy
gadmin stop admin -fy

(A) Install TigerGraph

(B) Stop the TigerGraph Service

(C) Enable HA

Stopping all TigerGraph services

5/13/25, 1:39 PM TigerGraph Documentation

255

This command will automatically generate a configuration for a distributed (partitioned)

database with an HA system replication factor of 2. Some individual components may

have a higher replication factor .

Sample output:

If the HA configuration fails, e.g, if the cluster doesn’t satisfy the HA requirements, then

the command will stop running with a warning.

gadmin --enable ha

tigergraph@m1$ gadmin --enable ha
[FAB][m3,m2] mkdir -p ~/.gium
[FAB][m3,m2] scp -r -P 22 ~/.gium ~/
[FAB][m3,m2] mkdir -p ~/.gsql
[FAB][m3,m2] scp -r -P 22 ~/.gsql ~/
[FAB][m3,m2] mkdir -p ~/.venv
[FAB][m3,m2] scp -r -P 22 ~/.venv ~/
[FAB][m3,m2] cd ~/.gium; ./add_to_path.sh
[RUN] /home/tigergraph/.gsql/gpe_auto_start_add2cron.sh
[FAB][m3,m2] mkdir -p /home/tigergraph/.gsql/
[FAB][m3,m2] scp -r -P 22 /home/tigergraph/.gsql/all_log_cleanup /home
[FAB][m3,m2] mkdir -p /home/tigergraph/.gsql/
[FAB][m3,m2] scp -r -P 22 /home/tigergraph/.gsql/all_log_cleanup_add2c
[FAB][m1,m3,m2] /home/tigergraph/.gsql/all_log_cleanup_add2cron.sh
[FAB][m1,m3,m2] rm -rf /home/tigergraph/tigergraph_coredump
[FAB][m1,m3,m2] mkdir -p /home/tigergraph/tigergraph/logs/coredump
[FAB][m1,m3,m2] ln -s /home/tigergraph/tigergraph/logs/coredump /home/

tigergraph@m1$ gadmin --enable ha
Detect config change. Please run 'gadmin config-apply' to apply.
ERROR:root: To enable HA configuration, you need at least 3 machines.
Enable HA configuration failed.

(D) [Optional] Configure Advanced HA

Successful HA configuration

HA configuration failure

5/13/25, 1:39 PM TigerGraph Documentation

256

In this optional additional step, advanced users can run several "gadmin --set" commands

to control the replication factor and manually specify the host machine for each

TigerGraph component. The table below shows the recommended settings for each

component. See the later example section for different configuration cases.

Example: There is a 3-machine cluster m1, m2 and m3. Kafka, GPE, GSE and RESTPP are

all on m1 and m2, with replication factor 2. This is a non-distributed graph HA setup.

Component Configuration Key
Suggested Number

of Hosts

Suggested Number

of Replicas

ZooKeeper zk.servers 3 or 5 -

Dictionary Server dictserver.servers 3 or 5 -

Kafka kafka.servers same as GPE same as GPE

kafka.num.replicas 2 or 3 2 or 3

GSE gse.servers every host every host

gse.replicas 2 2

GPE gpe.servers every host every host

gpe.replicas 2 2

REST restpp.servers every host every host

gadmin --set zk.servers m1,m2,m3
gadmin --set dictserver.servers m1,m2,m3
gadmin --set dictserver.base_ports 17797,17797,17797
gadmin --set kafka.servers m1,m2
gadmin --set kafka.num.replicas 2
gadmin --set gse.replicas 2
gadmin --set gpe.replicas 2
gadmin --set gse.servers m1,m2
gadmin --set gpe.servers m1,m2
gadmin --set restpp.servers m1,m2

(E) Install Package

Example: 3-machine non-distributed HA cluster

5/13/25, 1:39 PM TigerGraph Documentation

257

Once the HA configuration is done, proceed to install the package from the first machine

(named “m1” in the cluster installation configuration).

The table below shows how to setup for the common setups. Note if convert the system

from another configuration, must stop the old TigerGraph system first.

gadmin pkg-install reset -fy

System Goal

Cluster Configuration

(number of servers in cluster

is X)

How to

A,B,C, etc. refer to the Steps in

the section above.

Non-distributed graph

with HA

Each server machine holds

the complete graph.

• For both initial installation

and reconfiguration,

(A) → B → C → D → E.

While in D, set all replicas

to X ,

e.g,

gpe.replicas = X

gse.replicas = X

restpp.replicas = X

...

• Note: (A) means A is

needed only in initial

installation

Examples

5/13/25, 1:39 PM TigerGraph Documentation

258

Distributed graph without HA
Graph is partitioned among all

the cluster servers.

• Note: no HA is equivalent

to replication factor 1

• For initial installation, skip

B, C, D and E.

• For reconfiguration,

B → C → D → E. While in

D, set all replicas to 1,

e.g.,

gpe.replicas = 1

gse.replicas = 1

restpp.replicas = 1

5/13/25, 1:39 PM TigerGraph Documentation

259

Cluster Scale-Out
Adding machines to a TigerGraph cluster, for distributed data and/or HA

Version 2.2 - 2.3 Copyright © 2019 TigerGraph. All Rights Reserved.

Cluster expansion allows the user to add new machine nodes to an existing cluster and to

redistribute data, while the entire system is offline.

1. The current TigerGraph system must be installed in cluster mode, not single-node

mode.

2. The total graph data storage space for the expanded cluster should be at least 3 times

as large as the current Gstore disk usage.

a. During the expansion process, a backup copy of all the graph data files is created,

plus additional working space is needed.

b. To check your existing gstore disk space:

3. The new nodes are available.

The GBAR utility is used for cluster expansion. If this is your first time using GBAR, you

must first run gbar config . See the Backup and Restore guide. For a large system one

of the key parameters is backup_core_timeout . The default value is 5 hours. The config

script gives guidance on estimating an appropriate value.

Introduction

Prerequisites

Configure GBAR

Cluster Expansion Workflow

5/13/25, 1:39 PM TigerGraph Documentation

260

From the command line, switch to the <tigergraph_root_dir>/pkg_pool/syspre_pkg

directory under the TigerGraph root directory (~/tigergraph/pkg_pool/syspre_pkg by

default). In this directory, a utility script set_syspre.sh is used to setup environment:

Run ./set_syspre.sh -h to see the usage:

For example, to set up the environment on a new node 192.168.1.6 with sudo user

called ubuntu and login key ubuntu_rsa , run the following command:

Firewall check

The firewall configuration on new node must be the same as that on existing nodes.

Otherwise, the TigerGraph instances on new nodes may not work properly.

For users using TigerGraph 2.2 with Ubuntu, you must comment out the following block at

the beginning of .bashrc in the tigergraph user's home directory, on every node.

./set_syspre.sh -h

Usage:
./set_syspre.sh -i <IP address/host name> -u <sudo user> (-P <password> |
./set_syspre.sh -h
Options:
 -h -- show the help
 -i -- the IP address of the new machine
 -u -- sudo user [default: $USER]
 -P -- sudo user password [default: empty]
 -K -- sudo user ssh key [default: empty]
 -p -- tigergraph user password [default: tigergraph]

[NOTE]: This script must be run under tigergraph user.

./set_syspre.sh -i 192.168.1.6 -u ubuntu -K ~/.ssh/ubuntu_rsa

Set Up Environment in New Nodes

Set Environment in New Nodes

5/13/25, 1:39 PM TigerGraph Documentation

261

When done, the environment including system-prerequisites and ssh keys for the

TigerGraph system will be set up on the new nodes.

To expand the cluster, run gbar expand with a list of new nodes in the following format:

For example, the following command adds two nodes to the cluster:

The command above will redistribute the data on all nodes including m6 and m7, so that

each node has about the same amount of data.

GBAR will run the following checks for each new node:

1. The number of new nodes must be an integer multiple of max(gpe.replicas,

gse.replicas).

2. Each new node alias must be a valid identifier.

3. Each new node's IP address must be accessible via ssh from the node where gbar
expand is being run.

If the system does not have a schema or data, it will report a data integrity check error. You

may ignore this warning.

If not running interactively, don't do anything
case $- in
 i) ;;
 *) return;;
esac

gbar expand <node_alias_1>:<ip_1>,<node_alias_1>:<ip_2>,...,<node_alias_n>

gbar expand m6:192.168.1.6,m7:192.168.1.7

Add New Nodes to Cluster

Error Handling

5/13/25, 1:39 PM TigerGraph Documentation

262

Advanced expansion configuration options are possible. Contact TigerGraph Support for

guidance.

Should any errors occur, GBAR will roll back to the state before node expansion started.

As a failsafe, a backup copy of the data is kept, until expansion either succeeds or finishes

rollback.

Advanced Expansion Mode

5/13/25, 1:39 PM TigerGraph Documentation

263

System-Specific License Activation

Version 2.2 - 2.3 Copyright © 2019 TigerGraph. All Rights Reserved.

This guide provides step-to-step instructions for activating or renewing a TigerGraph

license, by generating and installing a license key unique to that TigerGraph system. This

document applies to both non-distributed and distributed systems. In this document, a

cluster acting cooperatively as one TigerGraph database is considered one system.

A valid license key activates the TigerGraph system for normal operation. A license key

has a built-in expiration date and is valid on only one system. Some license keys may

apply other restrictions, depending on your contract. Without a valid license key, a

TigerGraph system can perform certain administration functions, but database operations

will not work.

To activate a new license, a user first configures their TigerGraph system. The user then

collects the fingerprint of the TigerGraph system (so-called license seed) using a

TigerGraph-provided utility program. Then the collected materials are sent to TigerGraph

or an authorized agent via email or web form. TigerGraph certifies the license based on

the collected materials and sends a license key back to the user. The user then installs the

license key on their system using another TigerGraph command. A new license key (e.g.,

one with a later expiration) can be installed on a live system that already has a valid

license; the installation process does not disrupt database operations.

If your system is currently using an older string-based license key which does not use a

license seed, please contact support@tigergraph.com for the procedure to upgrade to the

new system-specific license type .

Note: Before beginning the license activation process, the TigerGraph package must be

installed on each server, and the TigerGraph system must be configured with gadmin.

• Collect the fingerprint of the whole TigerGraph system using the command tg_

lic_seed , which can be executed on any machine in the system. The command

Step-by-Step Guide

5/13/25, 1:39 PM TigerGraph Documentation

mailto:support@tigergraph.com
mailto:support@tigergraph.com

264

tg_lic_seed packs all the collected data into a local file (named tigergraph_seed).

When tg_lic_seed has completed successfully, it outputs the path of the collected data

to the console.

• Send the tigergraph_seed file to TigerGraph , either through our license activation web

portal (preferred) or by email to license@tigergraph.com. If using email, please

include the following information:

◦ Company/Organization name

◦ Contract number. If you do not know you contract number, please contact your

sales representative or sales@tigergraph.com.

• If the contract and license seed are in good order, a new license key file will be

certificated and sent back to you.

• Copy the license key file to a directory on the TigerGraph system where the TigerGraph

linux user has r ead permission .

• To install the license key, run command tg_ lic_install , specifying the path to the

license key file.

If installation is completed successfully, the message "install license successfully" will be

displayed in the console. Otherwise, another message "failed to install license" will be

displayed.

After a license key has been installed successfully on a TigerGraph system, the

information of the installed license is available via the following REST API:

$ tg_lic_seed
seed file is ready at /home/tigergraph/tigergraph/tigergraph_seed

$ tg_lic_install
Usage: tg_lic_install <license_path>

Checking License Information

Collect Fingerprint of TigerGraph System

Install License

Get License Information

5/13/25, 1:39 PM TigerGraph Documentation

mailto:license@tigergraph.com.
mailto:license@tigergraph.com.
mailto:sales@tigergraph.com.
mailto:sales@tigergraph.com.

265

 $ curl -X GET "localhost:9000/showlicenseinfo"
 {
 "message": "",
 "error": false,
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2",
 }
 "code": "",
 "results": [
 {
 "Days remaining": 10160,
 "Expiration date": "Mon Oct 2 04:00:00 2045\n"
 }
]
 }

5/13/25, 1:39 PM TigerGraph Documentation

266

User access management
User Privileges and Authentication, LDAP, Single Sign-on

5/13/25, 1:39 PM TigerGraph Documentation

267

User Privileges and Authentication

Version 2.2 - 2.3 Copyright © 2019 TigerGraph. All Rights Reserved.

Creation and management of multiple users and roles is available in the Enterprise Edition

only.

The TigerGraph platform provides a complete and robust feature set to manage and

control user privilege and authentication of GSS operations:

• Creation and management of multiple TigerGraph users

• Granting to each user a role on a particular graph, each role entailing a set of

privileges

• Oauth 2.0-style user authentication

• Extensible framework, so that additional security- and user- related capabilities can be

added in future releases

Overview

5/13/25, 1:39 PM TigerGraph Documentation

268

 TigerGraph's role-based access control system naturally extends to a multiple graph

system: A user is granted a role on a particular graph. The superuser role (new in

TigerGraph 1.2) is defined for administration of the entire unified supergraph.

TigerGraph users exist only with the TigerGraph platform; they are different than operating

system users . When the system is first installed, an initial user is automatically created.

The default name for this initial user is tigergraph , with password tigergraph . This user

has full administrative privilege and can create additional users and can set their

privileges (see Roles and Privileges). For simplicity, we will refer to this initial superuser

as the tigergraph user.

If user authentication is enabled (see the section Enabling and Using User Authentication),

the TigerGraph system will execute a requested operation only if the requester provides

credentials for a user who has the privilege to perform the requested operation.

The TigerGraph system offers two options for credentials.

1. username-password pair

2. a token: a unique 32-character string which can be used for REST++ requests, with an

expiration date.

When the TigerGraph platform is first installed, user authentication is disabled. The

installation process creates a gsql superuser who has the nam e tigergraph and password

tigergraph . As long as user tigergraph's password is tigergraph, gsql authentication

remains disabled. This is designed for user convenience in single-user configurations or

installations which do not require security, such as demo and training installations. The

behavior is compatible with early TigerGraph versions which did not support multiple roles

or multiple graphs.

Because there are two ways to access the TigerGraph system, either through the GSQL

shell or through REST++ requests, there are two steps needed to set up a secure system

Users and Credentials

Enabling and Using User Authentication

5/13/25, 1:39 PM TigerGraph Documentation

269

with user authentication for both points of entry:

1. To enable user authentication for GSQL: change the password of the tigergraph user

to something other than tigergraph.

2. To enable Oauth 2 authentication for REST++, use the gadmin program to configure

the RESTPP.Authentication parameter. See details below.

More details about each of these two steps are below.

User authorization for the browser-based GraphStudio UI is in development.

To enable user authentication for GSQL: change the password of the tigergraph user to

something other than tigergraph. See ALTER PASSWORD below.

To run a single GSQL command or command file, the user must provide their username

and password. To specify the username in the command line, use the -u option. The user

can also provide their password with the -p option. If the password is not provided on the

command line, the system will then prompt the user for their password, so this method is

only appropriate for interactive use. If -u not used, then the system will assume that the

request is coming from the default tigergraph user. It will then prompt for tigergraph's

password (assuming GSQL authentication is enabled). Note that if -u is not used and

authentication is disabled, then the system simply responses to all requests, as it did in

earlier versions (unprotected administrative mode).

 Starting with version 1.2 which can support multiple graphs, the user also needs t o

specify a graph in order to run any commands pertaining to a particular graph. For command

line mode, the graph can be specified with the -g option:

$ gsql [-u username] [-p pasword] [-g gname] <commmand>
Password: ********

GSQL Authentication

Running one GSQL command or command line, with username, graph name, and password

5/13/25, 1:39 PM TigerGraph Documentation

270

To enter the GSQL interactive shell, simply omit the <command> from the command line.

The user does not need to provide credentials again inside the shell. The example below

show s two users entering the shell with their passwords. T he user does not need to

specify a graph to enter the interactive shell.

The REST++ server implements OAuth 2.0-style authorization as follows: Each user can

create one or more secrets (unique pseudorandom strings). Each secret is associated

with a particular user and the user's privileges for a particular graph. Anyone who has this

secret can invoke a special REST endpoint to generate authorization tokens (other

pseudorandom strings). An authorization token can then be used to perform TigerGraph

database operations via other REST endpoints. According to OAuth 2.0 protocol, each

token will expire after a certain period of time. The TigerGraph default lifetime for a token

is 1 month.

$ gsql
Password for tigergraph: ********
Welcome to GSQL Shell version: 1.2

GSQL > SHOW USER
Users:
 - Name: tigergraph
 - Roles: admin, observer

GSQL > EXIT

$ gsql -u frank
Password for frank: ******
Welcome to GSQL Shell version: 1.2

GSQL > SHOW USER
 - Name: frank
 - Secret: jiokmfqqfu2f95qs6ug85o89rpkneib3
 - Roles: designer, observer

GSQL > EXIT

REST++ Authentication

Examples: entering with interactive shell

5/13/25, 1:39 PM TigerGraph Documentation

271

Each REST++ request should contain an authorization token in the HTTP header. The

REST++ server reads the header. If the token is not valid, REST++ will refuse to run the

query and instead will return an authentication error.

Enabling REST++ Authentication

The token authentication of REST++ can be turned on by using the following commands:

• secret (required): the user's secret

• lifetime (optional): the lifetime for the token, in seconds. The default is one month,

approximately 2.6 million seconds.

A user must have a secret before they create a token. Secrets are generated in GSQL (see

CREATE SECRET below). The special endpoint

GET /requesttoken is used to create a token. The endpoint has two parameters:

Once REST++ authentication is enabled, a token should always be included in the HTTP

header. If you are using curl to format and submit your REST++ requests, then use the

following syntax:

gadmin --configure RESTPP.Authentication
gadmin config-apply
gadmin restart restpp nginx vis -y

curl -X GET 'localhost:9000/requesttoken?secret=jiokmfqqfu2f95qs6ug85o89rp

curl -X GET -H "Authorization: Bearer <token>" 'http://localhost:9000/quer

Creating Tokens

Using Tokens

Enabling REST++ OAuth Authentication

Example: REST++ Request to Generate a Token

curl GSQL request, with authorization token in header

5/13/25, 1:39 PM TigerGraph Documentation

272

When you use the RUN QUERY command in the GSQL language, this triggers a curl

command within the GSQL system. GSQL will automatically use (and generate, if necessary)

a token in the curl request for an authorized user.

Authorization for gadmin

Currently, authorization for the gadmin program comes from Linux, and is not related GSQL

authorization. In short, only the Linux TigerGraph user can run gadmin.

Details: During installation, the user selects a name and password for the TigerGraph Linux

user. The default user and password are tigergraph and tigergraph, respectively. This user is a

Linux user; the installer will create a Linux account if needed. Only the TigerGraph Linux user

can run gadmin. This Linux user is unrelated to the TigerGraph default user mentioned in the

GSQL Authentication section.

 v1.2 adds the superuser role and shifts some privileges, to provide a more logical

foundation for multiple graphs. Roles are now granted on a per-graph basis. Please pay

careful attention to the table of privileges.

The TigerGraph system includes six predefined roles — superuser, admin, designer,

querywriter, queryreader, and observer. Each role has a fixed and logical set of privileges to

perform operations. These roles form a hierarchy, with superuser being at the top. Broadly

speaking,

• An observer (formerly "public") can log on, view the schema and other catalog details

for its designated graph, and change their own password.

• A queryreader has all observer privileges, and can also run existing loading jobs and

queries for its designated graph.

• A querywriter has all queryreader privileges, and can also create queries and run data-

manipulation commands on its designated graph.

• A designer (formerly "architect") has all querywriter privileges, and can modify the

schema, create loading jobs for its designated graph.

• An admin has all designer privileges, and can also create or drop users and grant or

revoke roles for its designated graph. That is, an admin can control the existence and

Roles and Privileges

5/13/25, 1:39 PM TigerGraph Documentation

273

privileges of other users on its graph.

• A superuser automatically has admin privileges on all graphs, and can also create

global vertex and edge types, create multiple graphs, and clear the database.

The detailed permissions for each role are listed in the following table. Except for the

superuser, the scope of privilege is always limited to one's own graph. In some cases, the

behavior of the operation depends on one's privilege level. More detailed descriptions of

the User Management commands are given later in this document. For details about the

Graph Definition, Loading, Querying, and Modification commands, see the GSQL Language

Reference documents.

Command

Type
Operations

super-

user
admin designer

query-

writer

quer

read

Status Ls x x x x x

User

Manageme

nt

Create/Dro

p User
x x

Show User x x x x x

Alter

(Change)

Password

x x x x x

Grant/Revo

ke Role

x x

Create/Dro

p/Show

Secret,

x x x x x

Create/Dro

p/Show/Ref

resh Token

(Deprecate

d)

x x x x x

Schema

Design

Create/Dro

p

Vertex/Edg

e/Graph

x

5/13/25, 1:39 PM TigerGraph Documentation

274

Commands not listed above are by default accessible with at least observer).

Clear Graph

Store
x

Drop All x

Use Graph x x x x x

Use Global x x x x x

Create/Run

Global

Schema_Ch

ange Job

x

Create/Run

Schema_Ch

ange Job

x x x

Loading

and

Querying

Create/Dro

p Loading

Job

x x x

Create/Inter

pret/Install/

Drop Query

x x x x

Typedef x x x x

Offline to

Online Job

Translation

x x x x

Run Query x x x x x

Run

Loading

Job

x x x x x

Data

Modificatio

n

Upsert/Dele

te/Select

Commands

x x x x

5/13/25, 1:39 PM TigerGraph Documentation

275

The TigerGraph installation process creates one user called tigergraph who has the

superuser role. The superuser role has full privilege to perform any action, included

creating or removing other users, and assigning roles to the other users. An superuser

can create other superusers, who would also have full privilege.

 An admin user is similar to a superuser whose scope is limited to a designated graph. An

admin can create and manage other users for that graph alone.

The user tigergraph is permanent. It cannot be dropped by another admin user.

Most of the commands in this section, can be run only by a superuser or an admin user.

The exception is SHOW USER. Any user can display their own profile.

Required privilege: superuser, admin

Create a new user. GSQL will prompt for the user name and password.

CREATE USER
DROP USER <user1>,...<userN>
SHOW USER
ALTER PASSWORD [<user1>]
GRANT ROLE admin [ON GRAPH <gname>] TO <user1>,...<userN>
REVOKE ROLE admin [ON GRAPH <gname>] FROM <user1>,...<userN>

tigergraph:GSQL > CREATE USER
User Name : frank
New Password : ************
Re-enter Password : ************
The user "frank" is created.

Creating and Managing Users

CREATE USER

User Management Commands

Example: Create user

5/13/25, 1:39 PM TigerGraph Documentation

276

Required privilege: superuser, admin

Delete the listed users.

The command takes effect with no warning and cannot be undone.

Required privilege: any

Display user's name, role, secret, and token. Non-admin/superuser users see only their

own information. Admin/superuser users see information for all users.

DROP USER <user1>,...<userN>

tigergraph:GSQL > DROP USER hermione, jk
Password: *********
The user "hermione" is dropped.
The user "jk" is dropped.

tigergraph:GSQL > SHOW USER
Users:
 - Name: tigergraph
 - Roles: admin, observer

 - Name: frank
 - Secret: 3ridhimp5icllq04qgt0r1fgddv1hf9e
 - Token: j13nv837thrr19u0ahjr8m0is2ded6kk expire at: 2017-09-13 15:1
 - Roles: designer, observer

 - Name: jk
 - Roles: observer

 - Name: hermione
 - Roles: observer

DROP USER

SHOW USER

Example: Drop two users

Example: admin user showing profile information for all users

5/13/25, 1:39 PM TigerGraph Documentation

277

When an admin/superuser user creates a new user, the admin/superuser user sets the

user's initial password. Afterward, a user can change their own password.

Moreover, an admin/superuser user can revise any user's password. For example, to

change hermione's password, the command is ALTER PASSWORD hermione .

Required privilege: superuser, admin

Grant a role (or revoke a role) for a user, which add s (or removes) privileges.

 The ON GRAPH clause is required unless the role being granted/revoked is superuser.

ALTER PASSWORD [<user1>]

herminone:GSQL > ALTER PASSWORD
Password: *******
New Password : ************
Re-enter Password : ************
Password has been changed.

tigergraph:GSQL > ALTER PASSWORD hermione
Password: *******
New Password : ************
Re-enter Password : ************
Password has been changed.

GRANT ROLE <username> [ON GRAPH <gname>] TO <user1>,...<userN>
REVOKE ROLE <username> [ON GRAPH <gname>] FROM <user1>,...<userN>

ALTER PASSWORD

GRANT/REVOKE ROLE

Example: Admin user changing his/her own password

Example: Admin user changing another user's password

5/13/25, 1:39 PM TigerGraph Documentation

278

The example below grants the queryreader role to two users, revokes it from one of the

them (jk), and then grants the querywriter role to both users.

 A user can have more than one role. For example, jk can be a queryreader on the

Hogwarts graph and a querywriter on the London graph.

Proxy groups are used for LDAP Authentication. The CREATE / SHOW / DROP GROUP

commands require the superuser or admin privilege.

GSQL > GRANT ROLE queryreader ON GRAPH Hogwarts TO jk,hermione
Role "queryreader" is successfully granted to user(s): jk, hermione

GSQL > REVOKE ROLE queryreader ON GRAPH Hogwarts FROM hermione
Role "queryreader" is successfully revoked from user(s): hermione

GSQL > GRANT ROLE querywriter ON GRAPH London TO hermione,jk
Role "querywriter" is successfully granted to user(s): hermione, jk

GSQL > SHOW USER
Users:
* - Name: tigergraph
 - Roles: superuser

 - Name: hermione
 - Roles:
 - GraphName: London
 - Roles: querywriter

 - Name: jk
 - Roles:
 - GraphName: Hogwarts
 - Roles: queryreader
 - GraphName: London
 - Roles: querywriter

Creating and Managing Proxy Groups

CREATE GROUP

Example: Granting and Revoking Roles

5/13/25, 1:39 PM TigerGraph Documentation

279

Required privilege: superuser, admin

Create a proxy group whose membership is defined as those users who have an attribute

satisfying the rule <attributename>=<value>.

After a group has been defined, roles can be granted to (or revoked from) the group, as in

the example below:

Required privilege: superuser, admin. Display information about a group.

Required privilege: superuser, admin. Delete the named group definition. The users in the

group will lose this proxy association but are otherwise unaffected.

When user authentication is enabled, the TigerGraph system will execute a requested

operation only if the requester provides credentials for a user who has the privilege to

perform the requested operation.

The TigerGraph system offers two options for credentials.

CREATE GROUP <groupname> PROXY "<attributename>=<value>"

CREATE GROUP developers PROXY "role=engineering"
GRANT ROLE querywriter ON GRAPH computerNet TO developers

SHOW GROUP <groupname>

DROP GROUP <groupname>

SHOW GROUP

DROP GROUP

Managing Credentials

CREATE GROUP and GRANT ROLE example

5/13/25, 1:39 PM TigerGraph Documentation

280

1. user name and password pair.

2. a token: a unique 32-character string which can be used for REST++ requests. A

token expires 3 months from the date of creation.

The following set of commands are used to create and manage passwords,

authentication secrets, and authentication tokens.

Like any other GSQL commands, the user must supply credentials to run these commands.

In order to create a secret or create a token, the user must supply their password.

These commands create and manage a user's secrets, unique strings which can serve as

a user's credentials in certain circumstances. A user can have multiple secret strings.

Each time that CREATE SECRET is executed, a new secret string is created. Therefore,

when running DROP SECRET, the user must specify which secret is to be dropped. The

following example shows a series of commands: log into the GSQL shell with a password,

create two secrets, one for each of two graphs, then drop one of the secrets.

 A secret represents more than just the user's identity but also the user's role for a

particular graph. If user's role is revoked, the secret becomes invalid.

ALTER PASSWORD [user1]
CREATE SECRET [alias1]
SHOW SECRET
DROP SECRET <secret1>
CREATE TOKEN
SHOW TOKEN
DROP TOKEN <token1>
REFRESH TOKEN <token1>

CREATE / SHOW / DROP SECRET

GSQL Commands for Managing Credentials

Example of CREATE / SHOW / DROP SECRET commands

5/13/25, 1:39 PM TigerGraph Documentation

281

The TOKEN commands in GSQL are deprecated. The recommended procedure to create

tokens is to use the REST++ endpoint GET /requesttoken.

$ gsql -u jk -g Hogwarts
Password for jk : *******
Welcome to GSQL Shell version: 1.2

GSQL > CREATE SECRET HH
The secret: 4sjmn1q13vp2klqb7v3t151vac9db2am has been created for user "ti

GSQL > SHOW SECRET
 - Secret: 4sjmn1q13vp2klqb7v3t151vac9db2am
 - Alias: HH
 - GraphName: Hogwarts

GSQL > USE GRAPH London
Using graph 'London'

GSQL > CREATE SECRET LL
The secret: 75j8kf75g545mgc24mefsjm1iic7m9i2 has been created for user "ti

GSQL > SHOW SECRET
 - Secret: 4sjmn1q13vp2klqb7v3t151vac9db2am
 - Alias: HH
 - GraphName: Hogwarts
 - Secret: 75j8kf75g545mgc24mefsjm1iic7m9i2
 - Alias: LL
 - GraphName: London

GSQL > USE GRAPH Hogwarts
Using graph 'Hogwarts'

GSQL > DROP SECRET 4sjmn1q13vp2klqb7v3t151vac9db2am
Secret 4sjmn1q13vp2klqb7v3t151vac9db2am has been removed.

GSQL > SHOW SECRET
 - Secret: 75j8kf75g545mgc24mefsjm1iic7m9i2
 - Alias: LL
 - GraphName: London

CREATE / SHOW / DROP / REFRESH TOKEN (deprecated)

5/13/25, 1:39 PM TigerGraph Documentation

282

These commands create and manage a user's tokens, unique strings which can be used

as credentials when making a REST++ request. In fact, tokens are the only credentials that

can be used for REST++ requests. In order to create a token, a user must first have a

secret. A user can have multiple tokens, but each token is associated with its secret. Each

token is given a lifetime and expiration date when it is created; the default lifetime is 3

months. However, the clock can be reset, giving 3 months from the current time, by using

the REFRESH TOKEN command.

The following example shows a series of commands: log into the GSQL shell, create a

second secret, create a token for one secret, create another token for another secret, and

drop one token.

Example of CREATE / SHOW / REFRESH / DROP TOKEN commands

5/13/25, 1:39 PM TigerGraph Documentation

283

$ gsql -u jk -g London
Password for jk : *******

GSQL > CREATE SECRET
The secret: mv88grasoidc7fenk1ffl6hnll8f2apf has been created for user "jk

GSQL > SHOW SECRET
 - Secret: 33bt4o86c33nauhhipaenh9pluun86po
 - GraphName: London
 - Secret: mv88grasoidc7fenk1ffl6hnll8f2apf
 - GraphName: London

GSQL > CREATE TOKEN
Secret : 33bt4o86c33nauhhipaenh9pluun86po
The access token: kn1hlp1a6b9lugq2mkqohsd8i0ht2tt3 is created and it will

GSQL > SHOW TOKEN
 - Secret: 33bt4o86c33nauhhipaenh9pluun86po
 - Token: kn1hlp1a6b9lugq2mkqohsd8i0ht2tt3 expire at: 2018-05-03 18:3
 - GraphName: London
 - Secret: mv88grasoidc7fenk1ffl6hnll8f2apf
 - GraphName: London

GSQL > CREATE TOKEN
Secret : mv88grasoidc7fenk1ffl6hnll8f2apf
The access token: ieec6odigmja01rkt3qmq0nar4iufsvq is created and it will

GSQL > SHOW TOKEN
 - Secret: 33bt4o86c33nauhhipaenh9pluun86po
 - Token: kn1hlp1a6b9lugq2mkqohsd8i0ht2tt3 expire at: 2018-05-03 18:3
 - GraphName: London
 - Secret: mv88grasoidc7fenk1ffl6hnll8f2apf
 - Token: ieec6odigmja01rkt3qmq0nar4iufsvq expire at: 2018-05-03 18:3
 - GraphName: London

GSQL > DROP TOKEN kn1hlp1a6b9lugq2mkqohsd8i0ht2tt3
Token kn1hlp1a6b9lugq2mkqohsd8i0ht2tt3 has been removed.

GSQL > SHOW TOKEN
 - Secret: 33bt4o86c33nauhhipaenh9pluun86po
 - Alias: LL
 - GraphName: London
 - Secret: mv88grasoidc7fenk1ffl6hnll8f2apf
 - Token: ieec6odigmja01rkt3qmq0nar4iufsvq expire at: 2018-05-03 18:3
 - GraphName: London

5/13/25, 1:39 PM TigerGraph Documentation

284

LDAP

Version 2.0 to 2.3. Copyright © 2019 TigerGraph. All Rights Reserved.

The Lightweight Directory Access Protocol (LDAP) is an industry-standard protocol for

accessing and maintaining directory information services across a network. Typically,

LDAP servers are used to provide centralized user authentication service. The Tigergraph

system supports LDAP authentication by allowing a TigerGraph user to log in using an

LDAP username and credentials. During the authentication process, the GSQL server

connects to the LDAP server and requests the LDAP server to authenticate the user.

GSQL LDAP authentication supports any LDAP server that follows LDAPv3 protocol.

StartTLS/SSL connection is also supported.

SASL authentication is not yet supported. Some LDAP server are configured to require a

client certificate upon connection. Client certificate is not yet supported in GSQL LDAP

authentication.

In order to manage the user roles and privileges, the TigerGraph GSQL server employs two

concepts—proxy user and proxy group.

A proxy user is a GSQL user created to correspond an external LDAP user. When operating

within GSQL, the external LDAP user's roles and privileges are determined by the proxy

user.

Supported Features

Mapping Users From LDAP to GSQL

Proxy User

Proxy Group

5/13/25, 1:39 PM TigerGraph Documentation

285

A proxy group is a GSQL user group that is used to manage a group of proxy users who

share similar properties/attributes in LDAP.

An existing LDAP user can log in to GSQL only when the user matches at least one of the

existing proxy groups' criteria. Once the criteria are satisfied, a proxy user will be created

for the LDAP user. The roles and privileges of the proxy user are at least as permissive as

the proxy group(s) he belongs to. It is also possible to change the roles of a specific proxy

user independently. When the roles and privileges of a proxy group changes, the roles and

privileges of all the proxy users belonging to this proxy group change accordingly.

To configure a TigerGraph system to use LDAP, there are two main configuration steps:

1. Configure the LDAP Connection.

2. Configure GSQL Proxy Groups and Users.

In order to choose and specify your LDAP configuration settings, you must understand

some basic LDAP concepts. One reference for LDAP concepts is

https://www.ldap.com/basic-ldap-concepts .

To enable and configure LDAP, run three commands.

1. Configure LDAP:

The gadmin program will then prompt the user for the settings for several LDAP

configuration parameters.

2.Apply the configuration:

gadmin --configure ldap

Configure GSQL LDAP Authentication

Step 1 - Configure the LDAP Connection

5/13/25, 1:39 PM TigerGraph Documentation

https://www.ldap.com/basic-ldap-concepts
https://www.ldap.com/basic-ldap-concepts

286

3.Restart the gsql server:

An example configuration is shown below.

gadmin config-apply

gadmin restart gsql -y

Example of gadmin --configure ldap

5/13/25, 1:39 PM TigerGraph Documentation

287

5/13/25, 1:39 PM TigerGraph Documentation

288

$ gadmin --configure ldap
Enable LDAP authentication: default false
security.ldap.enable [False]: true
True

Configure LDAP server hostname: default localhost
security.ldap.host [ldap.tigergraph.com]: ldap.tigergraph.com
ldap.tigergraph.com

Configure LDAP server port: default 389
security.ldap.port [389]: 389
389

Configure LDAP search base DN, the root node to start the LDAP search fo
security.ldap.base_dn [dc=tigergraph,dc=com]: dc=tigergraph,dc=com
dc=tigergraph,dc=com

Configure LDAP search base DN, the root node to start the LDAP search fo
security.ldap.search_filter [(objectClass=*)]:
(objectClass=*)

Configure the username attribute name in LDAP server: default uid
security.ldap.username_attribute [uid]: uid
uid

Configure the DN of LDAP user who has read access to the base DN specifi
security.ldap.admin_dn [cn=Manager,dc=tigergraph,dc=com]: cn=Manager,dc=ti
cn=Manager,dc=tigergraph,dc=com

Configure the password of the admin DN specified above. Needed only when
security.ldap.admin_password [secret]: secret
secret

Enable SSL/StartTLS for LDAP connection [none/ssl/starttls]: default non
security.ldap.secure.protocol [starttls]: none
none

Configure the truststore path for the certificates used in SSL: default
security.ldap.secure.truststore_path [/tmp/ca_server.pkcs12]:
/tmp/ca_server.pkcs12

Configure the truststore format [JKS/PKCS12]: default JKS
security.ldap.secure.truststore_format [pkcs12]:
pkcs12

Configure the truststore password: default changeit
security.ldap.secure.truststore_password [test]:
test

5/13/25, 1:39 PM TigerGraph Documentation

289

Below is an explanation of each configuration parameter.

Set to "true" to enable LDAP; "false" to disable LDAP.

Hostname of LDAP server.

Port of LDAP server.

Base DN (Distinguished Name), in order for GSQL to perform the LDAP search.

A search filter is optional. When configured, the search is only performed for the LDAP

entries that satisfy the filter. The filter must strictly follow LDAP filter format, i.e., the

condition must be wrapped by parentheses, etc. A description of the different types of

filters is available at https://www.ldap.com/ldap-filters . The official specification for

LDAP filters is available at https://docs.ldap.com/specs/rfc4515.txt .

This specifies the LDAP attribute to search when the GSQL server looks up the usernames

in the LDAP server upon login. For example, in the configuration shown above, when a user

logs in with the "-u john" option, the GSQL server will search the "uid" attribute in LDAP to

find "john" and check the credentials only after "john" is found.

Configure to trust all LDAP servers (unsafe): default false
security.ldap.secure.trust_all [False]: false

security.ldap.enable

security.ldap.host

security.ldap.port

security.ldap.base_dn

security.ldap.search_filter

security.ldap.username_attribute

5/13/25, 1:39 PM TigerGraph Documentation

https://www.ldap.com/ldap-filters
https://www.ldap.com/ldap-filters
https://docs.ldap.com/specs/rfc4515.txt
https://docs.ldap.com/specs/rfc4515.txt

290

These options are needed when the LDAP server is not publicly readable. In this case, the

admin DN and corresponding password need to be specified in order for the GSQL server

to connect to the LDAP server.

When set to "none", TigerGraph uses insecure LDAP connection. This can be changed to a

secure connection protocol: "starttls" or "ssl".

When starttls or ssl is used, a truststore path as well as its password needs to be

configured.

Currently, the TigerGraph system supports two trustore formats: pkcs12 and jks.

When specified, the GSQL server will blindly trust any LDAP sever.

This section explains how to configure a GSQL proxy group in order to allow LDAP user

authentication.

A GSQL proxy group is created by the CREATE GROUP command with a given proxy rule.

For example, assume there is an attribute called "role" in the LDAP directory, and

security.ldap.admin_password & security.ldap.admin_dn

security.ldap.secure.protocol

security.ldap.secure.truststore_path &

security.ldap.secure.truststore_password

security.ldap.secure.truststore_format

security.ldap.secure.trust_all

Step 2 - Configure GSQL Proxy Groups and Users

Configure Proxy Group

5/13/25, 1:39 PM TigerGraph Documentation

291

"engineering" is one of the "role" attribute values. We can create a proxy group with the

proxy rule "role=engineering". Different roles can then be assigned to the proxy group. An

example is shown below. When a user logins, the GSQL server searches for the user's

entry in the LDAP directory. If the user's LDAP entry matches the proxy rule of an existing

proxy group, a proxy user is created to which the user will login in.

The SHOW GROUP command will display information about a group. The DROP GROUP

command deletes the definition of a group.

Only users with the admin and superuser role can create, show, or drop a group.

Nothing needs to be configured for a proxy user. As long as the proxy rule matches, the

proxy user will be automatically created upon login. A proxy user is very similar to a

normal user. The minor differences are that a proxy user cannot change their password in

GSQL and that a proxy user comes with default roles inherited from the proxy group that

they belong to.

create a proxy group
CREATE GROUP developers PROXY "role=engineering" // Any user in LDAP with

grant role to proxy group
GRANT ROLE querywriter ON GRAPH computerNet TO developers

show the current groups
SHOW GROUP

delete a proxy group
DROP GROUP developers

Proxy User

Frequently Asked Questions

CREATE GROUP command

SHOW GROUP and DROP GROUP commands

5/13/25, 1:39 PM TigerGraph Documentation

292

Admin_dn is the "distinguished name" of an LDAP entry. In LDAP, "distinguished name" is

often abbreviated as dn. When configuring this field, a dn entry with read permission on

the ldap directory is expected. Configuring a dn with no read permission will result in an

error. Not configuring this field will likely result in an error since the LDAP server is

typically not publicly readable. Please note that only the dn field will be accepted for this

entry. All other entries will result in an authentication error. The corresponding password

for the configured dn should also be set correctly in the configured entry

"security.ldap.admin_password ".

It depends on what type of protocol your LDAP server uses. SSL/TLS is very common in

enterprise use today. When SSL is used, the port is typically 636 instead of default port

389.

You need to configure the truststore when SSL/TLS is used in the LDAP server. The

truststore's path, password, and format need to be configured accordingly. We support

two formats—JKS and PKCS12. The JKS is Java KeyStore. The corresponding certificates

for the LDAP server need to be imported to the JKS for successful authentication.

Different truststore formats are typically interchangeable.

This might be the case if SSL/TLS is enabled from the LDAP server side but you don't have

a certificate. You can set "security.ldap.secure.trust_all" to true to bypass the SSL/TLS

certificate checking.

What is security.ldap.admin_dn?

What protocol should I use for security.ldap.secure.protocol?

Should I configure the truststore and how?

What if I just want to test the LDAP login without any

certificate?

5/13/25, 1:39 PM TigerGraph Documentation

293

"Parameter error" means some of the LDAP configurations are not set properly. Most often

it is because admin_dn, admin_password, or the login username and password are not set

correctly. Unfortunately, we cannot know exactly what field is wrong because the LDAP

server side does not respond back with such detail.

Congratulations! This means the LDAP is working. However, TigerGraph cannot find a

matching rule for the login user. Please create a proxy group for the user. See documents

for creating a proxy group here.

What does it mean when I try to login but got "parameter

error"? Can I see a more detailed error message?

What does it mean when I see error "User does not match

any proxy rule"?

5/13/25, 1:39 PM TigerGraph Documentation

294

Single Sign-On

Version 2.0 to 2.3. Copyright © 2019 TigerGraph. All Rights Reserved.

The Single Sign-On (SSO) feature in TigerGraph enables you to use your organization's

identity provider (IDP) to authenticate users to access TigerGraph GraphStudio and Admin

Portal UI. If your IDP supports SAML 2.0 protocol, you should be able to integrate your

identity provider with TigerGraph Single Sign-On .

Currently we have verified following identity providers:

• Okta

• Auth0

In order to use Single Sign-On , you need perform four steps :

1. Configure your identity provider to create a TigerGraph application.

2. Provide information from your identity provider to enable TigerGraph Single Sign-On .

3. Create user groups with proxy rules to authorize Single Sign-On users.

4. Change the password of the tigergraph user to be other than the default, if you haven't

done so already.

We assume you already have TigerGraph up and running , and you can access

GraphStudio UI through a web browser using the URL:

http://tigergraph-machine-hostname:14240

If you enabled SSL connection, change http to https. If you changed the nginx port of the

TigerGraph system, replace 14240 with the port you have set.

Here we provide detailed instructions for identity providers that we have verified. Please

consult your IT or security department for how to configure the identity provider for your

Configure Identity Provider

5/13/25, 1:39 PM TigerGraph Documentation

https://www.okta.com/
https://www.okta.com/
https://auth0.com/
https://auth0.com/

295

organization if it is not listed here.

After you finish configuring your identity provider, you will get an Identity Provider Single

Sign-On URL , Identity Provider Entity Id , and an X.509 certificate file idp.cert . You need

these 3 things to configure TigerGraph next.

After logging into Okta as the admin user, click Admin button at the top-right corner.

Okta

5/13/25, 1:39 PM TigerGraph Documentation

296

Click Add Applications in the right menu.

5/13/25, 1:39 PM TigerGraph Documentation

297

Click Create New App button in the left toolbar.

In the pop up window, choose SAML 2.0 and click Create .

5/13/25, 1:39 PM TigerGraph Documentation

298

Input TigerGraph (or whatever application name you want to use) in App Name , and click

Next . Upload a logo if you like.

Enter the Assertion Consumer Service URL / Single sign on URL , and SP Entity ID .

5/13/25, 1:39 PM TigerGraph Documentation

299

Both are URLs in our case. You need to know the hostname of the TigerGraph machine. If

you can visit GraphStudio UI through a browser, the URL contains the hostname. It can be

either an IP or a domain name.

The Assertion Consumer Service URL , or Single sign on URL, is

http://tigergraph-machine-hostname:14240/sso/saml/acs

The SP entity id URL is:

http://tigergraph-machine-hostname:14240/sso/saml/meta

Scroll to the bottom for Group Attribute Statements. Usually you want to grant roles to

users based on their user group. You can give a name to your attribute statement; here we

use group . For filter, we want to return all group attribute values of all users, so we use

Regex .* as the filter. Click Next after you set up everything.

5/13/25, 1:39 PM TigerGraph Documentation

300

In the final step, choose whether you want to integrate your app with Okta or not. Then

click Finish .

5/13/25, 1:39 PM TigerGraph Documentation

301

Now your Okta identity provider settings are finished. Click View Setup Instructions button

to gather information you will need to setup TigerGraph Single Sign-On.

5/13/25, 1:39 PM TigerGraph Documentation

302

Here you want to save Identity Provider Single Sign-On URL and Identity Provider Issuer

(usually known as Identity Provider Entity Id). Download the certificate file as okta.cert,

rename it as idp.cert , and put it somewhere on the TigerGraph machine. Let's assume you

put it under your home folder: /home/tigergraph/idp.cert. If you installed TigerGraph in a

cluster, you should put it on the machine where the GSQL server is installed (usually it's

the machine whose alias is m1).

5/13/25, 1:39 PM TigerGraph Documentation

303

Finally, return to previous page, go to the Assignments tab, click the Assign button, and

assign people or groups in your organization to access this application.

5/13/25, 1:39 PM TigerGraph Documentation

304

After logging into Auth0, click Clients in the left navigation bar, and then click CREATE

CLIENT button.

Auth0

5/13/25, 1:39 PM TigerGraph Documentation

305

In the pop-up window, enter TigerGraph (or whatever application name you want to use) in

the Name input box. Choose Single Page Web Application , and then click the CREATE

button.

5/13/25, 1:39 PM TigerGraph Documentation

306

Click Clients again. In the Shown Clients list, click the settings icon of your newly created

TigerGraph client.

5/13/25, 1:39 PM TigerGraph Documentation

307

Scroll down to the bottom of the settings section, and click Show Advanced Settings .

5/13/25, 1:39 PM TigerGraph Documentation

308

Click the Certificates tab and then click DOWNLOAD CERTIFICATE. In the chooser list,

choose CER. Rename the downloaded file as idp.cert , and put it somewhere on the

TigerGraph machine. Let's assume you put it under your home folder:

/home/tigergraph/idp.cert. If you installed TigerGraph in a cluster, you should put it on the

machine where the GSQL server is installed (usually it's the machine whose alias is m1).

Click the Endpoints tab, and copy the text in the SAML Protocol URL text box. This is the

Identity Provider Single Sign-On URL that will be used to configure TigerGraph in an

upcoming step.

5/13/25, 1:39 PM TigerGraph Documentation

309

Scroll up to the top of the page, click the Addons tab, and switch on the toggle at the right

side of the SAML2 card.

5/13/25, 1:39 PM TigerGraph Documentation

310

In the pop-up window, enter the Assertion Consumer Service URL in the Application

Callback URL input box:

http://tigergraph-machine-hostname:14240/sso/saml/acs

5/13/25, 1:39 PM TigerGraph Documentation

311

Scroll down to the end of the settings JSON code, click the DEBUG button, and log in as

any existing user in your organization in the pop-up login page.

5/13/25, 1:39 PM TigerGraph Documentation

312

If login in successfully, the SAML response will be shown in decoded XML format. Scroll

down to the attributes section. Here you will see some attribute names, which you will use

to set proxy rules when creating groups in an upcoming configuration step.

5/13/25, 1:39 PM TigerGraph Documentation

313

Return to the previous pop-up window and click the Usage tab. Copy the Issuer value. This

is the Identity Provider Entity Id that will be used to configure TigerGraph in an upcoming

step.

5/13/25, 1:39 PM TigerGraph Documentation

314

Click the Settings tab, scroll to the bottom of the pop-up window, and click the SAVE

button. Close the pop-up window.

5/13/25, 1:39 PM TigerGraph Documentation

315

end of Auth0 configuration instructions. Jump to Step 2: Enable Single Sign-On for

TigerGraph

5/13/25, 1:39 PM TigerGraph Documentation

https://doc.tigergraph.com/Single-Sign-On.html#SingleSign-On-enable_tigergraph_sso
https://doc.tigergraph.com/Single-Sign-On.html#SingleSign-On-enable_tigergraph_sso
https://doc.tigergraph.com/Single-Sign-On.html#SingleSign-On-enable_tigergraph_sso

316

According to the SAML standard trust model, a self-signed certificate is considered fine.

This is different from configuring a SSL connection, where a CA-authorized certificate is

considered mandatory if the system goes to production.

There are multiple ways to create a self-signed certificate. One example is shown below.

First, use the following command to generate a private key in PKCS#1 format and a X.509

certificate file. In the example below, the Common Name value should be your server

hostname (IP or domain name).

Second, convert your private key from PKCS#1 format to PKCS#8 format:

$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /home/tigerg

Generating a 2048 bit RSA private key
..
........+++
writing new private key to '/home/tigergraph/sp-pkcs1.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Redwood City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:TigerGraph Inc.
Organizational Unit Name (eg, section) []:GLE
Common Name (e.g. server FQDN or YOUR name) []: tigergraph-machine-hostnam
Email Address []:support@tigergraph.com

Enable Single Sign-On in TigerGraph

Prepare certificate and private key on TigerGraph machine

Self-Signed Certificate generation example using openssl

5/13/25, 1:39 PM TigerGraph Documentation

317

Finally, change the certificate and private key file to have permission 600 or less. (The

tigergraph user can read or write the file; no other user has any permission.)

From a TigerGraph machine, run the following command: gadmin --configure sso.saml

Answering the questions is straightforward; an example is shown below.

In v2.3, the requirements for the security.sso.saml.sp.url parameter changed. The url must be

a full url, starting with protocol (such as http) and ending with port number.

openssl pkcs8 -topk8 -inform pem -nocrypt -in /home/tigergraph/sp-pkcs1.ke

chmod 600 /home/tigergraph/sp.*

Enable and configure Single Sign-On Using Gadmin

configure sso.saml example

5/13/25, 1:39 PM TigerGraph Documentation

318

5/13/25, 1:39 PM TigerGraph Documentation

319

$ gadmin --configure sso.saml
Enter new values or accept defaults in brackets with Enter.

Enable SAML2-based SSO: default false
security.sso.saml.enable [False]: true
True

TigerGraph Service Provider URL: default http://127.0.0.1:14240
security.sso.saml.sp.url [http://127.0.0.1:14240]: tigergraph-machine-grap
tigergraph-machine-graphstudio-url

Path to host machine's x509 Certificate filepath: default empty
security.sso.saml.sp.x509cert: /home/tigergraph/sp.cert
/home/tigergraph/sp.cert

Path to host machine's private key filepath. Require PKCS#8 format (start
security.sso.saml.sp.private_key: /home/tigergraph/sp.pem
/home/tigergraph/sp.pem

Identity Provider Entity ID: default http://idp.example.com
security.sso.saml.idp.entityid [http://idp.example.com]: http://identity.p
http://identity.provider.entity.id

Single Sign-On URL: default http://idp.example.com/sso/saml
security.sso.saml.idp.sso.url [http://idp.example.com/sso/saml]: http://id
http://identity.provider.single-sign-on.url

Identity Provider's x509 Certificate filepath: default empty
security.sso.saml.idp.x509cert: /home/tigergraph/idp.cert
/home/tigergraph/idp.cert

Sign AuthnRequests before sending to Identity Provider: default true
security.sso.saml.advanced.authn_request.signed [True]:
True

Require Identity Provider to sign assertions: default true
security.sso.saml.advanced.assertions.signed [True]:
True

Require Identity Provider to sign SAML responses: default true
security.sso.saml.advanced.responses.signed [True]: false
false

Sign Metadata: default true
security.sso.saml.advanced.metadata.signed [True]:
True

Signiture algorithm [rsa-sha1/rsa-sha256/rsa-sha384/rsa-sha512]: default r

5/13/25, 1:39 PM TigerGraph Documentation

320

The reason we change security.sso.saml.advanced.responses.signed to false is because

some identity providers (e.g., Auth0) don't support signed assertion and response at the

same time. If your identity provider supports signing both, we strongly suggest you leave it

as true.

After making the configuration settings, apply the config changes, and restart gsql.

In order to authorize Single Sign-On users, you need create user groups in GSQL with proxy

rules and grant roles on graphs for the user groups.

In TigerGraph Single Sign-On, we support two types of proxy rules. The first type is nameid

equations; the second type is attribute equations. Attribute equations are more commonly

used because usually user group information is transferred as attributes to your identity

security.sso.saml.advanced.signature_algorithm [rsa-sha256]:
rsa-sha256

Authentication context (comma separate multiple values)
security.sso.saml.advanced.requested_authn_context [urn:oasis:names:tc:SAM
urn:oasis:names:tc:SAML:2.0:ac:classes:Password

...

Test servers with supplied settings? [Y/n] y

...

Success. All settings are valid
Save settings? [y/N] y

...

Done.

$ gadmin config-apply
$ gadmin restart gsql -y

Create user groups with proxy rules to authorize
Single Sign-On users

5/13/25, 1:39 PM TigerGraph Documentation

321

provider SAML assertions. In the Okta identity provider configuration example, it is

transferred by the attribute statement named group . By granting roles to a user group, all

users matching the proxy rule will be granted all the privileges of that role. In some cases

if you want to grant one specific Single Sign-On user some privilege, you can use a nameid

equation to do so.

For example, if you want to create a user group SuperUserGroup that contains the user

with nameid admin@your.company.com only, and grant superuser role to that user, you

can do so with the following command:

Suppose you want to create a user group HrDepartment which corresponds to the identity

provider Single Sign-On users having the group attribute value "hr-department", and want

to grant the queryreader role to that group on the graph HrGraph:

Don't forget to enable User Authorization in TigerGraph by changing the password of the

default superuser tigergraph to other than its default value. If you do not change the

password, then every time you visit the GraphStudio UI, you will automatically log in as the

superuser tigergraph.

GSQL > CREATE GROUP SuperUserGroup PROXY "nameid=admin@your.company.com"
GSQL > GRANT ROLE superuser TO SuperUserGroup
Role "superuser" is successfully granted to user(s): SuperUserGroup

GSQL > CREATE GROUP HrDepartment PROXY "group=hr-department"
GSQL > GRANT ROLE queryreader ON GRAPH HrGraph TO HrDepartment
Role "queryreader" is successfully granted to user(s): HrDepartment

Single User Proxy

User Group Proxy

Change Password Of Default User

5/13/25, 1:39 PM TigerGraph Documentation

322

Now you have finished all configurations for Single Sign-On. Let's test it.

Visit the GraphStudio UI in your browser. You should see a Login with SSO button appear

on top of the login panel:

Clicking the button will navigate to your identity provider's login portal. If you have already

logged in there, you will be redirected back to GraphStudio immediately. After about 10

seconds, the verification should finish, and you are authorized to use GraphStudio. If you

haven't login at your identity provider yet, you will need to log in there. After logging in

successfully, you will see your Single Sign-On username when you click the User icon

at the upper right of the GraphStudio UI.

GSQL > change password
New Password : ********
Re-enter Password : ********
Password has been changed.
GSQL > exit

Testing Single Sign-On

5/13/25, 1:39 PM TigerGraph Documentation

323

If after redirecting back to GraphStudio, you return to the login page with the error

message shown below, that means the Single Sign-On user doesn't have access to any

graph. Please double check your user group proxy rules, and roles you have granted to the

groups.

5/13/25, 1:39 PM TigerGraph Documentation

324

If your Single Sign-On fails with error message show below, that means either some

configuration is inconsistent between TigerGraph and your identity provider, or something

unexpected happened.

5/13/25, 1:39 PM TigerGraph Documentation

325

You can check your GSQL log to investigate. First, find your GSQL log file with the

following:

Then, grep the SAML authentication-related logs:

Focus on the latest errors. Usually the text is self-descriptive. Follow the error message

and try to fix TigerGraph or your identity provider's configuration. If you encounter any

errors that are not clear, please contact support@tigergraph.com .

$ gadmin log | grep GSQL_LOG
GSQL : /home/tigergraph/tigergraph/dev/gdk/gsql/logs/GSQL_LOG

cat /home/tigergraph/tigergraph/dev/gdk/gsql/logs/GSQL_LOG | grep SAMLAuth

5/13/25, 1:39 PM TigerGraph Documentation

mailto:support@tigergraph.com
mailto:support@tigergraph.com

326

Data Encryption
Encryption for Data at Rest and Data in Motion

5/13/25, 1:39 PM TigerGraph Documentation

327

Encrypting Connections

Version 2.0 to 2.3 Copyright © 2019 TigerGraph. All Rights Reserved.

TigerGraph supports secure data-in-flight communication, using SSL/TLS encryption

protocol. This applies to any outward-facing channel, including GSQL clients, RESTPP

endpoints, and the GraphStudio web interface. When SSL/TLS is enabled, HTTPS takes

the place of HTTP for RESTPP and GraphStudio connections.

You should have basic knowledge about how SSL works:

1. What the SSL certificate and key are used for

2. That a SSL certificate is bound to a domain

3. How a SSL certificate chain works

A good primer on SSL is available to https://httpd.apache.org/docs/2.4/ssl/ssl_intro.html

TigerGraph uses the Nginx web server, so SSL configuration makes use of some built-in

support in Nginx.

http://nginx.org/en/docs/http/configuring_https_servers.html

The two main options for obtaining a SSL Certificate are to generate your own self-signed

certificate or to purchase a certificate from a trusted Certificate Authority. Regardless of

which method you choose, your certificate should be chained to a trusted root certificate

Prerequisites

Nginx-Based

Step 1. Obtain a SSL Certificate

5/13/25, 1:39 PM TigerGraph Documentation

https://httpd.apache.org/docs/2.4/ssl/ssl_intro.html
https://httpd.apache.org/docs/2.4/ssl/ssl_intro.html
https://httpd.apache.org/docs/2.4/ssl/ssl_intro.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/configuring_https_servers.html

328

embedded in your browser. The options and details for producing a trusted SSL certificate

are beyond the scope of this document. The focus of this document is how to use a

configure your TigerGraph system to use the certificate to enable SSL.

First, obtain a SSL certificate from a trusted agent of your choice. Certificate vendors will

provide clear instructions for ordering a certificate and then for installing it on your

system.

Then you can configure the certificate with gadmin --configure ssl

There are multiple ways to create a self-signed certificate. One example is shown below.

For simplicity, the method below will use the root certificate directly as the HTTPS server

certificate. This method is satisfactory for testing but should not be used for a production

system.

In the example below, the Common Name value should be your server hostname, since

HTTPS certificates are bound to domain names.

Option 1: Using a Certificate From A Trusted Agent

Option 2: Create a Self-Signed Certificate

Self-Signed Certificate generation example using openssl

5/13/25, 1:39 PM TigerGraph Documentation

329

For security reasons, the certificates can only be used with permission 600 or less .

With the self-signed certificate successfully generated, you can configure it with gadmin,

so that all the HTTP traffic will be protected with SSL.

$ openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout ~/nginx-self

Generating a 2048 bit RSA private key
..
........+++
writing new private key to '/home/tigergraph/nginx-selfsigned.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Redwood City
Organization Name (eg, company) [Internet Widgits Pty Ltd]:TigerGraph
Organizational Unit Name (eg, section) []:GLE
Common Name (e.g. server FQDN or YOUR name) []: my.ip.addr.num
Email Address []:engineer@tigergraph.com

$ chmod 600 ~/nginx-selfsigned.*

Change the Certificate Permission

Step 2: Configure SSL with gadmin

5/13/25, 1:39 PM TigerGraph Documentation

330

After saving the settings, apply the configuration settings.

Then restart the external-facing services: gsql, nginx, and vis.

$ gadmin --configure ssl

Enter new values or accept defaults in brackets with Enter.

Enable SSL with all HTTP responses (SSL Cert required): default False
Nginx.SSL.Enable [False]: True
True

Path to SSL cert bundle (domain cert, intermediate cert and root cert)
Nginx.SSL.Cert []: /home/tigergraph/nginx-selfsigned.crt
/home/tigergraph/nginx-selfsigned.crt

Path to SSL key
Nginx.SSL.Key []: /home/tigergraph/nginx-selfsigned.key
/home/tigergraph/nginx-selfsigned.key
...
Test servers with supplied settings? [Y/n] Y
...
Success. All settings are valid
Save settings? [y/N] y

$ gadmin config-apply

[FAB][2017-12-12 18:48:16] check_config
[FAB][2017-12-12 18:48:16] update_config_all
Local config modification Found, will restart dict server and update confi
[FAB][2017-12-12 18:48:21] launch_zookeepers
[FAB][2017-12-12 18:48:31] gsql_mon_alert_on
[FAB][2017-12-12 18:48:31] launch_zookeepers
[FAB][2017-12-12 18:48:42] launch_gsql_subsystems:DICT
[FAB][2017-12-12 18:48:42] gsql_mon_alert_on
Local config modification sync to dictionary successfully!

$ gadmin restart gsql nginx vis -y

Testing Your SSL Connection

5/13/25, 1:39 PM TigerGraph Documentation

331

Now you may test the connection.

A direct curl request to the server will fail due to certificate verification failure:

In v1.2, the default TCP/IP port for Nginx has changed from 44240 to 14240, to avoid

possible port conflicts with Zookeeper.

You may use the -k option to turn off the verification, but it is unsafe and not

recommended.

To successfully make requests with curl, you will need to specify the certificate by using

the --cacert parameter:

$ curl https://localhost:14240

curl: (60) server certificate verification failed. CAfile: /etc/ssl/certs/
More details here: http://curl.haxx.se/docs/sslcerts.html
curl performs SSL certificate verification by default, using a "bundle"
of Certificate Authority (CA) public keys (CA certs). If the default
bundle file isn't adequate, you can specify an alternate file
using the --cacert option.
If this HTTPS server uses a certificate signed by a CA represented in
the bundle, the certificate verification probably failed due to a
problem with the certificate (it might be expired, or the name might
not match the domain name in the URL).
If you'd like to turn off curl's verification of the certificate, use
the -k (or --insecure) option.

$ curl --cacert /home/tigergraph/nginx-selfsigned.crt https://localhost:14

<!doctype html><html lang="en"><head><meta charset="utf-8"><title>GraphStu

5/13/25, 1:39 PM TigerGraph Documentation

332

Encrypting Data At Rest

Version 2.0 to 2.3. Copyright © 2019 TigerGraph. All Rights Reserved.

The TigerGraph graph data store uses a proprietary encoding scheme which both

compresses the data and obscures the data unless the user knows the

encoding/decoding scheme. In addition, the TigerGraph system supports integration with

industry-standard methods for encrypting data when stored in disk ("data at rest").

Data at rest encryption can be applied at many different levels. A user can choose to use

one or more level.

File system encryption employs advanced encryption algorithms. Some tools allow the

user to select from a menu of encryption algorithms. It can be done either in kernel mode

or user mode. To run in kernel mode, superuser permission is required.

Encryption Level Description TigerGraph Support

Hardware

Use specialized hard disks

which perform automatic

encryption on write and

decryption on read (by

authorized OS users)

Invisible to TigerGraph

Kernel-level file system

Use Linux built-in utilities to

encrypt data.

Root privilege required.

Invisible to TigerGraph

User-level file system

Use Linux built-in utilities and

customized libraries to

encrypt data.

Root privilege is not required.

Invisible to TigerGraph

Encryption Levels

Kernel-level Encryption

5/13/25, 1:39 PM TigerGraph Documentation

333

Since Linux 2.6, device-mapper has been an infrastructure, which provides a generic way

to create virtual layers of block devices with transparent encryption blocks using the

kernel crypto API.

In Ubuntu, full-disk encryption is an option during the OS installation process. For other

Linux distributions, the disk can be encrypted with dm-encrypt .

A commonly used utility is eCryptfs , which is licensed under GPL, and it is built into

some kernels, such as Ubuntu.

If root privilege is not available, a workaround is to use FUSE (Filesystem in User Space) to

create a user-level filesystem running on top of the host operating system. While the

performance may not be as good as running in kernel mode, there are more options

available for customization and tuning.

In this example, we use dm-crypt to provide kernel-mode file system encryption. The dm-

crypt utility is widely available and offers a choice of encryption algorithms. It also can be

set to encrypt various units of storage – full disk, partitions, logical volumes, or files.

The basic idea of this solution is to create a file, map an encrypted file system to it, and

mount it as a storage directory for TigerGraph with R/W permission only to authorized

users.

Before you start, you will need a Linux machine on which

• you have root permission,

• the TigerGraph system has not yet been installed,

User-Level Encryption

Example 1: Kernel-mode file system encryption
with dm-crypt

Prerequisites

5/13/25, 1:39 PM TigerGraph Documentation

https://wiki.archlinux.org/index.php/Dm-crypt
https://wiki.archlinux.org/index.php/Dm-crypt
http://ecryptfs.org/
http://ecryptfs.org/

334

• and you have sufficient disk space for the TigerGraph data you wish to encrypt. This

may be on your local disk or on a separate disk you have mounted.

• Install cryptsetup (cryptsetup is included with Ubuntu, but other OS users may need to

install it with yum).

• Install the TigerGraph system.

• Grant sudo privilege to the TigerGraph OS user.

• Stop all TigerGraph services with the following commands:

gadmin stop -y

gadmin stop admin -y

• Acting as the tigergraph OS user, run the following export commands to set variables.

Replace the placeholders enclosed in angle brackets <...> with the values of your

choice:

• Create a file for TigerGraph data storage.

The username for TigerGraph Database System, for example: tigergraph
export db_user='<username>'

The path of encrypted file to be created for TigerGraph storage, for exa
export encrypted_file_path='<path-to-encrypted-file>'

The size of encrypted file to be created (used by dd command), for examp
export encrypted_file_size=<storage-size>

The password for the encrypted file, for example: DataAtRe5tPa55w0rd
export encryption_password='<password>'

The root directory for tigergraph, for example: $HOME/tigergraph
export tigergraph_root="<tigergraph-root>"

Set the first available loop device for encrypted file mapping
export loop_device=$(losetup -f)

dd of=$encrypted_file_path bs=$encrypted_file_size count=0 seek=1

Instructions

5/13/25, 1:39 PM TigerGraph Documentation

335

• Change the permission of the file so that only the owner of the file (that is, only the

tigergraph user who created the file in the previous step) will be able to access it:

• Associate a loopback device with the file:

• Encrypt storage in the device. cryptsetup will use the Linux device mapper to create, in

this case, $encrypted_file_path . Initialize the volume and set a password interactively

with the password you set to $encryption_password :

If you are trying to automate the process with a script running with root TTY session , you

may use the following command:

• Open the partition, and create a mapping to $encrypted_file_path :

If you are trying to automate the process with a script running with root TTY session , you

may use the following command:

• Clear the password from bash variables and bash history.

The following commands may clear your previous bash histories as well. Instead, you may

edit ~/.bash_history to selectively delete the related entries.

chmod 600 $encrypted_file_path

sudo losetup $loop_device $encrypted_file_path

sudo cryptsetup -y luksFormat $loop_device

echo "$encryption_password" | cryptsetup -y luksFormat $loop_device

sudo cryptsetup luksOpen $loop_device tigergraph_gstore

echo "$encryption_password" | cryptsetup luksOpen $loop_device tigergraph_

5/13/25, 1:39 PM TigerGraph Documentation

336

• Create a file system and verify its status:

• Mount the new file system to /mnt/secretfs:

• Change the permission to 700 so that only $db_user has access to the file system:

• Move the original TigerGraph files to the encrypted filesystem and make a symbolic

link. If you wish to encrypt only the TigerGraph data store (called gstore), use the

following commands:

There are other TigerGraph files which you might also consider to be sensitive and wish to

encrypt. These include the dictionary, kafka data files, and log files. You could selectively

identify files to protect or you could encrypt the entire TigerGraph folder. In this case,

simply move $tigergraph_root instead of $tigergraph_root/gstore.

The data of TigerGraph data is now stored in an encrypted filesystem. It will be

automated decrypted when the tigergraph user (and only this user) accesses it.

To automatically deploy this encryption solution, you may

unset encryption_password
history -c
history -w

sudo mke2fs -j -O dir_index /dev/mapper/tigergraph_gstore

sudo mkdir -p /mnt/secretfs
sudo mount /dev/mapper/tigergraph_gstore /mnt/secretfs

sudo chmod -R 700 /mnt/secretfs
sudo chown -R $db_user:$db_user /mnt/secretfs

mv $tigergraph_root/gstore /mnt/secretfs/gstore
ln -s /mnt/secretfs/gstore $tigergraph_root/gstore

mv $tigergraph_root /mnt/secretfs/tigergraph
ln -s /mnt/secretfs/tigergraph $tigergraph_root

5/13/25, 1:39 PM TigerGraph Documentation

337

1. Chain all the steps as a bash script

2. Remove all "sudo" since the script will be running as root.

3. Run the script as root user after TigerGraph Installation.

The setup scripts contain your encryption password. To follow good security procedures, do

not leave your password in plaintext format in any files on your disk. Either remove the setup

scripts or edit out the password.

Encryption is usually CPU-bound rather than I/O-bound. If CPU usage reamains below

100%, encryption should not cause much performance slowdown. A performance test

using both small and large queries supports this prediction: for small (~1 sec) and large

(~100 sec) queries, there is a ~5% slowdown due to filesystem encryption.

We used the TPC-H dataset with scale factor 10 (http://www.tpc.org/tpch/). The data

size is 23GB after loading into TigerGraph..The write test (data loading) was done by

running a loading job and then killing the GPE with SIGTERM (to exit gracefully) to ensure

that all kafka data is consumed.The read test (GSE cold start) measures the time from

"gadmin start gse" until "online" appears in "gadmin status gse".

Major cloud service providers often provide their own methodologies for encrypting data

at rest. For Amazon EC2, we recommend users start by reading the AWS Security Blog:

How to Protect Data at Rest with Amazon EC2 Instance Store Encryption .

GSE Cold Start (read) Load Data (write)

original 45s 809s

encrypted 47s 854s

% slowdown 4.4% 5.8%

Performance Evaluation

Example 2: Encrypting Data on Amazon EC2

5/13/25, 1:39 PM TigerGraph Documentation

http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/

338

In this section, we provide a simple example for configuring file system encryption for a

TigerGraph running on Amazon EC2. The steps are based on those given in How to

Protect Data at Rest with Amazon EC2 Instance Store Encryption , with some additions

and modifications.

The basic idea of this solution is to create a file, map an encrypted file system to it, and

mount it as a storage directory for TigerGraph with permission only to authorized users.

Angle brackets <...> are used to mark placeholders which you should replace with your own

values (without the angle brackets).

Make sure you have installed and configured AWS CLI with keys locally.

Sign in to the S3 console and choose Create Bucket .
In the Bucket Name box, type your bucket name and then choose Create .
You should see the details about your new bucket in the right pane.

Prerequisites

Create an S3 Bucket

Configure IAM roles and permission for the S3 bucket

from Amazon Data-at-Rest blog

from Amazon Data-at-Rest blog

5/13/25, 1:39 PM TigerGraph Documentation

https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/
https://aws.amazon.com/blogs/security/how-to-protect-data-at-rest-with-amazon-ec2-instance-store-encryption/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

339

If you don't have a KMS key, you can create it first:

1. From the IAM console , choose Encryption keys from the navigation pane.

2. Select Create Key , and type in <your-key-alias>

3. For Step 2 and Step 3 , see

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html for

advice.

4. In Step 4 : Define Key Usage Permissions , select <your-role-name>

5. The role now has permission to use the key.

1.Sign in to the AWS Management Console and navigate to the IAM console .

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::<your-bucket-name>/LuksInternalStora
 }
]
}
The preceding policy grants read access to the bucket where the encrypted
(The following instructions have been updated since the original blog post

2."Select type of trusted entity: Choose AWS service .
3."Select the service that will use this role": Choose EC2 then choose Nex
4.Choose the policy you created in Step 1 and then choose Next: Review.
5.On the Create role page, type your role name , a Role description, and c
6.The newly created IAM role is now ready. You will use it when launching

Create a KMS Key (optional)

5/13/25, 1:39 PM TigerGraph Documentation

https://console.aws.amazon.com/iam/home
https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

340

In this section, you launch a new EC2 instance with the new IAM role and a bootstrap

script that executes the steps to encrypt the file system.

The script in this section requires root permission, and it cannot be run manually through an

ssh tunnel or by an unprivileged user.

Step 2. Create Key

Next, use KMS to encrypt a secret password. To encrypt text by using KMS,

To encrypt a secret password with KMS and store it in the S3 bucket:

From the AWS CLI, type the following command to encrypt a secret password
aws --region <your-region> kms encrypt --key-id 'alias/<your-key-alias>' -

aws s3 cp LuksInternalStorageKey s3://<your-bucket-name>/LuksInternalStora
The preceding commands encrypt the password (Base64 is used to decode the

Encrypt a secret password with KMS and store it in the S3

bucket

Configure EC2 with role and launch configurations

from Amazon Data-at-Rest blog

5/13/25, 1:39 PM TigerGraph Documentation

341

1. In the EC2 console , launch a new instance (see this tutorial for more details).

Amazon Linux AMI 2017.09.1 (HVM), SSD Volume Type (If NOT using Amazon Linux

AMI, a script the installs python, pip and AWS CLI needs to be added in the beginning).

2. In Step 3: Configure Instance Details

a. In IAM role , choose <your-role-name>

b. In User Data , paste the following code block after replacing the placeholders with

your values and appending TigerGraph installation script

5/13/25, 1:39 PM TigerGraph Documentation

https://console.aws.amazon.com/ec2/v2/home
https://console.aws.amazon.com/ec2/v2/home
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-instance.html

342

Encryption bootstrap script

5/13/25, 1:39 PM TigerGraph Documentation

343

5/13/25, 1:39 PM TigerGraph Documentation

344

#!/bin/bash

db_user=tigergraph

Initial setup to be executed on boot
##====================================
Create an empty file. This file will be used to host the file system.
In this example we create a <disk-size> (for example: 60G) file at <path
dd of=<path-to-encrypted-file> bs=<disk-size> count=0 seek=1

Lock down normal access to the file.
chmod 600 <path-to-encrypted-file>

Associate a loopback device with the file.
losetup /dev/loop0 <path-to-encrypted-file>

#Copy encrypted password file from S3. The password is used to configure L
aws s3 cp s3://<your-bucket-name>/LuksInternalStorageKey .

Decrypt the password from the file with KMS, save the secret password in
LuksClearTextKey=$(aws --region <your-region> kms decrypt --ciphertext-blo

Encrypt storage in the device. cryptsetup will use the Linux
device mapper to create, in this case, /dev/mapper/tigergraph_gstore.
Initialize the volume and set an initial key.
echo "$LuksClearTextKey" | cryptsetup -y luksFormat /dev/loop0

Open the partition, and create a mapping to /dev/mapper/tigergraph_gstor
echo "$LuksClearTextKey" | cryptsetup luksOpen /dev/loop0 tigergraph_gstor

Clear the LuksClearTextKey variable because we don't need it anymore.
unset LuksClearTextKey

Create a file system and verify its status.
mke2fs -j -O dir_index /dev/mapper/tigergraph_gstore

Mount the new file system to /mnt/secretfs.
mkdir -p /mnt/secretfs
mount /dev/mapper/tigergraph_gstore /mnt/secretfs

create user tigergraph
adduser $db_user

Change the permission so that only tigergraph has access to the file sys
chmod -R 700 /mnt/secretfs
chown -R $db_user:$db_user /mnt/secretfs

Install TigerGraph

5/13/25, 1:39 PM TigerGraph Documentation

345

It may take a few minutes for the script to complete after system launch.

Then, you should be able to launch one or more EC2 machines with an encrypted folder

under /mnt/secretfs that only OS user tigergraph can access.

Encryption is usually CPU-bound rather than I/O bound. If CPU usage is below 100%,

TigerGraph tests show no significant performance downgrade.

Copyright (c) 2015-2018 www.tigergraph.com . All rights reserved.

Run the one-command installation script with TigerGraphh root path under

Performance

5/13/25, 1:39 PM TigerGraph Documentation

https://www.tigergraph.com/
https://www.tigergraph.com/

346

System Management
Admin Portal, gamin utility, GBAR backup and restore

5/13/25, 1:39 PM TigerGraph Documentation

347

Admin Portal Guide
TigerGraph Admin Portal UI Guide

Version 2.1 to 2.4. Copyright © 2019 TigerGraph. All Rights Reserved.

The TigerGraph Admin Portal is a browser-based dashboard which provides users an

overview of a running TigerGraph system, from an application and infrastructure point of

view. It also allows the users to configure the TigerGraph system through a user-friendly

interface. This guide serves as an introduction and quick-start manual for Admin Portal.

As of June 2018, the Admin Portal is certified on following browsers:

Not all features are guaranteed to work on other browsers.

Please make sure to enable JavaScript and cookies in your browser settings.

The Admin Portal and GraphStudio share the same port (14240). If you are logged in one

of the servers for your TigerGraph system, then you can use localhost for your

<tigergraph_server_ip_address>. The Admin Portal is on the admin page:

If user authentication has been enabled, then users need to log in to access the Admin

Portal.

Browser Chrome Safari Firefox Opera

Supported

version
54.0+ 11.1+ 59.0+ 52.0+

http://<tigergraph_server_ip_address>:14240/admin/

Overview

Log On

5/13/25, 1:39 PM TigerGraph Documentation

348

If you are already at GraphStudio, simply click the Admin button at the right end of the top

menu bar.

The Admin Portal has two pages: Dashboard and Configuration . Both pages have the

same Header, Footer, and Navigation Menu.

The layout of the Admin Portal is responsive to screen size. The layout will automatically

adjust for devices with small screens like phones and tablets.

The full screen version of the Admin Portal is shown below, with the Dashboard page

selected.

Page Layout

5/13/25, 1:39 PM TigerGraph Documentation

349

The mobile version is shown below:

5/13/25, 1:39 PM TigerGraph Documentation

350

5/13/25, 1:39 PM TigerGraph Documentation

351

Clicking on the Notification icon will open up a list of notifications. If a notification is

too long, some of its content will be omitted:

To view the full text, you can click on a notification to open a popup window containing the

full message and its severity:

There are three severity levels: info, warning and error.

The Account icon will open the user menu:

Page Header

5/13/25, 1:39 PM TigerGraph Documentation

352

You can switch between a dark theme and light theme. The light theme is shown below:

5/13/25, 1:39 PM TigerGraph Documentation

353

To sign out of the Admin Portal, click on the Sign out button in the Account menu.

Clicking on the Help button will take you to the documentation page containing this guide.

You can navigate to GraphStudio by clicking on .

Page Footer

5/13/25, 1:39 PM TigerGraph Documentation

354

The overall system status is always shown in the footer. This single

indicator shows:

• Green indicates all services are online.

• Gray means one or more service statuses is unknown.

• Red means on of the component services is offline.

Clicking on the button will show you the list of statuses for the services in our system:

You can start or stop services from the Admin Portal by using the right most buttons

(NOTE: ONLY a superuser can see these buttons).

Clicking on the Stop icon will stop all of the services in the TigerGraph system.

Clicking on the Start icon will start all of the services in the TigerGraph system (NOTE:

because there is an interval between data collection period, the real status of the system

will not be reflected in the status section right away).

The Dashboard page has three main parts: Overall Statistics, the Time Range Picker, and

several Charts.

Dashboard Page

5/13/25, 1:39 PM TigerGraph Documentation

355

Just below the page header, there are four cards showing statistics of our system,

including number of nodes, number of graphs, number of vertices and number of edges.

These statistics are refreshed live. (The default refresh interval is 1 minute).

Overall Cluster Statistics

5/13/25, 1:39 PM TigerGraph Documentation

356

The next card lets you set the time range to be used for the statistics in the charts below.

The leftmost input lets you select the start time of the range.

The next input lets you select the end time of the range. This has two

options:

1. "Now" means that the charts will be continually updated with the most recent data.

2. "Custom" lets you select a fixed date. The time range is historical, so the charts will be

static.

The sliding bar on the right lets you fine tune the range. Click and drag an endpoint to

adjust the start or end time.

Changing any of these selections will trigger a request for statistics data and the chart will

be re-rendered accordingly.

Each charts displays some statistic or state information on the vertical axis and time on

the horizontal axis.

There are two chart sections. The first section is GSQL Query Performance. This lists all

of the queries accessible to the current user. If you click on a query name, the display will

expand to show detailed charts about that query. You can expand only one query panel at

a time. The second section is Cluster Monitoring. This lists all of the machines within the

TigerGraph cluster. Similar to the first section, you can only expand one panel at a time.

Time Range Picker

Charts

5/13/25, 1:39 PM TigerGraph Documentation

357

A Query Monitoring Panel includes three charts:

• QPS (number of Queries completed per second)

• Timeout (fraction of the query calls which timed out and therefore did not finish)

• Latency (minimum, maximum, and average time to complete a query)

A Machine Monitoring Panel includes 4 charts. The first three charts break down the

information among three processing-focused components (GPE, GSE, RESTPP). The last

chart breaks down information among three components which may have large storage

needs (GStore, Log files, and Apache Kafka).

• Service status: ON or OFF status for the given component

• CPU Usage: percentage of available CPU time used by the given component

• Memory Usage: GB used by the given component

• Disk Usage: GB used by the given component

5/13/25, 1:39 PM TigerGraph Documentation

358

Currently (as of v2.2), the Configuration page supports one configuration operation:

updating the GraphStudio license key.

Additional configuration operations, which are currently only available from a Linux

console, will be added in future releases.

Configuration Page

5/13/25, 1:39 PM TigerGraph Documentation

359

An example of the GraphStudio License Update panel is shown below. The panel displays

the full information about your license, including the expiration date.

To apply a new license key, paste the key into the text box below "Enter GraphStudio

license" and click Update.

Update GraphStudio License

5/13/25, 1:39 PM TigerGraph Documentation

360

5/13/25, 1:39 PM TigerGraph Documentation

361

Managing with gadmin
Managing TigerGraph Servers with gadmin

Version 2.0 to 2.3. Copyright © 2019 TigerGraph. All Rights Reserved.

TigerGraph Graph Administrator (gadmin) is a tool for managing TigerGraph servers. It has

a self-contained help function and a man page, whose output is shown below for

reference. If you are unfamiliar with the TigerGraph servers, please see GET STARTED with

TigerGraph.

To see a listing of all the options or commands available for gadmin, run any of the

following commands:

After changing a configuration setting, it is generally necessary to run gadmin config-apply.

Some commands invoke config-apply automatically. If you are not certain, just run config-

apply

Below is the man page for gadmin. Most of the commands are self-explanatory.

$ gadmin -h
$ man gadmin
$ info gadmin

Managing TigerGraph Servers with gadmin

Introduction

Command Listing

5/13/25, 1:39 PM TigerGraph Documentation

362

5/13/25, 1:39 PM TigerGraph Documentation

363

GADMIN(1) User Commands

NAME
 gadmin - manual page for TigerGraph Administrator.

SYNOPSIS
 gadmin [options] COMMAND [parameters]

DESCRIPTION
 Version 1.0, Sept, 19, 2017

 gadmin is a tool for managing TigerGraph servers

OPTIONS
 -h, --help
 show this help message and exit

 --configure
 invoke interactive (re)configuration tool. Options:
 single_dir:/xxx/yyy(deploy directory will be /xxx/yyy),
 or a keyword(e.g., 'gadmin --configure port',
 will configure any entry whose name has string 'port')

 --set set one configuration

 --dump-config
 dump current configuration after parsing config files and command line o

 --dry-run
 show what operation will be performed but don't actually do it

 -p SSH_PASSWORD, --password=SSH_PASSWORD
 the password to ssh to other nodes

 -y, --yes
 silently answer Yes to all prompts

 -v, --verbose
 enable verbose output

 --version
 show gadmin version and exit

 -f, --force
 execute without performing checks

 --wait wait for the last command to finish (e.g., snapshot)

5/13/25, 1:39 PM TigerGraph Documentation

364

 Commands:
 Server status
 gadmin status [gpe gse restpp dict,...]

 IUM status
 gadmin ium_status

 Disk space of devices
 gadmin ds [path]

 Mount info of a path
 gadmin mount {path}

 Memory usage of TigerGraph components
 gadmin mem [gse gpe restpp dict,...]

 CPU usage of TigerGraph components
 gadmin cpu [gse gpe restpp dict,...]

 Check TigerGraph system prerequisites and resources
 gadmin check

 Show log of gpe, gse, restpp and issued fab commands
 gadmin log [gse gpe restpp dict fab,...]

 Get various information about gpe, gse and restpp
 gadmin info [gse gpe restpp dict,...]

 Software version(s) of TigerGraph components
 gadmin version [gse gpe restpp dict,...]

 Stop specified or all services
 gadmin stop [gse gpe restpp dict,...]

 Restart specified or all services
 gadmin restart [gse gpe restpp dict,...]

 Start specified or all services
 gadmin start [gse gpe restpp dict,...]

 Start the RESTPP loaders
 gadmin start_restpp_loaders

 Start the KAFKA loaders
 gadmin start_kafka_loaders

 Stop the RESTPP loaders
 gadmin stop_restpp_loaders

5/13/25, 1:39 PM TigerGraph Documentation

365

Checking the status of TigerGraph component servers:

Use "gadmin status" to report whether each of the main component servers is running (up)

or stopped (off). The example below shows the normal status when the graph store is

empty and a graph schema has not been defined:

 Stop the KAFKA loaders
 gadmin stop_kafka_loaders

 Dump partial or full graph to a directory
 gadmin dump_graph {gse, gpe [*, segment], all}, dir, separator

 Snapshot gpe and gse
 gadmin snapshot

 Reset the kafka queues
 gadmin reset

 Show the available packages
 gadmin pkg-info

 Install new package to TigerGraph system
 gadmin pkg-install

 Update gpe, gse, restpp, dict, etc. without configuration change
 gadmin pkg-update

 Remove available packages or binaries from package pool
 gadmin pkg-rm [files]

 Apply new configure. Note some modules may need to restart
 gadmin config-apply [gse gpe restpp dict kafka zk]

 Set a new license key
 gadmin set-license-key license key string

 Update the new graph schema
 gadmin update_graph_config

 Update components under a directory
 gadmin update

 Setup sync of all gstore data in mutiple machines
 gadmin setup_gstore_sync

 Setup rate control of RESTPP loader
 gadmin setup_restpploader_rate_ctl

 Restart sync of all gstore data in mutiple machines
 gadmin gstore_sync_restart

 Stop sync of all gstore data in mutiple machines
 gadmin gstore_sync_stop

i f i d d i i d i b i h //

Examples

5/13/25, 1:39 PM TigerGraph Documentation

366

Stopping a particular server, such as the rest server (name is “restpp"):

Changing the retention size of queue to 10GB:

For more information, updates and news, visit gadmin website: http://www.t

SEE ALSO
 The full documentation for gadmin is maintained as a Texinfo manual
 If the info and gadmin programs are properly installed at your site
 the command

 info gadmin

 should give you access to the complete manual.

TigerGraph Administrator. Se
GADMIN(1)

$ gadmin status

=== zk ===
[SUMMARY][ZK] process is up
[SUMMARY][ZK] /home/tigergraph/tigergraph/zk is ready
=== kafka ===
[SUMMARY][KAFKA] process is up
[SUMMARY][KAFKA] queue is ready
=== gse ===
[SUMMARY][GSE] process is down
[SUMMARY][GSE] id service has NOT been initialized
=== dict ===
[SUMMARY][DICT] process is up
[SUMMARY][DICT] dict server is ready
=== graph ===
[SUMMARY][GRAPH] graph has NOT been initialized
=== restpp ===
[SUMMARY][RESTPP] process is down
[SUMMARY][RESTPP] restpp has NOT been initialized
=== gpe ===
[SUMMARY][GPE] process is down
[SUMMARY][GPE] graph has NOT been initialized
=== glive ===
[SUMMARY][GLIVE] process is up
[SUMMARY][GLIVE] glive is ready
=== Visualization ===
[SUMMARY][VIS] process is up (WebServer:2254; DataBase:2255)
[SUMMARY][VIS] Web server is working

$ gadmin stop restpp

$ gadmin --set -f online.queue.retention_size 10

Updating the TigerGraph License Key

5/13/25, 1:39 PM TigerGraph Documentation

367

A TigerGraph license key is initially set up during the installation process. If you have

obtained a new license key, run the command

to install your new key. You should then follow this with

gadmin set-license-key <new_key>

gadmin config-apply

$ gadmin set-license-key new_license_key

[RUN] /home/tigergraph/.gsql/gpe_auto_start_add2cron.sh
[RUN] /home/tigergraph/.gsql/all_log_cleanup_add2cron.sh
[RUN] rm -rf /home/tigergraph/tigergraph_coredump
[RUN] mkdir -p /home/tigergraph/tigergraph/logs/coredump
[RUN] ln -s /home/tigergraph/tigergraph/logs/coredump /home/tigergraph/ti

$ gadmin config-apply
[FAB][2017-03-31 15:03:05] check_config
[FAB][2017-03-31 15:03:06] update_config_all
Local config modification Found, will restart dict server and update confi
[FAB][2017-03-31 15:03:11] launch_zookeepers
[FAB][2017-03-31 15:03:21] launch_gsql_subsystems:DICT
[FAB][2017-03-31 15:03:22] gsql_mon_alert_on
Local config modification sync to dictionary successfully!

$

Example: Setting the license key

5/13/25, 1:39 PM TigerGraph Documentation

368

Backup and Restore
GBAR - Graph Backup and Restore

Version 2.4. Copyright © 2019 TigerGraph. All Rights Reserved.

GBAR (Graph Backup And Restore), is an integrated tool for backing up and restoring the

data and data dictionary (schema, loading jobs, and queries) of a single TigerGraph node.

In Backup mode, it packs TigerGraph data and configuration information in a single file

onto disk or a remote AWS S3 bucket. Multiple backup files can be archived. Later, you can

use the Restore mode to rollback the system to any backup point. This tool can also be

integrated easily with Linux cron to perform periodic backup jobs.

The current version of GBAR is intended for restoring the same machine that was backed up.

For help with cloning a database (i.e., backing up machine A and restoring the database to

machine B), please contact support@tigergraph.com .

The -y option forces GBAR to skip interactive prompt questions by selecting the default

answer. There is currently one interactive question:

Usage: gbar backup [options] -t <backup_tag>
 gbar restore [options] <backup_tag>
 gbar config
 gbar list

Options:
 -h, --help Show this help message and exit
 -v Run with debug info dumped
 -vv Run with verbose debug info dumped
 -y Run without prompt
 -t BACKUP_TAG Tag for backup file, required on backup

Introduction and Syntax

Synopsis

5/13/25, 1:39 PM TigerGraph Documentation

mailto:support@tigergraph.com
mailto:support@tigergraph.com

369

• At the start of restore, GBAR will always ask if it is okay to stop and reset the

TigerGraph services: (y/N)? The default answer is yes.

Config

• For S3 configuration, the AWS access key and secret are not provided, then GBAR will

use the attached IAM role.

• You can specify the number of parallel processes for backup and restore.

• If GSQL authentication is enabled, you must provide a username and password.

Backup

• A backup archive is stored as several files in a folder, rather than as a single file.

• Distributed backup performance is improved.

Restore

• To select a backup archive to restore, the full backup name must be specified.

• Restore asks fewer interactive questions than before:

◦ The user must provide a full archive name; there is no option to select the latest

from a set of archives.

◦ GBAR restore does not estimate the the uncompressed data size and check

whether there is sufficient disk space.

GBAR Config must be run before using GBAR backup/restore functionality. GBAR Config

will open the following configuration template interactively in a text editor. Using the

comments as a guide, edit the configuration file to set the configuration parameters

according to your own needs.

gbar config

Changes between v2.0 and v2.1

Config

5/13/25, 1:39 PM TigerGraph Documentation

370

If you do not wish to store the username and password in the config file, you can prepend the

user login credentials, as environment variables, to the gbar command you wish to run.

Leaving the config file's username and password fields blank will require you to manually

prepend the login information to the gbar command, as seen below.

 # Configure file for GBAR
 # you can specify storage method as either local or s3.

 # Assign True if you want to store backup files on local disk.
 # Assign False otherwise, in this case no need to set path.
 store_local: False
 path: PATH_TO_BACKUP_REPOSITORY

 # Assign True if you want to store backup files on AWS S3.
 # Assign False otherwise, in this case no need to set AWS key and bucket.
 # AWS access key and secret is optional. If not specified, it will use
 # attached IAM role of the instance.
 store_s3: False
 aws_access_key_id:
 aws_secret_access_key:
 bucket: YOUR_BUCKET_NAME

 # The maximum timeout value to wait for core modules(GPE/GSE) on backup.
 # As a roughly estimated number,
 # GPE & GSE backup throughoutput is about 2GB in one minute on HDD.
 # You can set this value according to your gstore size.
 # Interval string could be with format 1h2m3s, means 1 hour 2 minutes 3 s
 # or 200m means 200 minutes.
 # You can set to 0 for endless waiting.
 backup_core_timeout: 5h

 # The number of processes to be created during compressing backup archive
 # Compressing in parallel can gain improved performance.
 # The same number of processes will be spawned for decompression on resto
 compress_process_number: 8

 # Need to put gsql user/passwd here if gsql authentication is on
 gsql_user:
 gsql_passwd:

$ GSQL_USERNAME=tigergraph GSQL_PASSWORD=tigergraph gbar backup -t daily

Synopsis

5/13/25, 1:39 PM TigerGraph Documentation

371

The backup_tag acts like a filename prefix for the archive filename. The full name of the

backup archive will be <backup_tag>-<timestamp>, which is a subfolder of the backup

repository. If store_local is true, the folder is a local folder on every node in a cluster,

to avoid massive data moving across nodes in a cluster. If store_s3 is true, every node

will upload data located on the node to the s3 repository. Therefore, every node in a cluster

needs access to Amazon S3. If IAM policy is used for authentication, every node in the

cluster needs to be attached with the IAM policy.

GBAR Backup performs a live backup, meaning that normal operations may continue while

backup is in progress. When GBAR backup starts, it sends a request to gadmin , which

then requests the GPE and GSE to create snapshots of their data. Per the request, the GPE

and GSE store their data under GBAR’s own working directory. GBAR also directly contacts

the Dictionary and obtains a dump of its system configuration information. In addition,

GBAR records TigerGraph system version. Then, GBAR compresses each of these data

and configuration information files in tgz format and stores them in the <backup_tag>-

<timestamp> subfolder on each node. As the last step, GBAR copies that file to local

storage or AWS S3, according to the Config settings, and removes all temporary files

generated during backup.

The current version of GBAR Backup takes snapshots quickly to make it very likely that all the

components (GPE, GSE, and Dictionary) are in a consistent state, but it does not fully

guarantee consistency. It’s highly recommended when issuing the backup command, no

active data update is in progress. A no-write time period of about 5 seconds is sufficient.

Backup does not save input message queues for REST++ or Kafka.

gbar backup -t <backup_tag>

gbar list

Backup

List Backup Files

5/13/25, 1:39 PM TigerGraph Documentation

372

This command lists all generated backup files in the storage place configured by the user.

For each file, it shows the file’s full tag, file’s size in human readable format, and its

creation time.

Restore is an offline operation, requiring the data services to be temporarily shut down.

The user must specific the full archive name (<backup_tag>-<timestamp>) to be restored.

When GBAR restore begins, it first searches for a backup archive exactly matching the

archive_name supplied in the command line. Then it decompresses the backup files to a

working directory. Next, GBAR will compare the TigerGraph system version in the backup

archive with the current system's version, to make sure that backup archive is compatible

with that current system. It will then shut down the TigerGraph servers (GSE, RESTPP, etc.)

temporarily. Then, GBAR makes a copy of the current graph data, as a precaution. Next,

GBAR copies the backup graph data into the GPE and GSE and notifies the Dictionary to

load the configuration data. When these actions are all done, GBAR will restart the

TigerGraph servers.

The primary purpose of GBAR is to save snapshots of the data configuration of a TigerGraph

system, so that in the future the same system can be rolled back (restored) to one of the

saved states. A key assumption is that Backup and Restore are performed on the same

machine, and that the file structure of the TigerGraph software has not changed. Specific

requirements are listed below.

Restore Requirements and Limitations

Restore is supported if the TigerGraph system has had only minor version updates since the

backup.

• TigerGraph version numbers have the format X.Y[.Z], where X is the major version

number and Y is the minor version number.

• Restore is supported if the backup archive and the current system have the same major

version number AND the current system has a minor version number that is greater than

or equal to the backup archive minor version number.

• Backup archives from a 0.8.x system cannot be Restored to a 1.x system.

gbar restore <archive_name>

Restore

5/13/25, 1:39 PM TigerGraph Documentation

373

• Examples:

Restore needs enough free space to accommodate both the old gstore and the gstore to be

restored.

The following example describes a real example, to show the actual commands, the

expected output, and the amount of time and disk space used, for a given set of graph

data. For this example, and Amazon EC2 instance was used, with the following

specifications:

Single instance with 32 vCPU + 244GB memory + 2TB HDD.

Naturally, backup and restore time will vary depending on the hardware used.

To run a daily backup, we tell GBAR to backup with the tag name daily .

Backup archive's system

version
current system version Restore is allowed?

0.8 1.0 NO - Major versions differ

1.1 1.1
YES - Major and minor

versions are the same

1.1 1.2

YES - Major versions are

the same; current minor

version > archived minor

version

1.1 1.0

NO - Major versions are

the same; current minor

version < archived minor

version

GBAR Detailed Example

GBAR Backup Operational Details

5/13/25, 1:39 PM TigerGraph Documentation

374

The total backup process took about 31 minutes, and the generated archive is about 49

GB. Dumping the GPE + GSE data to disk took 12 minutes. Compressing the files took

another 20 minutes.

To restore from a backup archive, a full archive name needs to be provided, such as daily-

20180607232159 . By default, restore will ask the user to approve to continue. If you want

to pre-approve these actions, use the "-y" option. GBAR will make the default choice for

you.

$ gbar backup -t daily
[23:21:46] Retrieve TigerGraph system configuration
[23:21:51] Start workgroup
[23:21:59] Snapshot GPE/GSE data
[23:33:50] Snapshot DICT data
[23:33:50] Calc checksum
[23:37:19] Compress backup data
[23:46:43] Pack backup data
[23:53:18] Put archive daily-20180607232159 to repo-local
[23:53:19] Terminate workgroup
Backup to daily-20180607232159 finished in 31m33s.

GBAR Restore Operational Details

5/13/25, 1:39 PM TigerGraph Documentation

375

For our test, GBAR restore took about 23 minutes. Most of the time (20 minutes) was

spent decompressing the backup archive.

Note that after the restore is done, GBAR informs you were the pre-restore graph data

(gstore) has been saved. After you have verified that the restore was successful, you may

want to delete the old gstore files to free up disk space.

$ gbar restore daily-20180607232159
[23:57:06] Retrieve TigerGraph system configuration
GBAR restore needs to reset TigerGraph system.
Do you want to continue?(y/N):y
[23:57:13] Start workgroup
[23:57:22] Pull archive daily-20180607232159, round #1
[23:57:57] Pull archive daily-20180607232159, round #2
[00:01:00] Pull archive daily-20180607232159, round #3
[00:01:00] Unpack cluster data
[00:06:39] Decompress backup data
[00:17:32] Verify checksum
[00:18:30] gadmin stop gpe gse
[00:18:36] Snapshot DICT data
[00:18:36] Restore cluster data
[00:18:36] Restore DICT data
[00:18:36] gadmin reset
[00:19:16] gadmin start
[00:19:41] reinstall GSQL queries
[00:19:42] recompiling loading jobs
[00:20:01] Terminate workgroup
Restore from daily-20180607232159 finished in 22m55s.
Old gstore data saved under /home/tigergraph/tigergraph/gstore with suffix

GStore size Backup file size Backup time Restore time

219GB 49GB 31 mins 23 mins

Performance Summary of Example

5/13/25, 1:39 PM TigerGraph Documentation

376

System Administration FAQs

If you have a version 1.0 string-type license key, then during initial platform installation,

you can either specify your license key as an argument, for example:

Or you may input it when prompted.

To apply a new license key string, use the following command:

If you have a version 2.0 file-type license key which is linked to a specific machine or

cluster:

• If this is the initial installation or you are updating a previous key file, then please see

the document Activating a System-Specific License

• If you are updating from a version 1.0 key string to a version 2.0 key file, please

contact support@tigergraph.com for the correct procedure.

If you have a version 1.0 string-type license key, the following command will tell you your

key's expiration date:

If you have a version 2.0 file-type license key which is linked to a specific machine or

cluster, then run the following command:

./install.sh -l <your_license_key>

gadmin set-license-key <your_license_key>

gadmin status license

curl -X GET "localhost:9000/showlicenseinfo"

How do I apply or update my license key?

When does my license key expire?

5/13/25, 1:39 PM TigerGraph Documentation

mailto:support@tigergraph.com
mailto:support@tigergraph.com

377

A description of each component is given in the Glossary section of the TigerGraph

Platform Overview document.

The following command tells you the basic summary of each component:

If you want to know more, including process information, memory/cpu usage information

of each component, use the -v option for verbose output.

The default RESTful API port is 9000. It can be changed by configuration. To find out the

current RESTful API port, use following command:

GPE
GSE
RESTPP
ZK
KAFKA
NGINX
DICT
GSQL
GLIVE
VISUALIZATION (GraphStudio)

gadmin status

gadmin status -v

gadmin --dump-config | grep nginx.port

What are the components of the TigerGraph platform?

How can I find out current status of the system?

How can I find out the port of a service?

5/13/25, 1:39 PM TigerGraph Documentation

378

The default port for the GraphStudio UI is 14240. (Prior to TigerGraph 1.2, it was 44240.)

Use the following to check its configuration:

If you are using a remote GSQL client, it communicates with the GSQL server via port

8123.

To see a list of all ports:

GBAR is the utility to do backup and restore of TigerGraph system. Before a backup,

GBAR needs to be configured. Please see GBAR - Graph Backup and Restore for details.

To backup the current system:

Please be advised that GBAR only backs up data and configuration. No logs or binaries

will be backed up.

To restore an existing backup:

Please be advised that running restore will STOP the service and ERASE existing data.

gadmin --dump-config | grep nginx.services.port

gadmin --dump-config | grep gsql.server.port

gadmin --dump-config | grep port

gbar backup -t <tag_of_the_backup>

gbar restore <tag_of_the_backup>

How do I backup my data?

How do I restore a backup?

5/13/25, 1:39 PM TigerGraph Documentation

379

The command

will tell you the size of graph data on disk, number of vertices and edges.

TigerGraph provides a RESTful API to tell request statistics. Assuming REST port is 9000,

use command below:

If you need to restart everything, use the following:

If you know which component(s) you want to restart,you can list them:

Multiple component names are separated by spaces.

Normally it is not necessary to manually turn off any services. However if you wish to, use

the stop command.

gadmin status graph -v

curl -l http://localhost:9000/statistics

gadmin restart

gadmin restart <component_name(s)>

How can I find out statistics of my graph data?

How can I find out statistics of requests?

How do I restart a service?

How to I stop some or all services?

5/13/25, 1:39 PM TigerGraph Documentation

380

Note: running "gadmin stop" still does not stop every single TigerGraph service. Ts3 will

still run because it is monitoring other services, and the Admin server will still run because

it manages the other services. If you need to perform a full shutdown, for example, before

a software upgrade or before a hardware change, perform the following sequence of

commands:

There are a few typical causes for a service being down:

1. Expired license key.

Double check your license key expiration date, and contact support@tigergraph.com

if it is expired. After applying a new license key, your service will come back online.

Usually, TigerGraph will reach out before your license key expires. Please act

accordingly when that happens.

2. Not enough memory.

TigerGraph is a memory intensive system. When there is not much free memory, Linux

may kill a process based on memory usage. Please check your memory usage after

TigerGraph starts. We suggest at least 30% free memory after TigerGraph starts up.

To confirm if one of TigerGraph's processes is a victim, use dmesg to check.

3. Not enough free disk space.

TigerGraph writes data, logs, as well as some temporary files onto disk(s). It requires

enough free space to function properly. If TigerGraph service or one of its components

is down, please check whether there is enough free space on the disk using df .

stop (nearly) all services
gadmin stop

stop selected services
gadmin stop <component_name(s)>

gadmin stop ts3 -y
gadmin stop -f -y
gadmin stop admin -y

Why the service is down?

Where are the logs?

5/13/25, 1:39 PM TigerGraph Documentation

mailto:support@tigergraph.com
mailto:support@tigergraph.com
mailto:support@tigergraph.com
http://man7.org/linux/man-pages/man1/dmesg.1.html
http://man7.org/linux/man-pages/man1/dmesg.1.html
http://man7.org/linux/man-pages/man1/df.1.html
http://man7.org/linux/man-pages/man1/df.1.html

381

Use following command to figure out where are log files for each component:

To log at the log file for a particular component:

If you want to look at only the last N lines of the log:

Timeout is applied to any request coming into TigerGraph system. If a request runs longer

than the Timeout value, it will be killed. The default timeout value is 16 second.

If you knows that your query will run longer than the value, configure all related timeouts to

a bigger value. To do this:

Input a value you expected, the unit is in second. Then apply the config to the system and

restart the service.

The timeout can also be changed for each query, but only when calling the REST endpoint.

You would need to use a timeout value each time you run a query, otherwise the default

timeout value will be assumed.

gadmin log

gadmin log <component>

gadmin log -v [component] [-n number_of_lines]

gadmin --configure timeout_seconds

gadmin config-apply
gadmin restart

curl -X <GET/POST> -H "GSQL-TIMEOUT: <timeout value in milliseconds>" '<re

Why has my request timed out?

5/13/25, 1:39 PM TigerGraph Documentation

382

A core dump file is produced by the OS when a certain signal causes a process to

terminate. The core dump is a disk file containing an image of the process's memory at

the time of termination. This image can be used in a debugger (e.g., gdb) to inspect the

state of the program at the time that it terminated.

The TigerGraph installation process configures the operating system to place core dump

files in the TigerGraph root directory, with the name core-%e-%s-%p.%t, where

• %e: executable filename (without path prefix)

• %s: signal number which caused the dump

• %p: PID of dumped process

• %t: time of dump, expressed as seconds since the epoch

The coredump configuration was set by the following command:

If you want to alter the location or file name template, you can edit the contents of

/proc/sys/kernel/core_pattern

echo "$coreLocation/core-%e-%s-%p.%t" > /proc/sys/kernel/core_pattern

Where are the core dump files located?

5/13/25, 1:39 PM TigerGraph Documentation

383

Web UI

5/13/25, 1:39 PM TigerGraph Documentation

384

GraphStudio UI Guide

5/13/25, 1:39 PM TigerGraph Documentation

385

GraphStudio Overview

Version 2.4. Copyright (c) 2016-2019 TigerGraph. All Rights Reserved.

The TigerGraph GraphStudio™ UI (User Interface) provides an intuitive, browser-based

interface that helps users get started quickly with graph-based application development

tasks: designing a graph schema, creating a schema mapping, loading data, exploring the

graph, and writing GSQL queries. This guide serves as an introduction and quick-start

manual for the GraphStudio UI.

As of May 2019, the GraphStudio UI is certified on following browsers:

Not all features are guaranteed to work on other browsers.

Please make sure to enable JavaScript and cookies in your browser settings.

If you are using GraphStudio in the TigerGraph cloud environment, you can directly access

GraphStudio via a browser.

For on-premise deployment, the system by default is listening to port 14240. Any machine

connected to the server can access GraphStudio from a browser with the following

address:

Browser Chrome Safari Firefox Opera

Supported

version
54.0+ 11.1+ 59.0+ 52.0+

Overview

GraphStudio In The Cloud

GraphStudio On-Premises

5/13/25, 1:39 PM TigerGraph Documentation

386

In v1.2, the default TCP/IP port for GraphStudio has changed from 44240 to 14240, to avoid

possible port conflicts with Zookeeper.

If the GraphStudio UI does not show, the visualization service might be off. To verify, in a

linux shell of the server, type

If it is off, turn it on:

If you still cannot access GraphStudio, check your firewall rules and open 14240 port to

public. For example, if your Linux OS uses firewalld:

The home page of GraphStudio contains links to each of the five steps of solving a

business problem: Design Schema, Map Data To Graph, Load Data, Explore Graph, and

Write Queries. Users can also navigate to each step from the buttons in the left menu bar.

Each of these major steps has its own page. To hide/show the left menu bar, click the top-

left menu button: . Clicking the logo on the banner will take you back to

the home page. You can click to go to the Admin Portal (read more at Admin Portal

UI Guide).

http://<your_tigergraph_server_ip_address>:<your_tigergraph_server_port>

$ gadmin status vis

$ gadmin start vis

$ firewall-cmd –zone=public –add-port=14240/tcp –permanent

Home Page

5/13/25, 1:39 PM TigerGraph Documentation

387

GraphStudio provides two themes: dark theme and light theme. By default it uses dark

theme. You can click the User icon and then toggle the Dark theme to be Off to switch

to light theme:

Switch Between Dark And Light Theme

5/13/25, 1:39 PM TigerGraph Documentation

388

Visit TigerGraph Test Drive demos at: https://testdrive.tigergraph.com/

The GraphStudio online Test Drive features several instances of the TigerGraph system,

each one targeting a different use case. Each copy of TigerGraph has a GraphStudio

interface and is preloaded with application-specific queries and synthetic data. These

demo applications are provided in a read-only mode. Users can explore and play with pre-

installed queries. Users on these demo systems cannot save changes to the graph

schema, the loading job, or queries. The corresponding buttons are disabled.

Some features which are available in GSQL are not available in GraphStudio.

• Fixed binary data types are not supported.

• Edges from a set of vertex types to a set of vertex types are not supported.

• There are limitations for MultiGraph. See User Access Management

GraphStudio Online Test Drive

GraphStudio Limitations

Design Schema

5/13/25, 1:39 PM TigerGraph Documentation

https://testdrive.tigergraph.com/
https://testdrive.tigergraph.com/

389

• Cannot load JSON data.

• Cannot create a data mapping for a MAP type and UDT type attribute.

• User-defined token functions are not available.

• Data loading jobs written in a GSQL console are not shown in GraphStudio.

• USING options are not available.

• Concurrent loading is not available.

• You cannot define a user-defined function (you can use the user-defined functions

created from TigerGraph server).

Map Data to Graph

Load Data

Write Queries

5/13/25, 1:39 PM TigerGraph Documentation

390

GraphStudio License

GraphStudio operation requires a valid license. The GraphStudio license is independent

from the TigerGraph database license; some TigerGraph product editions come with a

GraphStudio license pre-installed. The GraphStudio license expiration date might be

different from that of the TigerGraph license.

Clicking the GraphStudio Information icon will show the current GraphStudio license

status. If a GraphStudio license key has not been installed, the license status will look like

the following:

Without a license, it is not possible to navigate to the Design Schema, Map Data To Graph,

Load Data, Explore Graph or Write Queries pages.

Click the link on the bottom of the license status to be redirected to Admin

Portal configuration page to apply a GraphStudio license key:

GraphStudio License

Applying a GraphStudio License Key

5/13/25, 1:39 PM TigerGraph Documentation

391

Enter the license key in the Update License text box, and click update. Click at the

top-right corner to go back to GraphStudio. If you click the Info icon again, you should

see the updated license. Now you can start to use GraphStudio.

The Developer Edition package includes a pre-installed license. Please note that Developer

Edition may not be used for production use.

5/13/25, 1:39 PM TigerGraph Documentation

392

5/13/25, 1:39 PM TigerGraph Documentation

393

User Access Management

GraphStudio follows TigerGraph user authentication and role-based access control model.

Read more in the document Managing User Privileges and Authentication.

If user authentication is not enabled, i.e., GSQL tigergraph superuser password hasn't been

changed, then no user login is needed for GraphStudio. If user authentication has been

enabled, then users must provide credentials (e.g., username and password) to enter

GraphStudio. In addition, your system administrator can integrate TigerGraph with other

user access management systems (e.g., LDAP, Active Directory, or SAML-based Single

Sign On). See the User Access Management for how to set up LDAP or SSO.

After login, the user is assigned to one of the graphs for which he has access to.

To logout, click the User icon and then the Sign Out icon.

User Access Management

Log On

5/13/25, 1:39 PM TigerGraph Documentation

394

TigerGraph uses role-based access control with several pre-defined roles. Each role is a

logical collection of data access privileges, such as querywriter or admin. Each user is

assigned one or more roles by a graph admin user or by a superuser. Roles are also graph-

specific. For example, user Pat could be an admin on graph G1 but a querywriter on graph

G2.

Current Limitation

Currently, role assignments can only be made in the GSQL shell. In the future Admin Portal

will support user management functionality.

When a user logs in and/or selects a graph, GraphStudio will disable certain actions based

on the user's role on that graph. On each working panel, a warning note will alert the user

to features which are disabled. For example, in the current version of GraphStudio, users

with querywriter, queryreader, or observer role will see the following warnings on the

Design Schema working panel:

Role- and Graph- Based Access Control

5/13/25, 1:39 PM TigerGraph Documentation

395

The table below summarizes the built-in roles and of their key privileges on GraphStudio:

superuser admin designer querywriter queryreader obse

Create a

new graph

schema

YES

Modify a

graph

schema

YES

GSQL - yes;

GraphStudi

o - not yet

supported

GSQL - yes;

GraphStudi

o - not yet

supported

View a

graph

schema

YES YES YES YES YES YES

Create a

data

mapping

YES YES YES

View a data

mapping
YES YES YES YES YES YES

Load data YES YES YES YES YES

Explore a

graph
YES YES YES YES YES

Write a

query
YES YES YES YES

Run a query YES YES YES YES YES

Select A Graph

5/13/25, 1:39 PM TigerGraph Documentation

396

Beginning with Version 1.2, the TigerGraph system can support multiple graphs within one

TigerGraph instance. Read more at MultiGraph - An Overview. If you have access to more

than one graph, at the top of the Menu Bar an arrow will appear. Click the arrow to expand

the graph list and select a graph.

Current Limitations

Currently, not all of the TigerGraph capabilities for creating and using multiple graphs are

available through GraphStudio; some operations can only be performed from the GSQL shell.

Below is the list of current MultiGraph-related limitations.

Creating a New Graph Schema:

1. A superuser can create a graph schema only if no graphs currently exist.

2. Admin and designer users cannot create a graph schema in GraphStudio.

Modifying a Graph Schema:

1. A superuser can modify a graph schema if and only if exactly one graph exists.

2. Admin and designer users cannot modify a graph schema in GraphStudio.

5/13/25, 1:39 PM TigerGraph Documentation

397

3. Only superusers can modify visual styling of schemas – color , vertex icons, and layout.

Visual styling is supported even when there are multiple graphs.

A graph admin user or superuser grants each user access to particular graphs. Currently,

granting and revoking privileges must be done as GSQL commands; user roles cannot be

managed in GraphStudio yet.

5/13/25, 1:39 PM TigerGraph Documentation

398

Design Schema

Designing the graph schema is the first and most important step of solving a business

problem. The graph schema is the model of the problem, and all of the subsequent steps

depend on the graph schema. If you are not already in Design Schema mode, click "Design

Schema" on the left side menu bar.

Current Limitations

1. Only users with superuser privilege can use Design Schema to modify a graph schema.

2. If there is already more than one graph, then the superuser can only modify the visual

style of the graphs.

When there is no graph schema in the system, this page will show some hints:

Otherwise this page will visualize the schema:

Design Schema

5/13/25, 1:39 PM TigerGraph Documentation

399

Each circle represents a vertex type, and each link represents an edge type. You can drag

the circles to change their positions. There are two ways to zoom in and out. If you have a

touchpad, two-finger moving up zooms out; two-finger moving down zooms in. Similarly, if

your mouse has a scroll wheel, spinning forward zooms out; spinning backward zooms in.

Note: The relationship between a vertex type and a vertex instance of a graph is like the

relationship between a table and one record of a table in the relational database world.

The relationship between an edge type and an edge instance is similar. In the Design

Schema step, the user defines vertex types and edge types to model the data schema.

After the schema has been created, the next two steps, Map Data To Graph and Load

Data, are for loading data into the graph.

Click the add vertex type button to add a vertex type. The add vertex type window will

pop up:

Add A Vertex Type

5/13/25, 1:39 PM TigerGraph Documentation

400

In this window you specify a vertex type name, primary id name. GraphStudio will

automatically select a color for your vertex type icon. You can change the vertex type color

by clicking the value under the "Color hex" label. A color palette window will pop up

allowing you to choose a new color:

Once you are satisfied with the color, click anywhere outside of the color palette window

to set the color.

You can also choose an icon for the vertex type by clicking the Select Icon button

. Then a Select Icon window will pop up. Select an icon that fits the vertex type semantic

best. You can type in keywords to help filter the icons and find the best match faster.

5/13/25, 1:39 PM TigerGraph Documentation

401

Adding and Deleting Attributes

To add an attribute, click the green plus sign at the right of the Attributes section:

Provide a name and data type for your new attribute. Optionally, you can specify a default

value for the attribute. (If you do not specify, every data type has a system default value.

For example, the default value for an integer is 0.)

To delete an attribute, click the red minus sign to the right of the attribute to delete an

existing attribute.

5/13/25, 1:39 PM TigerGraph Documentation

402

Once you are satisfied with the vertex type settings, click the Add button to add

the vertex type. A new circle will appear in the working panel. You can drag the circle to

any desired position.

Click the add edge type button to add an edge type. The working space will enter Add

Edge mode and the button color will change to green . Click the button again to exit Add

Edge mode.

Each edge type has a source vertex type and a target vertex type. First, click the source

vertex type. A hint will appear on the vertex type circle:

Then click the target vertex type. The add edge type window will pop up:

Add An Edge Type

5/13/25, 1:39 PM TigerGraph Documentation

403

You must specify an edge type name. The source vertex type and target vertex type are

selected based on your clicking action. However, you can change that by choosing another

vertex type in the dropdown list.

By default, the edge type is undirected. To make the edge type directed, mark the Directed

checkbox:

If Directed is checked, another checkbox will appear for you to choose whether the edge

type should include reverse edges. Including reverse edges provides more flexibility when

designing queries. Unselect the Reverse edge checkbox ONLY IF your machine memory is

very tight, because if there is no reverse edge, queries will not be able to traverse

backwards along this directed edge type, from the target vertex to the source vertex.

Editing edge type attributes is the same as editing vertex type attributes.

Once you are satisfied with the edge type settings, click the Add button to add

the edge type. A new link between the selected source vertex type circle and target vertex

type circle will appear in the working panel.

You can add multiple edge types between the same source vertex type and target vertex

type pair. Moreover, an edge can use the same vertex type for both its source vertex type

and its target vertex type, e.g., a Friendship edge from Person vertex to Person vertex.

You can edit the vertex types or edge types at any time after you add them. Just click one

vertex type circle or one edge link, and then click the edit button (double clicking on the

selected vertex/edge will have the same effect), to make the Edit Attributes window pop

up:

Edit Vertex Or Edge Type

5/13/25, 1:39 PM TigerGraph Documentation

404

Once you are satisfied with the change, click the Update button .

You can delete a vertex type or an edge type by first choosing the vertex type circles or

edge type links, then clicking the delete button . In order to delete multiple vertex types

and edge types, hold down the "Shift" key while you click, to select multiple items.

You can redo and undo your changes by clicking the two buttons: . The whole

history since the time you entered Design Schema page is recorded.

Once you are satisfied with the graph schema, click the publish schema button to

publish the schema to the TigerGraph system. If you are publishing a brand new schema,

a progress bar will show:

Delete Vertex Or Edge Type

Redo And Undo

Publish Schema

5/13/25, 1:39 PM TigerGraph Documentation

405

Note that Publish Schema applies to both creating a new schema as well as modifying an

existing schema. If you have already loaded data into or created queries for an existing

graph, please note that GraphStudio's Publish Schema is only able to retain your existing data

in some circumstances. Read the following section carefully.

Developer Edition:

SCHEMA_CHANGE is not supported. Publish Schema will always "DROP ALL" (erase all

data) before creating your new schema.

Enterprise Edition:

If you are editing an existing graph schema, GraphStudio will analyze your changes. If the

change to a vertex or edge type is to remove some attributes and / or to add some new

attributes, GraphStudio will employ a GSQL SCHEMA_CHANGE job, in order to retain the

graph data you already loaded.

All other types of changes, including renaming the vertex or edge type, changing attribute

name or data type, changing edge direction, adding or removing reverse edge will result in

removing the old vertex or edge type and then adding the new one with your desired

configurations. In that case, the loaded data to that vertex or edge type will be erased.

Please think twice before you do that kind of changes.

If a vertex type will be removed in order to change the schema, all edge types connected to

that vertex type will also be removed.

When you are editing a graph schema, a warning message in the top-right side of the

working panel will show which old vertex and edge types will be removed. Make sure to

check the message periodically to make sure it is as you expect:

5/13/25, 1:39 PM TigerGraph Documentation

406

Finally, when you click publish schema button , a pop up window will summarize your

changes to the schema. The vertex and edge types that will be removed are highlighted.

Make sure you confirm the changes before continue:

Click continue button, and GraphStudio will start changing your schema:

If you have already created a data mapping and written queries, GraphStudio will try its

best to preserve your work when you publish your modified schema:

1. All your queries will be saved as query drafts, so you can install the queries again after

you change your schema. If a query has a conflict with the new schema (e.g., referring

to a vertex type that is deleted), you need to fix it before installing the query.

2. GraphStudio will migrate your data mapping based on your changes to the schema.

Since GraphStudio records your whole operation history, the migration is smart

enough to cover most cases. The basic migration rules are the following:

a. Rename vertex types and edge types

b. Remove mappings to deleted vertex types and edge types.

c. Remove mappings to deleted or modified attributes.

5/13/25, 1:39 PM TigerGraph Documentation

407

d. New vertex types, edge types and new attributes won't be mapped.

e. After the schema is successfully published, GraphStudio will instruct you to go to

the Map Data To Graph page to verify and publish the revised data mapping. If any

mapping is not correct, you can fix it. You must publish the migrated data

mapping; otherwise, it will be lost.

If you have published some data mapping through GraphStudio, then after schema is

changed successfully, a pop up window will guide you to go to the Map Data To Graph

page to confirm and publish the migrated data mapping:

5/13/25, 1:39 PM TigerGraph Documentation

408

Map Data To Graph

After you have created a graph schema, the next major step is to map your data to the

schema. Click "Map Data To Graph" on the left side menu bar. The working panel is split

into a left panel and a right panel. Initially when there is no data mapping yet, the left panel

will display only the graph schema.

The main steps are

1. Select a data source.

2. Add data file(s)

3. Map data file(s) to vertex/edge types

4. Map data file columns to vertex/edge fields

5. Publish data mapping

Map Data To Graph

1 Select a Data Source

5/13/25, 1:39 PM TigerGraph Documentation

409

Beginning with v2.4, GraphStudio supports loading data from a variety of different data

sources. Originally, data could only be loaded from local files. TigerGraph 2.4 adds

support for using Amazon S3 data files directly through the GUI. In future releases,

GraphStudio will support loading from other data sources.

Click the data file type selector button on the banner of Add Data File window, and choose

either File or S3 from the list:

• If you select File, no more configuration is needed. Skip the sections for external

sources and go to Map Data To Graph.

• If you select S3, then read the section Create S3 Data Source.

This section contains a subsection for each of the different data sources. Read the

section which pertains to your data source:

• Local File System - Add Local Data File

• AWS S3 - Create S3 File Source

2 Add Data Files

5/13/25, 1:39 PM TigerGraph Documentation

410

In this step, you inform GraphStudio about your data files. A data file is a file containing

structured data to be loaded into the graph, creating vertex and/or edge instances. The

first step for data mapping is to specify your data files. Click the Add Data File button to

add data files. The Add Data File window will pop up:

Initially, there are no data files in the server data folder.

Click the Upload File button . A file selection window will appear. Choose the data

file you want to use. The file will be uploaded to the server data folder:

Add Local Data File

Upload File To Server

5/13/25, 1:39 PM TigerGraph Documentation

411

There is a limit of 500MB on file size. If you are using on-premises deployment, you can

bypass this limit by directly putting the data files or their softlinks in the server data folder,

located at <TigerGraph_root_dir>/loadingData.

Once the file is uploaded to the server, it will appear in the "Files on server" list on the left

side of the Add Data Files window.

Data Files must be .csv files

The Add Data File box will only upload files which end in ".csv". If you manually place files in

the <TigerGraph_root_dir>/loadingData folder, please don't put any files into subfolders

because they will be ignored.

In this step, you tell GraphStudio how to parse your data file. If your data file is in tabular

format, the parser will split each line into a series of tokens. Click on one file from the file

list to choose it. The parsing result for the first line of data is shown as a preview table on

the right side:

Configure the File Parser

5/13/25, 1:39 PM TigerGraph Documentation

412

If the parsing is not correct, click on the down arrow in a table column to choose a

different option for file format, delimiter, or end of line. The file will immediately be re-

parsed when you change a setting. The enclosing character is used to mark the

boundaries of a token, overriding the delimiter character. For example, if your delimiter is

comma (,), but you have commas in some strings, then you can define either double

quotes (") or single quotes (') as the enclosing character to mark the endpoints of your

string tokens. It is not necessary for every token to have enclosing characters; the parser

will use enclosing characters when it encounters them.

Once you are satisfied with the file parsing configuration, click the add button to

add the data file into left working panel. The data file will be shown as a file icon on the

working panel:

Once you think a file is no longer needed, you can remove it from server by clicking the

delete button to the left of each file. Please note that you also need to manually remove

5/13/25, 1:39 PM TigerGraph Documentation

413

data mapping using this file as data file, otherwise when you load data later, a "file not

found" error will be triggered.

After adding all your data files, continue with Step 3 Map Data to Vertex/Edge Types

After you click the S3 data source icon, you should see the following window:

Initially, there are no S3 data sources in the system.

A data source is an appropriately configured connection to some remote source of data

file(s). When the data file type is switched to S3, you can configure connection to your S3

buckets.

Click the Add new data source button , then the new S3 data source window will pop

up. Give a name to the data source, and provide the access key id and secret access key

to connect to S3. Then click the ADD button:

Create S3 data source

5/13/25, 1:39 PM TigerGraph Documentation

414

The data source will be created and shown in the Data Source list:

For security reasons, user-created data sources won't be exported when you export solutions.

If you import a solution with S3 data sources, you will need to manually create the data

sources again (either though GraphStudio Map Data To Graph page or through the GSQL

shell).

Click the data source to list all the buckets the credentials can access, and click the

Expand icon to see all the buckets or folders within the buckets. The file hierarchy will be

shown as a tree. Choose the file you want to add, and change the parsing options if

necessary. (See Configure the file parser.)

5/13/25, 1:39 PM TigerGraph Documentation

415

Data files, after decompression, must be in either csv or parquet format.

TigerGraph supports loading from archived and compressed S3 files directly. Currently

supported file extensions includes zip, tar.gz, tgz and tar. GraphStudio detects the file

extension and automatically chooses the corresponding file format. If the file is encoded with

one of these formats but has a non-standard file extension, you can manually specify the File

format.

After clicking the ADD button, an S3 file icon will appear on the working panel:

After adding all your s3 data files, continue with Step 3 Map Data Files to Vertex/Edge

Types

3 Map Data Files To Vertex Type Or Edge Type

5/13/25, 1:39 PM TigerGraph Documentation

416

In this step, you link (map) a data file to a target vertex type or edge type. The mapping

can be many-to-many, which means one data file can map to multiple vertex and edge

types, and multiple data files can map to the same vertex or edge type. Click the map data

file to vertex or edge button to enter map data file to vertex or edge mode. When you

are finished mapping data files, click the button again to exit this mode.

Then, click the data file icon. A hint will appear over the icon:

Next, click the target vertex type circle or edge type link. A dashed link will appear between

the data file and the target vertex or edge type:

A red hint will appear if the target type has not yet received a mapping for its primary id(s).

5/13/25, 1:39 PM TigerGraph Documentation

417

In this step, you link particular columns of a data file to particular ids or attributes of a

vertex type or edge type. First, choose one data mapping from one data file to one vertex

or edge type (represented as a dashed green link on the left working panel). When

selected, the dashed line becomes orange (active), and the right working panel will show

two tables. The left table shows the data file columns along with the first row's tokens as

sample data. The right table shows the fields of the target vertex or edge. For a vertex, its

fields are primary id and attributes. For an edge, its fields are source vertex, target vertex,

and attributes.

In order to a column in the data file to a vertex or edge field, first click the row representing

the data column in the left side data file table:

4 Map Data Columns To Vertex Or Edge
Attributes

5/13/25, 1:39 PM TigerGraph Documentation

418

Then, click the row representing the target field in the right side table. A green arrow

appears to show the mapping. Repeat as needed to create all the mappings for this table-

to-vertex/edge pair. Since many-to-one mapping is allowed, it is not necessary for one

table to provide a mapping for every field in the target vertex/edge.

GraphStudio provides a set of built-in functions to preprocess data file tokens before

loading them in to the graph. For example, you can concatenate two columns in the data

file and load them as an attribute. This section describes how to use these token

functions.

First click the add token function button . The Add Token Function window will pop up.

Click the down arrow to see the list of available token functions and select one. For some

functions, you may also specify the number of input parameters. (Most token functions

have a fixed number of input parameters; gsql_concat can accept any positive number of

inputs). Click Add.

Using a Token Function

5/13/25, 1:39 PM TigerGraph Documentation

419

A token function table will be added to the attribute mapping panel. You can drag the

tables to rearrange them. Token functions act as an intermediate step in the mapping.

Create mappings from the data file table to the token function table, and then from the

token function table to the vertex/attribute table The final result looks like below:

If the data file columns and the vertex/edge attributes have very similar names (only

capitalization and hyphen differences), you can click the auto mapping button . All

similar columns will be mapped automatically.

Sometimes, a user may need to load a constant value to an id or attribute. Here we show

how to do this in GraphStudio.

In the right working panel, double-click on the target id or attribute (in the left column of

the right table). In the example below, the attribute "label" has been double-clicked:

Auto Mapping

Map A Constant Value To An Attribute Or Token Function

Input

Loading A Constant to An Attribute

5/13/25, 1:39 PM TigerGraph Documentation

420

This will cause the Load Constant window to pop up. Type in the constant value, and click

the Add button to apply the mapping.

After adding the constant value, the attribute's label will change to id/attribute = "(your

valid input value)" .

To modify or remove a constant mapping, double-click the id/attribute again. In the Load

Constant window, enter the new value, or erase the value if you want to remove the

mapping. Click the Add button to apply.

Use A Constant Input for a Token Function

5/13/25, 1:39 PM TigerGraph Documentation

421

First add the token function. Then double-click on the target input (in the left column of the

token function table). In the example below, "Input 0" has been double-clicked.

This will cause the Load Constant window to pop up. Type in the constant value and click

the Add button to apply the mapping. After adding the constant value, the input's label will

change to Input = "(your input value)" .

The constant value can be modified or removed by double-clicking the label and editing

the value in the Load Constant window.

You can add a data filter to a data mapping so that only data records which meet

conditions that you specify will be loaded into the graph. This is equivalent to the WHERE

clause in a GSQL load statement.

You can add one data filter for each data mapping from a data file to a vertex type or edge

type, and the data filter only applies to that one mapping. Consider the following data

mapping:

Add Data Filter

5/13/25, 1:39 PM TigerGraph Documentation

422

By default, there is no data filter. Click the Data Filter button to start creating a data

filter. The Add Data Filter window will appear. The window contains three parts:

1. The top section shows one row of sample data from your file, as a handy reference to

the file's contents.

2. The middle sections shows what the data filter looks like when it is converted a to

GSQL WHERE clause. For more details, see the WHERE Clause section in the GSQL

Language Reference Part 1 - Defining Graphs and Loading Data

3. The bottom section is where you define your data filter. The data filter will be

converted to a GSQL WHERE clause and shown in real time.

5/13/25, 1:39 PM TigerGraph Documentation

423

A data filter condition is a Boolean expression, which can be a nested set of conditions.

GraphStudio evaluates the condition for each line in your input file. If the condition

evaluates to true, then the line is loaded.

First, click the Build Data Filter chooser (with default value "None"). A menu will appear,

with many Boolean expression templates. Choose one of the options. If you plan to build a

nested condition, start with your top level. The first several options are for comparison

expressions:

After this are several more options, using operators such as AND, OR, NOT, IN,

BETWEEN...AND, IS NUMERIC, and IS EMPTY.

5/13/25, 1:39 PM TigerGraph Documentation

424

Note that each of these expressions calls for 1, 2, 3, or a list of operands, and the

operands themselves can be expressions. When you select an expression, additional

choosers will appear below, for you to specify the operand expressions. The operand

choices are context-sensitive, but typically they include

• a Data Column from the input file

• A constant value

• If the operator is AND, OR, or NOT, then the operand can be another condition. Thus is

how conditions can be nested.

Suppose you are loading friendship edges where the input data fields are (person1,

person2, friendship_start_date). You want to load only the records where person1 is Tom

and the friendship began on or before 2017-06-10. The data filter looks like the following:

5/13/25, 1:39 PM TigerGraph Documentation

425

5/13/25, 1:39 PM TigerGraph Documentation

426

After adding the data filter, the right working panel will look like this:

Hovering the mouse over the data filter indicator will make the data filter

condition appear. If you want to modify the data filter, click the Data Filter button or

double-click the data filter indicator . The Add Data Filter panel will appear.

To remove a data filter, select "None" at the top level dropdown of Build Data Filter section

and then click Add. The data filter will be deleted.

In the Map Data To Graph page, you can delete anything that you added. Choose what you

want to delete, then click the delete button . Press the "Shift" key to select multiple

icons you want to delete. Note that you cannot delete vertex or edge types in this page.

Delete Options

5/13/25, 1:39 PM TigerGraph Documentation

427

Select the data file icon(s), then click the delete button.

Select the dashed green link(s) between data file and mapped vertex/edge type, then click

the delete button.

Select the green arrow(s) between data file table and vertex/edge attributes table, then

click the delete button.

Delete Data File

Delete Data File To Vertex Or Edge Mapping

Delete Data Column To Vertex Or Edge Attribute Mapping

5/13/25, 1:39 PM TigerGraph Documentation

428

Select the token function table(s), then click the delete button.

You can undo or redo changes by clicking the Back or Forward buttons, respectively:

. The whole history since the time you entered the Map Data To Graph page is

recorded.

Once you are satisfied with the data loading procedure, click the publish schema button

to publish the data loading procedure to the TigerGraph system. It takes about 2 to 3

Delete Token Functions

Undo And Redo

5 Publish Data Mapping

5/13/25, 1:39 PM TigerGraph Documentation

429

seconds for publishing each data file mapping.

The following three buttons allow you to select the relative sizing of the left and right

working panels: .

By default, the two windows have equal widths. Click the left button to widen the left

working panel, or click the right button to widen the right working panel.

Expand Panels

5/13/25, 1:39 PM TigerGraph Documentation

430

Load Data

After mapping data files to the graph schema, you can start loading data. Click "Load

Data" on the left side menu bar to go to the Load Data page.

The "Load Data" interface is separated into three parts:

• Data Mapping Overview

◦ Provides a general view of the graph and the data mapping.

◦ Shows the loading progress of each data file.

• Toolbar (above Data Mapping)

◦ Start/pause/resume/stop data loading and clear graph data buttons.

• Statistics

◦ Graph statistics: displays the numbers of vertices and edges in total and per type,

with real-time loading progress.

◦ Loading statistics: displays the total number of vertices and edges loader vs. time.

To display real-time graph statistics, this page checks the number of vertices and edges

every 10 seconds, which adds overhead. To maximize loading performance, move to a

Load Data

5/13/25, 1:39 PM TigerGraph Documentation

431

different page after starting loading, and only come back here occasionally to check on

progress.

GraphStudio provides two types of loading:

• Partial Loading: load a subset of the data files which the user selects.

• Complete Loading: load all of the data files.

Select one or more data files (holding down the "shift" key to select multiple data files),

and click on the "start loading" button on the toolbar.

Start Loading

Load Some Data Files

5/13/25, 1:39 PM TigerGraph Documentation

432

Click on a blank space in the data mapping overview panel to unselect the data sources,

and click on the "start/resume loading" button on the toolbar. While loading is in

progress a green hatched bar will appear over each data file to show its real time

progress.

Similar to Start Loading, you can pause loading some of the data files, or all loading data

files.

Select one or more data files (holding down the "shift" key to select multiple data files),

and click on the "pause loading" button on the toolbar. In the Paused state, the progress

bar will change to a solid orange color.

Load All Data Sources

Pause Loading

5/13/25, 1:39 PM TigerGraph Documentation

433

You can resume loading some or all loading data files which have been paused.

Select one or more data files (holding down the "shift" key to select multiple data files),

and click on the "start/resume loading" button on the toolbar. After resuming, the data

file loading will continue from where it was paused:

After loading has been started or paused, you can stop loading from these data files by

clicking the "stop load" button . Similar to Start Loading, you can stop loading some or

all loading data files. After stopping, the loading status of the data files will become

"Stopped":

Resume Loading

Stop Loading

5/13/25, 1:39 PM TigerGraph Documentation

434

The Statistics panel contains two tabs: Graph Statistics (1st tab) and Data Loading

Statistics (2nd tab).

By default if no data file is selected, the Statistics panel will show Graph Statistics.

Statistics Panel

Graph Statistics

5/13/25, 1:39 PM TigerGraph Documentation

435

The table at the top shows the total number of vertices and edges in the current graph,

and the number of each vertex type and edge type as well. The line chart at the bottom

shows the number of vertices and edges over time, when loading is in progress.

If you click on one data file, the Statistics panel will change to show Data Loading

Statistics:

Data Loading Statistics

5/13/25, 1:39 PM TigerGraph Documentation

436

The table at the top shows the detailed loading information of the selected data file,

including:

• Status (RUNNING, PAUSED, STOPPED, etc)

• Loaded percentage (for files on server) or loaded size (for S3 file)

• Loading speed

• Average loading speed

• Number of loaded lines

• Number of missing token lines

• Number of oversize lines

• Loading start time

• Loading duration

The area chart in the middle shows the real-time loading speed (lines per second) for this

data file.

5/13/25, 1:39 PM TigerGraph Documentation

437

The pie chart at the bottom shows the distribution of data lines, among three categories:

• Loaded lines

• Missing token lines (the lines contain fewer tokens than required by the data mapping)

• Oversize lines (some tokens are too large)

The number of loaded lines doesn't mean all these lines are successfully loaded. Some

issues during Data Mapping (like mapping a non-numeric column to an integer attribute) or

because of dirty data may cause some of these lines not to be loaded.

If data file loading encounters any issues and gets an error message, the error message

will be shown at the bottom:

Click on the "clear graph data" button on the toolbar to clear the graph data. This

operation will take approximately 1 minute or more, depending on the size of your graph

and the hardware.

After the clear operation, the graph vertex and edge number statistics will both drop to 0.

Clear Graph Data

5/13/25, 1:39 PM TigerGraph Documentation

438

After data has been loaded, you can go to the Explore Graph or Write Queries pages.

5/13/25, 1:39 PM TigerGraph Documentation

439

Explore Graph

After data has been loaded, the Explore Graph page allows you to search for vertices in a

graph, to discover nearby vertices which satisfy conditions of your choice, and to find the

paths between vertices.

Below is an example of an exploration result:

Explore Graph

5/13/25, 1:39 PM TigerGraph Documentation

440

The Explore Graph page is vertically divided into three parts, from left to right:

The menu options, from top to bottom, are the following:

Set filters, conditions and other parameters for the selected option from the Inner

Navigation Bar.

menu option functionality

Search vertices: select specific vertices with

conditions.

Expand from vertices: find neighborhood of the

specified vertices.

Find paths: find paths between the selected

source vertex and target vertex.

Find connections: find connecting paths

between a set of vertices.

Run queries: run installed GSQL queries.

The Inner Navigation Bar

The Parameter Panel

5/13/25, 1:39 PM TigerGraph Documentation

441

The exploration result is displayed in this panel.

Adjust the results display, take a snapshot of the display, and modify selected data objects

in the result.

The menu buttons, from left to right, are the following:

• Change layout : Arrange the vertices according to one of the built-in layout patterns,

such as sphere, tree, circle, or force.

• Locate vertices in result : Search the exploration result by vertex id or attribute value.

• Only show selections : First select one or more objects. Clicking the button will hide all

the objects which are not selected.

• Hide : First select one or more objects. Clicking the button will hide the selected

vertices and edges (or all if none is selected).

• Undo : Undo the last change to the visualization result set (that is, changes to which

objects are included in the result set).

• Redo : Redo the most recent undone change to the visualization result set (that is,

changes to which objects are included in the result set).

Database changes (adding or deleting vertices/edges, editing attributes) cannot be undone

with the Undo feature.

Also, Undo/Redo do not include layout and display change (e.g., positioning of objects and

display of attributes).

• Add new vertex : Add a new vertex into the visualization result as well as to the graph

database .

• Add new edge : Add a new edge into the visualization result as well as to the graph

database .

• Edit attributes : Change the attributes of the selected object in the visualization result

as well as the graph database .

The Graph Exploration Panel

5/13/25, 1:39 PM TigerGraph Documentation

442

• Delete selected elements : Delete the selected elements from the visualization result

as well as the graph database .

• Save screenshot : Save the current visualization result as a png file.

• Change settings : Select which attribute values to display with each vertex or edge

type. Enable/disable popup display of all attributes when the cursor hovers over a

vertex or edge.

The Parameter Panel can be hidden by clicking its corresponding button in the Explore

Graph Menu.

The first button in the Explore Graph Menu is the "search vertices" option . This option

lets you select an initial set of vertices for your exploration. It is also the default option

when you first enter the Explore Graph page. Clicking the button again will hide the

Parameter Panel to increase space for the Graph Exploration Panel.

Choose vertex type from the Vertex type dropdown list, and enter the vertex id in the

Vertex id input box, then click Search button. If there is one vertex that matches the vertex

type and id, it will be shown in Graph Exploration panel.

If you don't have a particular vertex ID in mind, you can have GraphStudio pick some

vertices for you. In the Parameter Panel, enter a number of vertices to pick, and click on

Pick vertices button . The explorer will pick this number of vertices for each

vertex type included in your search.

Search Vertices In Graph

Search Vertices by ID

Let GraphStudio pick vertices

5/13/25, 1:39 PM TigerGraph Documentation

443

The Configuration section in the Parameter Panel specifies which types of vertices you

want to include in your selection. By default, all vertex types are selected. Uncheck some

boxes if you want to narrow your selection.

You can control vertex search in finer granularity by creating attribute filters. Click the filter

button to the right of any vertex type. In the pop up window, you can create a condition

involving attributes of the vertex type. The user experience is same as creating data filters

when you do data mapping. Here is an example attribute filter for searching Company

vertices with registered_capital >= 50,000:

Search vertices with attribute filters

5/13/25, 1:39 PM TigerGraph Documentation

444

Click ADD, then the filter condition is shown below Company vertex type:

Click Pick vertices button again, TigerGraph will search for up to 5 Company

vertices with a registered_capital >= 50,000.

If your graph contains a large number of vertices, searching vertices with attribute filters can

5/13/25, 1:39 PM TigerGraph Documentation

445

be extremely slow. Attributes indexing support in TigerGraph is in our roadmap.

NOTE: If you keep exploring the graph in the Explore Graph page, the previous exploration

result won't be automatically erased. Instead, your new exploration result will be merged

together with the previous visualized graph. The objects from the most recent exploration

action will be selected (highlighted with a thick gray border) to distinguish them from the

previous visualized graph.

The second button in the Explore Graph Menu is the "Expand from vertices" option .

"Expand" in this context means find 1-step or multi-step neighbors of the selected

vertices. Clicking the button again will hide the Parameter Panel to increase space for the

Graph Exploration Panel. To expand from vertices, you need to have at least one selected

vertex in the Graph Exploration Panel. If no vertices are visible, please refer to the previous

section "Search Vertices in Graph" to search for some vertices.

Shortcut: double-clicking on a vertex will expand to up to 200 neighbors of that vertex.

There may already be some selected vertices from the previous action. A vertex that is

selected has a thick gray border around it. The standard click and shift-click behaviors for

Expand From Vertices

Choose Vertices To Expand

5/13/25, 1:39 PM TigerGraph Documentation

446

selecting one or multiple objects applies:

• Click on a vertex to select it. Any previously selected objects are unselected.

• Shift-click on an unselected object to add it to the selection set.

• Shift-click on a selected object to remove it from the selection set.

To unselect all vertices, click on a blank area of the panel.

GraphStudio lets you expand multiple steps from the target vertices, as long as the

resulting number of vertices and edges does not exceed the limit for visualization (default

limit is 5000 vertices and 10000 edges). The conditions for each expansion step are

specified independently.

In the Parameter Panel, set the conditions for each expansion step:

• Maximum number of edges include for each vertex. The effect is that vertices which

have more neighbors than this limit will not have all their neighbors included in the

expansion.

• Edge types and the attribute filter for each edge type to include.

• Target vertex types and the attribute filter for each vertex type to include.

Set Expansion Conditions

5/13/25, 1:39 PM TigerGraph Documentation

447

Initially, the expansion conditions panel for only one expansion step is shown. Click "Add

Expansion Step" to add more expansion steps.

Similarly, you can remove expansion steps by clicking the "Remove Expansion Step"

button.

Expand

5/13/25, 1:39 PM TigerGraph Documentation

448

After setting the conditions for each expansion step, click on the "Expand" button

to perform the expansion. The Graph Exploration Panel will be

updated to include the expansion result. The expansion starting vertices will be

highlighted with a white border. Here is a sample two-step expansion starting from 2

vertices:

The third button in the Explore Graph Menu is the "Find paths" option . This option finds

paths between two vertices with your specified conditions. Clicking the button again will

hide the Parameter Panel.

Find Paths Between Two Vertices

Choose Starting Vertex and Destination Vertex

5/13/25, 1:39 PM TigerGraph Documentation

449

The top section of the Parameter Panel asks for your desired starting vertex and

destination vertex.

There are two ways to provide this information. Each of the two vertices can be selected

by either method.

If you know the ID and vertex type for a vertex, you can choose vertex type from dropdown

list and type vertex id in the input box. The vertex does not need to be currently displayed

in the Graph Exploration Panel.

If the vertex you want is already displayed in the Graph Exploration Panel, a more

convenient way is the following:

1. Click on the input box.

2. Click on the desired vertex in the Graph Exploration Panel. Then, GraphStudio will

automatically fill in the values for you.

You can click the swap icon (two green arrows) at right to switch the starting vertex and

the destination vertex.

Set Conditions For Paths

5/13/25, 1:39 PM TigerGraph Documentation

450

GraphStudio provide three types of path searches:

1. One shortest path: search for and highlight a shortest path between the two vertices.

2. All shortest paths: search for and highlight all shortest paths between the two

vertices.

3. All paths: search for and highlight all valid paths between the two vertices.

Since path-finding queries may have high computational cost if the graph is very large, a

parameter is available to limit the path length.

In addition to the search type and the maximal length, you can also specify the valid vertex

types and edge types and their attribute conditions which may be included in the paths.

5/13/25, 1:39 PM TigerGraph Documentation

451

After selecting the endpoint vertices and setting the search conditions, click on the "Find

Paths" button to start the search.

Find Paths

5/13/25, 1:39 PM TigerGraph Documentation

452

The fourth button in the Explore Graph Menu is the "Find connections" option . Given a

set of starting vertices, this feature finds a "connection community" which is defined as

follows:

1. For each pair of vertices in the vertex set, if there is a shortest path no longer than the

maximum path length parameter, include that path in the result.

2. The final result is the union of all of these shortest paths (one path per vertex pair).

This feature is equivalent to running the "Show One Shortest Path" option for each pair of

vertices in the selected set.

Click on a vertex to select it. Use shift-click to select more than one object. Each time you

select another vertex, it will be added to the list in the Parameter Panel.

Find Connections Between Multiple Vertices

Choose Vertices for Finding Connections

Set Conditions For Connection Finding

5/13/25, 1:39 PM TigerGraph Documentation

453

Since this query may have high computational cost if the graph is very large, a parameter

is available to limit the path length.

You can also specify the valid vertex types and edge types which may be included in the

connections.

After selecting the vertices and setting the search conditions, click on the "Find

Connection Paths" button to start the search.

Find Connections

5/13/25, 1:39 PM TigerGraph Documentation

454

If you have written and installed some GSQL queries (see more at Write Queries), you can

run the queries mixed with the graph exploration functionalities mentioned above.

Click the fifth button in the Explore Graph Menu, which is the "Run queries" option . In

the dropdown list, choose the query you want to run. Input the parameters and click Run

query button . The query execution result subgraph will be

merged with previous graph exploration result and highlighted:

Run GSQL Queries

5/13/25, 1:39 PM TigerGraph Documentation

455

Allowing running GSQL queries mixed with other graph exploration functionalities enables

better data analysis possibilities since you can refer to your previous exploration result,

and keep gaining insights from your data.

After you have a subgraph displayed in the Graph Exploration Panel, you can use the

buttons in the Explorer View Menu to customize the display. You can even make

modifications to the graph database itself.

Click the Change Layout button to select one of the built-in layout styles for systematic

arrangement of the vertices. The Change Layout popup menu shows a sample of each

layout style, for a dummy graph.

Graph Exploration Panel Options

Change Layout

5/13/25, 1:39 PM TigerGraph Documentation

456

The Locate Vertex In Result feature searches for and then zooms in on vertices which

match the given value for ID and/or attribute. For example, if you type "Mary" in the Locate

Vertices in Result popup window, and have both of the checkboxes selected, then this

feature will look for any vertices where "Mary" is an exact match for either the ID or any of

the attribute values. Those vertices will be selected (and all other objects will be

unselected). The display will zoom in to focus on the selected objects.

The vertices with the matching ID or attributes will be selected:

Locate Vertex In Result

5/13/25, 1:39 PM TigerGraph Documentation

457

Click the Show Selections button to hide all the vertices and edges which are not

currently selected. However, if the two endpoints of an edge are selected, the edge will be

selected as well. Also, if nothing is selected, nothing will be hidden.

Click the Hide button to hide the currently selected vertices and edges. If nothing is

selected, all vertices and edges in the Graph Exploration Panel will be hidden.

The Explore Graph page records the whole history of the current session's changes to the

visualization result set. Click the Undo and the Redo buttons to go back or

forward in the history.

Database changes (adding or deleting vertices/edges, editing attributes) cannot be undone

with the Undo feature.

Also, Undo/Redo do not include layout and display changes (e.g., positioning of objects and

display of attributes).

Show Selected Vertices And Edges

Hide Vertices And Edges

Undo And Redo

5/13/25, 1:39 PM TigerGraph Documentation

458

Click the Add New Vertex button to add a new vertex to the graph database. The Add

New Vertex window will pop up. Choose a vertex type and then fill in values for the ID and

the attributes. Click ADD and the vertex will be inserted into the TigerGraph database. It

will also be shown in the Graph Exploration Panel.

If you provide a vertex ID that is already used, GraphStudio will ask you whether you want to

overwrite the existing vertex. If you say no, then it will not add or update anything.

Click the Add New Edge button to add a new edge to the graph database. Next, click

the source vertex of the edge in the Graph Exploration Panel, and then click the target

vertex of the edge. Then the Add New Edge panel will pop up. Choose the edge type from

the dropdown menu. Only types that match the two vertices you selected are shown. (It is

Add New Vertex

Add New Edge

5/13/25, 1:39 PM TigerGraph Documentation

459

possible that there are no eligible edge types). Fill in values for attributes and click ADD.

Your new edge will be inserted into the TigerGraph database. It will also be shown in the

Graph Exploration Panel.

If you select an edge type that already exists between the two vertices, GraphStudio will ask if

you want to overwrite the existing edge. If you say no, nothing will be added or updated. The

current TigerGraph system does not support having multiple edges of the same type between

two specific vertices.

To edit the attributes of one vertex or edge, select one object and then click the Edit

Attributes button . The edit attributes panel will pop up.

Edit Attributes

5/13/25, 1:39 PM TigerGraph Documentation

460

When you finish editing, click the Update button to apply the change.

To delete vertices or edges, select the objects you want to delete, and click the Delete

Selected Elements button .

"Delete" permanently removes data from the graph database. Deleted vertices and edges

cannot be restored with Undo. To restore them, you must manually add them back.

If you delete a vertex, all of its outgoing and incoming edges will also be deleted.

When you find something interesting during exploration and want to save the result as a

picture, you can click the Save Screenshot button . The exploration result will be saved

as a PNG picture to your local file system.

To change graph exploration settings by clicking Settings button . Currently you can

select what attributes to show for each vertex type and edge type, and set whether to

Delete Vertices And Edges

Save Screenshot

Change Settings

5/13/25, 1:39 PM TigerGraph Documentation

461

show an object's detailed information in a popup tooltip when the cursor hovers over it.

Click Apply and the new settings will take effect.

In the example below, the ID and gender for Person vertices are shown. The ID and the

registered_capital attribute for Company vertices are shown.

5/13/25, 1:39 PM TigerGraph Documentation

462

You can also config the label size of vertices and edges.

Other than the above, you can also config vertex and edge size and color to augment the

visualization in settings. It is so important that we will use next independent section to

introduce.

5/13/25, 1:39 PM TigerGraph Documentation

463

By default each vertex and edge is rendered as the color you selected in Schema Design

page. However, if you want to emphasize some vertices and edges in your visualization

result, you can config a different color for them by creating a set of conditions, and assign

a different color for each condition. Then vertices and edges satisfying the conditions will

be rendered as the newly assigned color. In the Color section of Settings panel, first

choose the vertex or edge type you want to set colors, then click the add button . A new

color config entry appears:

Click the Edit color config button , in the pop up window choose red color, and build a

condition specifying @PageRankScore >= 1.0:

Augment Graph Visualization Result

Set different colors according to attributes and accumulator values

5/13/25, 1:39 PM TigerGraph Documentation

464

Click ADD, and the condition and updated color is shown in the Color settings section:

Similarly, you can add another color config that @PageRankScore between [0.5, 1) will be

green. The final Color settings section will look like:

Click the APPLY button, then the different vertices will be rendered as different colors

based on their page rank score ranges:

5/13/25, 1:39 PM TigerGraph Documentation

465

Similarly, you can change color of edges.

If you want to cancel one color configuration, just click the remove button to the right

side of that configuration.

By default all vertices are of radius 40, and all edges are of thickness 2. You can config

vertex radius and edge thickness according to their attributes or numeric accumulator

values of GSQL query result. A classical example is page rank. You can set vertices radius

proportional to their page rank values, then the importance of each vertex is visually

apparent according to its size.

First choose the vertex type you want to config its radius, then click the Edit button in

Radius section. In the popup window you can create the radius expression:

Set different vertex radius and edge thickness according to attributes

and accumulator values

5/13/25, 1:39 PM TigerGraph Documentation

466

After click ADD button, the radius expression will be shown in Radius section:

After click APPLY button, the vertices will be rendered in different size according to the

expression value:

Similarly, you can config different thickness for the edges.

If you want to cancel the vertex radius or edge thickness configuration, click Edit button in

Radius or Thickness section, in the pop up window choose None in the top level

expression dropdown list:

5/13/25, 1:39 PM TigerGraph Documentation

467

Click ADD, then click APPLY. The size will be changed back to uniform.

The size and color can be configured at same time. Here is the effect of setting both color

and size for page rank vertices:

5/13/25, 1:39 PM TigerGraph Documentation

468

5/13/25, 1:39 PM TigerGraph Documentation

469

Write Queries

On the Write Queries page, you can design and run custom queries with TigerGraph's

powerful graph query language – GSQL.

The Write Query page is horizontally divided into two parts:

1. Query Editing Panel

2. Result, Log and Visualization Panel

The Query Editing panel is divided into two subpanels: the left subpanel is used to select a

query to edit, and the right, larger subpanel displays the selected query for editing. Here

you can edit, save, delete, install and run the query. The query editor features syntax

highlighting customized for the GSQL language. Also, the query editor performs real-time

semantic checking.

Write Queries

Query Editing Panel

5/13/25, 1:39 PM TigerGraph Documentation

470

Above the query editing pane is a toolbar, with the following buttons, from left to right:

• Expand/Collapse : Expand or collapse the Query Editing panel to or from full page

mode. The icon changes depending on whether the panel is currently expanded or

collapsed.

• Save : Save the current query draft.

• Install : Install the query into the database.

• Run : Run the installed query.

• Delete : Delete the selected query.

• Show query endpoint: Show the RESTFul endpoint to execute the query. Only installed

queries can see their RESTFul endpoints.

To create a new query, simply click on the "New GSQL Query" button at the bottom-

right corner of the left subpanel, and type in the name of the new query in the popup

window:

A query draft will be created with a template:

Add Or Edit Query

5/13/25, 1:39 PM TigerGraph Documentation

471

To edit an existing query, click on the query name in the list in the left sub panel:

Once you made some changes to the query code and want to save it as a query draft, click

on the "save" button in the toolbar.

If you saved a query, the "install query" button will be enabled. Click it to install the

query. The installation process may take about 1 minute:

Save Query Draft

Install Query

Run Query

5/13/25, 1:39 PM TigerGraph Documentation

472

A query has to be installed before you can run it.

To run the query, click on the "run" button in the toolbar. If the query has no parameters,

it will run directly and the result will be shown in the Result panel.

If the query requires parameters, the Enter Query Parameters panel will appear. Enter your

parameter values and then click the "Run Query" button at the

bottom of the panel. If there are several parameters, you might need to scroll the panel to

the bottom to find the Run Query button.

The query will be executed, and the results will be shown in the Result Panel.

5/13/25, 1:39 PM TigerGraph Documentation

473

Choose the query you want to delete and click on the "delete" button . The query will be

deleted permanently.

After finishing writing the GSQL queries and installing the queries, you can access the

queries via REST endpoints. By clicking the "show query endpoint" button , you can see

the format of the endpoint to access this query, so that you can integrate the query with

your applications.

Delete Query

Show Query Endpoint

Install All Queries

5/13/25, 1:39 PM TigerGraph Documentation

474

If you want to install all queries that you haven't installed yet, you can click "Install all

queries" button in GSQL Queries list. After some verification time, a pop up window

listing all queries to be installed will show:

Click INSTALL button, then the listed queries will be installed:

The Result panel shows the result of the last run query. Each query generates up to three

types of result: visualized graph, JSON text, or log messages. On the left is a toolbar with

buttons for changing the the panel size or for switching to a different type of result. The

buttons, from top to bottom, are the following:

menu option functionality

Expand/Collapse: Expand or collapse the

Result panel.

View Schema: Show the graph schema.

Visual Result: Show the visual result of the last

run query.

Result Panel

5/13/25, 1:39 PM TigerGraph Documentation

475

Viewing graph schema makes it more convenient for developers to refer to the schema

topology logic and easier to write correct GSQL queries.

If the query execution result contains a graph structure, the result will be visualized in this

panel as a graph. The panel is the same as the Explore Graph panel. Please refer to the

documentation for the Explore Graph panel. The only difference is that each time you run a

query, the previous result will be erased. In Explore Graph the results are added

incrementally.

You can switch to the JSON Result panel to see the result in JSON format.

If there is no graph structure in the result, the result will be displayed in this panel as a

JSON object.

JSON Result: Show the raw text result in JSON

format of the last run query.

View Schema:

Visual Result

JSON Result

5/13/25, 1:39 PM TigerGraph Documentation

476

You can learn about the JSON format in the GSQL Language documentation , and

integrate it with your applications. In this fashion, the TigerGraph system can serve as a

backend or embedded graph data service.

If a query ran successfully, the Query Log message will be "query ran successfully" or

something similar. If there was anything wrong when executing your query, such as invalid

parameters or runtime errors, an error message will be shown in the Query Log panel:

If you just want to focus on developing your query, or want to have more space to view

your result, click the Expand button in either the Query Editing panel or the Result

panel.

If you expand the Query Editing panel, it looks like this:

Query Log

Expand Panels

5/13/25, 1:39 PM TigerGraph Documentation

477

If you expand the Result panel, it looks like this:

When the panel is expanded, the Expand button becomes the Collapse button . Clicking

it will return the display to the split panel view.

5/13/25, 1:39 PM TigerGraph Documentation

478

Export And Import Solution

These two features can be found in the GraphStudio Home page. You can return to the

Home page by clicking "Home" the Menu Bar on the left or clicking the "GraphStudio" logo

at the top.

Click on the "Export Current Solution" link to export the whole solution and download it as

a tarball, including the schema, the loading jobs and the queries.

ATTENTION:

1. The graph data and data files will not be exported.

2. If a query has been modified since it was last installed, GraphStudio will export the

modified draft instead of the version that have been installed in the TigerGraph engine.

Click on the "Import an Existing Solution" will upload a previously exported tarball of a

solution.

In order to optimize the time required for Import, the imported queries will not be installed but

saved as drafts. You need to install them manually.

Export And Import Solution

Export

Import

5/13/25, 1:39 PM TigerGraph Documentation

479

For security reasons, user-created data sources won't be exported. If you import a solution

with S3 data sources, you will need to manually create the data sources again (either though

GraphStudio Map Data To Graph page or through GSQL shell). In GraphStudio, you can delete

the previously created data sources and create new data sources to avoid duplicate data

sources and ensure proper data loading.

5/13/25, 1:39 PM TigerGraph Documentation

480

Known Issues

GraphStudio is not perfect, like any other software. The following issues are known and

will be fixed in the future.

GraphStudio v2.4 changes internal loading job generation. Older version data mappings

are deprecated. Please contact TigerGraph support if you need to migrate them from an

earlier version.

Currently, GraphStudio does not save graph exploration results. If you switch from the

Explore Graph page or Write Queries page to another page, the visualization result will be

lost.

Workaround: open GraphStudio in another browser tab if you need refer to information on

another page.

Read more at https://stackoverflow.com/questions/307179/what-is-javascripts-highest-

integer-value-that-a-number-can-go-to-without-losin .

In the future, GraphStudio will use BigInt to solve this problem.

Since we upgraded the color picker library to new version, we find that if you set color to

grey (left or bottom border of the color picker), then it will be locked to red as its pivot

After upgrading to v2.4, data mappings created in earlier

versions of GraphStudio will disappear.

When switching to another page, the graph visualization

result will be lost.

Integers larger than 2^53 - 1 may lose precision.

Change Color From Gray To Another Color

5/13/25, 1:39 PM TigerGraph Documentation

https://stackoverflow.com/questions/307179/what-is-javascripts-highest-integer-value-that-a-number-can-go-to-without-losin
https://stackoverflow.com/questions/307179/what-is-javascripts-highest-integer-value-that-a-number-can-go-to-without-losin
https://stackoverflow.com/questions/307179/what-is-javascripts-highest-integer-value-that-a-number-can-go-to-without-losin

481

color. In this case when you try to change the pivot color, like this:

When you release mouse, it will be back to red:

You need first drag the indicator in the above panel to leave the border:

5/13/25, 1:39 PM TigerGraph Documentation

482

Then change the pivot color in the color stripe. Like this:

Sometimes when you double-click a vertex, the graph exploration result disappears. This

is only a front-end rendering issue. The data is still there.

Workaround : click the change layout button , and choose any layout. Everything will be

rendered.

When there are edges very close to one another, their click response areas may overlap,

making it hard to select the edge you want. This happens after zoom-in / zoom-out or

connecting to another screen sometimes.

Workaround: click a blank place in the working panel then zoom-in and zoom-out. The

response area will back to normal.

Currently GraphStudio doesn't support fixed binary type attributes in schema. If you create

your graph schema from GSQL with such attributes, GraphStudio will refuse to work. We

will support this feature in future releases.

Graph Exploration Result Disappears

Edge Response Area Is Too Big

You Cannot Use Fixed Binary Type Attributes

Loading Jobs Created From GSQL Won't Be Shown

5/13/25, 1:39 PM TigerGraph Documentation

483

GraphStudio can only recognize data mapping procedures created through GUI. If you

create loading jobs from GSQL, they won't be shown in GraphStudio.

Currently you cannot use user defined token functions to create data mapping in

GraphStudio. You can only use GSQL builtin ones. We will support this feature in future

releases.

Currently you cannot map data to map and UDT type attributes in GraphStudio. We will

support this feature in future releases.

Currently you cannot modify your schema in GraphStudio if there are more than one graph

in TigerGraph system.

Workaround: you can still change the schema in GSQL and GraphStudio will work

smoothly with your modified schema.

If you find any bugs, please report them to support@tigergraph.com. We really

appreciate it!

User Defined Token Functions Cannot Be Used

You Cannot Map Data To Map and UDT Type Attributes

You Cannot Modify Schema In Multiple Graphs Scenario

Report Bugs To Us

5/13/25, 1:39 PM TigerGraph Documentation

mailto:support@tigergraph.com.
mailto:support@tigergraph.com.

484

GraphStudio Patent
and Third Party Notice
v2.2, January 2019

U.S. Pat. No. 9953106, 9977837, 10120956. Patents pending.

This TigerGraph software program uses some third-party software components that are

licensed under their own terms.

This list of software components uses abbreviations to refer to common licenses, e.g.,

"MIT". A dictionary for these abbreviations is provided at the end of this document.

Third Party Component License

Zoomcharts Copyright (c) 2018 Data Visualization Software

Lab

https://zoomcharts.com/en/legal/

Licensed under OEM license

angular/animations

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/cdk

Copyright (c) 2019 Google LLC

https://github.com/angular/material2

Licensed under MIT

angular/common

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/compiler

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

5/13/25, 1:39 PM TigerGraph Documentation

https://zoomcharts.com/en/legal/
https://zoomcharts.com/en/legal/
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular
https://github.com/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular

485

angular/core

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/flex-layout

Copyright (c) 2019 Google LLC

https://github.com/angular/flex-layout

Licensed under MIT

angular/forms

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/http

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/material

Copyright (c) 2019 Google LLC

https://github.com/angular/material2

Licensed under MIT

angular/material-moment-adapter

Copyright (c) 2019 Google LLC

https://github.com/angular/material2

Licensed under MIT

angular/platform-browser

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/platform-browser-dynamic

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/router

Copyright (c) 2014-2018 Google, Inc.

https://github.com/angular/angular

Licensed under MIT

angular/zone.js

Copyright (c) 2016-2018 Google, Inc.

https://github.com/angular/zone.js

Licensed under MIT

5/13/25, 1:39 PM TigerGraph Documentation

https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/flex-layout
https://github.com/angular/flex-layout
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/material2
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/angular
https://github.com/angular/zone.js
https://github.com/angular/zone.js

486

aws-sdk

Copyright (c) 2012-2017 Amazon.com, Inc. or

its affiliates

https://github.com/aws/aws-sdk-js

Licensed under Apache2

cgjs/fs

Copyright (c) 2017 Andrea Giammarchi

https://github.com/cgjs/fs

Licensed under ISC

chalk

Copyright (c) 2017 Sindre Sorhus

https://github.com/chalk/chalk

Licensed under MIT

chart.js

Copyright (c) 2018 Chart.js Contributors

https://github.com/chartjs/Chart.js

Licensed under MIT

codemirror

Copyright (c) 2017 Marijn Haverbeke

marijnh@gmail.com and others

https://github.com/codemirror/CodeMirror

Licensed under MIT

crypto

Copyright (c) 2014 Chris Veness

https://github.com/chrisveness/crypto

Licensed under MIT

CssColorParser.js

Copyright (c) 2012 Dean McNamee

https://github.com/deanm/css-color-parser-js

Licensed under MIT

d3.js

Copyright (c) 2010-2017 Mike Bostock

https://github.com/d3/d3

Licensed under BSD3

echarts 3.4.0

Copyright (c) 2017 Baidu Inc.

https://github.com/ecomfe/echarts-gl

Licensed under BSD3

Copyright (c) 2011-2017 Jorik Tangelder

5/13/25, 1:39 PM TigerGraph Documentation

https://github.com/aws/aws-sdk-js
https://github.com/aws/aws-sdk-js
https://github.com/cgjs/fs
https://github.com/cgjs/fs
https://github.com/chalk/chalk
https://github.com/chalk/chalk
https://github.com/chartjs/Chart.js
https://github.com/chartjs/Chart.js
mailto:marijnh@gmail.com
mailto:marijnh@gmail.com
https://github.com/codemirror/CodeMirror
https://github.com/codemirror/CodeMirror
https://github.com/chrisveness/crypto
https://github.com/chrisveness/crypto
https://github.com/deanm/css-color-parser-js
https://github.com/deanm/css-color-parser-js
https://github.com/deanm/css-color-parser-js
https://github.com/d3/d3
https://github.com/d3/d3
https://github.com/ecomfe/echarts-gl
https://github.com/ecomfe/echarts-gl

487

hammerjs https://github.com/hammerjs/hammer.js

Licensed under MIT

jinder/path

Copyright (c) 2015 Joyent, Inc. and other Node

contributors.

https://github.com/jinder/path

Licensed under MIT

js-yaml

Copyright (c) 2011-2015 Vitaly Puzrin

https://github.com/nodeca/js-yaml

Licensed under MIT

jsbn

Copyright (c) 2003-2005 Tom Wu

http://www-cs-

students.stanford.edu/~tjw/jsbn/

Licensed under MIT

jshttp/cookie

Copyright (c) 2012-2014 Roman Shtylman,

2015 Douglas Christopher Wilson

https://github.com/jshttp/cookie

Licensed under MIT

jsrsasign

Copyright (c) 2010-2018 Kenji Urushima

https://github.com/kjur/jsrsasign

Licensed under MIT

koa-body

Copyright (c) 2014 Charlike Mike Reagent and

Daryl Lau

https://github.com/dlau/koa-body

Licensed under MIT

koa-bodyparser

Copyright (c) 2014 YiYu He

heyiyu.deadhorse@gmail.com

https://github.com/koajs/bodyparser

Licensed under MIT

koa-multer

Copyright (c) 2014 Hage Yaapa, 2015 Fangdun

Cai

https://github.com/koa-modules/multer

Licensed under MIT

5/13/25, 1:39 PM TigerGraph Documentation

https://github.com/hammerjs/hammer.js
https://github.com/hammerjs/hammer.js
https://github.com/jinder/path
https://github.com/jinder/path
https://github.com/nodeca/js-yaml
https://github.com/nodeca/js-yaml
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www-cs-students.stanford.edu/~tjw/jsbn/
https://github.com/jshttp/cookie
https://github.com/jshttp/cookie
https://github.com/kjur/jsrsasign
https://github.com/kjur/jsrsasign
https://github.com/dlau/koa-body
https://github.com/dlau/koa-body
mailto:heyiyu.deadhorse@gmail.com
mailto:heyiyu.deadhorse@gmail.com
https://github.com/koajs/bodyparser
https://github.com/koajs/bodyparser
https://github.com/koa-modules/multer
https://github.com/koa-modules/multer

488

koa-router

Copyright (c) 2015 Alex Mingoia

https://github.com/alexmingoia/koa-router

Licensed under MIT

koa-send

Copyright (c) 2013-2019 koa-send contributors

https://github.com/koajs/send

Licensed under MIT

koa-static

Copyright (c) 2013-2019 koa-static contributors

https://github.com/koajs/static

Licensed under MIT

koajs

Copyright (c) 2018 Koa contributors

https://github.com/koajs/koa

Licensed under MIT

Leaflet.js

Copyright (c) 2010-2018 Vladimir Agafonkin,

2010-2011, CloudMade

https://github.com/Leaflet/Leaflet/blob/master

/LICENSE

Licensed under BSD2

lodash

Copyright (c) 2017 JS Foundation and other

contributors

https://github.com/lodash/lodash

Licensed under MIT

material-design-icons

Copyright (c) 2016 Material Design Authors

https://github.com/google/material-design-

icons

Licensed under Apache2

moment

Copyright (c) 2016 JS Foundation and other

contributors

https://github.com/moment/moment

Licensed under MIT

moment timezone

Copyright (c) 2016 JS Foundation and other

contributors

5/13/25, 1:39 PM TigerGraph Documentation

https://github.com/alexmingoia/koa-router
https://github.com/alexmingoia/koa-router
https://github.com/koajs/send
https://github.com/koajs/send
https://github.com/koajs/static
https://github.com/koajs/static
https://github.com/koajs/koa
https://github.com/koajs/koa
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
https://github.com/Leaflet/Leaflet/blob/master/LICENSE
https://github.com/lodash/lodash
https://github.com/lodash/lodash
https://github.com/google/material-design-icons
https://github.com/google/material-design-icons
https://github.com/google/material-design-icons
https://github.com/moment/moment
https://github.com/moment/moment

489

https://github.com/moment/moment-

timezone/

Licensed under MIT

mysqljs

Copyright (c) 2012 Felix Geisendorfer

https://github.com/mysqljs/mysql

Licensed under MIT

ng2-nouislider

Copyright (c) Tomasz Bak

https://github.com/tb/ng2-nouislider

Licensed under MIT

ngx-color-picker

Copyright (c) 2017 ZEF Oy

https://github.com/zefoy/ngx-color-picker

Licensed under MIT

ngx-image-cropper

Copyright (c) 2018 Martijn Willekens

https://github.com/Mawi137/ngx-image-

cropper

Licensed under MIT

node-ip

Copyright (c) 2012 Fedor Indutny

https://github.com/indutny/node-ip

Licensed under MIT

node-jsonwebtoken

Copyright (c) 2015 Auth0, Inc.

https://github.com/auth0/node-jsonwebtoken

Licensed under MIT

nouislider

Copyright (c) 2018 Léon Gersen

https://github.com/leongersen/noUiSlider

Licensed under MIT

randomcolor

Copyright (c) 2015 David Merfield

https://github.com/davidmerfield/randomColor

Licensed under CC0

reactivex/rxjs

Copyright (c) 2015-2018 Google, Inc., Netflix,

Inc., Microsoft Corp. and contributors

https://github.com/reactivex/rxjs

5/13/25, 1:39 PM TigerGraph Documentation

https://github.com/moment/moment-timezone/
https://github.com/moment/moment-timezone/
https://github.com/moment/moment-timezone/
https://github.com/mysqljs/mysql
https://github.com/mysqljs/mysql
https://github.com/tb/ng2-nouislider
https://github.com/tb/ng2-nouislider
https://github.com/zefoy/ngx-color-picker
https://github.com/zefoy/ngx-color-picker
https://github.com/Mawi137/ngx-image-cropper
https://github.com/Mawi137/ngx-image-cropper
https://github.com/Mawi137/ngx-image-cropper
https://github.com/indutny/node-ip
https://github.com/indutny/node-ip
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/auth0/node-jsonwebtoken
https://github.com/leongersen/noUiSlider
https://github.com/leongersen/noUiSlider
https://github.com/davidmerfield/randomColor
https://github.com/davidmerfield/randomColor
https://github.com/davidmerfield/randomColor
https://github.com/reactivex/rxjs
https://github.com/reactivex/rxjs

490

The following table explains the license abbreviations used in the list of TigerGraph Third

Party Software. A link is provided to an official source for each license. The copy of each

Licensed under Apache2

request

Copyright (c) 2010 Mikeal Rogers

https://github.com/request/request

Licensed under Apache2

resumablejs

Copyright (c) 2011 Steffen Tiedemann

Christensen

https://github.com/23/resumable.js

Licensed under MIT

roboto-fontface

Copyright (c) 2013 Christian Hoffmeister

https://github.com/choffmeister/roboto-

fontface-bower

Licensed under Apache2

roboto-mono-webfont

Copyright (c) 2016 Christian Robertson

https://github.com/Dilatorily/roboto-mono

Licensed under MIT AND Apache2

sqlite3

Copyright (c) 2013 MapBox

https://github.com/mapbox/node-sqlite3

Licensed under BSD3

websockets/ws

Copyright (c) 2011 Einar Otto Stangvik

https://github.com/websockets/ws

Licensed under MIT

winston-daily-rotate-file

Copyright (c) 2015 Charlie Robbins

https://github.com/winstonjs/winston-daily-

rotate-file

Licensed under MIT

winstonjs

Copyright (c) 2010 Charlie Robbins

https://github.com/winstonjs/winston

License Abbreviations

5/13/25, 1:39 PM TigerGraph Documentation

https://github.com/request/request
https://github.com/request/request
https://github.com/23/resumable.js
https://github.com/23/resumable.js
https://github.com/choffmeister/roboto-fontface-bower
https://github.com/choffmeister/roboto-fontface-bower
https://github.com/choffmeister/roboto-fontface-bower
https://github.com/Dilatorily/roboto-mono
https://github.com/Dilatorily/roboto-mono
https://github.com/mapbox/node-sqlite3
https://github.com/mapbox/node-sqlite3
https://github.com/websockets/ws
https://github.com/websockets/ws
https://github.com/winstonjs/winston-daily-rotate-file
https://github.com/winstonjs/winston-daily-rotate-file
https://github.com/winstonjs/winston-daily-rotate-file
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston

491

license is also available from TigerGraph and is included in the doc/legal folder of the

product package.

License Abbreviation License Detail

AGPL3

GNU Affero General Public License version 3

https://www.gnu.org/licenses/agpl-3.0.en.html

Apache2

Apache License version 2.0

https://www.apache.org/licenses/LICENSE-2.0

BOOST
Boost Software License

http://www.boost.org/LICENSE_1_0.txt

BSD2

2-Clause BSD (Berkeley Standard Distribution)

License

https://opensource.org/licenses/BSD-2-Clause

BSD3

3-Clause BSD (Berkeley Standard Distribution)

License

https://opensource.org/licenses/BSD-3-Clause

CC0

Creative Commons CC0 1.0 Universal

https://creativecommons.org/publicdomain/ze

ro/1.0/

CURL
Curl License

https://curl.haxx.se/docs/copyright.html

FCGI

FastCGI2 License

https://github.com/FastCGI-

Archives/fcgi2/blob/master/LICENSE.TERMS

GPL2

GNU General Public License version 2.0

https://www.gnu.org/licenses/old-licenses/gpl-

2.0.en.html

GNU General Public License version 3.0

5/13/25, 1:39 PM TigerGraph Documentation

https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://curl.haxx.se/docs/copyright.html
https://curl.haxx.se/docs/copyright.html
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

492

GPL3 https://www.gnu.org/licenses/gpl-3.0.en.html

ISC

Internet Systems Consortium

https://www.isc.org/downloads/software-

support-policy/isc-license/

JSON
JSON License

http://www.json.org/license.html

LGPL3

GNU Lesser General Public License version 3.0

https://www.gnu.org/licenses/lgpl-3.0.en.html

MIT

MIT (Massachusetts Institute of Technology)

License

https://opensource.org/licenses/MIT

MPICH

MPICH License

http://git.mpich.org/mpich.git/blob/HEAD:/COP

YRIGHT

OPENSSL

OpenSSL License

https://www.openssl.org/source/license.html

Python2

Python 2.7 License

https://www.python.org/download/releases/2.

7/license/

SLI_OFL1.1

SIL Open Font License version 1.1

http://scripts.sil.org/cms/scripts/page.php?

item_id=OFL_web

ZLIB
zlib License

https://www.zlib.net/zlib_license.html

5/13/25, 1:39 PM TigerGraph Documentation

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.isc.org/downloads/software-support-policy/isc-license/
https://www.isc.org/downloads/software-support-policy/isc-license/
https://www.isc.org/downloads/software-support-policy/isc-license/
http://www.json.org/license.html
http://www.json.org/license.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
https://www.openssl.org/source/license.html
https://www.openssl.org/source/license.html
https://www.openssl.org/source/license.html
https://www.python.org/download/releases/2.7/license/
https://www.python.org/download/releases/2.7/license/
https://www.python.org/download/releases/2.7/license/
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
https://www.zlib.net/zlib_license.html
https://www.zlib.net/zlib_license.html

493

Developer's Guides

5/13/25, 1:39 PM TigerGraph Documentation

494

GSQL Demo Examples

Version 2.1 to 2.3. Copyright © 2015-2019 TigerGraph. All Rights Reserved.

Using the TigerGraph TM platform is as easy as 1-2-3. In this tutorial we will show you how

to use the TigerGraph platform and the GSQL language by developing solutions for several

use cases, using the following three-step method:

1. Create a Graph Model for the use case using the GSQL™ language, TigerGraph's high-

level graph definition and manipulation language.

2. Load Initial Data : load and transform data to TigerGraph's graph engine.

3. Write a Graph-based Solution by writing queries in the GSQL language.

In addition, this guide will also show you how to update your data: load more data, revise

your data, or delete selected data.

Each example involves a data set and simple example of a real-life query or task. We

develop a graph model, a loading job to load the data, and one or more queries to answer

the question at hand. The applications for graph-based queries are limitless. The goal of

these examples is to demonstrate the expressive power of GSQL queries, as well as how

business intelligence is a natural fit for the graph analytics world.

We assume the user has a working installation of the TigerGraph system. If you have not

installed the system, please refer to the TigerGraph Platform Installation Guide.

This tutorial uses the console-based GSQL Shell. If you prefer to use the browser-based

GraphStudio UI, see the TigerGraph GraphStudio UI Guide first. You can then return to this

document in learn more about the language itself.

To start the GSQL Shell:

type the command gsql to exit, type exit or quit to run a command file from within the

shell, precede the file name with "@":

You can also run GSQL commands directly from Linux:

• For single-line commands, type "gsql" followed by the command enclosed in single-

quotation marks:

•

GSQL> @load_demo.gsql

$ gsql 'RUN QUERY topCopLiked("id1", 5)'

5/13/25, 1:39 PM TigerGraph Documentation

495

• For command files, just type "gsql" followed by the filename:

•

The loading jobs have been updated to v2.0 syntax. The output examples have been updated

to JSON output API version "v2", which is the default output format for TigerGraph platform

version 1.1 or higher.

Common Graph Schema of Demo Examples

The examples in Part 1 of this tutorial have been designed so that all them can be loaded

together in one master graph, gsql_demo. This has several benefits:

1. You can quickly load several demo examples by running just one script.

2. After they are loaded, you can switch from one example to another with no delay.

3. The format is modular, so additional examples can be added easily.

If you want to learn how to design your own graph data analyses, we recommend reading and

doing Example 1, then Example 2, etc., rather than running the entire batch of examples at

once.

Common Applications

Classic Graph Algorithms

$ gsql cf_model.gsql

5/13/25, 1:39 PM TigerGraph Documentation

496

Common Applications

Here is an observation about social networks: If a set of persons likes me, and many of

them also like another person Z, it is probably true that person Z and I have some things in

common. The same observation works for products and services: if a set of customers

likes product X, and many of them also like product Z, then product X and Z probably have

something in common. We say X and Z are "co-liked". This observation can be turned

around into a search for recommendations: Given a user X, find a set of of users Z which

are highly co-liked. For social networks, this can be used as friend recommendation: find

a highly co-liked person Z to introduce to X. For e-commerce, this can be used for

purchase recommendation: someone who bought X may also be interested in buying Z.

This technique of finding the top co-liked individuals is called collaborative filtering.

A graph analytics approach is a natural fit for collaborative filtering because the original

problem is in a graph (social network), and the search criteria can easily be expressed as a

path in the graph. We first find all people Y who like user X, then find other users Z who are

liked by someone in group Y, and rank members of Z according to how many times they're

liked by Y.

Figure 1 below shows a simple graph according to our model. The circles represent three

User vertices with id values id1, id2, and id3. There are two directed edges labeled "Liked"

which show that User id2 likes id1, and id2 also likes id3. (In this model, friendship is

directional because in online social networks, one of the two persons initiates the

friendship.) There are two more directed edges in the opposite directions labeled

"Liked_By". Since id2 likes both id1 and id3, id1 and id3 are co-liked.

DemoExamples_2.0.tar.gz

16KB
DemoExamples_2.0.tar.gz

Example 1. Collaborative Filtering

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LN_Xloqv998NjfcN0iX%2F-LN_YFszaDDc96CHZfZC%2FDemoExamples_2.0.tar.gz?alt=media&token=55b74389-b23a-4250-8183-54d80db55488

497

To just see the basic operation of the TigerGraph system, follow the easy instructions

below . You can then continue to read for the explanation of the command files so you

can learn to design your own examples.

This example uses the graph below and asks the following query: "Who are the top co-

liked persons of id1"?

Step 1: Obtain the data and command files. Create a graph model.

This example uses 4 small files: 3 command files (cf_model.gsql , cf_load.gsql ,

cf_query.gsql) and one data file (cf_data.csv) . Their contents are shown below, so you

Figure 1 - Example graph for the collaborative filtering model

Quick Demo

Quick Demo Instructions

5/13/25, 1:39 PM TigerGraph Documentation

498

can either copy from this document or download the files (look in the "cf" subfolder of

Examples.zip)

Step 2: Load data:

The command below loads our new data.

Step 3: Install and execute the query:

The file cf_query.gsql creates a query called topCoLiked. Then we install the query. The

creation step runs fast, but the installation (compiling) step may take about 1 minute. We

then run the query, asking for the top 20 Users who are co-liked with User id1.

The query results should be the following. Interpretation: id4 has as score (@cnt) = 2,

which means there are two persons who like both id1 and id4. Next, id2 and id3 each have

1 co-friend in common with id1.

> gsql 'DROP ALL'
> gsql cf_model.gsql
> gsql 'CREATE GRAPH gsql_demo(*)'

> gsql -g gsql_demo cf_load.gsql

> gsql -g gsql_demo cf_query.gsql
> gsql -g gsql_demo 'INSTALL QUERY topCoLiked'
> gsql -g gsql_demo 'RUN QUERY topCoLiked("id1", 20)'

5/13/25, 1:39 PM TigerGraph Documentation

499

We now begin a tutorial-style explanation of this TigerGraph example and the workflow in

general.

The figure below outlines the steps to progress from an empty graph to a query solution.

Each of the blocks below corresponds to one of the steps in the Quick Demo above. The

tutorial below will give you a deeper understanding of each step, so you can learn how it

works and so you can design your own graph solutions.

{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"L2": [
 {
 "v_id": "id4",
 "attributes": {"@cnt": 2},
 "v_type": "User"
 },
 {
 "v_id": "id3",
 "attributes": {"@cnt": 1},
 "v_type": "User"
 },
 {
 "v_id": "id2",
 "attributes": {"@cnt": 1},
 "v_type": "User"
 }
]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

500

5/13/25, 1:39 PM TigerGraph Documentation

501

The first step is to create a model for your data which describes the types of vertices and

edges you will have.

This example is written to be compatible with older TigerGraph platforms which support only

one graph model at a time (though the user can make the model simple or complex, to

handle multiple needs). To clear an existing model and old data, so you can install a new one,

run the DROP ALL command.

The statements below describe the vertex types and edge types in our Co-Liked model

The first CREATE statement creates one vertex type called User. The second statement

creates one directed edge type called Liked. The WITH REVERSE_EDGE clause means

that for every two vertices (x,y) connected by a Liked type of edge, the system will

automatically generate a corresponding edge of type Liked_By pointing from y to x, and

both edges will have the same edge attributes.

After defining all your vertex and edge types, execute the following command to create a

graph which binds the vertices and edges into one graph model:

The name of the graph is gsql_demo. Within the parentheses, you can either list the

specific vertex and edge types (User, Liked), or you can use *, which means include

everything. We chose to use * so that the same command can be used for all of our

examples.

The CREATE commands can be stored in one file and executed together.

CREATE VERTEX User (PRIMARY_ID id string)
CREATE DIRECTED EDGE Liked (FROM User, TO User) WITH REVERSE_EDGE = "Liked

CREATE GRAPH gsql_demo(*)

Step 1: Create a graph model.

CREATE GRAPH command

cf_model.gsql

5/13/25, 1:39 PM TigerGraph Documentation

502

The CREATE GRAPH command is commented out for the following reason:

Our examples have been designed to run either as individual graphs or merged together into

one multi-application graph. The CREATE GRAPH command may be run only once, after all

the vertex and edge types have been created. (Each of our demo examples uses unique

vertex and edge names, to avoid conflicts.) In other words, we run CREATE GRAPH
gsql_demo(*) as a separate command after creating all the vertex and edge types. If you

decide you want to modify the schema after running CREATE GRAPH, you can create and run

a SCHEMA_CHANGE JOB.

Newer TigerGraph platforms (i.e., version 1.1 or higher) can support multiple graphs, but this

tutorial has been designed to be compatible with older single-graph platforms.

• To execute these statements (DROP ALL, CREATE VERTEX, etc.), you can type them

individually at the GSQL shell prompt, or you can first save them to a file, such as

cf_model.gsql , and then run the command file. From within the shell, you would

run

@cf_model.gsql
From outside the shell, you would run

> gsql cf_model.gsql

Normally a user would put all their CREATE VERTEX, CREATE EDGE, and the final CREATE

GRAPH statements in one file. In our example files, we have separated out the CREATE

GRAPH statement because we want to merge all our example schemas together into one

common graph.

• The vertex, edge, and graph types become part of the catalog . To see what is

currently in your catalog, type the ls command from within the GSQL shell to see a

report as below:

CREATE VERTEX User (PRIMARY_ID id string)
CREATE DIRECTED EDGE Liked (FROM User, TO User) WITH REVERSE_EDGE = "Liked
#CREATE GRAPH gsql_demo(*)

Catalog contents, as reported by the "ls" command

5/13/25, 1:39 PM TigerGraph Documentation

503

• To remove a definition from the catalog, use some version of the DROP command.

Use the help command to see a summary of available GSQL commands.

• In our examples, we typically show keywords in ALL UPPERCASE to distinguish them

from user-defined identifiers. Identifiers are case-sensitive but keywords are not.

In this example, the vertices and edges don't have attributes. In general, a TigerGraph

graph can have attributes on both vertices and edges, and it can also have different types

of edges connecting the same two vertices. Please see GSQL Language Reference Part 1

- Defining Graphs and Loading Data which provides a more complete description of the

graph schema definition language with additional examples.

Figure 2 shows a larger graph with five vertices and several edges. To avoid crowding the

figure, only the Liked edges are shown: For every Liked edge, there is a corresponding

Liked_By edge in the reverse direction.

Vertex Types:
 - VERTEX User(PRIMARY_ID id STRING) WITH STATS="OUTDEGREE_BY_EDGETYPE"

Edge Types:
 - directed edge Liked(from User, to User) with reverse_edge="Liked_By"
 - directed edge Liked_By(from User, to User) with reverse_edge="Liked"

Graphs:

Jobs:
Queries:

Json API version: v2

Step 2: Load initial data.

5/13/25, 1:39 PM TigerGraph Documentation

504

The data file below describes the five vertices and seven edges of Figure 2.

The loading job below will read from a data file and create vertex and edge instances to

put into the graph.

Figure 2 - Graph for Collaborative Filtering Calculation

id2,id1
id2,id3
id3,id1
id3,id4
id5,id1
id5,id2
id5,id4

define the loading job
USE GRAPH gsql_demo # added for v1.2
CREATE LOADING JOB load_cf FOR GRAPH gsql_demo {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX User VALUES ($0),
 TO VERTEX User VALUES ($1),
 TO EDGE Liked VALUES ($0, $1);
}

load the data
RUN LOADING JOB load_cf USING f="../cf/data/cf_data.csv"

cf_data.csv

Per Example: Load data into the graph (file: cf_load.gsql)

5/13/25, 1:39 PM TigerGraph Documentation

505

Now that we have defined a graph (in Step 1), GSQL commands or sessions should specify

that you want to use a particular graph. Line 2 (new for v1.2) sets the working graph to be

gsql_demo. Another way to set the working graph is to specify each time you invoke the gsql

command, e.g.,

The CREATE LOADING JOB statement (line 3) defines a job called load_cf. The job will

read each line of the input file, creates one vertex based on the value in the first column

(referenced with column name $0), another vertex based on the value in the second

column ($1), and one Liked edge pointing from the first vertex to the second vertex. In

addition, since the Liked edge type definition includes the WITH REVERSE_EDGE clause, a

Liked_By edge pointing in the opposite direction is also created.

After the job has been created, we run the job (line 12). the RUN LOADING JOB command

line includes details about the data source: the name of the file is cf_data.csv, commas

are used to separate columns, and \n is used to end each line. (Data files should not

contain any extra spaces before or after the separator character.)

The TigerGraph loader automatically filters out duplicates. If either of the two column

values has already been seen before, that vertex won't be created. Instead the existing

vertex will be used. For example, if we read the first two data lines in data file cf_data.csv ,

the first line will generate two User vertices, one edge type of Liked , and one edge

type of Liked_By . For the second row, however, only one new vertex will be created

since id2 has been seen already. Two edges will be created for the second row.

1. It is okay to run an LOADING JOB again, or to run a different loading job, to add more

data to a graph store which already has some data. For example, you could do the

following:

2.After loading, you can use the GraphStudio UI to visually inspect your data. Refer to the

TigerGraph GraphStudio UI Guide .

gsql -g gsql_demo cf_load.gsql

RUN LOADING JOB load_cf USING f="../cf/cf_data1.csv"
RUN LOADING JOB load_cf USING f="../cf/cf_data2.tsv"

5/13/25, 1:39 PM TigerGraph Documentation

506

To clear all your data but to keep your graph model, run the "CLEAR GRAPH STORE -HARD"

command. -HARD must be in all capital letters.

Be very careful using CLEAR GRAPH STORE; there is no UNDO command.

For the querying and updating examples in the remainder of this use case, we will assume

that Figure 2 has been loaded.

This loading example is basic. The GSQL language can do complex data extraction and

transformation, such as dealing with JSON input format and key-value list input, all in high-

level syntax. Please see GSQL Language Reference Part 1 - Defining Graphs and Loading

Data for more examples.

The GSQL language includes not only data definition and simple inspection of the data,

but also advanced querying which traverses the graph and which supports aggregation

and iteration.

First , we can run some simple queries to verify that the data were loaded correctly. Below

are some examples of some built-in GSQL queries which can be run in GSQL shell:

Simple Query for Validation Meaning & Comments

SELECT count() FROM User
⚠ DEPRECATED. Display the estimated count

of User vertices. Use count(*) or

approx_count(*) instead.

SELECT count(*) FROM User Display the number of User vertices,

SELECT count(*) FROM User-(Liked)-
>User

Display the number of directed Liked edges

from User type to User type

SELECT approx_count(*) FROM User
Display the number of User vertices according

to cached statistics. Response time may be

Step 3: Write a graph-based query solution

Built-In Queries

5/13/25, 1:39 PM TigerGraph Documentation

507

faster than count(*). See note below.

SELECT approx_count(*) FROM User-
(Liked)->User

Display the number of directed Liked edges

from User type to User Type, according to

cached statistics. Response time may be faster

than count(*). See note below.

SELECT * FROM User LIMIT 3

Display all id, type, and attribute information for

up to 3 User vertices.

A LIMIT or WHERE condition is required, to

prevent the output from being too large.

Note that there is also a system limit of 10240

vertices or edges returned by SELECT *.

SELECT * FROM User WHERE
primary_id=="id2"

Display all id, type and attribute information for

the User vertex whose primary_id is "id2".

The WHERE clause can also specify non-ID

attributes.

SELECT * FROM User-(ANY)->ANY WHERE
from_id=="id1"

Display all id,type, and attribute information

about any type of edge which starts from

vertex "id1".

To guard against queries which select too

many edges, the WHERE clause is mandatory

when selecting edges.

5/13/25, 1:39 PM TigerGraph Documentation

508

Note on approx_count(*)

The approx_count(*) function relies on statistics which may not account for recent insertions

and deletions. If there has been no recent activity, they will give accurate results. In contrast,

the count(*) function insures that recent data insertions and deletions are processed, so that

it returns an accurate count.

SELECT * displays information in JSON format. Below is an example of query output.

Now let's solve our original problem: find users who are co-liked with a user X. The

following query demonstrates a 2-step traversal with aggregation.

GSQL > SELECT * FROM User LIMIT 5
[
 {
 "v_id": "id2",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id5",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id3",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id4",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id1",
 "attributes": {},
 "v_type": "User"
 }
]

Create a Query

5/13/25, 1:39 PM TigerGraph Documentation

509

The query below performs the co-liked collaborative filtering search. The concept behind

this query is to describe a "graph path" which represents the relationship between a

person (the starting point) and a person that is co-liked (the ending point). Figure 1

illustrates this path: id3 is a co-liked user of id1, because id2 likes both of them. The path

from id1 to co-liked users is: (1) traverse a Liked_By edge to a User, and then (2) traverse a

Liked edge to another User. This query also calculates the magnitude of the relationship

between the starting point and each ending point. The more users there are such as id2

which connect id1 and id3, the stronger the co-like relationship between id1 and id3.

Counting the number of paths that end at id3 serves to calculate this magnitude.

This query is structured like a procedure with two input parameters: an input vertex and

value of k for the top-K ranking. The query contains three SELECT statements executed in

order. The L0 statement defines our initial list of vertices: a set containing a single user

supplied by the input_user parameter. Suppose the input user is id1 . Next, the L1

statement starts from every vertex in the set L0, traverses every connected edge of type

Liked_By and returns every target vertex (that is, the other ends of the connected edges).

As a result, L1 is the set of all users who liked the input user. Referring to the graph in

Figure 2, the query travels backwards along every Liked edge which points to id1 ,

arriving at id2 , id3 , and id5 . These three vertices form L1. Next, the L2 statement

starts from each user in L1, travels to every user liked by that starting user (via the Liked

type of edges), and increments the count for each User reached. That is, the algorithm

counts how many times each vertex is visited by a query path. The WHERE condition

CREATE QUERY topCoLiked(vertex<User> input_user, INT topk) FOR GRAPH gsq
{
 SumAccum<int> @cnt = 0;
 # @cnt is a runtime attribute to be associated with each User vertex
 # to record how many times a user is liked.
 L0 = {input_user};
 L1 = SELECT tgt
 FROM L0-(Liked_By)->User:tgt;
 L2 = SELECT tgt
 FROM L1-(Liked)->:tgt
 WHERE tgt != input_user
 ACCUM tgt.@cnt += 1
 ORDER BY tgt.@cnt DESC
 LIMIT topk;
 PRINT L2;
}

cf_query.gsql - Define the collaborative filtering query

5/13/25, 1:39 PM TigerGraph Documentation

510

makes sure the original input user will not be returned in the result.ORDER BY and LIMIT

have the same meaning as in SQL. Below, we show how the L2 step tallies the counts for

each vertex encountered:

1. From id2, Liked edges lead to id1 and id3. id1 is excluded due to the WHERE clause.

The cnt count for id3 is incremented from 0 to 1.

2. From id3, Liked edges lead to id1 and id4. id1 is excluded due to the WHERE clause.

The cnt count for id4 is incremented from 0 to 1.

3. From id5, Liked edges lead to id1, id2, and id4. id1 is excluded to to the WHERE clause.

The cnt count of id2 is incremented from 0 to 1. The cnt count of id4 is incremented

from 1 to 2.

The three co-liked users and their cnt scores: id3 (cnt score = 1), id4 (cnt = 2), and id2 (cnt

= 1). The ORDER BY clause indicates that the sorting should be in descending order, such

that the LIMIT clause trims L2 to the 20 vertices with the highest (as opposed to lowest)

cnt values. For the test graph, there are only 3 vertices which are co-liked, less than the

limit of 20. id4 has the strongest co-liked relationship.

After the query is defined (in the CREATE QUERY block), it needs to be installed. The

INSTALL QUERY command compiles the query.

If you have several queries, you can wait to install them in one command, which runs

faster than installed each one separately. E.g.,

or

is faster than

INSTALL QUERY topCoLiked

INSTALL QUERY query1, query2

INSTALL QUERY ALL

Install and Run a Query

5/13/25, 1:39 PM TigerGraph Documentation

511

After a query has been installed, it can be run as many times has desired. The command

RUN QUERY invokes the query, with the given input arguments.

Using "id1" as the starting point and allowing up to 5 vertices in the output, the RUN

QUERY command and its output on our test graph is shown below:

Instead of using the RUN QUERY command within the GSQL shell, the query can be

invoked from the operating system via a RESTful GET endpoint (which is automatically

created by the INSTALL QUERY command):

INSTALL QUERY query1
INSTALL QUERY query2

GSQL > RUN QUERY topCoLiked("id1", 5)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"L2": [
 {
 "v_id": "id4",
 "attributes": {"@cnt": 2},
 "v_type": "User"
 },
 {
 "v_id": "id3",
 "attributes": {"@cnt": 1},
 "v_type": "User"
 },
 {
 "v_id": "id2",
 "attributes": {"@cnt": 1},
 "v_type": "User"
 }
]}]
}

curl -X GET "http://hostName:port/query/gsql_demo/topCoLiked?input_user=id

5/13/25, 1:39 PM TigerGraph Documentation

512

If you followed the standard installation instructions for the TigerGraph system, hostName

for the REST server is localhost and port is 9000 .

As of TigerGraph 1.2, the URL for query REST endpoints includes the graph name after

query/. Prior to 1.2, the URL for the example above was http://hostName:port

/query/topCoLiked

You can update the stored graph at any time, to add new vertices and edges, to remove

some, or to update existing values. The GSQL language includes ADD, DROP, ALTER,

UPSERT, and DELETE operations which are similar to the SQL operations of the same

name. The UPSERT operation is a combined UPDATE-INSERT operation: If object exists,

then UPDATE, else INSERT. Note that this is the default behavior for The GSQL language's

'smart' loading described above. There are three basic types of modifications to a graph:

1. Adding or deleting objects

2. Altering the schema of the graph

3. Modifying the attributes of existing objects

We'll give a quick example of each type. To show the effect each modification, we'll use

the following simple built-in queries:

The current results, before making any modifications, are shown below.

SELECT * FROM User LIMIT 1000
SELECT * FROM User-(Liked)->User WHERE from_id=="id2"

Step 4 (Optional): Update Your Data.

cf_mod_check.gsql

Users vertices and Edges from id2, before any modifications

5/13/25, 1:39 PM TigerGraph Documentation

513

5/13/25, 1:39 PM TigerGraph Documentation

514

GSQL > SELECT * FROM User LIMIT 1000
[
 {
 "v_id": "id2",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id5",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id3",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id4",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id1",
 "attributes": {},
 "v_type": "User"
 }
]
GSQL > SELECT * FROM User-(Liked)->User WHERE from_id=="id2"
[
 {
 "from_type": "User",
 "to_type": "User",
 "directed": true,
 "from_id": "id2",
 "to_id": "id3",
 "attributes": {},
 "e_type": "Liked"
 },
 {
 "from_type": "User",
 "to_type": "User",
 "directed": true,
 "from_id": "id2",
 "to_id": "id1",
 "attributes": {},
 "e_type": "Liked"
 }

5/13/25, 1:39 PM TigerGraph Documentation

515

Graph modification operations are performed by a distributed computing model which

satisfies Sequential Consistency. For these examples, a brief one second pause between the

updating and querying the graph should be sufficient.

Adding is simply running a loading job again with a new data file. More details are in the

GSQL Language Reference Part 1.

Deleting: Suppose we want to delete vertex id3 and all its connections:

]

DELETE FROM User WHERE primary_id=="id3"

Modification Type 1: Adding or deleting

cf_mod1.gsql

Users vertices and Edges from id2, after Modification 1

5/13/25, 1:39 PM TigerGraph Documentation

516

The GSQL DELETE operation is a cascading deletion. If a vertex is deleted, then all of the

edges which connect to it are automatically deleted as well.

Result: one fewer vertex and one fewer edge from id2.

The GSQL language supports four types of schema alterations:

GSQL > SELECT * FROM User LIMIT 1000
[
 {
 "v_id": "id2",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id5",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id4",
 "attributes": {},
 "v_type": "User"
 },
 {
 "v_id": "id1",
 "attributes": {},
 "v_type": "User"
 }
]
GSQL > SELECT * FROM User-(Liked)->User WHERE from_id=="id2"
[{
 "from_type": "User",
 "to_type": "User",
 "directed": true,
 "from_id": "id2",
 "to_id": "id1",
 "attributes": {},
 "e_type": "Liked"
}]

Modification Type 2: Altering the schema

5/13/25, 1:39 PM TigerGraph Documentation

517

1. Adding a new type of vertex or edge: ADD VERTEX | DIRECTED EDGE |
UNDIRECTED EDGE

2. Removing a type of vertex or edge: DROP VERTEX | DIRECTED EDGE |
UNDIRECTED EDGE

3. Adding attributes to a vertex or edge type: ALTER VERTEX vertex_type | EDGE
edge_type ADD ATTRIBUTE (name type)

4. Removing attributes of a vertex or edge type: ALTER VERTEX vertex_type | EDGE
edge_type DROP ATTRIBUTE (name)

To make schema changes, create a SCHEMA_CHANGE job. Running the

SCHEMA_CHANGE JOB will automatically stop all services, update the graph store, and

restart the service. For example, suppose we wish to add a name for Users and a weight

to Liked edges to indicatehow much User A likes User B.

As of v1.2, the schema_change job here needs to be GLOBAL because the User vertex and

Liked edge are global types (they were defined before an active graph was set.)

Changing the schema may necessitate changing queries and other tasks, such as REST

endpoints. In this example, the collaborative filtering query will still run with the the new

weight attribute, but it will ignore the weight in its calculations.

CREATE GLOBAL SCHEMA_CHANGE JOB cf_mod2 {
ALTER VERTEX User ADD ATTRIBUTE (name string);

 ALTER EDGE Liked ADD ATTRIBUTE (weight float DEFAULT 1);
}
RUN JOB cf_mod2

cf_mod2.gsql

Users vertices and Edges from id2, after Modification 2

5/13/25, 1:39 PM TigerGraph Documentation

518

Now that we have added a weight attribute, we probably want to assign some weight

values to the graph. The following example updates the weight values of two edges. For

edge upserts, the first two arguments in the VALUES list specify the FROM vertex id and

the TO vertex_id, respectively. Similarly, for vertex upserts, the first argument in the

VALUES list specifies the PRIMARY_ID id. Since id values may not be updated, the GSQL

shell implicitly applies a conditional test: "If the specified id value(s) exist, than update the

GSQL > SELECT * FROM User LIMIT 1000
[
 {
 "v_id": "id2",
 "attributes": {"name": ""},
 "v_type": "User"
 },
 {
 "v_id": "id5",
 "attributes": {"name": ""},
 "v_type": "User"
 },
 {
 "v_id": "id4",
 "attributes": {"name": ""},
 "v_type": "User"
 },
 {
 "v_id": "id1",
 "attributes": {"name": ""},
 "v_type": "User"
 }
]
GSQL > SELECT * FROM User-(Liked)->User WHERE from_id=="id2"
[{
 "from_type": "User",
 "to_type": "User",
 "directed": true,
 "from_id": "id2",
 "to_id": "id1",
 "attributes": {"weight": 1},
 "e_type": "Liked"
}]

Modification Type 3: Modifying the attributes of existing objects

5/13/25, 1:39 PM TigerGraph Documentation

519

non-id attributes in the VALUES list; otherwise, insert a new data record using these

values."

UPSERT User VALUES ("id1", "Aaron")
UPSERT User VALUES ("id2", "Bobbie")
UPSERT User-(Liked)->User VALUES ("id2","id1",2.5)

GSQL > SELECT * FROM User LIMIT 1000
[
 {
 "v_id": "id2",
 "attributes": {"name": "Bobbie"},
 "v_type": "User"
 },
 {
 "v_id": "id5",
 "attributes": {"name": ""},
 "v_type": "User"
 },
 {
 "v_id": "id4",
 "attributes": {"name": ""},
 "v_type": "User"
 },
 {
 "v_id": "id1",
 "attributes": {"name": "Aaron"},
 "v_type": "User"
 }
]
GSQL > SELECT * FROM User-(Liked)->User WHERE from_id=="id2"
[{
 "from_type": "User",
 "to_type": "User",
 "directed": true,
 "from_id": "id2",
 "to_id": "id1",
 "attributes": {"weight": 2.5},
 "e_type": "Liked"
}]

cf_mod3.gsql

Users vertices and Edges from id2, after Modification 3

5/13/25, 1:39 PM TigerGraph Documentation

520

In addition to making graph updates within the GSQL Shell, there are two other ways:

sending a query string directly to the Standard Data Manipulation REST API, or writing a

custom REST endpoint. For details about the first method, see the GET, POST, and

DELETE /graphendpoints in the RESTPP API User Guide . The functionality in GSQL and in

the Standard Query API is the same; GSQL commands are translated into REST GET, POST,

and DELETE requests and submitted to the Standard Query API.

The REST API equivalent of the GSQL Modification 3 upsert example above is as follows:

where serverIP is the IP address of your REST server (default = localhost) and

data/cf_mod3_input.json is a text file containing the following JSON-encoded data:

curl -X POST --data-binary @ data/cf_mod3_input.json http://hostName:9000/

Other Modes for Graph Updates

cf_upsert.json

5/13/25, 1:39 PM TigerGraph Documentation

521

This example shows the use of WHILE loop iteration, global variables , and the built-in

outdegree attribute.

It is recommended that you do the Collaborative Filtering Use Case first, because it

contains additional tips on running the TigerGraph system.

{
 "vertices": {
 "User":{
 "id1":{
 "name":{
 "value":"Aaron"
 }
 }
 },
 "User":{
 "id2":{
 "name":{
 "value":"Bobbie"
 }
 }
 }
 },
 "edges": {
 "User":{
 "id2":{
 "Liked":{
 "User":{
 "id1":{
 "weight" : {
 "value":2.5
 }
 }
 }
 }
 }
 }
 }
}

Example 2. Page Rank

5/13/25, 1:39 PM TigerGraph Documentation

522

Remember that if you have a text file containing GSQL commands (e.g., commands.gsql),

you can run it one of two ways:

• From Linux: gsql commands.gsql

• From inside the GSQL shell: @commands.gsql

To run a single command (such as DROP ALL):

• From Linux: gsql 'DROP ALL'

• From inside the GSQL shell: DROP ALL

Setting the working graph

If a graph has been defined, then all subsequent gsql commands need to specify which graph

is being used. If your command file does not contain a "USE GRAPH" statement, then you can

specify the graph when invoking gsql:gsql -g graph_name commands.gsql

If you are always using the same graph, you can define a Linux alias to automatically include

your graph name:

You can add this line to the .bashrc in your home directory so that the alias is defined each

time you open a bash shell.

In this example, there is only one type of vertex and one type of edge, and edges are

directed.

gsql -g graph_name commands.gsql

alias gsql='gsql -g graph_name'

CREATE VERTEX Page (PRIMARY_ID pid string, page_id string)
CREATE DIRECTED EDGE Linkto (FROM Page, TO Page)
#CREATE GRAPH gsql_demo(*)

Step 1: Create a graph model.

pagerank_model.gsql

5/13/25, 1:39 PM TigerGraph Documentation

523

Note how the Page vertex type has both a PRIMARY_ID and a page_id attribute. As will be

seen in step 2, the same data will be loaded into both fields. While this seems redundant,

this is a useful technique in TigerGraph graph stores. The PRIMARY_ID is not treated as an

ordinary attribute. In exchange for high-performance storage, the PRIMARY_ID lacks some

of the filtering and querying features available to regular attributes. The Linkto edge does

not have any attributes. In general, a TigerGraph graph can have attributes on both

vertices and edges, and it can also have different types of edges connecting the same two

vertices.

The CREATE GRAPH command is commented out for the following reason:

Our examples have been designed to run either as individual graphs or merged together into

one multi-application graph. The CREATE GRAPH command should be run only once, after all

the vertex and edge types for all the examples have been created. (Naturally, every model

uses unique vertex and edge names, to avoid conflicts.) In other words, run ' CREATE GRAPH
gsql_demo(*) ' as a separate command after you have created all your vertex and edge

types.

Please see the GSQL Language Reference which provides a more complete description of

the graph schema definition language with additional examples .

A similar graph to what was used for the Collaborative Filtering user-user network

example can be used for an example here. That is, each row has two values which are

node IDs, meaning that there is a connection from the first node to the second node.

However, we will introduce a difference to demonstrate the flexibility of the TigerGraph

loading system. We will modify the data file to use the tab character as a field separator

instead of the comma.

1 2
1 3
2 3
3 4
4 1
4 2

Step 2: Load initial data

pagerank_data.tsv

5/13/25, 1:39 PM TigerGraph Documentation

524

Create your loading job and load the data.

The above loading job will read each line of the input file (pagerank_data.tsv), create one

vertex based on the value in the first column (referenced as $0), another vertex based on

the value in the second column ($1), and one edge pointing from the first vertex to the

second vertex. If either of the two column values has already been seen before, that vertex

won't be created. Instead the existing vertex will be used. For example, the first row of

pagerank_data.tsv, will create two vertices, with ids 1 and 2, and one edge (1, 2). The

second row, however, will create only one new vertex, id 3, and one edge (1, 3), because id

1 already exists.

Note how the LOAD statement specifies the SEPARATOR character is the tab character.

GSQL includes not only data definition and simple inspection of the data, but also

advanced querying which traverses the graph and which supports aggregation and

iteration. This example uses iterations, repeating the computation block until the

maximum score change at any vertex is no more than a user-provided threshold, or until it

reaches a user-specified maximum number of allowed iterations. Note the arrow -> in

the FROM clause used to represent the direction of a directed edge.

define the loading job
CREATE LOADING JOB load_pagerank FOR GRAPH gsql_demo {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX Page VALUES ($0, $0),
 TO VERTEX Page VALUES ($1, $1),
 TO EDGE Linkto VALUES ($0, $1)
 USING SEPARATOR="\t";
}

load the data
RUN LOADING JOB load_pagerank USING f="../pagerank/pagerank_data.tsv"

Loading job:

Step 3: Write a Graph-based query solution

Per Example: Load data into the graph (file: pagerank_load.gsql)

5/13/25, 1:39 PM TigerGraph Documentation

525

For JSON output API v2, the PRINT syntax for a vertex set variable is different than the v1

syntax.

After executing the CREATE QUERY command, remember to install the query, either by

itself or together with other queries:

Run the query:

CREATE QUERY pageRank (float maxChange, int maxIteration, float dampingFac
FOR GRAPH gsql_demo
{
 # In each iteration, compute a score for each vertex:
 # score = dampingFactor + (1-dampingFactor)* sum(received scores from
 # The pageRank algorithm stops when either of the following is true:
 # a) it reaches maxIterations iterations;
 # b) max score difference of any vertex compared to the last iteration
 # @@ prefix means a global accumulator;
 # @ prefix means an individual accumulator associated with each vertex

 MaxAccum<float> @@maxDifference = 9999; # max score change in an iterati
 SumAccum<float> @received_score = 0; # sum of scores each vertex receive
 SumAccum<float> @score = 1; # initial score for every vertex is 1.

 AllV = {Page.*}; # Start with all vertices of type Page
 WHILE @@maxDifference > maxChange LIMIT maxIteration DO
 @@maxDifference = 0;
 S = SELECT s
 FROM AllV:s-(Linkto)->:t
 ACCUM t.@received_score += s.@score/s.outdegree()
 POST-ACCUM s.@score = dampingFactor + (1-dampingFactor) * s.@rece
 s.@received_score = 0,
 @@maxDifference += abs(s.@score - s.@score');
 PRINT @@maxDifference; # print to default json result
 END; # end while loop
 #PRINT AllV.page_id, AllV.@score; # print the results, JSON output
 PRINT AllV[AllV.page_id, AllV.@score]; # print the results, JSON output
} # end query

INSTALL QUERY pageRank

pagerank_query.gsql

Install the query

5/13/25, 1:39 PM TigerGraph Documentation

526

We will use the typical dampingFactor of 0.15, iterate until the pagerank values change by

less than 0.001, up to a maximum of 100 iterations. For these conditions, the PageRank

values for the 4 vertices (1,2,3,4) are (0.65551, 0.93379, 1.22156, 1.18914), respectively.

5/13/25, 1:39 PM TigerGraph Documentation

527

5/13/25, 1:39 PM TigerGraph Documentation

528

RUN QUERY pageRank(0.001, 100, 0.15)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@maxDifference": 0.425},
 {"@@maxDifference": 0.36125},
 {"@@maxDifference": 0.15353},
 {"@@maxDifference": 0.19575},
 {"@@maxDifference": 0.16639},
 {"@@maxDifference": 0.09429},
 {"@@maxDifference": 0.08014},
 {"@@maxDifference": 0.05961},
 {"@@maxDifference": 0.04705},
 {"@@maxDifference": 0.03999},
 {"@@maxDifference": 0.017},
 {"@@maxDifference": 0.02},
 {"@@maxDifference": 0.017},
 {"@@maxDifference": 0.00953},
 {"@@maxDifference": 0.0081},
 {"@@maxDifference": 0.00616},
 {"@@maxDifference": 0.00479},
 {"@@maxDifference": 0.00407},
 {"@@maxDifference": 0.00178},
 {"@@maxDifference": 0.00205},
 {"@@maxDifference": 0.00174},
 {"@@maxDifference": 9.6E-4},
 {"AllV": [
 {
 "v_id": "2",
 "attributes": {
 "AllV.page_id": "2",
 "AllV.@score": 0.93379
 },
 "v_type": "Page"
 },
 {
 "v_id": "4",
 "attributes": {
 "AllV.page_id": "4",
 "AllV.@score": 1.18914
 },
 "v_type": "Page"

5/13/25, 1:39 PM TigerGraph Documentation

529

Details about updating were discussed in Use Case 1 (Collaborative Filtering). We will go

right to the graph modification examples for the PageRank case.

To show the effect of each modification, we use two built-in queries. The first one lists all

the Page vertices. The second one lists all the edges which start at Page 4.

These are the results of the diagnostic queries, before any graph modifications. There are

4 vertices total and 2 edges which start at page 4.

 },
 {
 "v_id": "1",
 "attributes": {
 "AllV.page_id": "1",
 "AllV.@score": 0.65551
 },
 "v_type": "Page"
 },
 {
 "v_id": "3",
 "attributes": {
 "AllV.page_id": "3",
 "AllV.@score": 1.22156
 },
 "v_type": "Page"
 }
]}
]
}

SELECT * FROM Page LIMIT 1000
SELECT * FROM Page-(Linkto)->Page WHERE from_id=="4"

Step 4 (Optional): Update Your Data.

pagerank_mod_check.gsql

Page vertices and Linkto edges from Page 4, before modifications

5/13/25, 1:39 PM TigerGraph Documentation

530

SELECT * FROM Page LIMIT 1000
[
 {
 "v_id": "2",
 "attributes": {"page_id": "2"},
 "v_type": "Page"
 },
 {
 "v_id": "4",
 "attributes": {"page_id": "4"},
 "v_type": "Page"
 },
 {
 "v_id": "1",
 "attributes": {"page_id": "1"},
 "v_type": "Page"
 },
 {
 "v_id": "3",
 "attributes": {"page_id": "3"},
 "v_type": "Page"
 }
]
SELECT * FROM Page-(Linkto)->Page WHERE from_id=="4"
[
 {
 "from_type": "Page",
 "to_type": "Page",
 "directed": true,
 "from_id": "4",
 "to_id": "2",
 "attributes": {},
 "e_type": "Linkto"
 },
 {
 "from_type": "Page",
 "to_type": "Page",
 "directed": true,
 "from_id": "4",
 "to_id": "1",
 "attributes": {},
 "e_type": "Linkto"
 }
]

Modification 1: Adding or deleting

5/13/25, 1:39 PM TigerGraph Documentation

531

Adding is simply running a loading job again with a new data file.

Deleting: Suppose we want to delete vertex url4 and all its connections:

The GSQL DELETE operation is a cascading deletion. If a vertex is deleted, then all of the

edges which connect to it are automatically deleted as well.

Result: one fewer vertex and one fewer edge from Page 4.

DELETE FROM Page WHERE page_id=="1"

SELECT * FROM Page LIMIT 1000
[
 {
 "v_id": "2",
 "attributes": {"page_id": "2"},
 "v_type": "Page"
 },
 {
 "v_id": "4",
 "attributes": {"page_id": "4"},
 "v_type": "Page"
 },
 {
 "v_id": "3",
 "attributes": {"page_id": "3"},
 "v_type": "Page"
 }
]
SELECT * FROM Page-(Linkto)->Page WHERE from_id=="4"
[{
 "from_type": "Page",
 "to_type": "Page",
 "directed": true,
 "from_id": "4",
 "to_id": "2",
 "attributes": {},
 "e_type": "Linkto"
}]

pagerank_mod1.gsql

Page vertices and Linkto edges from Page 4, after Modification 1

5/13/25, 1:39 PM TigerGraph Documentation

532

For example, suppose we wish to add an attribute to the Page vertices to classify what

type of Page it is and also a date to the edges.

Changing the schema may necessitate revising and reinstalling loading jobs and queries. In

this case, adding the pageType attribute does not harm the pageRank query.

This schema_change job is GLOBAL because the Page vertex and Linkto edge types are

global (defined before setting an active graph).

CREATE GLOBAL SCHEMA_CHANGE JOB pagerank_mod2 {
 ALTER VERTEX Page ADD ATTRIBUTE (pageType string DEFAULT "");
 ALTER EDGE Linkto ADD ATTRIBUTE (dateLinked string DEFAULT "");
}
RUN JOB pagerank_mod2

Modification Type 2: Altering the schema

pagerank_mod2.gsql

Page vertices and Linkto edges from Page 4, after Modification 2

5/13/25, 1:39 PM TigerGraph Documentation

533

The following example updates the type values of two vertices and one edge.

SELECT * FROM Page LIMIT 1000
[
 {
 "v_id": "2",
 "attributes": {
 "page_id": "2",
 "pageType": ""
 },
 "v_type": "Page"
 },
 {
 "v_id": "4",
 "attributes": {
 "page_id": "4",
 "pageType": ""
 },
 "v_type": "Page"
 },
 {
 "v_id": "3",
 "attributes": {
 "page_id": "3",
 "pageType": ""
 },
 "v_type": "Page"
 }
]
SELECT * FROM Page-(Linkto)->Page WHERE from_id=="4"
[{
 "from_type": "Page",
 "to_type": "Page",
 "directed": true,
 "from_id": "4",
 "to_id": "2",
 "attributes": {"dateLinked": ""},
 "e_type": "Linkto"
}]

Modification Type 3: Modifying the attributes of existing objects

5/13/25, 1:39 PM TigerGraph Documentation

534

UPSERT Page VALUES (2,2,"info")
UPSERT Page VALUES (3,3,"commerce")
UPSERT Page-(Linkto)->Page VALUES (4,2,"2016-08-31")

SELECT * FROM Page LIMIT 1000
[
 {
 "v_id": "2",
 "attributes": {
 "page_id": "2",
 "pageType": "info"
 },
 "v_type": "Page"
 },
 {
 "v_id": "4",
 "attributes": {
 "page_id": "4",
 "pageType": ""
 },
 "v_type": "Page"
 },
 {
 "v_id": "3",
 "attributes": {
 "page_id": "3",
 "pageType": "commerce"
 },
 "v_type": "Page"
 }
]
SELECT * FROM Page-(Linkto)->Page WHERE from_id=="4"
[[{
 "from_type": "Page",
 "to_type": "Page",
 "directed": true,
 "from_id": "4",
 "to_id": "2",
 "attributes": {"dateLinked": "2016-08-31"},
 "e_type": "Linkto"
}]

Other Modes for Graph Updates

Page vertices and Linkto edges from Page 4, after Modification 3

5/13/25, 1:39 PM TigerGraph Documentation

535

In addition to making graph updates within the GSQL Shell, there are two other ways:

sending a query string directly to the Standard Data Manipulation REST API, or writing a

custom REST endpoint. For details about the first method, see the Standard Data

Manipulation REST API User Guide . The functionality in GSQL and in the Standard Query

API is essentially the same; GSQL commands are translated into REST GET, POST, and

DELETE requests and submitted to the Standard Query API.

The REST API equivalent of the GSQL Modification 3 upsert example above is as follows:

where hostName is the IP address of your REST server, and data

/pagerank_mod3_input.json is a text file containing the following JSON-encoded data:

curl -X POST --data-binary @data/pagerank_mod3_input.json http://hostName:

5/13/25, 1:39 PM TigerGraph Documentation

536

This example introduces the technique of flattening – splitting a data field which contains

a set of elements into individual vertices and edges, one for each element.

Input Data: A list of products. Each Product has a 64-bit image hash value and a list of

words describing the product.

Query Task : Find the products which are most similar to a given product. Formally, given a

{
 "vertices": {
 "Page":{
 "2":{
 "pageType" : {
 "value":"info"
 }
 }
 },
 "Page":{
 "3":{
 "pageType" : {
 "value":"commerce"
 }
 }
 }
 },
 "edges": {
 "Page":{
 "4":{
 "Linkto":{
 "Page":{
 "2":{
 "dateLinked" : {
 "value":"2016-08-31"
 }
 }
 }
 }
 }
 }
 }
}

Example 3. Simple Product Recommendation

5/13/25, 1:39 PM TigerGraph Documentation

537

product id P and an integer K,return the top K products similar to the product P. The

similarity between a product P and another product Q is based on the number of words

found in the product descriptions for both product P and product Q.

Step 1: Create a graph model for the use case, using the data definition language (DDL)

aspect of the GSQL language.

Then run

The above statements create two types of vertices, Product and DescWord, and one type

of edge connecting the two vertex types. The edge is undirected so that you can just as

easily traverse from a Product to its descriptive words or from a descriptive word to

Products which are described by it.

The generated graph schema for this case is shown below. The GSQL Language

Reference manual provides a more complete description of the language with more

examples .

CREATE VERTEX Product (PRIMARY_ID pid string, image_hash uint)
CREATE VERTEX DescWord (PRIMARY_ID id string)
CREATE UNDIRECTED EDGE Has_desc (FROM Product, TO DescWord)

CREATE GRAPH gsql_demo(*)

simprod_model.gsql

5/13/25, 1:39 PM TigerGraph Documentation

538

Step 2: Load Input Data.

In this example, the input data are all stored in a single file having a 3-column format with

a header column. Below are the test data:

Column 1 is the product id; column 2 is the image hash code, and column 3 is a list of

words describing the product. Note how double quotation marks are used to enclose the

list of words. Each row from the input file may lead to the creation of one Product vertex,

multiple DescWord vertices, and multiple edges, one edge connecting the Product to each

DescWord vertex.

id,hash,words
62abcax334,15243242,"word1,word2,word3"
dell laptop,1837845,"word2,word4,word5"
mac book, 128474373,"word4"
surface pro,8439828,"word1,word3,word6"
hp book,29398439828,"word2,word3,word1"
linux abc,298439234,"word4,word2,word1"
linux def,295839234,"word4,word2,word6,word7"

simprod_data.csv

5/13/25, 1:39 PM TigerGraph Documentation

539

The loading job below makes use of several features of the loading language to

intelligently transform this data file into the appropriate vertices and edges.

1. The HEADER="true" option tells the loader that the data file's first line contains column

headings instead of data. It will read the column headings and permit these heading

names to be used instead of index numbers $1, $2, etc.

2. DEFINE HEADER and USER_DEFINED_HEADER allow the loading job to define its own

names for the columns ("id", "hash", "words"), instead of the index numbers ($0, $1, $2)

and overriding the file's own headings.

3. QUOTE="double" informs the loader that double quotation marks enclose strings. This

allows the separator character (e.g., comma) to appear in the string, without triggering

the end of the token. QUOTE="single" is also available.

4. The special TEMP_TABLE and flatten() function are used to split the list of tokens into

separate items and to store them temporarily. The temporary items are then used to

assemble the final edge objects.

In general, the GSQL language can map and transform multiple input files to multiple

vertex and edge types. More advanced data transformation and filtering features are also

available. See the GSQL Language Reference manual for more information.

An example of the resulting data graph is shown below. Products (P1, P2, etc.) connect to

various DescWords (Word1, Word2, etc.). Each Product connects to many DescWords, and

each DescWord is used in multiple Products.

define the loading job
CREATE LOADING JOB load_simprod FOR GRAPH gsql_demo {
 DEFINE HEADER head1 = "id","hash","words";
 DEFINE FILENAME f1;
 LOAD f1
 TO VERTEX Product values ($"id", $"hash"),
 TO TEMP_TABLE t (pid, description) VALUES ($"id", flatten($"words", ",
 USING QUOTE="double", HEADER="true", USER_DEFINED_HEADER="head1";
 LOAD TEMP_TABLE t
 TO VERTEX DescWord VALUES ($"description"),
 TO EDGE Has_desc VALUES ($"pid", $"description");
}

load the data
RUN LOADING JOB load_simprod USING f1="../simprod/data/simprod_data.csv"

simprod_load.gsql

5/13/25, 1:39 PM TigerGraph Documentation

540

Step 3: Write a graph-based solution using TigerGraph's high-level GSQL query language,

to solve the use case and auto-generate the REST GET/POST endpoints for real-time

accesses to TigerGraph's system.

simprod_query.gsql

5/13/25, 1:39 PM TigerGraph Documentation

541

Query Result:

For product id= 62abcax334, find the top 3 similar products, which have more than 1

descriptive word in common with product 62abcax334.

CREATE QUERY productSuggestion (vertex<Product> seed, int threshold_cnt, i
FOR GRAPH gsql_demo
{
 # an accumulator variable attachable to any vertex
 SumAccum<int> @cnt = 0;

 # T0 is the set of products from which we want to start traversal in t
 T0={seed};

 /**
 * Compute the collection of words describing the input
 * product. tgt is the alias of vertex type DescWord.
 * In other words, for every edge of the given type (Has_desc)
 * that has one vertex in the set T0 and the other vertex being of
 * the DescWord type, add its DescWord vertex to the output set.
 */
 ProductWords = SELECT tgt
 FROM T0-(Has_desc)-DescWord:tgt;

 /**
 * The output set of the previous query (ProductWords) becomes the in
 * of this query. From each word in ProductWords, activate all other
 * which contain the word in their description, and accumulate a coun
 * each activated product to record how many words it has in common w
 * input product. Then rank each related product using the count of
 * words; the count must exceed the query parameter threshold_cnt.
 */
 Results = SELECT tgt
 FROM ProductWords-(Has_desc)->Product:tgt
 WHERE tgt != seed
 ACCUM tgt.@cnt += 1
 HAVING tgt.@cnt > threshold_cnt
 ORDER BY tgt.@cnt DESC
 LIMIT k;

 PRINT Results; # default print output is the REST call response in JSO
}

5/13/25, 1:39 PM TigerGraph Documentation

542

When installing the above GSQL query, a REST GET endpoint for this query will

automatically be generated. Instead of running the query as a GSQL command, clients

can also invoke the query by formatting the query as a HTTP request query string and

sending a GET request, e.g.,

//INSTALL QUERY productSuggestion
RUN QUERY productSuggestion("62abcax334", 1, 3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Results": [
 {
 "v_id": "hp book",
 "attributes": {
 "@cnt": 3,
 "image_hash": 29398439828
 },
 "v_type": "Product"
 },
 {
 "v_id": "surface pro",
 "attributes": {
 "@cnt": 2,
 "image_hash": 8439828
 },
 "v_type": "Product"
 },
 {
 "v_id": "linux abc",
 "attributes": {
 "@cnt": 2,
 "image_hash": 298439234
 },
 "v_type": "Product"
 }
]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

543

This example introduces the CASE...WHEN...THEN structure, which can also be used as

an if...then block.

Input Data: A social network, where each person has a first and last name and may also

display a picture of themselves.

Query Task : Find the users who are most "similar" to a user X. Specifically, a user X

searches for other users whose first or last name matches user X's name. The query

returns the list of users (Y1,Y2,...Yk) within two steps (two steps means friend-of-friend),

who have matching names, and who offer a picture. The list is sorted and ranked by the

relevance score between X and another user Yi, where the score is a linear function of four

factors:

For the standard TigerGraph configuration, hostName:port is localhost:9000

1. depth : how far X is from Yi (the shortest distance)

2. count : the number of shortest paths between X and Yi

3. match : whether Yi matches the input first name (match=1), the input last name

(match=2), or both input names (match=3)

4. profile : whether Yi has a profile picture

curl -X GET "http://hostName:port/query/gsql_demo/productSuggestion?seed=6

Example 4. Same Name Search

5/13/25, 1:39 PM TigerGraph Documentation

544

Using the graph above as an example, suppose we want to compute relevance scores for

the social network of the Tom Smith on the left.

• match=1 for Tom Lee (first names are the same)

• match=2 for May Smith (last names are the same)

• match=3 for Tom Smith on the right (both names are the same).

There is no direct connection to the other Tom Smith, but there are several paths:

• Paths with a depth = 2:

◦ Tom Smith → Ming Wu → Tom Smith

◦ Tom Smith → Ron Glass → Tom Smith

◦ Tom Smith → Tom Lee → Tom Smith

◦ Tom Smith → May Smith → Tom Smith

There are also some longer paths (e.g., Tom Smith → Ron Glass → Tom Lee → Tom

Smith), but since they are longer, they are not of interest. Therefore, for the relationship

(Tom Smith, Tom Smith), depth = 2 and count = 4.

The four factors (depth, count, match, hasPicture) are combined to compute an overall

relevance score:

5/13/25, 1:39 PM TigerGraph Documentation

545

The clause hasPicture? 200 : 0 uses the ternary conditional operator. If hasPicture

is TRUE, evaluate to 200. Otherwise, evaluate to 0.

To design the graph schema, consider what attributes are needed for each vertex and

attribute. The User vertices need to have a first name, a last name, and a profile picture.

We assume that the social network is stored in two data files, one for vertices and one for

edges.

Vertex file format: id, firstname, lastname, img_url

Edge file format: user1, user2

The following code creates the schema and loads the data:

Test data files

score = match * 100 + (4-depth) * 50 + count + hasPicture? 200 : 0

CREATE VERTEX NameUser (PRIMARY_ID id string, firstname string, lastname s
CREATE UNDIRECTED EDGE NameConn (FROM NameUser, TO NameUser)

CREATE GRAPH gsql_demo(*)

define the loading job
CREATE LOADING JOB load_nameV FOR GRAPH gsql_demo {
 DEFINE FILENAME f1;
 LOAD f1 TO VERTEX NameUser VALUES ($0, $1, $2, $3);
}
CREATE LOADING JOB load_nameE FOR GRAPH gsql_demo {
 DEFINE FILENAME f2;
 LOAD f2 TO EDGE NameConn VALUES ($0, $1);
}

load the data
RUN lOADING JOB load_nameV USING f1="../name/data/name_search_vertex.csv"
RUN LOADING JOB load_nameE USING f2="../name/data/name_search_edge.csv"

name_model.gsql

name_load.gsql

5/13/25, 1:39 PM TigerGraph Documentation

546

The query algorithm is a bit long but straightforward:

1. Select all the depth=1 neighbors. For each neighbor:

a. Use a CASE structure to check for matching first and last names and assign a

match value.

b. Check for an image.

0,michael,jackson,
1,michael,franklin,abc.com
2,michael,lili,def.com
3,franklin,lili,
4,lucia,franklin,lucia.org
5,michael,jackson,
6,michael,jackson,abc.com
7,lucia,jackson,
8,hahah,jackson,haha.net

0,1
0,3
0,4
1,5
1,3
1,2
2,6
2,7
2,1
2,0
3,0
3,1
3,5
3,7
4,5
5,6
5,7
6,7
6,1
6,2
6,0
6,4
7,5
8,5

name_search_vertex.csv

name_search_edge.csv

5/13/25, 1:39 PM TigerGraph Documentation

547

c. We know depth=1 and count=1, so compute the relevance score.

2. Starting from the depth=1 neighbors, move to the depth=2 neighbors. For each such

neighbor:

a. Use a CASE structure to check for matching first and last names and assign a

match value.

b. Use ACCUM to count up the paths.

c. Check for an image.

d. Depth=2. Compute the relevance score.

The complete query is shown below:

name_query.gsql

5/13/25, 1:39 PM TigerGraph Documentation

548

5/13/25, 1:39 PM TigerGraph Documentation

549

CREATE QUERY namesSimilar (vertex<NameUser> seed, string firstName, string
FOR GRAPH gsql_demo
{
 # define a tuple to store neighbor score
 typedef tuple<vertex<NameUser> uid, float score> neighbor;
 # runtime variables used to compute neighbor score
 SumAccum<int> @count = 0;
 SumAccum<int> @depth = 0;
 SumAccum<int> @match= 0;
 SumAccum<float> @score = 0.0;
 SumAccum<int> @hasImgURL = 0;

 # global heap variable used to store final top k users, sorted by score
 # in the neighbor tuple
 HeapAccum<neighbor>(k, score DESC) @@finalTopKUsers;

 # starting user
 StartP = {seed};

 # flag first level neighbor with @depth = 1
 # count number of incoming connections
 # flag match category
 # flag img_url count greater than 0
 # finally, push the user and their score into global top-k heap.
 FirstLevelConnection = SELECT u

FROM StartP -(NameConn)-> :u
ACCUM u.@depth = 1, u.@count += 1,

CASE WHEN u.firstname == firstName AND u.lastname == lastName
THEN u.@match = 3

WHEN u.firstname != firstName AND u.lastname == lastName
 THEN u.@match = 2
 WHEN u.firstname == firstName AND u.lastname != lastName
 THEN u.@match = 1

END,
CASE WHEN u.imag_url != ""

THEN u.@hasImgURL = 1
END

 POST-ACCUM @@finalTopKUsers += neighbor(u, u.@match * 100 + (4-u.@

 # similarly, do the topk heap update using second level neighbor
 SecondLevelConnection = SELECT u2

FROM FirstLevelConnection -(NameConn)-> :u2
WHERE u2 != seed AND u2.@depth != 1
ACCUM u2.@depth = 2, u2.@count +=1,

CASE WHEN u2.firstname == firstName AND u2.lastname == lastNam
THEN u2.@match = 3

WHEN u2.firstname != firstName AND u2.lastname == lastName
THEN u2.@match = 2

5/13/25, 1:39 PM TigerGraph Documentation

550

Query result

Starting from user 0, who is named "Michael Jackson", find the top 100 most similar

persons, according to the scoring function described above.

WHEN u2.firstname == firstName AND u2.lastname != lastName
THEN u2.@match = 1

END,
CASE WHEN u2.imag_url !=""

THEN u2.@hasImgURL = 1
END

POST-ACCUM @@finalTopKUsers += neighbor(u2, u2.@match*100 + (4-u2.

 # print the result
 PRINT @@finalTopKUsers;
}

5/13/25, 1:39 PM TigerGraph Documentation

551

//INSTALL QUERY namesSimilar
RUN QUERY namesSimilar (0,"michael","jackson",100)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@finalTopKUsers": [
 {
 "uid": "6",
 "score": 651
 },
 {
 "uid": "2",
 "score": 451
 },
 {
 "uid": "1",
 "score": 451
 },
 {
 "uid": "5",
 "score": 404
 },
 {
 "uid": "4",
 "score": 351
 },
 {
 "uid": "7",
 "score": 303
 },
 {
 "uid": "3",
 "score": 151
 }
]}]
}

Example 5. Content-Based Filtering
Recommendation of Videos

5/13/25, 1:39 PM TigerGraph Documentation

552

This example demonstrates conditional loading to be selective about which data records

to load into which vertices or edges.

Input Data: A network of video programs, a set of tags which describe each video, and a

set of users who have watched and rated videos.

Query Task: Recommend video programs that a given user might like.

Step 1: Create Graph Schema

The principle behind content-based recommendation is that people are often interested in

products which have attributes similar to the ones which they have selected in the past.

Suppose we have a video store. If the store tracks what videos each customer has

selected in the past, and also records attributes about its videos, it can use this data to

recommend more videos to the customer. Formally, for an input user (seed), first find

which videos the user has watched. Then, from all the watched videos, find the top k

attributes. From the top k attributes, find the top n videos that the seed user has not

watched.

This suggests that we should have a graph with three types of vertices: user, video, and

attributes (of a video). The schema is shown below.

Then run

Step 2: Load Input Data

In this example, there is one data file which contains data for all three type of vertices –

VidUser, Video, and AttributeTag. The first field of each line indicates the vertex type.

Similarly, there is one edge data file for two types of edges – User_Video and

CREATE VERTEX VidUser (PRIMARY_ID user_id uint, content string, date_time
CREATE VERTEX Video (PRIMARY_ID content_id uint, content string, date_time
CREATE VERTEX AttributeTag (PRIMARY_ID tag_id string, content string, att_
CREATE UNDIRECTED EDGE Video_AttributeTag (FROM Video, TO AttributeTag, we
CREATE UNDIRECTED EDGE User_Video (FROM VidUser, TO Video, rating float DE

CREATE GRAPH gsql_demo(*)

video_model.gsql

5/13/25, 1:39 PM TigerGraph Documentation

553

Video_AttributeTag. The WHERE clause is used to conditionally load only certain data into

each type of vertex or edge. Further, these data files do not contain information for every

attribute. When "_" is used in the VALUES list of a LOAD statement, it means not to load

data from the input. The default value will be written (or it will remain as it is, if there is

already a vertex or edge with that ID).

Test data files

type,id,content
User,0,
User,1,
User,2,
User,3,
Video,0,v0
Video,1,v1
Video,2,v2
Video,3,v3
Video,4,v4
Tag,action,
Tag,comedy,
Tag,mystery,
Tag,technical,

type,from,to,rating
UV,0,0,6.8
UV,0,2,5.2
UV,0,3,10.0
UV,1,1,1.2
UV,2,0,7.4
UV,3,0,6.6
UV,3,4,8.4
VA,0,action,
VA,0,comedy,
VA,1,mystery,
VA,2,technical,
VA,2,mystery,
VA,2,action,
VA,3,comedy,
VA,4,technical,
VA,4,action,

video_recommendation_v.csv

video_recommendation_e.csv

5/13/25, 1:39 PM TigerGraph Documentation

554

Loading jobs

Step 3: Query the data

The query has the three stages characteristic of content-based recommendation:

1. Find products (videos) previously selected

2. Find the top attributes of those products

3. Find the products which have the most attributes in common with the seed products

define the loading job
CREATE LOADING JOB load_videoV FOR GRAPH gsql_demo {
 DEFINE FILENAME f1;
 LOAD f1
 TO VERTEX VidUser VALUES ($1,_,_) WHERE $0 == "User",
 TO VERTEX Video VALUES ($1,$2,_) WHERE $0 == "Video",
 TO VERTEX AttributeTag VALUES ($1,_,_) WHERE $0 == "Tag";
}
CREATE LOADING JOB load_videoE FOR GRAPH gsql_demo {
 DEFINE FILENAME f2;
 LOAD f2
 TO EDGE User_Video VALUES ($1,$2,$3, _) WHERE $0 == "UV",
 TO EDGE Video_AttributeTag VALUES ($1,$2,_, _) WHERE $0 == "VA";
}

load the data
RUN LOADING JOB load_videoV USING f1="../video/data/video_recommendation_v
RUN LOADING JOB load_videoE USING f2="../video/data/video_recommendation_e

video_load.gsql

video_query.gsql

5/13/25, 1:39 PM TigerGraph Documentation

555

Query result

Recommend up to 10 videos to user 0, using the top 10 attributes from the client's

favorite videos.

CREATE QUERY videoRecommendation (vertex<VidUser> seed, int k, int n) FOR
{
 OrAccum @viewedBySeed;
 SumAccum<float> @score;

 Start = {seed};

 # get viewed videos
 Viewed = SELECT v
 FROM Start -(User_Video:e)-> Video:v
 ACCUM v.@viewedBySeed += true,
 v.@score += e.rating;

 # get attribute
 Attribute = SELECT att
 FROM Viewed:v -(Video_AttributeTag)-> AttributeTag:att
 ACCUM att.@score += v.@score
 ORDER BY att.@score
 LIMIT k;

 # get recommended videos
 Recommend = SELECT v
 FROM Attribute:att -(Video_AttributeTag)-> Video:v
 WHERE v.@viewedBySeed != true
 ACCUM v.@score += att.@score
 ORDER BY v.@score DESC
 LIMIT n;

 PRINT Recommend;
}

5/13/25, 1:39 PM TigerGraph Documentation

556

This example shows a technique for passing intermediate results from one stage to

another.

Input Data : A social network with weighted connections.

//INSTALL QUERY videoRecommendation
RUN QUERY videoRecommendation (0, 10, 10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Recommend": [
 {
 "v_id": "1",
 "attributes": {
 "date_time": 0,
 "@score": 5.2,
 "@viewedBySeed": false,
 "content": "v1"
 },
 "v_type": "Video"
 },
 {
 "v_id": "4",
 "attributes": {
 "date_time": 0,
 "@score": 17.2,
 "@viewedBySeed": false,
 "content": "v4"
 },
 "v_type": "Video"
 }
]}]
}

Example 6. People You May Know

5/13/25, 1:39 PM TigerGraph Documentation

557

Query Task: Recommend the Top K people you may know but who are not yet in your set

of connections. Scoring is based on a variation of cosine similarity of two users:

This is a way to "transport" a value as the query travels through the graph .

The graph schema and loading jobs:

This example shows that the computation of a moderately complex formula is simple in

the GSQL language. It also demonstrates a technique of copying an attribute from an edge

or a source vertex to the (temporary) accumulator of the edge's target vertex:

Then

 tgt.@edge_strength = e.strength

CREATE VERTEX Person (PRIMARY_ID id uint)
CREATE UNDIRECTED EDGE PersonConn (FROM Person, TO Person, strength float)

score(A,B) =

 ∑
degree(A) ⋅ degree(B)

connectionStrength(A → x) ⋅ connectionStrength(x → B)

CREATE GRAPH gsql_demo(*)

Step 1

Step 2

people_model.gsql

people_load.gsql

5/13/25, 1:39 PM TigerGraph Documentation

558

Test data:

If you have worked through the previous examples, you perhaps can now see that we need

a two-stage query: from A to A's neighbors, and then from A's neighbors to their neighbors.

Also, you may realize that we will use the ACCUM clause to perform summation in the

define the loading jobs
CREATE LOADING JOB load_peopleV FOR GRAPH gsql_demo {
 DEFINE FILENAME f1;
 LOAD f1 TO VERTEX Person VALUES ($0);
}
CREATE LOADING JOB load_peopleE FOR GRAPH gsql_demo {
 DEFINE FILENAME f2;
 LOAD f2 TO EDGE PersonConn VALUES ($0,$1,$2);
}

load the data
RUN LOADING JOB load_peopleV USING f1="../people/data/people_user.dat"
RUN LOADING JOB load_peopleE USING f2="../people/data/people_conn.dat"

1
2
3
4
5
6
7
8

1,2,0.6
2,3,0.5
2,6,0.5
3,6,0.3
3,5,0.2
3,4,0.8
5,8,0.8
6,8,0.2

Step 3

people_user.dat

people_conn.dat

5/13/25, 1:39 PM TigerGraph Documentation

559

second stage. But, how will we know during the second stage what was the strength of

the first stage edge? By storing a copy of the edge's weight in an accumulator attached to

the edge's target vertex, which becomes a source vertex in the second stage.

In JSON output API v2, the PRINT syntax for a vertex set variable is different than the v1

syntax.

Query result:

Recommend up to 10 persons whom Person 1 might like to get to know.

CREATE QUERY peopleYouMayKnow(vertex<Person> startP, int TopK) FOR GRAPH g
{
 SumAccum<float> @edge_strength = 0;
 SumAccum<int> @depth = 0;
 SumAccum<float> @sum = 0;
 SumAccum<float> @score = 0;
 SumAccum<int> @@startPdegree = 0;

 Start = {startP};
 L1 = SELECT tgt
 FROM Start:src-(PersonConn:e)->Person:tgt
 ACCUM tgt.@edge_strength = e.strength, tgt.@depth=1, # copy edge s
 @@startPdegree += src.outdegree(); # save seed outdegre

 # second level connections
 L2 = SELECT tgt2
 FROM L1:u-(PersonConn:e)->Person:tgt2
 WHERE tgt2 != startP AND tgt2.@depth != 1
 ACCUM tgt2.@sum += u.@edge_strength*e.strength
 POST-ACCUM tgt2.@score += tgt2.@sum/(@@startPdegree * tgt2.outdegr
 ORDER BY tgt2.@score DESC
 LIMIT TopK;
 #PRINT L2.@score; # JSON output API version v1
 PRINT L2 [L2.@score]; # JSON output API version v2
}

people_query.gsql

5/13/25, 1:39 PM TigerGraph Documentation

560

Input Data: A social network in which each user has two attributes (besides their name):

the time that they joined the network, and a boolean flag which says whether they are

active or not.

Query Tasks: We show several query examples, making use the the time attribute and

directed links between users.

Then

INSTALL QUERY peopleYouMayKnow
RUN QUERY peopleYouMayKnow (1, 10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"L2": [
 {
 "v_id": "3",
 "attributes": {"L2.@score": 0.075},
 "v_type": "Person"
 },
 {
 "v_id": "6",
 "attributes": {"L2.@score": 0.1},
 "v_type": "Person"
 }
]}]
}

CREATE VERTEX SocialUser (PRIMARY_ID uid string, name string, isActive boo
CREATE DIRECTED EDGE SocialConn (FROM SocialUser, TO SocialUser) WITH REVE

Example 7. More Social Network Queries

Part 1: Create Graph

social_model.gsql

5/13/25, 1:39 PM TigerGraph Documentation

561

Test data:

We have two data files. For variety, we will create two loading jobs, one for each file.

Moreover, we will define the specific file locations in the loading jobs themselves. Then, it

CREATE GRAPH gsql_demo(*)

id,name,active,timestamp
0,luke,1,1400000000
1,john,1,1410000000
2,matthew,0,1420000000
3,mark,1,143000000
4,paul,1,144000000
5,steven,0,145000000
6,peter,1,146000000
7,james,1,147000000
8,joseph,1,148000000
9,thomas,1,149000000

0,1
0,2
0,3
0,4
0,5
1,3
1,4
1,5
1,6
0,7
7,0
7,3
7,4
7,5
0,8
8,3
8,4
0,9
9,3

Part 2: Load Data

social_users.csv

social_connections.csv

5/13/25, 1:39 PM TigerGraph Documentation

562

is not necessary to provide the filepaths in the RUN LOADING JOB statements. Also, the

file social_users.csv has a header, so we can use the column headings to refer to the

columns.

This case study presents four queries and their results, one at a time, so there are four

separate "INSTALL QUERY" commands. Alternately, all four can be installed at once, which

will execute faster than separate install commands:

INSTALL QUERY socialFromUser, socialToUser, socialMutualConnections,
socialOneWay

or

INSTALL QUERY ALL

Q1 (socialFromUser): find users who have a direct connection from a given input user,

with some filtering conditions on the candidate users' attributes

define the loading job
CREATE LOADING JOB load_social1 FOR GRAPH gsql_demo {
 LOAD "../social/data/social_users.csv"
 TO VERTEX SocialUser VALUES ($"id",$"name",$"active",$"timestamp")
 USING HEADER="true", QUOTE="double";
}
CREATE LOADING JOB load_social2 FOR GRAPH gsql_demo {
 LOAD "../social/data/social_connection.csv"
 TO EDGE SocialConn VALUES ($0, $1);
}

load the data
RUN LOADING JOB load_social1
RUN LOADING JOB load_social2

Part 3 : Create, install, and run queries.

social_load.gsql

socialFromUser from social_query.gsql

5/13/25, 1:39 PM TigerGraph Documentation

563

Test query and result:

CREATE QUERY socialFromUser(vertex<SocialUser> uid, bool is_active, int re
int reg_time_max, int k) FOR GRAPH gsql_demo
{
 L0={uid};
 RESULT = SELECT tgt
 FROM L0:u-(SocialConn)->SocialUser:tgt
 WHERE tgt.registration_timestamp >= reg_time_min AND
 tgt.registration_timestamp <= reg_time_max AND
 tgt.isActive == is_active
 LIMIT k;
 PRINT RESULT;
}

5/13/25, 1:39 PM TigerGraph Documentation

564

Q2 (socialToUser): similar to Q1, but return users who have a connection pointing to the

input user.

#INSTALL QUERY socialFromUser
RUN QUERY socialFromUser("0", "true", 0, 147000000, 10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"RESULT": [
 {
 "v_id": "7",
 "attributes": {
 "registration_timestamp": 147000000,
 "name": "james",
 "isActive": true
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "4",
 "attributes": {
 "registration_timestamp": 144000000,
 "name": "paul",
 "isActive": true
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "3",
 "attributes": {
 "registration_timestamp": 143000000,
 "name": "mark",
 "isActive": true
 },
 "v_type": "SocialUser"
 }
]}]
}

socialToUser from social_query.gsql

5/13/25, 1:39 PM TigerGraph Documentation

565

Test query and result:

CREATE QUERY socialToUser(vertex<SocialUser> uid, bool is_active, int reg_
int reg_time_max, int K) FOR GRAPH gsql_demo
{
 L0={uid};
 Result = SELECT tgt
 FROM L0:u-(reverse_conn)->SocialUser:tgt
 WHERE tgt.registration_timestamp >= reg_time_min AND
 tgt.registration_timestamp <= reg_time_max AND
 tgt.isActive == is_active
 LIMIT K;
 PRINT Result;
}

#INSTALL QUERY socialToUser
RUN QUERY socialToUser("4", "true", 0, 150000000, 10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [
 {
 "v_id": "8",
 "attributes": {
 "registration_timestamp": 148000000,
 "name": "joseph",
 "isActive": true
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "7",
 "attributes": {
 "registration_timestamp": 147000000,
 "name": "james",
 "isActive": true
 },
 "v_type": "SocialUser"
 }
]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

566

Q3 (socialMutualConnections): return the set of users who have connections from both

input user A and input user B.

Test query and result:

CREATE QUERY socialMutualConnections(vertex<SocialUser> uid1, vertex<Socia
int reg_time_min, int reg_time_max, int k) FOR GRAPH gsql_demo
{
 SumAccum<int> @cnt =0;

 Start = {uid1,uid2};
 Result = SELECT tgt
 FROM Start-(SocialConn)->SocialUser:tgt
 WHERE tgt.registration_timestamp >= reg_time_min AND
 tgt.registration_timestamp <= reg_time_max AND
 tgt.isActive == is_active
 ACCUM tgt.@cnt +=1
 HAVING tgt.@cnt == 2
 LIMIT k;
PRINT Result;
}

#INSTALL QUERY socialMutualConnections
RUN QUERY socialMutualConnections("1", "7", "false", 0, 2000000000, 10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "5",
 "attributes": {
 "registration_timestamp": 145000000,
 "@cnt": 2,
 "name": "steven",
 "isActive": false
 },
 "v_type": "SocialUser"
 }]}]
}

socialMutualConnection from social_query.gsql

5/13/25, 1:39 PM TigerGraph Documentation

567

Q4 (socialOneWay): find all A->B user relationships such that there is an edge from A to B

but there is no edge from B to A, and also requires that A and B connect to at least some

number of common friends.

Test query and result: There are three such pairs

1. From vertex 0 to 1. Vertices 0 and 1 have 3 neighbors in common.

2. From vertex 0 to 8. Vertices 0 and 8 have 2 neighbors in common.

3. From vertex 0 to 9. Vertices 0 and 9 have 1 neighbor in common.

CREATE QUERY socialOneWay(int mutual_contacts_min = 5, int mutual_contacts
FOR GRAPH gsql_demo
{
 typedef tuple<vertex<SocialUser> id, string name, int cnt> recTuple;
 # SumAccum<list<recTuple>> @recList; # v0.1 to v0.1.2
 ListAccum<recTuple> @recList; # v0.2

 Start = {SocialUser.*};

 Result = SELECT B
 FROM Start:A-(SocialConn)->SocialUser:B
 # B.neighbors() is a built-in function which returns the list o
 # B.neighbors('edgeType1') returns only the neighbors connected
 WHERE B NOT IN A.neighbors("reverse_conn") AND
 COUNT(A.neighbors("SocialConn") INTERSECT B.neighbors("SocialC
 COUNT(A.neighbors("SocialConn") INTERSECT B.neighbors("SocialC
 ACCUM B.@recList += recTuple(A, A.name, COUNT(A.neighbors("Social
 PRINT Result; # the result includes B's static attributes and B.@fromN
}

socialOneWay from social_query.gsql

5/13/25, 1:39 PM TigerGraph Documentation

568

5/13/25, 1:39 PM TigerGraph Documentation

569

//INSTALL QUERY socialOneWay
RUN QUERY socialOneWay(1,10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [
 {
 "v_id": "8",
 "attributes": {
 "registration_timestamp": 148000000,
 "name": "joseph",
 "isActive": true,
 "@recList": [{
 "name": "luke",
 "cnt": 2,
 "id": "0"
 }]
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "9",
 "attributes": {
 "registration_timestamp": 149000000,
 "name": "thomas",
 "isActive": true,
 "@recList": [{
 "name": "luke",
 "cnt": 1,
 "id": "0"
 }]
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "1",
 "attributes": {
 "registration_timestamp": 1410000000,
 "name": "john",
 "isActive": true,
 "@recList": [{
 "name": "luke",
 "cnt": 3,

5/13/25, 1:39 PM TigerGraph Documentation

570

• socialTwoWay: Find all A↔B relationships such that there are connected edges both

from A to B and from B to A, and A and B have some common neighbors.

Test query and result:

There is one such pair (0, 7), but the query reports it twice: first as (7, 0) and then as (0, 7).

Vertices 7 and 0 have 3 neighbors in common.

 "id": "0"
 }]
 },
 "v_type": "SocialUser"
 }
]}]
}

Suggested variant query:

5/13/25, 1:39 PM TigerGraph Documentation

571

RUN QUERY socialTwoWay(1,10)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [
 {
 "v_id": "1",
 "attributes": {
 "registration_timestamp": 1400000000,
 "name": "luke",
 "isActive": true,
 "@recList": [{
 "name": "james",
 "cnt": 3,
 "id": "7"
 }]
 },
 "v_type": "SocialUser"
 },
 {
 "v_id": "7",
 "attributes": {
 "registration_timestamp": 147000000,
 "name": "james",
 "isActive": true,
 "@recList": [{
 "name": "luke",
 "cnt": 3,
 "id": "0"
 }]
 },
 "v_type": "SocialUser"
 }
]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

572

Classic Graph Algorithms

The shortest path problem is to find the path(s) between two given vertices S and T in a

graph such that the path's total edge weight is minimized. If the edge weights are all the

same (e.g., weight=1), then the shortest paths are the ones with the fewest edges or steps

from S to T. The classic solution to this graph problem is to start the search from one

vertex S and walk one step at a time on the graph until it meets the other input vertex T

(unidirectional Breadth-First Search). In addition, we present a more sophisticated way to

solve this problem on the TigerGraph advanced graph computing platform. Instead of

starting the search from one input vertex, our solution will launch the search agents from

both input vertices, walking the graph concurrently until they meet. This greatly improves

the algorithm performance. To simplify this problem, this article will assume the graph is

undirected and unweighted.

The following examples will use the graph that is presented below . Before we show the

algorithms, their implementation and examples, we present the graph schema and data

used to create the graph. All files in this document are available here:

DemoExamples_2.0.tar.gz

16KB
DemoExamples_2.0.tar.gz

Example 8. Single Pair Shortest Path

(unweighted)

1. Graph Schema and Data

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNZhbo7MuAV1KjM3Z_y%2F-LNZhj_r3p5fcZSHopLo%2FDemoExamples_2.0.tar.gz?alt=media&token=0a63604a-d8ec-42e8-b6a1-6e398ef52d42

573

Graph Schema

First, we give the graph schema. This will create the graph with vertices of type company ,

persons and skill . It also creates undirected edges that go from person to company , from

person to person , from any type to skill , and from any type to company .

Data Set

Data source for company vertices.

Figure 1: Example Graph used to demonstrate the Shortest Path algorithms.

DROP ALL
CREATE VERTEX company (PRIMARY_ID companyId string, id string, company_nam
CREATE VERTEX persons (PRIMARY_ID pId string, id string, profileId string
CREATE VERTEX skill (PRIMARY_ID skillId uint, id string)
CREATE UNDIRECTED EDGE person_work_company (FROM persons, TO company, posi
CREATE UNDIRECTED EDGE person_person (FROM persons, TO persons, connect_ti
CREATE UNDIRECTED EDGE all_to_skill (FROM *, TO skill)
CREATE UNDIRECTED EDGE all_to_company (FROM *, TO company)
CREATE GRAPH work_graph(*)

c1,1,com1,us
c2,0,com2,jp
c3,1,com3,de
c4,0,com4,cn

Graph Schema

small_companies

5/13/25, 1:39 PM TigerGraph Documentation

574

Data source for person vertices and skill vertices. The first line,

m1,i1,0,"s2|s3"

means that person m1 has skills s2 and s3.

Data source for person_work_company edges. The first line means that person m1 works

for company c1.

Data source for person_person edges.

m1,i1,0,"s2|s3"
m2,i1,1,""
m3,i1,2,"s1|s3"
m4,i1,3,"s2"
m5,i2,4,""
m6,i2,5,""
m7,i2,6,""
m8,i3,7,"s1"

m1,c1,1,1,1
m2,c1,2,1,3
m2,c2,2,1,4
m3,c1,2,1,5
m4,c4,2,2,6
m5,c2,3,2,7
m6,c3,3,2,8
m6,c4,3,2,9
m7,c3,3,2,10
m7,c4,3,2,11
m8,c3,3,3,12

m1,m4,1
m6,m7,3
m7,m5,4

small_persons

small_person_company

small_person_person

5/13/25, 1:39 PM TigerGraph Documentation

575

Data source for all_to_skill edges such as all_to_skill (m1, s2) or all_to_skill (c2, s3). While

the schema supports all_to_company edges, this particular data set does not use any..

Loading the Data

To load all of this data into the graph, we can use the following GSQL command file (which

also includes the graph schema creation commands).

s,m,m1,s2,0
s,m,m4,s2,0
s,m,m1,s3,0
s,m,m3,s3,0
s,c,c2,s3,0
s,m,m3,s1,1
s,m,m8,s1,1

small_all_to_all

graph_create.gsql

5/13/25, 1:39 PM TigerGraph Documentation

576

5/13/25, 1:39 PM TigerGraph Documentation

577

DROP ALL
CREATE VERTEX company (PRIMARY_ID companyId string, id string, company_nam
CREATE VERTEX persons (PRIMARY_ID pId string, id string, profileId string
CREATE VERTEX skill (PRIMARY_ID skillId uint, id string)
CREATE UNDIRECTED EDGE person_work_company (FROM persons, TO company, posi
CREATE UNDIRECTED EDGE person_person (FROM persons, TO persons, connect_ti
CREATE UNDIRECTED EDGE all_to_skill (FROM *, TO skill)
CREATE UNDIRECTED EDGE all_to_company (FROM *, TO company)
CREATE GRAPH work_graph(*)

USE GRAPH work_graph
SET sys.data_root="./"
CREATE LOADING JOB load_data FOR GRAPH work_graph {
 LOAD "$sys.data_root/small_companies"
 TO VERTEX company VALUES ($0, $0, $2)
 USING HEADER="false", SEPARATOR=",", QUOTE="double";
 LOAD "$sys.data_root/small_persons"
 TO VERTEX persons VALUES ($0, $0, $1, $2)
 WHERE to_int($2) >= 0
 USING HEADER="false", SEPARATOR=",", QUOTE="double";
Example of flattening a multi-valued field
 LOAD "$sys.data_root/small_persons"
 TO temp_table member_skill_table (memberID, skillID)
 VALUES ($0, flatten($3, "|", 1))
 USING HEADER="false", SEPARATOR=",", QUOTE="double";
 LOAD temp_table member_skill_table
 TO VERTEX skill VALUES ($"skillID", $"skillID");

 LOAD "$sys.data_root/small_person_company"
 TO EDGE person_work_company VALUES($0, $1, $2, $3, $4)
 WHERE to_int($4) >= 0
 USING HEADER="false", SEPARATOR=",", QUOTE="double";
 LOAD "$sys.data_root/small_person_person"
 TO EDGE person_person VALUES($0, $1, $2)
 WHERE to_int($2) >= 0
 USING HEADER="false", SEPARATOR=",", QUOTE="double";

Note how $0 and $1 indicate what type of data is in $3 and $2, respectiv
so that the VALUES $2 and $3 can explicitly state the data type.
 LOAD "$sys.data_root/small_all_to_all"
 TO EDGE all_to_skill VALUES ($2 company, $3 skill)
 WHERE $0 == "s" AND $1 == "c",
 TO EDGE all_to_skill VALUES ($2 persons, $3 skill)
 WHERE $0 == "s" AND $1 == "m",
 TO EDGE all_to_skill VALUES ($2 skill, $3 skill)
 WHERE $0 == "s" AND $1 == "s",
 TO EDGE all_to_company VALUES ($2 company, $3 company)
 WHERE $0 == "c" AND $1 == "c",

5/13/25, 1:39 PM TigerGraph Documentation

578

To run a command file, simply enter gsql name_of_file

If the edges are unweighted, then the shortest path can be found using the classic

Breadth-First Search (BFS) algorithm. Below is an implementation in the GSQL Query

Language:

 TO EDGE all_to_company VALUES ($2 persons, $3 company)
 WHERE $0 == "c" AND $1 == "m",
 TO EDGE all_to_company VALUES ($2 skill, $3 company)
 WHERE $0 == "c" AND $1 == "s"
 USING HEADER="false", SEPARATOR=",", QUOTE="double";
}
RUN LOADING JOB load_data

> gsql graph_create.gsql

2. Unidirectional (BFS) Algorithm

Create Graph and Load Data

shortest_path_1D.gsql (v2.0)

5/13/25, 1:39 PM TigerGraph Documentation

579

The algorithm works by expanding the search path through all vertices that were seen in

the previous step. Each step is taken by one iteration of the WHILE loop. In the first

iteration of the WHILE loop, we start at vertex S and travel to all its neighbors. In each of

/**
 * This query assumes every edge in the graph is undirected.
 * It uses breadth-first-search to find the shortest path between s and t.
 */
// 1 May 2018: v2.0 - ListAccum "+" behavior changed. Need to use FOREACH

CREATE QUERY shortest_path_1D (VERTEX<company> S, VERTEX<company> T, INT m

 OrAccum @@found = false;
 OrAccum @notSeen = true;
 ListAccum<STRING> @pathResult;
 Start (ANY) = {S};
 Start = SELECT v
 FROM Start:v
 //assume each vertex has an id attribute
 ACCUM v.@notSeen = false, v.@pathResult = v.id;

 WHILE NOT @@found LIMIT maxDepth DO
 Start = SELECT v
 FROM Start - (:e) -> :v
 WHERE v.@notSeen
 ACCUM v.@notSeen = false,
 //add partial result paths to target v. v2.0 ListAccum require
 FOREACH path IN Start.@pathResult DO
 v.@pathResult += (path + "-" + v.id)
 END,
 CASE WHEN v == T
 THEN @@found += true
 END;
 END;

 IF @@found THEN
 Result = {T};
 #PRINT Result.@pathResult; #JSON output API version v1
 PRINT Result [Result.@pathResult]; #JSON output API version v2
 ELSE
 PRINT "Can't find shortest path within max steps";
 END;
}
INSTALL QUERY shortest_path_1D

5/13/25, 1:39 PM TigerGraph Documentation

580

the following iterations, we travel from previously reached vertices to their neighbors that

have not already been seen by the path.

To install the query, run the following command:

Example of Unidirectional BFS Search

Let us show a running example of this algorithm. We will be trying to find the shortest path

from c1 to c3. First, we have our initial graph, where we have not traveled along any edges

yet.

Figure 2: The starting state for our graph. From here, we go on to the first step of the

algorithm. We start at c1, and go along each of its edges.

> gsql -g work_graph shortest_path_1D.gsql

Install Query

5/13/25, 1:39 PM TigerGraph Documentation

581

Figure 3: This is the graph after one step. We have traveled from c1 to all of its neighbors,

labeling them as visited. For each one that we visit, we update its @pathResult

accumulator value in order to keep track of our path as we traverse the graph.

Figure 4: This graph shows where we have traveled after two steps. We traveled to our

new vertices s1, s2, s3, c2 and m4 by traveling one edge away from the nodes that we had

visited in step 1. Note that the blue edges also tell us how we can get from c1 to a vertex.

For example, we notice that e21 is not labeled blue. This means that we did not travel

along this edge. That is, we must have gotten to c2 using a different edge. Indeed, we can

see that the path c1-m2-c2 is shorter than c1-m3-s3-c2. This explains why e9 is blue, but

e21 is not.

Each time that the query travels from a starting vertex (m1, m2, or m3) to a target vertex

(s1, s2, s3, c3, or m4), the target vertex's @pathResult ListAccum<string> is updated (Line

5/13/25, 1:39 PM TigerGraph Documentation

582

22 of the query). A new string is added to the list (the += operator), which means that there

is a path string for each time that the target vertex is reached. The path string consists of

the path string from the source vertex, followed by this target vertex. That is equivalent to

the path from the query's starting vertex (e.g., c1) to the current target vertex.

Figure 5: At the third step of our algorithm, we have reached the nodes m8, m5 and c4.

We got here by moving one edge away from the vertices that we reached in step 2.

Figure 6: Finally, we have reached the end of our algorithm. Note that when we travel one

edge away from m8, we arrive at our target node of c3. Working backwards, we can

reconstruct the shortest path. We reached c3 from m8, m8 from s1, s1 from m3 and m3

from c1. Thus, we get that the shortest path is indeed c1-m3-s1-m8-c3. It is important to

note that if w

5/13/25, 1:39 PM TigerGraph Documentation

583

To run the query with starting vertex c1, ending vertex c3, and a maximum distance of 10:

This will give the following result.

As we can see, the algorithm tells us that the shortest path from c1 to c3 is going through

m3, followed by s1, then m8, then finally arriving at c3. However, this result also tells us

that this is the unique shortest path. Indeed, if we instead run

our results are:

> gsql -g work_graph 'RUN QUERY shortest_path_1D("c1","c3",10)'

{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "c3",
 "attributes": {"Result.@pathResult": ["c1-m3-s1-m8-c3"]},
 "v_type": "company"
 }]}]
}

> gsql -g work_graph 'RUN QUERY shortest_path_1D("c3", "c4", 10)'

Query

Results

Multiple Shortest Paths Query

Multiple Shortest Paths Results

5/13/25, 1:39 PM TigerGraph Documentation

584

Note that here we have two paths. The first is from c3 to m6, and then to c4. The other

path is from c3, to m7, to c4. We are presented with both paths because each of these

consist of the least possible weight: exactly two edges. As explained earlier, this is

because we arrive at a vertex at the same time through two different paths. When we

started at c3, we traveled to m6, m7 and m8. At the second step, both m6 and m7 arrive at

c4 at the exact same time. That means that two path strings will be written to

c4.@queryResult, recording two shortest paths.

Bi-Directional search will launch two search agents, each from a given vertex. The two

agents concurrently walk one step at a time, until they meet at an intermediate vertex. The

shortest path length may be odd or even. For example, in Figure 7 below, Case II is an

even-length case, and Case III is an odd-length case. Case I is a special case of an odd-

length path.

The core of this solution is that in each step, a set of previously unvisited vertices will be

discovered by the search frontiers of S and T. The newly visited vertices will become the

new frontier of S or T. The algorithm will repeat this process until the frontiers of the two

agents meet.

{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "c4",
 "attributes": {"Result.@pathResult": [
 "c3-m6-c4",
 "c3-m7-c4"
]},
 "v_type": "company"
 }]}]
}

3. Bi-Directional Shortest Path Search Algorithm

5/13/25, 1:39 PM TigerGraph Documentation

585

Because this algorithm is more complicated than one directional search, we first give

pseudocode to help explain the algorithm.

Figure 7 : Three cases for terminating a bi-directional path search.

bi-directional shortest path search algorithm

5/13/25, 1:39 PM TigerGraph Documentation

586

5/13/25, 1:39 PM TigerGraph Documentation

587

void find_shortest_path_bi_directional_search(Vertex S, Vertex T) {
bool stop = false;
vertex.pathFromS = "";

vertex.pathFromT = "";
vertex.visitedByS = false;
vertex.visitedByT = false;
final_path = "";

Activate vertex S and T as the starting vertices;
S.visitedByS = true;
T.visitedByT = true;

// VERTEX GROUP, if a vertex V is visited by a vertex originating from
// then V is part of vertex group T. The vertices who have the longes
// from its origin vertex are called the FRONTIER of the vertex group.
// Initially, S is the frontier and only member of vertex group S,
// and T is the frontier and only member of vertex group T.
while (!stop) {

VS = (frontier of Vertex Group S) union (frontier of Vertex Group
for each vertex v in VS {

for each neighbor vertex b of v {
if ((v.visitedByS && b.visitedByT) || (v.visitedByT && b.v

// If the frontiers of S and T are neighbors (Case III
if (v.visitedByS) {

final_path = v.pathFromS + v.ID + b.ID + b.pathFro
}
if (v.visitedByT) {

final_path = v.pathFromT + v.ID + b.ID + b.pathFro
}
stop = true;
break;

} else if ((v.visitedByS && not b.visitedByS) || (v.visite
// If b (the neighbor of v) is not yet part of v's ver
// then add b to the vertex group, and update b's path
if (v.visitedByS) {

b.visitedByS = true;
b.pathFromS = v.pathFromS + v.ID;

}
if (v.visitedByT) {

b.visitedByT = true;
b.pathFromT = v.pathFromT + v.ID;

}
}

}

// if a vertex is visited by S & T in the same iteration (Case
if (v.visitedByT && v.visitedByS) {

5/13/25, 1:39 PM TigerGraph Documentation

588

This algorithm essentially works by running two versions of the algorithm from the first

example at the same time, just with different starting vertices. The algorithm continues

with these two paths until there is an intersection. Once the two paths cross, we know that

the shortest path goes through this intersection, as explained in the previous section.

Below is an implementation in the GSQL Query Language.

final_path = v.pathFromS + v.ID + v.pathFromT;
stop = true;
break;

}
}

}
print out final_path;

}

shortest_path_2D.gsql (v2.0)

5/13/25, 1:39 PM TigerGraph Documentation

589

5/13/25, 1:39 PM TigerGraph Documentation

590

// 1 May 2018: v2.0 - ListAccum "+" behavior changed. Need to use FOREACH
CREATE QUERY shortest_path_2D (VERTEX<company> S, VERTEX<company> T , INT
{
 OrAccum @@stop = false; // global variable controlling whether to
 OrAccum @seenS = false; // a vertex has been seen by S
 OrAccum @seenT = false; // a vertex has been seen by T
 OrAccum @meet = false; // vertex flag indicating whether it is 'm
 SumAccum<int> @sLength = 0; // vertex runtime attribute: # steps from
 SumAccum<int> @tLength = 0; // vertex runtime attribute: # steps from
 SumAccum<int> @resultLength = 0; // the final length of shortest path
 ListAccum<string> @pathS; //list of paths so far from S
 ListAccum<string> @pathT; //list of paths so far from T
 ListAccum<string> @pathResults; //final set of shortest paths

 Start = {S,T};

 //initialize S, T vertices
 StartSet (ANY) = SELECT v // _ means StartSet can contain any ve
 FROM Start:v
 ACCUM CASE WHEN v==S THEN v.@seenS=true, v.@pathS += ""
 WHEN v==T THEN v.@seenT=true, v.@pathT += ""
 END;
 WHILE @@stop == false LIMIT maxDepth DO
 StartSet = SELECT v
 // Consider each edge from S or T's frontier (u) to outside (v),
 // i.e., each edge that moves "out" from the frontier.
 // Note how StartSet is updated to be v (pushing the frontier forw
 FROM StartSet:u-(:e)->:v
 WHERE ((u.@seenS==true AND v.@seenS!=true) OR // from S frontier t
 (u.@seenT==true AND v.@seenT!=true)) // from T frontier t
 ACCUM
 // If u->v joins the S and T frontiers, an odd-length path is
 CASE WHEN ((u.@seenS == true AND v.@seenT == true) OR
 (u.@seenT == true AND v.@seenS == true))
 THEN @@stop += true,
 // we don't want to print the results twice
 // v.@pathResults stores all shortest paths
 // between S and T where v is in the middle of
 // every such path.
 // only need to print out the result once, see above s
 CASE WHEN (u.@seenS == true AND v.@seenT == true)
 THEN
 STRING joiner = u.id + "-" + v.id + "-",
 FOREACH pathS IN u.@pathS DO
 FOREACH pathT in v.@pathT DO
 v.@pathResults += pathS + joiner + pat
 END
 END,

5/13/25, 1:39 PM TigerGraph Documentation

591

Example of Bidirectional BFS Search

 v.@meet = true,
 v.@resultLength = u.@sLength + v.@tLength + 1
 END
 // Else, since u->v does not complete a path, move the frontie
 // If u is in S's frontier, then extend S's frontier to v. Ass
 WHEN u.@seenS == true
 THEN v.@seenS = true,
 FOREACH uPath IN u.@pathS DO
 v.@pathS += uPath + (u.id + "-")
 END,
 v.@sLength = u.@sLength + 1
 // If u is in T's frontier, then extend T's frontier to v. Ass
 WHEN u.@seenT == true
 THEN v.@seenT =true,
 FOREACH uPath IN u.@pathT DO
 v.@pathT += (u.id + "-") + uPath
 END,
 v.@tLength = u.@tLength + 1
 END
 POST-ACCUM
 // If the two frontiers meet at v, an even-length path is foun
 CASE WHEN (v.@seenS == true AND v.@seenT == true AND @@stop ==
 THEN @@stop += true,
 // Insert v.id between the source paths and the target
 FOREACH pathS in v.@pathS DO
 FOREACH pathT in v.@pathT DO
 v.@pathResults += pathS + v.id + "-" + pathT
 END
 END,
 v.@resultLength = v.@sLength + v.@tLength,
 v.@meet = true
 END;
 END;

 // print out the final result stored at the vertex who marked
 // as meet vertex
 StartSet = SELECT v
 FROM StartSet:v
 WHERE v.@meet == true;

 #PRINT StartSet.@resultLength, StartSet.@pathResults; # JSON O
 PRINT StartSet [StartSet.@resultLength, StartSet.@pathResults]; # JSON O
}
INSTALL QUERY shortest_path_2D

5/13/25, 1:39 PM TigerGraph Documentation

592

The following is a running example to demonstrate the algorithm of finding the shortest

path in a bi-directional way. The graph below (Figure 8) shows vertices c1 and c3, with

several other vertices between them. The algorithm will demonstrate the two search

directions by using two different colors and border thicknesses:

• Blue and thin border for c1's search frontier

• Orange and thick border for c3's search frontier

Figure 8: Initialization - prepare to start the search process. The two given vertices (c1

and c3) are activated and colored as Blue and Orange respectively. The rest of the graph

remains untouched.

5/13/25, 1:39 PM TigerGraph Documentation

593

Figure 9: The graph after the first step. The search process starts simultaneously from c1

and c3. If a vertex is seen by the agent starting from c1 (c3), we will say it is seen by c1

(c3).

• From the vertex c1, the algorithm goes to the neighbors of c1 that have not yet been

seen. As a result, the unseen vertices m1, m2 and m3 are discovered and become the

frontier of c1's vertex group.

• From the vertex c3, in a similar fashion, the vertices m6, m7 and m8 are discovered

and become the frontier of c3's vertex group.

Figure 10: As the two groups have not been met yet, the search process continues.

• From c1's search agent, the vertices m4, s2, c2, s3 and s1 are all discovered.

• From c3's search agent, the vertices c4, m5 and s1 are all discovered.

Notice that both search agents have found the vertex s1. Thus, the algorithm should stop,

and return the path going through s1. In this case, this path is c1-m3-s1-m8-c3.

In order to get this result in the TigerGraph Query Language (GSQL), first install the query,

for which the code was given earlier.

> gsql -g work_graph shortest_path_2D.gsql

Install Query

5/13/25, 1:39 PM TigerGraph Documentation

594

Now, run the query using c1 as a starting node, c3 as the ending node, and a maximum

distance of 10:

This will return the following result:

However , in order to demonstrate the odd-length case, assume that s1 does not exist.

> gsql -g work_graph 'RUN QUERY shortest_path_2D("c1","c3",10)'

{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"StartSet": [{
 "v_id": "s1",
 "attributes": {
 "StartSet.@pathResults": ["c1-m3-s1-m8-c3-"],
 "StartSet.@resultLength": 4
 },
 "v_type": "skill"
 }]}]
}

Query

Results

5/13/25, 1:39 PM TigerGraph Documentation

595

Figure 11: 2nd Iteration in a modified graph in which s1 does not exist. We got here by

traveling one edge away form the vertices that were visited in the previous step. However,

as we do not yet have a crossing, we must complete one more iteration.

Figure 12: Here, the paths from c1 have finally found a vertex that was previously found by

the paths from c3 (and vice versa). That is, the blue paths traveled from c2 to m5 and from

m4 to c4. In Figure 11, m5 and c4 were both orange. In Figure 12, we change a vertex's

color to purple when one frontier meets the other. This tells us that the shortest path from

c1 to c3 either goes through e8 or e3. If we go through e8, we go along the path c1-m2-c2-

m5-m7-c3. Note that if we go through e3, we are given two paths. This is almost identical

to the multiple path example from the first algorithm. From c4, we can either take e4 or

e12 to get to c3. Thus, when going from c1 to c3 through e3, we are actually given two

paths. These paths are c1-m1-m4-c4-m6-c3 and c1-m1-m4-c4-m7-c3.

The * operator in Lines 41 and 63 handle the case of multiple paths from one direction

merging with multiple paths from the other direction. For example, we know there are two

shortest paths from c4 to c3. Pretend for a moment that there are 3 shortest paths from

c1 to m4. Then, when m4 and c4 meet, there would then be (3 * 2) = 6 shortest paths

from c1 to c3.

Once again, we can implement this alternate graph in GSQL by using the DELETE keyword.

First, we delete the vertex s1 from the graph by doing the following:

> gsql -g work_graph 'DELETE FROM skill WHERE primary_id=="s1"'

Remove "s1"

5/13/25, 1:39 PM TigerGraph Documentation

596

Now, we can run our query once again:

Notice that this time, we are given the three paths that we previously described.

> gsql -g work_graph 'RUN QUERY shortest_path_2D("c1","c3",10)'

{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"StartSet": [
 {
 "v_id": "m5",
 "attributes": {
 "StartSet.@pathResults": ["c1-m2-c2-m5-m7-c3-"],
 "StartSet.@resultLength": 5
 },
 "v_type": "persons"
 },
 {
 "v_id": "c4",
 "attributes": {
 "StartSet.@pathResults": [
 "c1-m1-m4-c4-m6-c3-",
 "c1-m1-m4-c4-m7-c3-"
],
 "StartSet.@resultLength": 5
 },
 "v_type": "company"
 }
]}]
}

Query

Results

5/13/25, 1:39 PM TigerGraph Documentation

597

GSQL Language Reference

5/13/25, 1:39 PM TigerGraph Documentation

598

Part 1 - Data Definition & Loading
Version 2.2. This work is licensed under a Creative Commons Attribution 4.0 International

License.

5/13/25, 1:39 PM TigerGraph Documentation

599

Introduction

The GSQL™ software program is the TigerGraph comprehensive environment for designing

graph schemas, loading and managing data to build a graph, and querying the graph to

perform data analysis. In short, TigerGraph users do most of their work via the GSQL

program. This document presents the syntax and features of the GSQL language.

This document is a reference manual, not a tutorial. The user should read GSQL Demo

Examples prior to using this document. There are also User Guides or Tutorials for

particular aspects of the GSQL environment. This document is best used when the reader

already has some basic familiarity with running GSQL and then wants a more detailed

understanding of a particular topic.

This document is Part 1 of the GSQL Language Reference, which describes system basics,

defining a graph schema, and loading data. Part 2 describes querying.

A handy GSQL Reference Card lists the syntax for the most commonly used GSQL

commands for graph definition and data loading . Look for the reference card on our User

Document home page.

The GSQL workflow has four major steps:

1. Define a graph schema or model.

2. Load data into the TigerGraph system.

3. Create and install queries.

4. Run queries.

After initial data and queries have been installed, the user can run queries or go back to

load more data and create additional queries. This document provides specifications and

details for steps 1 and 2. The Appendix contains flowcharts which provide a visual

understanding of the required and allowed sequence of commands to proceed through

the workflow.

GSQL Workflow

5/13/25, 1:39 PM TigerGraph Documentation

600

• Identifiers

Identifiers are user-defined names. An identifier consists of letters, digits, and the

underscore. Identifiers may not begin with a digit. Identifiers are case sensitive.

• Keywords and Reserved Words

Keywords are words with a predefined semantic meaning in the language. Keywords

are not case sensitive. Reserved words are set aside for use by the language, either

now or in the future. Reserved words may not be reused as user-defined identifiers. In

most cases, a keyword is also a reserved word. For example, VERTEX is a keyword. It

is also a reserved word, so VERTEX may not be used as an identifier.

• Statements

Each line corresponds to one statement (except in multi-line mode). Usually, there is

no punctuation at the end of a top-level statement. Some statements, such as CREATE

LOADING JOB, are block statements which enclose a set of statements within

themselves. Some punctuation may be needed to separate the statements within a

block.

• Comments

Within a command file, comments are text that is ignored by the language interpreter.

Single line comments begin with either # or //. A comment may be on the same line

with interpreted code . Text to the left of the comment marker is interpreted, and text

to the right of the marker is ignored.

Multi-line comment blocks begin with /* and end with */

In the documentation, code examples are either template code (formally describing the

syntax of part of the language) or actual code examples . Actual code examples show

code that can be run exactly as shown, e.g., copy-and-paste. Template code, on the other

hand, cannot be run exactly as shown because it uses placeholder names and additional

symbols to explain the syntax. It should be clear from context whether an example is

template code or actual code.

This guide uses conventional notation for software documentation. In particular, note the

following:

Language Basics

Documentation Notation

5/13/25, 1:39 PM TigerGraph Documentation

601

• Shell prompts

Most of the examples in this document take place within the GSQL shell. When clarity

is needed, the GSQL shell prompt is represented by a greater-than arrow: >
When a command is to be issued from the operating system, outside of the GSQL

shell, the prompt is the following: os$

• Keywords

In the GSQL language, keywords are not case sensitive, but user-defined identifiers are

case sensitive. In code examples, keywords are in ALL CAPS to make clear the

distinction between keywords and user-defined identifiers.

In a very few cases, some option keywords are case-sensitive. For example, in the command

to delete all data from the graph store,

clear graph store -HARD

the option -HARD must be in all capital letters.

• Placeholder identifiers and values

In template code, any token that is not a keyword, a literal value, or punctuation is a

placeholder identifier or a placeholder value.

Example:

The user-defined identifiers are edge_type_ name , vertex_type_name1,

vertex_type_name2, attribute_name and default_value . As explained in the Create

Vertex section, type is one of the attribute data types.

• Quotation Marks

When quotation marks are shown, they are to be typed as shown (unless stated

otherwise). A placeholder for a string value will not have quotation marks in the

template code, but if a template is converted to actual code, quotation marks should

be used around string values.

• Choices

The vertical bar | is used to separate the choices, when the syntax requires that the

user choose one out of a set of values. Example: Either the keyword VERTEX or

EDGE is to be used. Also, note the inclusion of quotation marks.

Template:

CREATE UNDIRECTED EDGE edge_type_name (FROM vertex_type_name1 , TO vertex_
attribute_name type [DEFAULT default_value],...)

5/13/25, 1:39 PM TigerGraph Documentation

602

Possible actual values:

• Optional content

Square brackets are used to enclose a portion that is optional. Options can be nested.

Square brackets themselves are rarely used as part of the GSQL language itself.

Example: In the RUN JOB statement, the -n flag is optional. If used, -n is to be followed

by a value.

Sometimes, options are nested, which means that an inner option can only be used if the

outer option is used:

means that first_line_num may be specified if and only if last_line_num is specified first.

These options provide three possible forms for this statement:

• Repeated zero or more times

In template code, it is sometimes desirable to show that a term is repeated an

arbitrary number of times. For example, a vertex definition contains zero or more user-

defined attributes. A loading job contains one or more LOAD statements. In formal

template code, if an asterisk (Kleene star) immediately follows option brackets, then

the bracketed term can be repeated zero or more times. For example:

LOAD " file_path " TO VERTEX|EDGE object_type_name VALUES (id_expr, attr_e

LOAD "data/users.csv" TO VERTEX user VALUES ($0, $1, $2)

RUN JOB [-n count] job_name

RUN JOB [-n [first_line_num ,] last_line_num] job_name

RUN JOB job_name
RUN JOB -n last_line_num job_name
RUN JOB -n first_line_num , last_line_num job_name

TO VERTEX|EDGE object_name VALUES (id_expr [, attr_expr]*)

5/13/25, 1:39 PM TigerGraph Documentation

603

means that the VALUES list contains at least one attribute expression. It may be followed

by any number of additional attribute expressions. Each additional attribute expression

must be preceded by a comma.

• Long lines

For more convenient display, long statements in this guide may sometimes be

displayed on multiple lines. This is for display purposes only; the actual code must be

entered as a single line (unless the multi-line mode is used). When necessary, the

examples may show a shell prompt before the start of a statement, to clearly mark

where each statement begins.

Example: A SELECT query is grammatically a single statement, so GSQL requires that

it be entered as a single line.

However, the statement is easier to read and to understand when displayed one clause

per line:

SELECT *|attribute_name FROM vertex_type_name [WHERE conditions] [ORDER BY

SELECT *|attribute_name
 FROM vertex_type_name
 [WHERE conditions]
 [ORDER BY attribute1,attribute2,...]
 [LIMIT k]

Long statement displayed as one line

Long statement displayed on multiple lines but with only one prompt

5/13/25, 1:39 PM TigerGraph Documentation

604

System and Language Basics

To enter the GSQL shell and work in interactive mode, type gsql from an operating

system shell prompt. A user name, password, and a graph name may also be provided on

the command line.

If a user name if provided but not a password, the GSQL system will then ask for the user's

password:

If a user name is not given, then GSQL will assume that you are attempting to log in as the

default tigergraph user:

To exit the GSQL shell, type either exit or quit at the GSQL prompt:

GSQL> EXIT or GSQL> QUIT

gsql [-u username] [-p password] [-g gname]

os$ gsql -u victor
Password for victor : ***
GSQL >

os$ gsql
Password for tigergraph : *****
GSQL >

Running GSQL

Multiple Shell Sessions

GSQL command syntax for entering interactive mode

Login example with user name

Login example without user name

5/13/25, 1:39 PM TigerGraph Documentation

605

Multiple shell sessions of GSQL may be run at the same time. This feature can be used to

have multiple clients (human or machine) using the system to perform concurrent

operations. A basic locking scheme is used to maintain isolation and consistency.

In interactive mode, the default behavior is to treat each line as one statement; the GSQL

interpreter will activate as soon as the End-Of-Line character is entered.

Multi-line mode allows the user to enter several lines of text without triggering immediate

execution. This is useful when a statement is very long and the user would like to split it

into multiple lines. It is also useful when defining a JOB, because jobs typically contain

multiple statements.

To enter multi-line mode, use the command BEGIN. The end-of-line character is now

disabled from triggering execution. The shell remains in multi-line mode until the

command END is entered. The END command also triggers the execution of the multi-line

block. In the example below, BEGIN and END are used to allow the SELECT statement to

be split into several lines:

Alternately, the ABORT command exits multi-line mode and discards the multi-line block.

A command file is a text file containing a series of GSQL statements. Blank lines and

comments are ignored. By convention, GSQL command files end with the suffix . gsql ,

but this is not a requirement. Command files are automatically treated as multi-line mode,

BEGIN
SELECT member_id, last_name, first_name, date_joined, status
 FROM Member
 WHERE age >= 21
 ORDER BY last_name, first_name
END

Multi-line Mode - BEGIN, END, ABORT

Command Files and Inline Commands

Example: BEGIN and END defining a multi-line block

5/13/25, 1:39 PM TigerGraph Documentation

606

so BEGIN and END statements are not needed. Command files may be run either from

within the GSQL shell by prefixing the filename with an @ symbol:

GSQL> @file.gsql

or from the operating system (i.e., a Linux shell) by giving the filename as the argument

after gsql:

os$ gsql file.gsql

Similarly, a single GSQL command can be run by enclosing the command string in

quotation marks and placing it at the end of the GSQL statement. Either single or double

quotation marks. It is recommended to use single quotation marks to enclose the entire

command and double quotation marks to enclose any strings within the command.

In the example below, the file name_query.gsql contains the multi-line CREATE QUERY

block to define the query namesSimilar.

The help command displays a summary of the available GSQL commands:

GSQL> HELP [BASIC|QUERY]

Note that the HELP command has options for showing more details about certain

categories of commands.

gsql [-u username] [-g graphname] ['command_string' | command_file]

os$ gsql pagerank_query.gsql
os$ gsql 'INSTALL QUERY namesSimilar'
os$ gsql 'RUN QUERY namesSimilar (0,"michael","jackson",100)'

Help and Information

Login example with inline command or command file

Example using command files and inline commands

5/13/25, 1:39 PM TigerGraph Documentation

607

The ls command displays the catalog : all the vertex types, edge types, graphs, queries,

jobs, and session parameters which have been defined by the user.

The --reset option will clear the entire graph data store and erase all related definitions

(graph schema, loading jobs, and queries) from the Dictionary. The data deletion cannot

be undone; use with extreme caution. The REST++, GPE, and GSE modules will be turned

off.

The table below summaries the basic system commands introduced so far.

$ gsql --reset

Resetting the catalog.

Shutdown restpp gse gpe ...
Graph store /home/tigergraph/tigergraph/gstore/0/ has been cleared!
The catalog was reset and the graph store was cleared.

Command Description

HELP[BASIC|QUERY]
Display the help menu for all or a subset of the

commands

LS

Display the catalog, which records all the vertex

types, edge types, graphs, queries, jobs, and

session parameters that have been defined for

the current active graph. See notes below

concerning graph- and role-dependent visibility

of the catalog.

BEGIN
Enter multi-line edit mode (only for console

mode within the shell)

END
Finish multi-line edit mode and execute the

multi-line block.

--reset option

Summary

5/13/25, 1:39 PM TigerGraph Documentation

608

Notes on the LS command

Starting with v1.2, the output of the LS command is sensitive to the user and the active

graph:

1. If the user has not set an active graph or specified "USE GLOBAL":

a. If the user is a superuser, then LS displays global vertices, global edges, and all

graph schemas.

b. If the user is not a superuser, then LS displays nothing (null).

2. If the user has set an active graph, then LS displays the schema, jobs, queries, and other

definitions for that particular graph.

Session parameters are built-in system variables whose values are valid during the current

session; their values do not endure after the session ends. In interactive command mode,

a session starts and ends when entering and exiting interactive mode, respectively. When

running a command file, the session lasts during the execution of the command file.

Use the SET command to set the value of a session parameter:

ABORT
Abort multi-line edit mode and discard the

multi-line block.

@file.gsql
Run the gsql statements in the command file

file.gsql from within the GSQL shell.

os$ gsql file.gsql
Run the gsql statements in the command file

file.gsql from an operating system shell.

os$ gsql 'command_string'
Run a single gsql statement from the operating

system shell.

SET session_parameter = value

Session Parameter Meaning and Usage

Session Parameters

5/13/25, 1:39 PM TigerGraph Documentation

609

sys.data_root

The value should be a string, representing the

absolute or relative path to the folder where

data files are stored. After the parameter has

been set, a loading statement can reference

this parameter with $sys.data_root.

gsql_src_dir

The value should be a string, representing the

absolute or relative path to the root folder for

the gsql system installation. After the

parameter has been set, a loading statement

can reference this parameter with

$gsql_src_dir.

exit_on_error

When this parameter is true (default), if a

semantic error occurs while running a GSQL

command file, the GSQL shell will terminate.

Accepted parameter values: true, false (case

insensitive). If the parameter is set to false,

then a command file which is syntactically

correct will continue running, even if certain

runtime errors in individual commands occur.

Specifically, this affects these commands:

• CREATE

• INSTALL QUERY

• RUN JOB

Semantic errors include a reference to a

nonexistent entity or an improper reuse of an

entity.

This session parameter does not affect GSQL

interactive mode; GSQL interactive mode does

not exit on any error.

This session parameter does not affect

syntactic errors: GSQL will always exit on a

Example of exit_on_error = FALSE

5/13/25, 1:39 PM TigerGraph Documentation

610

Each attribute of a vertex or edge has an assigned data type. The following types are

currently supported.

exitOnError.gsql
SET exit_on_error = FALSE

CREATE VERTEX v(PRIMARY_ID id INT, name STRING)
CREATE VERTEX v(PRIMARY_ID id INT, weight FLOAT) #error 1: can't define VE

CREATE UNDIRECTED EDGE e2 (FROM u, TO v) #error 2: vertex type u doesn't e
CREATE UNDIRECTED EDGE e1 (FROM v, TO v)

CREATE GRAPH g(v) #error 3: no graph definition has no edge type
CREATE GRAPH g2(*)

os$ gsql exitOnError.gsql

The vertex type v is created.
Semantic Check Fails: The vertex name v is used by another object! Please
failed to create the vertex type v
Semantic Check Fails: FROM or TO vertex type does not exist!
failed to create the edge type e2
The edge type e1 is created.
Semantic Check Fails: There is no edge type specified! Please specify at l
The graph g could not be created!

Restarting gse gpe restpp ...

Finish restarting services in 11.955 seconds!
The graph g2 is created.

name default value
valid input

format (regex)

Range and

Precision
description

Attribute Data Types

Primitive Types

Results

5/13/25, 1:39 PM TigerGraph Documentation

611

INT 0 [-+]?[0-9]+

from –2^63 to

+2^63 - 1

(-9,223,372,036,

854,775,808 to

9,223,372,036,8

54,775,807)

8-byte signed

integer

UINT 0 [0-9]+

from 0 to 2^64 -

1

(18,446,744,073,

709,551,615)

8-byte unsigned

integer

FLOAT 0.0

[-+] ? [0 - 9] *

\. ? [0 - 9] +([

eE] [-+] ? [0 - 9

] +) ?

+/- 3.4 E +/-38,

~7 bits of

precision

4-byte single-

precision

floating point

number

Examples:

3.14159,

.0065e14, 7E23

See note below.

DOUBLE 0.0

[-+] ? [0 - 9] *

\. ? [0 - 9] +([

eE] [-+] ? [0 - 9

] +) ?

+/- 1.7 E +/-308,

~15 bits of

precision

8-byte double-

precision

floating point

number.

Has the same

input and output

format as

FLOAT, but the

range and

precision are

greater. See

note below.

BOOL false

"true", "false"

(case

insensitive), 1, 0

true, false

boolean true

and false,

represented

within GSQL as

true and false ,

and represented

in input and

output as 1 and

0

character string.

The string value

5/13/25, 1:39 PM TigerGraph Documentation

612

For FLOAT and DOUBLE values, the GSQL Loader supports exponential notation as shown

(e.g., 1.25 E-7).

The GSQL Query Language currently only reads values without exponents. It may display

output values with exponential notation, however.

Some numeric expressions may return a non-numeric string result, such as "inf" for Infinity or

"NaN" for Not a Number.

STRING empty string .* UTF-8

can optionally

be enclosed by

single quote

marks or double

quote marks.

Please see the

QUOTE

parameter in

Section "Other

name default value
supported data

format

Range and

Precision
description

STRING

COMPRESS
empty string .* UTF-8

string with a

finite set of

categorical

values. The

GSQL system

uses dictionary

encoding to

assign a unique

integer to each

new string value,

and then to

store the values

as integers.

date and time

(UTC) as the

number of

seconds

Advanced Types

5/13/25, 1:39 PM TigerGraph Documentation

613

Additionally, GSQL also support following complex data types:

• User Defined Tuple (UDT) : UDT represents an ordered structure of several fields of

same or different types. The supported field types are listed below. Each field in a UDT

has a fixed size. A STRING field must be given a size in characters, and the loader will

only load the first given number of characters. A INT or UINT field can optionally be

given a size in bytes.

DATETIME UTC time 0

see Section "

Loading

DATETIME

Attribute "

1582-10-15

00:00:00 to

9999-12-31

23:59:59

elapsed since

the start of Jan

1, 1970. Time

zones are not

supported.

Displayed in

YYYY-MM-DD

hh:mm:ss

format.

FIXED_BINARY(

n)
N/A N/A

stream of n

binary-encoded

bytes

Field Type User-specified size?
Size Choices (in Byte,

except STRING)
Range (N is size)

INT optional 1, 2, 4 (default), 8 0 to 2^(N*8) - 1

UINT optional 1, 2, 4 (default), 8
-2^(N*8 - 1) to 2^(N*8

- 1) - 1

FLOAT no
same as FLOAT

attribute

DOUBLE no
same as DOUBLE

attribute

DATETIME no
same as DATETIME

attribute

BOOL no true, false

Complex Types

5/13/25, 1:39 PM TigerGraph Documentation

614

Below is an example of defining a UDT:

In this example, myTuple is the name of this UDT. It contains four fields: a 1-byte INT field

named field1, a 4-byte UINT field named field2, a 10-character STRING field named field3,

and a (8-byte) DOUBLE field named field4.

• LIST/SET : A set is a unordered collection of unique elements of the same type; A list

is an ordered collection of elements of the same type. A list can contain duplicate

elements; a set cannot. The default value of either is an empty list/set. The supported

element types of a list or a set are INT, UINT, DOUBLE, FLOAT, STRING, STRING

COMPRESS, DATETIME, and UDT. To declare a list or set type, use <> brackets to

enclose the element type, e.g.,

SET<INT>, LIST<STRING COMPRESS>.

Due to multithreaded GSQL loading, the initial order of elements loaded into a LIST might be

different than the order in which they appeared in the input data.

• MAP : A map is a collection of key-value pairs. It cannot contain duplicate keys, and

each key maps to one value. The default value is an empty map. The supported key

types are INT, STRING, STRING COMPRESS, and DATETIME. The supported value

types are INT, DOUBLE, STRING, STRING COMPRESS, DATETIME, and UDT. To declare

a map type, use <> to enclose the types, with a comma to separate the key and value

types, e.g.,

MAP<INT, DOUBLE>.

STRING i d
Any number of Any string in N

TYPEDEF TUPLE <field1 INT (1), field2 UINT, field3 STRING (10), field4 DOU

Example of a UDT

5/13/25, 1:39 PM TigerGraph Documentation

615

Defining a Graph Schema

Before data can be loaded into the graph store, the user must define a graph schema. A

graph schema is a "dictionary" that defines the types of entities, vertices and edges , in the

graph and how those types of entities are related to one another. In the figure below,

circles represent vertex types, and lines represent edge types. The labeling text shows the

name of each type. This example has four types of vertices: User, Occupation, Book, and

Genre . Also, the example has 3 types of edges: user_occupation, user_book_rating, and

book_genre . Note that this diagram does not say anything about how many users or

books are in the graph database. It also does not indicate the cardinality of the

relationship. For example, it does not specify whether a User may connect to multiple

occupations.

An edge connects two vertices; in TigerGraph terminology these two vertices are the

source vertex and the target vertex . An edge type can be either directed or undirected .

A directed edge has a clear semantic direction, from the source vertex to the target vertex.

For example, if there is an edge type that represents a plane flight segment, each segment

needs to distinguish which airport is the origin (source vertex) and which airport is the

destination (target vertex). In the example schema below, all of the edges are undirected.

A useful test to decide whether an edge should be directed or undirected is the following:

"An edge type is directed if knowing there is a relationship from A to B does not tell me

whether there is a relationship from B to A." Having nonstop service from Chicago to

Shanghai does not automatically imply there is nonstop service from Shanghai to

Chicago.

Figure 1 - A schema for a User-Book-Rating graph

5/13/25, 1:39 PM TigerGraph Documentation

616

An expanded schema is shown below, containing all the original vertex and edge types

plus three additional edge types: friend_of, sequel_of, and user_book_read . Note that

friend_of joins a User to a User. The friendship is assumed to be bidirectional, so the edge

type is undirected. Sequel_of joins a Book to a Book but it is directed, as evidenced by the

arrowhead. The Two Towers is the sequel of The Fellowship of the Ring , but the reverse is

not true. User_book_read is added to illustrate that there may be more than one edge type

between a pair of vertex types.

The TigerGraph system user designs a graph schema to fit the source data and the user's

needs and interests. The TigerGraph system user should consider what type of

relationships are of interest and what type of analysis is needed. The TigerGraph system

lets the user modify an existing schema, so the user is not locked into the initial design

decision.

In the first schema diagram above, there are seven entities: four vertex types and three

edge types.You may wonder why it was decided to make Occupation a separate vertex

type instead of an attribute of User. Likewise, why is Genre a vertex type instead of an

attribute of Book? These are examples of design choices. Occupation and Genre were

separated out as vertex types because in graph analysis, if an attribute will be used as a

query variable, it is often easier to work with as a vertex type.

Once the graph designer has chosen a graph schema, the schema is ready to be

formalized into a series of GSQL statements.

Figure 2 - Expanded-User-Book-Rating schema with additional edges

5/13/25, 1:39 PM TigerGraph Documentation

617

Graph Creation and Modification Privileges

Only superusers can define global vertex types. global edge types, and graphs, using CREATE

VERTEX / EDGE / GRAPH.

However, once a graph has been created, its admin and designers users can customize its

schema, including adding new local vertex types and local edge types, by using a

SCHEMA_CHANGE JOB, described in the next section.

Available to superusers only.

The CREATE VERTEX statement defines a new global vertex type, with a name and an

attribute list. At a high level of abstraction, the format is

More specifically, the syntax is as follows, assuming that the vertex ID is listed first:

Beginning with v2.3, there are two syntaxes for specifying the primary id/key:

Legacy PRIMARY_ID syntax: The legacy syntax remains valid, but there are additional options

and additional flexibility:

PRIMARY KEY syntax. This syntax is modeled after SQL.

CREATE VERTEX vertex_type_name (id_and_attribute_list) [vertex_options]

CREATE VERTEX vertex_type_name (primary_id_name_type
 [, attribute_name type [DEFAULT default_value]]*)
 [WITH [STATS="none"|"outdegree_by_edgetype"][primary_id_as_attribute="

CREATE VERTEX

Keys and Attributes

PRIMARY_ID and WITH primary_id_as_attribute

CREATE VERTEX Syntax

5/13/25, 1:39 PM TigerGraph Documentation

618

The primary_id is a required field whose purpose is to uniquely identify each vertex

instance. GSQL creates a hash index on the primary id with O(1) time complexity. Its data

type may be STRING, INT, or UINT. The syntax for the primary_id_name_type term is as

follows:

NOTE: In default mode, the primary_id field is not one of the attribute fields. The purpose

of this distinction is to minimize storage space for vertices. The functional consequence

of this difference is that a query cannot read the primary_id or use it as part of an

expression.

Beginning with v2.3:

1. The Primary_id can be treated as an attribute, if the clause

WITH primary_id_as_attribute="true"

is used with the CREATE VERTEX statement.

2. The primary_id designation can be used with any one of the attributes; it is not restricted

to the first attribute.

Example:

Instead of the legacy PRIMARY_ID syntax, starting with v2.3, GSQL now offers another

option for specifying the primary key. The keyword phrase PRIMARY KEY may be

appended to any one of the attributes in the attribute list, though it is conventional for it to

be the first attribute. Each vertex instance must have a unique value for the primary key

attribute. GSQL creates a hash index on the PRIMARY KEY attribute with O(1) time

complexity. It is recommended that the primary key data type be STRING, INT, or UINT.

primary_id_name_type := PRIMARY_ID id_name id_type

CREATE VERTEX movie (PRIMARY_ID id UINT, name STRING, year UINT)
 WITH primary_id_as_attribute="true"

primary_id_name_type := id_name_id_type PRIMARY KEY

PRIMARY KEY

5/13/25, 1:39 PM TigerGraph Documentation

619

Note the differences between PRIMARY_ID and PRIMARY KEY:

1. "PRIMARY_ID" precedes the (name, type) pair. "PRIMARY KEY" follows the (name,

type) pair.

2. In default mode, a PRIMARY_ID is not an attribute, but the WITH

primary_id_as_attribute="true" clause can be used to make it an attribute. Alternately,

the PRIMARY KEY is always an attribute; the WITH option is unneeded.

Example:

PRIMARY KEY is not supported in GraphStudio. If you decide to use this feature, you will only

be able to use command line interface.

Beginning with v2.4, GSQL PRIMARY KEY supports composite keys - grouping multiple

attributes to create a primary key for a specific vertex. Composite Key usage is similar to a

single PRIMARY KEY, but rather than appending "PRIMARY KEY" after an attribute, the

syntax is a bit different.

Example:

COMPOSITE KEY is not supported in GraphStudio. If you decide to use this feature, you will

only be able to use command line interface.

CREATE VERTEX movie (id UINT PRIMARY KEY, name STRING, year UINT)

composite_id_name_type := PRIMARY KEY "(" attribute_name ("," attribute_na

CREATE VERTEX movie (id UINT, title STRING, year UINT, PRIMARY KEY (title,

COMPOSITE KEY

Vertex Attribute List

5/13/25, 1:39 PM TigerGraph Documentation

620

The attribute list, enclosed in parentheses, is a list of one or more id definitions and

attribute descriptions separated by commas:

1. Every attribute data type has a built-in default value (e.g., the default value for INT type

is 0). The DEFAULT default_value option overrides the built-in value.

2. Any number of additional attributes may be listed after the primary_id attribute. Each

attribute has a name, type, and optional default value (for primitive-type, DATETIME, or

STRING COMPRESS attributes only)

Example:

• Create vertex types for the graph schema of Figure 1.

Unlike the tables in a relational database, vertex types do not need to have a foreign key

attribute for one vertex type to have a relationship to another vertex type. Such

relationships are handled by edge types.

By default, when the loader stores a vertex and its attributes in the graph store, it also

stores some statistics about the vertex's outdegree – how many connections it has to

other vertices. The optional WITH STATS clause lets the user control how much

information is recorded. Recording the information in the graph store will speed up queries

which need degree information, but it increases the memory usage. There are two*

options. If "outdegree_by_edgetype" is chosen, then each vertex records a list of degree

count values, one value for each type of edge in the schema. If "none" is chosen, then no

primary_id_name_type
[, attribute_name type [DEFAULT default_value]]*

CREATE VERTEX User (PRIMARY_ID user_id UINT, name STRING, age UINT, gender
CREATE VERTEX Occupation (PRIMARY_ID occ_id UINT, occ_name STRING)
 WITH STATS="outdegree_by_edgetype"
CREATE VERTEX Book (PRIMARY_ID bookcode UINT, title STRING, pub_year UINT
 WITH STATS="none"
CREATE VERTEX Genre (PRIMARY_ID genre_id STRING, genre_name STRING)

WITH STATS

Vertex definitions for User-Book-Rating graph

5/13/25, 1:39 PM TigerGraph Documentation

621

degree statistics are recorded with each vertex. If the WITH STATS clause is not used, the

loader acts as if "outdegree_by_edgetype" were selected.

*As for v1.1, The option "outdegree" is not longer available.

Example :If outdegree information is recorded, it can be retrieved in a query using the

vertex's outdegree() function.

The graph below has two types of edges between persons: phone_call and text. For

Bobby, the "outdegree_by_edgetype" option records how many phone calls Bobby made

(1) and how many text messages Bobby sent (2). This information can be retrieved using

the built-in vertex function outdegree(). To get the outdegree of a specific edge type,

provide the edgetype name as a string parameter. To get the total outdegree, omit the

parameter.

Figure 3 - Outdegree stats illustration

WITH STATS option

(case insensitive)
Bobby.outdegree()

Bobby.outdegree("tex

t")

Bobby.outdegree("ph

one_call")

"none" not available not available not available

"outdegree_by_edget

ype"

(default)

3 2 1

5/13/25, 1:39 PM TigerGraph Documentation

622

Available only to superusers.

The CREATE EDGE statement defines a new global edge type. There are two forms of the

CREATE EDGE statement, one for directed edges and one for undirected edges. Each

edge type must specify that it connects FROM one vertex type TO another vertex type.

Additional attributes may be added. Each attribute follows the same requirements as

described in the Attribute List subsection for the "CREATE VERTEX" section.

Viewed at a higher level of abstraction, the format is

Note that edges do not have a PRIMARY_ID field. Instead, each edge is uniquely identified

by a FROM vertex, a TO vertex, and optionally other attributes. The edge type may also be

a distinguishing characteristic. For example, as shown in Figure 2 above, there are two

types of edges between User and Book. Therefore, both types would have attribute lists

which begin (FROM User, To Book,...).

Discontinued Feature

The NULL and NOT NULL properties are not supported. NULL is not a supported value in the

graph database.

CREATE UNDIRECTED EDGE edge_type_name (FROM vertex_type_name, TO vertex_ty
 [, attribute_name type [DEFAULT default_value]]*)

CREATE DIRECTED EDGE edge_type_name (FROM vertex_type_name, TO vertex_type
 [, attribute_name type [DEFAULT default_value]]*)
 [WITH REVERSE_EDGE="rev_name"]

CREATE UNDIRECTED|DIRECTED EDGE edge_type_name (FROM vertex_type_name , TO
edge_attribute_list) [edge_options]

CREATE EDGE

CREATE UNDIRECTED EDGE

CREATE DIRECTED EDGE

5/13/25, 1:39 PM TigerGraph Documentation

623

An edge type can be defined which connects FROM any type of vertex and/or TO any type

of vertex. Use the wildcard symbol * to indicate "any vertex type". For example, the

any_edge type below can connect from any vertex to any other vertex:

If a CREATE DIRECTED EDGE statement includes the WITH REVERSE_EDGE=" rev_name "

optional clause, then an additional directed edge type called " rev_name " is

automatically created, with the FROM and TO vertices swapped. Moreover, whenever a

new edge is created, a reverse edge is also created. The reverse edge will have the same

attributes, and whenever the principal edge is updated, the corresponding reverse edge is

also updated.

In a TigerGraph system, reverse edges provide the most efficient way to perform graph

queries and searches that need to look "backwards". For example, referring to the schema

of Figure 2, the query "What is the sequel of Book X, if it has one?" is a forward search,

usingsequel_of edges. However, the query "Is Book X a sequel? If so, what Book came

before X?" requires examining reverse edges.

Example:

Create undirected edges for the three edge types in Figure 1.

The user_occupation and book_genre edges have no attributes. A

user_book_rating edge symbolizes that a user has assigned a rating to a book.

Therefore it includes an additional attribute rating . In this case the rating attribute

is defined to be an integer, but it could just as easily have been set to be a float attribute.

CREATE DIRECTED EDGE any_edge (FROM *, TO *, label STRING)

CREATE UNDIRECTED EDGE user_occupation (FROM User, TO Occupation)
CREATE UNDIRECTED EDGE book_genre (FROM Book, TO Genre)
CREATE UNDIRECTED EDGE user_book_rating (FROM User, TO Book, rating UINT,

WITH REVERSE_EDGE

Wildcard edge type

Edge definitions for User-Book-Rating graph

5/13/25, 1:39 PM TigerGraph Documentation

624

Example :

Create the additional edges depicted in Figure 2.

Every time the GSQL loader creates a sequel_of edge, it will also automatically create a

preceded_by edge, pointing in the opposite direction.

The STRING COMPRESS and STRING_SET COMPRESS data types achieve compression by

mapping each unique attribute value to a small integer. The mapping table ("this string" =

"this integer") is called the dictionary. If two such attributes have the same or similar sets

of possible values, then it is desirable to have them share one dictionary because it uses

less storage space.

When a STRING COMPRESS attribute is declared in a vertex or edge, the user can

optionally provide a name for the dictionary. Any attributes which share the same

dictionary name will share the same dictionary. For example, v1.attr1, v1.attr2, and e.attr1

below share the same dictionary named "e1".

CREATE UNDIRECTED EDGE friend_of (FROM User, TO User, on_date UINT)
CREATE UNDIRECTED EDGE user_book_read (FROM User, To Book, on_date UINT)
CREATE DIRECTED EDGE sequel_of (FROM Book, TO Book) WITH REVERSE_EDGE="pre

CREATE VERTEX v1 (PRIMARY_ID main_id STRING, att1 STRING COMPRESS e1, att2
CREATE UNDIRECTED EDGE e (FROM v1, TO v2, att1 STRING COMPRESS e1)

Special Options

Sharing a Compression Dictionary

CREATE GRAPH

Additional Edge definitions for Expanded-User-Book-Rating graph

Shared STRING COMPRESS dictionaries

5/13/25, 1:39 PM TigerGraph Documentation

625

Multiple Graph support

Available only to superusers.

If the optional MultiGraph service is enabled, CREATE GRAPH can be invoked multiple times

to define multiple graphs, and vertex types and edge types may be re-used (shared) among

multiple graphs. There is an option to assign an admin use for the new graph.

After all the required vertex and edge types are created, the CREATE GRAPH command

defines a graph schema which contains the given vertex types and edge types, and

prepares the graph store to accept data. The vertex types and edge types may be listed in

any order.

The optional WITH ADMIN clause sets the named user to be the admin for the new graph.

As a convenience, executing CREATE GRAPH will set the new graph to be the working

graph.

Instead of providing a list of specific vertex types and edge types, it is also possible to

define a graph type which includes all the available vertex types and edge types. It is also

legal to create a graph with an empty domain. A SCHEMA_CHANGE can be used later to

add vertex and edge types.

Examples :

Create graph Book_rating for the edge and vertex types defined for Figure 1:

CREATE GRAPH gname (vertex_or_edge_type, vertex_or_edge_type...) [WITH ADM

CREATE GRAPH everythingGraph (*)
CREATE GRAPH emptyGraph ()

CREATE GRAPH Book_rating (*)

CREATE GRAPH syntax

Examples of CREATE GRAPH with all vertex & edge types and with an empty domain.

Graph definition for User-Book-Rating graph

5/13/25, 1:39 PM TigerGraph Documentation

626

The following code example shows the full set of statements to define the expanded user-

book-rating graph:

New requirement for MultiGraph support. Applies even if only one graph exists.

Before a user can make use of a graph, first the user must be granted a role on that graph

by an admin user of that graph or by a superuser. (Superusers are automatically granted

the admin role on every graph). Second, for each GSQL session, the user must set a

working graph. The USE GRAPH command sets or changes the user's working graph, for

the current session.

For more about roles and privileges, see the document Managing User Privileges and

Authentication.

Instead of the USE GRAPH command, gsql can be invoked with the -g <graph_name>

option.

CREATE VERTEX User (PRIMARY_ID user_id UINT, name STRING, age UINT, gender
CREATE VERTEX Occupation (PRIMARY_ID occ_id UINT, occ_name STRING)
 WITH STATS="outdegree_by_edgetype"
CREATE VERTEX Book (PRIMARY_ID bookcode UINT, title STRING, pub_year UINT
 WITH STATS="none"
CREATE VERTEX Genre (PRIMARY_ID genre_id STRING, genre_name STRING)
CREATE UNDIRECTED EDGE user_occupation (FROM User, TO Occupation)
CREATE UNDIRECTED EDGE book_genre (FROM Book, TO Genre)
CREATE UNDIRECTED EDGE user_book_rating (FROM User, TO Book, rating UINT,
CREATE UNDIRECTED EDGE friend_of (FROM User, TO User, on_date UINT)
CREATE UNDIRECTED EDGE user_book_read (FROM User, To Book, on_date UINT)
CREATE DIRECTED EDGE sequel_of (FROM Book, TO Book) WITH REVERSE_EDGE="pre
CREATE GRAPH Book_rating (*)

USE GRAPH gname

USE GRAPH

Full definition for the Expanded User-Book-Rating graph

USE GRAPH syntax

5/13/25, 1:39 PM TigerGraph Documentation

627

Available to superusers only. The effect of this command is modified, to take into account

shared domains.

The DROP GRAPH deletes the logical definition of the named graph. Furthermore, if any of

the vertex types or edge types in its domain are not shared by any other graph, then those

non-shared types and their data are deleted. Any shared types are unaffected. To delete

only selected vertex types or edge types, see DROP VERTEX | EDGE in the Section

"Modifying a Graph Schema".

The SHOW command can be used to show certain aspects of the graph, instead of

manually filtering through the entire graph schema when using the ls command. You can

either type the exact identifier or use regular expression / Linux globbing to search.

This feature supports the ? and * from linux globbing operations, and also regular

expression matching. Usage of the feature is limited to the scope of the graph the user is

currently in - if you are using a global graph, you will not be able to see vertices that are not

included in your current graph.

Regular expression searching will not work with escaping characters.

To use regular expressions, you will need to use the -r flag after the part of the schema

you wish to show. If you wish to dive deeper into regular expressions, visit "Java Patterns"

. The following are a few examples of what is supported by the SHOW command.

DROP GRAPH gname

SHOW <VERTEX> | <EDGE> | <JOB> | <QUERY> | <GRAPH> [<name> | <glob> | -r

DROP GRAPH

SHOW - View Parts of the Catalog

DROP GRAPH syntax

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

628

Linux Globbing examples
SHOW VERTEX us* //shows all vertices that start with the letter
SHOW VERTEX co?*y //shows the vertex that starts with co and ends
SHOW VERTEX ????? //shows all vertices that are 5 letters long

Regular Expression Examples
SHOW VERTEX -r "skil{2}" //match the pattern "skill"
SHOW EDGE -r "test[1][13579]*" //match pattern that only contains odd n
SHOW JOB -r "[a-zA-Z]*" //match all jobs that contain only letters

5/13/25, 1:39 PM TigerGraph Documentation

629

Modifying a Graph Schema

After a graph schema has been created , it can be modified. Data already stored in the

graph and which is not logically part of the change will be retained. For example, if you had

100 Book vertices and then added an attribute to the Book schema, you would still have

100 Books, with default values for the new attribute. If you dropped a Book attribute, you

still would have all your books, but one attribute would be gone.

To safely update the graph schema, the user should follow this procedure:

• Create a SCHEMA_CHANGE JOB, which defines a sequence of ADD, ALTER and/or

DROP statements.

• Run the SCHEMA_CHANGE JOB (i.e. RUN JOB job_name), which will do the

following:

◦ Attempt the schema change.

◦ If the change is successful, invalidate any loading job or query definitions which

are incompatible with the new schema.

◦ if the change is unsuccessful, report the failure and return to the state before the

attempt.

A schema change will invalidate any loading jobs or query jobs which relate to an altered part

of the schema. Specifically:

• A loading job becomes invalid if it refers to a vertex or and an edge which has been

dropped (deleted) or altered .

• A query becomes invalid if it refers to a vertex, and edge, or an attribute which has been

dropped .

Invalid loading jobs are dropped, and invalid queries are uninstalled. After the schema update,

the user will need to create and install new load and query jobs based on the new schema.

Jobs and queries for unaltered parts of the schema will still be available and do not need

to be reinstalled. However, even though these jobs are valid (e.g., they can be run), the

user may wish to examine whether they still perform the preferred operations (e.g., do you

want to run them?)

5/13/25, 1:39 PM TigerGraph Documentation

630

Load or query operations which begin before the schema change will be completed based on

the pre-change schema. Load or query operations which begin after the schema change, and

which have not been invalidated, will be completed based on the post-change schema.

Only admin, designer, and superuser users can create and run schema changes. Each user

role can create and run a different type of schema change.

Only a superuser can add, alter, or drop global vertex types or global edge types, which are

those that are created using CREATE VERTEX or CREATE ... EDGE. This rule applies even

if the vertex or edge type is used in only one graph. To make these changes, the superuser

uses a GLOBAL SCHEMA_CHANGE JOB.

An admin or designer user can add, alter, or drop local vertex types or local edge types

which are created in the context of that graph. Local vertex and edge types are created

using an ADD statement inside a SCHEMA_CHANGE JOB. To alter or drop any of these

local types, the admin user uses a regular SCHEMA_CHANGE JOB.

The two types of schema change jobs are described below.

The CREATE SCHEMA_CHANGE JOB block defines a sequence of ADD, ALTER, and DROP

statements for changing a particular graph. It does not perform the schema change.

One use of CREATE SCHEMA_CHANGE JOB is to define an additional vertex type and

edge type to be the structure for a secondary index. For example, if you wanted to index

CREATE SCHEMA_CHANGE JOB job_name FOR GRAPH graph_name {
 [sequence of DROP, ALTER, and ADD statements, each line ending with a
}

Global vs. Local Schema Changes

CREATE SCHEMA_CHANGE JOB

CREATE SCHEMA_CHANGE JOB syntax

5/13/25, 1:39 PM TigerGraph Documentation

631

the postalCode attribute of the User vertex, you could create a postalCode_idx

(PRIMARY_ID id string, code string) vertex type and hasPostalCode (FROM User, TO

postalCode_idx) edge type. Then create an index structure having one edge from each

User to a postalCode_idx vertex.

By its nature, a SCHEMA_CHANGE JOB may contain multiple statements. If the job block is

used in the interactive GSQL shell, then the BEGIN and END commands should be used to

permit the SCHEMA_CHANGE JOB to be entered on several lines. if the job is stored in a

command file to be read in batch mode, then BEGIN and END are not needed.

Remember to include a semicolon at the end of each DROP, ALTER, or ADD statement within

the JOB block.

If a SCHEMA_CHANGE JOB defines a new edge type which connects to a new vertex type,

the ADD VERTEX statement should precede the related ADD EDGE statement. However, the

ADD EDGE and ADD VERTEX statements can be in the same SCHEMA_CHANGE JOB.

The ADD statement defines a new type of vertex or edge and automatically adds it to a

graph schema. The syntax for the ADD VERTEX | EDGE statement is analogous to that of

the CREATE VERTEX | EDGE | GRAPH statements. It may only be used within a

SCHEMA_CHANGE JOB.

In the current version, v_type_name and e_type_name identifiers must be GLOBALLY unique,

even though they are only locally visible to local graph users. As a consequence, when a user

runs a SCHEMA_CHANGE JOB with ADD VERTEX/EDGE statements, it is possible that the

system will reject the proposed names, because they have already been used by another

graph.

ADD VERTEX v_type_name (PRIMARY_ID id type [, attribute_list]) [WITH STATS
ADD UNDIRECTED EDGE e_type_name (FROM v_type_name, TO v_type_name [, edge_
ADD DIRECTED EDGE e_type_name (FROM v_type_name, TO v_type_name [, edge_at
 [WITH REVERSE_EDGE="rev_name"];

ADD VERTEX | EDGE (local)

ALTER VERTEX | EDGE

ADD VERTEX / UNDIRECTED EDGE / DIRECTED EDGE

5/13/25, 1:39 PM TigerGraph Documentation

632

The ALTER statement is used to add attributes to or remove attributes from an existing

vertex type or edge type. It may only be used within a SCHEMA_CHANGE JOB. The basic

format is as follows:

Added attributes are appended to the end of the schema. The new attributes may include

DEFAULT fields:

The DROP statement removes the specified vertex type or edge type from the database

dictionary. The DROP statement should only be used when graph operations are not in

progress.

ALTER VERTEX|EDGE object_type_name ADD|DROP (attribute_list);

ALTER VERTEX|EDGE object_type_name ADD ATTRIBUTE (
 attribute_name type [DEFAULT default_value]
 [, attribute_name type [DEFAULT default_value]]*);

ALTER VERTEX|EDGE object_type_name DROP ATTRIBUTE (
 attribute_name [, attribute_name]*);

DROP VERTEX v_type_name [, v_type_name]*
DROP EDGE e_type_name [, e_type_name]*

ALTER ... ADD

ALTER ... DROP

DROP VERTEX | EDGE (local)

ALTER VERTEX / EDGE

ALTER ... ADD

ALTER ... DROP

drop vertex / edge

5/13/25, 1:39 PM TigerGraph Documentation

633

RUN JOB job_name performs the schema change job. After the schema has been

changed, the GSQL system checks all existing GSQL queries (described in "GSQL

Language Reference, Part 2: Querying"). If an existing GSQL query uses a dropped vertex,

edge, or attribute, the query becomes invalid, and GSQL will show the message "Query

query_name becomes invalid after schema update, please update it.".

Below is an example. The schema change job add_reviews adds a Review vertex type and

two edge types to connect reviews to users and books, respectively.

The USE GLOBAL command changes a superuser's mode to Global mode. In global mode, a

superuser can define or modify global vertex and edge types, as well as specifying which

graphs use those global types. For example, the user should run USE GLOBAL before

creating or running a GLOBAL SCHEMA_CHANGE JOB.

The CREATE GLOBAL SCHEMA_CHANGE JOB block defines a sequence of ADD, ALTER, and

DROP statements which modify either the attributes or the graph membership of global

vertex or edge types. Unlike the non-global schema_change job, the header does not include

a graph name. However, the ADD/ALTER/DROP statements in the body do mention graphs.

USE GRAPH Book_rating
CREATE SCHEMA_CHANGE JOB add_reviews FOR GRAPH Book_rating {
 ADD VERTEX Review (PRIMARY_ID id UINT, review_date DATETIME, url STRIN
 ADD UNDIRECTED EDGE wrote_review (FROM User, TO Review);
 ADD UNDIRECTED EDGE review_of_book (FROM Review, TO Book);
}
RUN JOB add_reviews

RUN SCHEMA_CHANGE JOB

USE GLOBAL

CREATE GLOBAL SCHEMA_CHANGE JOB

SCHEMA_CHANGE JOB example

5/13/25, 1:39 PM TigerGraph Documentation

634

Those both global and local schema change jobs have ADD and DROP statements, they

have different meanings. The table below outlines the differences.

Remember to include a semicolon at the end of each DROP, ALTER, or ADD statement within

the JOB block.

The ADD statement adds existing global vertex or edge types to one of the graphs.

CREATE GLOBAL SCHEMA_CHANGE JOB job_name {
 [sequence of global DROP, ALTER, and ADD statements, each line ending
}

local

SCHEMA_CHANGE

GLOBAL

SCHEMA_CHANGE

ADD

Defines a new local

vertex/edge type;

adds it to the graph's domain

Adds one or more existing

global

vertex/edge types to a graph's

domain.

DROP

Deletes a local vertex/edge

type

and its vertex/edge instances

Removes one or more existing

global

vertex/edge types from a

graph's domain.

ALTER

Adds or drops attributes from

a local

vertex/edge type.

Adds or drops attributes from

a global vertex/edge

type, which may affect several

graphs.

ADD VERTEX v_type_name [,v_type_name...] TO GRAPH gname;
ADD EDGE e_type_name [,e_type_name...] TO GRAPH gname;

ADD VERTEX | EDGE (global)

CREATE GLOBAL SCHEMA_CHANGE JOB syntax

ADD VERTEX / UNDIRECTED EDGE / DIRECTED EDGE (Global)

5/13/25, 1:39 PM TigerGraph Documentation

635

The ALTER statement is used to add attributes to or remove attributes from an existing

global vertex type or edge type. The ALTER VERTEX / EDGE syntax for global schema

changes is the same as that for local schema change jobs.

Added attributes are appended to the end of the schema. The new attributes may include

DEFAULT fields:

The DROP statement removes specified global vertex or edge types from one of the graphs.

The command does not delete any data.

ALTER VERTEX|EDGE object_type_name ADD|DROP (attribute_list);

ALTER VERTEX|EDGE object_type_name ADD ATTRIBUTE (
 attribute_name type [DEFAULT default_value]
 [, attribute_name type [DEFAULT default_value]]*);

ALTER VERTEX|EDGE object_type_name DROP ATTRIBUTE (
 attribute_name [, attribute_name]*);

ALTER VERTEX | EDGE

ALTER ... ADD

ALTER ... DROP

DROP VERTEX | EDGE (global)

ALTER VERTEX / EDGE

ALTER ... ADD

ALTER ... DROP

drop vertex / edge

5/13/25, 1:39 PM TigerGraph Documentation

636

RUN JOB job_name performs the global schema change job. After the schema has been

changed, the GSQL system checks all existing GSQL queries (described in "GSQL Language

Reference, Part 2: Querying"). If an existing GSQL query uses a dropped vertex, edge, or

attribute, the query becomes invalid, and GSQL will show the message "Query query_name

becomes invalid after schema update, please update it.".

Below is an example. The schema change alter_friendship_make_library drops the

on_date attribute from the friend_of edge and adds Book type to the library graph.

DROP VERTEX v_type_name [,v_type_name...] FROM GRAPH gname;
DROP EDGE e_type_name [,e_type_name...] FROM GRAPH gname;

USE GLOBAL
CREATE GRAPH library()
CREATE GLOBAL SCHEMA_CHANGE JOB alter_friendship_make_library {
 ALTER EDGE friend_of DROP ATTRIBUTE (on_date);
 ADD VERTEX Book TO GRAPH library;
}
RUN JOB alter_friendship_make_library

RUN GLOBAL SCHEMA_CHANGE JOB

GLOBAL SCHEMA_CHANGE JOB example

5/13/25, 1:39 PM TigerGraph Documentation

637

Creating a Loading Job

After a graph schema has been created, the system is ready to load data into the graph

store. The GSQL language offers easy-to-understand and easy-to-use commands for data

loading which perform many of the same data conversion, mapping, filtering, and merging

operations which are found in enterprise ETL (Extract,Transform, and Load) systems.

The GSQL system can read structured or semistructured data from text files. The loading

language syntax is geared towards tabular or JSON data, but conditional clauses and data

manipulation functions allow for reading data that is structured in a more complex or

irregular way. For tabular data, each line in the data file contains a series of data values,

separated by commas, tabs, spaces, or any other designated ASCII characters (only single

character separators are supported). A line should contain only data values and

separators, without extra whitespace. From a tabular view, each line of data is a row, and

each row consists of a series of column values.

Loading data is a two-step process. First, a loading job is defined. Next, the job is

executed with the RUN statement. These two statements, and the components with the

loading job, are detailed below.

The structure of a loading job will be presented hierarchically, top-down:

CREATE ... JOB, which may contain a set of DEFINE and LOAD statements

• DEFINE statements

• LOAD statements, which can have several clauses

Beginning with v2.0, the TigerGraph platform introduces an extended syntax for defining

and running loading jobs which offers several advantages:

• The TigerGraph platform can handle concurrent loading jobs, which can greatly

increase throughput.

New LOADING JOB Capabilities

5/13/25, 1:39 PM TigerGraph Documentation

638

• The data file locations can be specified at compile time or at run time. Run-time

settings override compile-time settings.

• A loading job definition can include several input files. When running the job, the user

can choose to run only part of the job by specifying only some of the input files.

• Loading jobs can be monitored, aborted, and restarted.

Among its several duties, the RESTPP component manages loading jobs. Previously,

RESTPP could manage only one loading job at a time. In v2.0, there can be multiple

RESTPP-LOADER subcomponents, each of which can handle a loading job independently.

The maximum number of concurrent loading jobs is set by the configuration parameter

RESTPP-LOADER.Replicas.

Furthermore, if the TigerGraph graph is distributed (partitioned) across multiple machine

nodes, each machine's RESTPP-LOADER(s) can be put into action. Each RESTPP-LOADER

only reads local input data files, but the resulting graph data can be stored on any machine

in the cluster.

To maximize loading performance in a cluster, use at least two loaders per machine, and

assign each loader approximately the same amount of data.

To provide this added capability for loading, there is an expanded syntax for creating

loading jobs and running loading jobs. Below is a summary of changes and additions. Full

details are then presented, in the remainder of this document (GSQL Language Reference

Part 1).

• A loading job begins with CREATE LOADING JOB. (Note that the keyword "LOADING" is

included.)

• A new statement type, DEFINE FILENAME, is added, to define filename variables.

• The file locations can refer either to the local machine, to specific machines, or to all

machines.

• When a job starts, it is assigned a job_id. Using the job_id, you can check status, abort

a job, or restart a job.

Concurrent Loading

5/13/25, 1:39 PM TigerGraph Documentation

639

Below is a simple example:

A concurrent-capable loading job can logically be separated into parts according to each

file variable. When a concurrent-capable loading job is compiled, a RESTPP endpoint is

generated for each file variable. Then, the job can be run in portions, according to each file

variable.

pre-v2.0 CREATE JOB syntax is deprecated

If the new CREATE LOADING JOB syntax with DEFINE FILENAME is used, the user can take

advantage of concurrent loading.

Pre-v2.0 loading syntax will still be supported for v2.x but is deprecated. Pre-v2.0 loading

syntax does not offer concurrent loading.

Example loading jobs and data files for the book_rating schema defined earlier in the

document are available in the /doc/examples/gsql_ref folder in your TigerGraph platform

installation.

The v2.0 CREATE LOADING JOB can be distinguished from the pre-v2.0 loading jobs first

by its header, and then by whether its contains DEFINE FILENAME statements or not. Once

the loading type has been determined, there are subsequent rules for the format of the

individual LOAD statements and then the RUN statement.

CREATE LOADING JOB job1 FOR GRAPH graph1 {

 DEFINE FILENAME file1 = "/data/v1.csv";
 DEFINE FILENAME file2;

 LOAD file1 TO VERTEX v1 VALUES ($0, $1, $2);
 LOAD file2 TO EDGE e2 VALUES ($0, $1);
}
RUN LOADING JOB job1 USING file1="m1:/data/v1_1.csv", file2="m2:/data/e2.c

CREATE LOADING JOB Block

Concurrent Loading Job Example

5/13/25, 1:39 PM TigerGraph Documentation

640

The CREATE LOADING JOB and DROP LOADING JOB privileges are reserved for the designer,

admin, and superuser roles.

The CREATE LOADING JOB statement is used to define a block of DEFINE, LOAD, and

DELETE statements for loading data to or removing data from a particular graph. The

sequence of statements is enclosed in curly braces. Each statement in the block,

including the last one, should end with a semicolon.

LOAD or DELETE Statements

As of version 2.2, a LOADING JOB may contain either LOAD or DELETE statements but not

both.

A JOB which includes both will be rejected when the CREATE statement is executed.

Loading type Block Header

Has

DEFINE FILENAME

statements?

Run

v2.0 loading
CREATE LOADING

JOB
Yes RUN LOADING JOB

Non-concurrent

offline loading

(DEPRECATED)

CREATE LOADING

JOB
No RUN JOB

Non-concurrent

online loading

(DEPRECATED)

CREATE

ONLINE_POST JOB
Not permitted

RUN JOB USING

FILENAME...

CREATE LOADING JOB job_name FOR GRAPH graph_name {
 [zero or more DEFINE statements;]
 [zero or more LOAD statements;] | [zero or more DELETE statements;]
}

CREATE LOADING JOB

CREATE LOAD for offline loading

5/13/25, 1:39 PM TigerGraph Documentation

641

To drop (remove) a job, run "DROP JOB job_name". The job will be removed from GSQL. To

drop all jobs, run either of the following commands:

DROP JOB ALL

DROP JOB *

The scope of ALL depends on the user's current scope. If the user has set a working graph,

then DROP ALL removes all the jobs for that graph. If a superuser has set their scope to be

global, then DROP ALL removes all jobs across all graph spaces.

A DEFINE statement is used to define a local variable or expression to be used by the

subsequent LOAD statements in the loading job.

The DEFINE FILENAME statement defines a filename variable. The variable can then be

used later in the JOB block by a LOAD statement to identify its data source. Every

concurrent loading job must have at least one DEFINE FILENAME statement.

The filevar is optionally followed by a filepath_string , which tells the job where to find

input data. As the name suggests, filepath_string is a string value. Therefore, it should

start and end with double quotes.

filepath_string

There are four options for filepath_string :

DEFINE FILENAME filevar ["=" filepath_string];
filepath_string = (path | " all :" path | " any :" path | mach_aliases "
mach_aliases = name["|"name]*

DROP JOB statement

DEFINE statements

DEFINE FILENAME

5/13/25, 1:39 PM TigerGraph Documentation

642

• path : either an absolute path or relative path for either a file or a folder on the

machine where the job is run. If it is a folder, then the loader will attempt to load each

non-hidden file in the folder.

If this path is not valid when CREATE LOADING JOB is executed, GSQL will report an error.

An absolute path may begin with the session variable $sys.data_root.

Then, when running this loading job, first set a value for the parameter, and then run the

job:

As the name implies, session parameters only retain their value for the duration of the

current GSQL session. If the user exits GSQL, the settings are lost.

• "all:" path : If the path is prefixed with all: , then the loading job will attempt to

run on every machine in the cluster which has a RESTPP component, and each

machine will look locally for data at path . I f the path is not valid on any of the

machines, the job will be aborted . Also, the session parameter $sys.data_root may

not be used.

"/data/graph.csv"

CREATE LOADING JOB filePathEx FOR GRAPH gsql_demo {
 LOAD "$sys.data_root/persons.csv" TO ...
}

SET sys.data_root="/data/mydata"
RUN JOB filePathEx

"ALL:/data/graph.csv"

path examples

Example: using sys.data_root in a loading job

Example: Setting sys.data_root session parameter

ALL:path examples

5/13/25, 1:39 PM TigerGraph Documentation

643

• "any:" path : If the path is prefixed with any: , then the loading job will attempt

to run on every machine in the cluster which has a RESTPP component, and each

machine will look locally for data at path . If the path is not valid on any of the

machines, those machines are skipped. Also, the session parameter $sys.data_root

may not be used.

• A list of machine-specific paths : A machine_alias is a name such as m1, m2, etc.

which is defined when the cluster configuration is set. For this option, the

filepath_string may include a list of paths, separated by commas. If several machines

have the same path, the paths can be grouped together by using a list of machine

aliases, with the vertical bar "|" as a separator. The loading job will run on whichever

machines are named; each RESTPP-LOADER will work on its local files.

The DEFINE HEADER statement defines a sequence of column names for an input data

file. The first column name maps to the first column, the second column name maps to

the second column, etc.

The DEFINE INPUT_LINE_FILTER statement defines a named Boolean expression whose

value depends on column attributes from a row of input data. When combined with a

USING reject_line_rule clause in a LOAD statement, the filter determines whether an input

line is ignored or not.

"ANY:/data/graph.csv"

"m1:/data1.csv, m2|m3|m5:/data/data2.csv"

DEFINE HEADER header_name = " column_name "[," column_name "]*;

DEFINE HEADER

DEFINE INPUT_LINE_FILTER

ANY:path examples

machine-specific path example

5/13/25, 1:39 PM TigerGraph Documentation

644

A LOAD statement tells the GSQL loader how to parse a data line into column values

(tokens), and then describes how the values should be used to create a new vertex or

edge instance. One LOAD statement can be used to generate multiple vertices or edges,

each vertex or edge having its own Destination_Clause , as shown below. Additionally, two

or more LOAD statements may refer to the same input data file. In this case, the GSQL

loader will merge their operations so that both of their operations are executed in a single

pass through the data file.

The LOAD statement has many options. This reference guide provides examples of key

features and options. The Platform Knowledge Base / FAQs and the tutorials, such as Get

Started with TigerGraph , provide additional solution- and application-oriented examples.

Different LOAD statement types have different rules for the USING clause; see the USING

clause section below for specifics.

The filevar must have been previously defined in a DEFINE FILENAME statement.

The filepath_string must satisfy the same rules given above in the DEFINE FILENAME

section.

"__GSQL_FILENAME_n__": Position-based File Identifiers

When a CREATE LOADING JOB block is processed, the GSQL system will count the number of

unique filepath_strings and assign them position-based index numbers 0, 1, 2, etc. starting

from the top. A filepath_string is considered one item, even if it has multiple machine indexes

and file locations. These index numbers can then be used as an alternate naming scheme for

the filespath_strings:

DEFINE INPUT_LINE_FILTER filter_name = boolean_expression_using_column_var

LOAD [filepath_string|filevar|TEMP_TABLE table_name] Destination_Clause [

LOAD statements

LOAD statement

5/13/25, 1:39 PM TigerGraph Documentation

645

When running a loading job, the nth filepath_string can be referred as

"__GSQL_FILENAME_n__", where n is replaced with the index number. Note that the string

has double underscores at both the left and right ends.

The remainder of this section of the document will provide details on the format and use

of the file_path, Destination_Clause, its subclauses. USING clause is introduced later in

Section "Other Optional LOAD Clauses".

A Destination_Clause describes how the tokens from a data source should be used to

construct one of three types of data objects : a vertex, an edge, or a row in a temporary

table (TEMP_TABLE). The destination clause formats for the three types are very similar,

but we show them separately for clarity:

For the TO VERTEX and TO EDGE destination clauses, the vertex_type_name or

edge_type_name must match the name of a vertex or edge type previously defined in a

CREATE VERTEX or CREATE UNDIRECTED|DIRECTED EDGE statement. The values in the

VALUE list(id_expr, attr_expr1, attr_expr2,...) are assigned to the id(s) and attributes of a

new vertex or edge instance, in the same order in which they are listed in the CREATE

statement. id_expr obeys the same attribute rules as attr_expr , except that only attr_expr

can use the reducer function, which is introduced later.

TO VERTEX vertex_type_name VALUES (id_expr [, attr_expr]*)
 [WHERE conditions] [OPTION (options)]

TO EDGE edge_type_name VALUES (source_id_expr, target_id_expr [, attr_expr
 [WHERE conditions] [OPTION (options)]

TO TEMP_TABLE table_name (id_name [, attr_name]*) VALUES (id_expr [, attr_
 [WHERE conditions] [OPTION (options)]

Destination Clause

Vertex Destination Clause

Edge Destination Clause

TEMP_TABLE Destination Clause

5/13/25, 1:39 PM TigerGraph Documentation

646

In contrast, the TO TEMP_TABLE clause is defining a new, temporary data structure. Its

unique characteristics will be described in a separate subsection. For now, we focus on TO

VERTEX and TO EDGE.

A LOAD statement processes each line of an input file, splitting each line (according to the

SEPARATOR character, see Section "Other Optional LOAD Clauses" for more details) into a

sequence of tokens. Each destination clause provides a token-to-attribute mapping which

defines how to construct a new vertex, an edge, or a temp table row instance (e.g., one

data object). The tokens can also be thought of as the column values in a table. There are

two ways to refer to a column, by position or by name. Assuming a column has a name,

either method may be used, and both methods may be used within one expression.

By Position : The columns (tokens) are numbered from left to right, starting with $0. The

next column is $1, and so on.

By Name : Columns can be named, either through a header line in the input file, or through

a DEFINE HEADER statement. If a header line is used, then the first line of the input file

should be structured like a data line, using the same separator characters, except that

each column contains a column name string instead of a data value. Names are enclosed

in double quotes, e.g. $"age".

Data file name: $sys.file_name refers to the current input data file.

In a simple case, a token value is copied directly to an attribute. For example, in the

following LOAD statement,

• The PRIMARY_ID of a person vertex comes from column $0 of the file "xx/yy/a.csv".

• The next attribute of a person vertex comes from column $1.

• The next attribute of a person vertex is given the value "xx/y/a.csv" (the filename

itself).

LOAD "xx/yy/a.csv" TO VERTEX person VALUES ($0, $1, $sys.file_name)

Attributes and Attribute Expressions

Example: using $sys.file_name in an attribute expression

5/13/25, 1:39 PM TigerGraph Documentation

647

Users do not need to explicitly define a primary_id. Given the attributes, one will be selected

as the primary key.

A basic principle in the GSQL Loader is cumulative loading. Cumulative loading means

that a particular data object might be written to (i.e., loaded) multiple times, and the result

of the multiple loads may depend on the full sequence of writes. This usually means that

If a data line provides a valid data object, and the WHERE clause and OPTION clause are

satisfied, then the data object is loaded.

• Valid input : For each input data line, each destination clause constructs one or more

new data objects. To be a valid data object, it must have an ID value of the correct

type, have correctly typed attribute values, and satisfy the optional WHERE clause. If

the data object is not valid, the object is rejected (skipped) and counted as an error in

the log file. The rules for invalid attributes values are summarized below:

1. UINT: Any non-digit character. (Out-of-range values cause overflow instead of

rejection)

2. INT: Any non-digit or non-sign character. (Out-of-range values cause overflow instead

of rejection)

3. FLOAT and DOUBLE: Any wrong format

4. STRING, STRING COMPRESS, FIXED_BINARY: N/A

5. DATETIME: Wrong format, invalid date time, or out of range.

6. Complex type: Depends on the field type or element type. Any invalid field (in UDT),

element (in LIST or SET), key or value (in MAP) causes rejection.

• New data objects: If a valid data object has a new ID value, then the data object is

added to the graph store. Any attributes which are missing are assigned the default

value for that data type or for that attribute.

• Overwriting existing data objects : If a valid data object has a ID value for an existing

object, then the new object overwrites the existing data object, with the following

clarifications and exceptions:

Cumulative Loading

5/13/25, 1:39 PM TigerGraph Documentation

648

1. The attribute values of the new object overwrite the attribute values of the existing

data object.

2. Missing tokens : If a token is missing from the input line so that the generated

attribute is missing, then that attribute retains its previous value.

A STRING token is never considered missing; if there are no characters, then the string is the

empty string

• Skipping an attribute : A LOAD statement can specify that a particular attribute should

NOT be loaded by using the special character _ (underscore) as its attribute

expression (attr_expr). For example,

means to skip the next-to-last attribute. This technique is used when it is known that the

input data file does not contain data for every attribute.

1. If the LOAD is creating a new vertex or edge, then the skipped attribute will be

assigned the default value.

2. If the LOAD is overwriting an existing vertex or edge, then the skipped attribute will

retain its existing value.

An attribute expression may use column tokens (e.g., $0), literals (constant numeric or

string values), any of the built-in loader token functions, or a user-defined token function.

Attribute expressions may not contain mathematical or boolean operators (such as +, *,

AND). The rules for attribute expressions are the same as those for id expressions, but an

attribute expression can additionally use a reducer function:

• id_expr := $column_number | $"column_name" | constant | $sys.file_name |

token_function_name(id_expr [, id_expr]*)

• attr_expr := id_expr | REDUCE(reducer_function_name(id _expr))

Note that token functions can be nested, that is, a token function can be used as an input

parameter for another token function. The built-in loader token/reducer functions and

LOAD TO VERTEX person VALUES ($0, $1, _, $2)

More Complex Attribute Expressions

5/13/25, 1:39 PM TigerGraph Documentation

649

user-defined token functions are described in the section "Built-In Loader Token

Functions".

The subsections below describe details about loading particular data types.

A floating point value has the basic format

In the first case, the decimal point and following digits are required. In the second case,

some digits are required (looking like an integer), and the following decimal point and

digits are optional.

In both cases, the leading sign ("+" or "-") is optional. The exponent, using "e" or "E", is

optional. Commas and extra spaces are not allowed.

When loading data into a DATETIME attribute, the GSQL loader will automatically read a

string representation of datetime information and convert it to internal datetime

representation. The loader accepts any of the following string formats:

[sign][digits].[digits](e|E)[sign][digits]

Valid floating point values
-198256.03
+16.
-.00036
7.14285e15
9.99E-22

Invalid floating point values
-198,256.03
9.99 E-22

Loading a DOUBLE or FLOAT Attribute

Loading a DATETIME Attribute

Examples of valid and invalid floating point values

5/13/25, 1:39 PM TigerGraph Documentation

650

• %Y-%m-%d %H:%M:%S (e.g., 2011-02-03 01:02:03)

• %Y/%m/%d %H:%M:%S (e.g., 2011/02/03 01:02:03)

• %Y-%m-%dT%H:%M:%S.000z (e.g., 2011-02-03T01:02:03.123z, 123 will be ignored)

• %Y-%m-%d (only date, no time, e.g., 2011-02-03)

• %Y/%m/%d (only date, no time, e.g., 2011/02/03)

• Any integer value (Unix Epoch time, where Jan 1, 1970 at 00:00:00 is integer 0)

Format notation:

%Y is a 4-digit year. A 2-digit year is not a valid value.

%m and %s are a month (1 to 12) and a day (1 to 31), respectively. Leading zeroes are

optional.

%H, %M, %S are hours (0 to 23), minutes (0 to 59) and seconds (0 to 59), respectively.

Leading zeroes are optional.

When loading data, the loader checks whether the values of year, month, day, hour, minute,

second are out of the valid range. If any invalid value is present, e.g. '2010-13-05' or '2004-

04-31 00:00:00', the attribute is invalid and the object (vertex or edge) is not created.

To load a UDT attribute, state the name of the UDT type, followed by the list of attribute

expressions for the UDT's fields, in parentheses. See the example below.

TYPEDEF TUPLE <f1 INT (1), f2 UINT, f3 STRING (10), f4 DOUBLE > myTuple
CREATE VERTEX v_udt (PRIMARY_ID id STRING, att_udt myTuple)
CREATE LOADING JOB load_udt FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f TO VERTEX v_udt VALUES ($0, myTuple($1, $2, $3, $4)); # $1 is
}
RUN LOADING JOB v_udt USING f="./udt.csv"

Loading a User-Defined Type (UDT) Attribute

Load UDT example

5/13/25, 1:39 PM TigerGraph Documentation

651

There are three methods to load a LIST or a SET.

The first method is to load multiple rows of data which share the same id values and

append the individual attribute values to form a collection of values. The collections are

formed incrementally by reading one value from each eligible data line and appending the

new value into the collection. When the loading job processes a line, it checks to see

whether a vertex or edge with that id value(s) already exists or not. If the id value(s) is new,

then a new vertex or edge is created with a new list/set containing the single value. If the

id(s) has been used before, then the value from the new line is appended to the existing

list/set. Below shows an example:

The job load_set_list will load two test_vertex vertices because there are two unique id

values in the data file. Vertex 1 has attribute values with iset = [10,20] and ilist = [10,20,20].

CREATE VERTEX test_vertex (PRIMARY_ID id STRING, iset SET<INT>, ilist LIST
CREATE UNDIRECTED EDGE test_edge(FROM test_vertex, TO test_vertex)
CREATE GRAPH test_set_list (*)

CREATE LOADING JOB load_set_list FOR GRAPH test_set_list {
 DEFINE FILENAME f;
 LOAD f TO VERTEX test_vertex VALUES ($0, $1, $1);
}
RUN LOADING JOB load_set_list USING f="./list_set_vertex.csv"

list_set_vertex.csv

29B
list_set_vertex.csv

1,10
3,30
1,20
3,30
3,40
1,20

Loading a LIST or SET Attribute

Example: Cumulative loading of multiple rows to a SET/LIST

list_set_vertex.csv

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo4YqNCqRpwWi2Sr7-%2F-LNo6Ne6CKR3YNRGb0Rs%2Flist_set_vertex.csv?alt=media&token=5ccdda22-5f94-4f4b-b585-ac2b6b652bb1

652

Vertex 3 has values iset = [30,40] and ilist = [30, 30, 40]. Note that a set doesn't contain

duplicate values, while a list can contain duplicate values.

Because GSQL loading is multi-threaded, the order of values loaded into a LIST might not

match the input order.

If the input file contains multiple columns which should be all added to the LIST or SET,

then a second method is available. Use the LIST() or SET() function as in the example

below:

The third method is to use the SPLIT () function to read a compound token and split it into

a collection of elements, to form a LIST or SET collection. The SPLIT() function takes two

arguments: the column index and the element separator. The element separator should be

distinct from the separator through the whole file. Below shows an example:

CREATE VERTEX v_set (PRIMARY_ID id STRING, nick_names SET<STRING>)
CREATE VERTEX v_list (PRIMARY_ID id STRING, lucky_nums LIST<INT>)
CREATE GRAPH test_graph (*)
CREATE LOADING JOB load_set_list FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f TO VERTEX v_set VALUES ($0, SET($1,$2,$3));
 LOAD f TO VERTEX v_list VALUES ($0, LIST($2,$4));
}

CREATE VERTEX test_vertex (PRIMARY_ID id STRING, ustrset SET<STRING>, ilis
CREATE UNDIRECTED EDGE test_edge(FROM test_vertex, TO test_vertex)
CREATE GRAPH test_split (*)

CREATE LOADING JOB set_list_job FOR GRAPH test_split {
 DEFINE FILENAME f;
 LOAD f TO VERTEX test_vertex VALUES ($0, SPLIT($1,"|") , SPLIT($2,"#"))
}
RUN LOADING JOB set_list_job USING f="./split_list_set.csv"

split_list_set.csv

54B
split_list_set.csv

Example: loading multiple columns to a SET/LIST

Example: SET/LIST loading by SPLIT() example

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo6ZPlpsRlaILWUFRF%2F-LNo6x5rqXVX0aBq9lba%2Fsplit_list_set.csv?alt=media&token=83f45453-aacb-48f8-bdd3-a54ef9e2e788

653

The SPLIT() function cannot be used for UDT type elements.

There are three methods to load a MAP.

The first method is to load multiple rows of data which share the same id values. The

maps are formed incrementally by reading one key-value pair from each eligible data line.

When the loading job processes a line, it checks to see whether a vertex or edge with that

id value(s) already exists or not. If the id value(s) is new, then a new vertex or edge is

created with a new map containing the single key-value pair. If the id(s) has been used

before, then the loading job checks whether the key exists in the map or not. If the key

doesn't exist in the map, the new key-value pair is inserted. Otherwise, the value will be

replaced by the new value.

The loading order might not be the same as the order in the raw data. If a data file contains

multiple lines with the same id and same key but different values, loading them together

results in a nondeterministic final value for that key.

Method 1 : Below is the syntax to load a MAP by the first method: Use an arrow (->) to

separate the map's key and value.

vid,names,numbers
v1,mike|tom|jack, 1 # 2 # 3
v2,john, 5 # 4 # 8

CREATE VERTEX v_map (PRIMARY_ID id STRING, att_map MAP<INT, STRING>)
CREATE GRAPH test_graph (*)
CREATE LOADING JOB load_map FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f TO VERTEX v_map VALUES ($0, ($1 -> $2));
}

Loading a MAP Attribute

split_list_set.csv

Loading a MAP by method 1: -> separator

5/13/25, 1:39 PM TigerGraph Documentation

654

Method 2 : The second method is to use the MAP() function. If there are multiple key-value

pairs among multiple columns, MAP() can load them together. Below is an example:

Method 3 : The third method is to use the SPLIT() function. Similar to the SPLIT() in

loading LIST or SET, the SPLIT() function can be used when the key-value pair is in one

column and separated by a key-value separator, or multiple key-value pairs are in one

column and separated by element separators and key-value separators. SPLIT() here has

three parameters: The first is the column index, the second is the key-value separator, and

the third is the element separator. The third parameter is optional. If one row of raw data

only has one key-value pair, the third parameter can be skipped. Below are the examples

without and with the given element separator.

CREATE VERTEX v_map (PRIMARY_ID id STRING, att_map MAP<INT, STRING>)
CREATE GRAPH test_graph (*)
CREATE LOADING JOB load_map FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f TO VERTEX v_map VALUES ($0, MAP(($1 -> $2), ($3 -> $4)));
}

one_key_value.csv

42B
one_key_value.csv

vid,key_value
v1,1:mike
v2,2:tom
v1,3:lucy

multi_key_value.csv

67B
multi_key_value.csv

Loading a MAP by method 2: MAP() function

example data with one key-value pair per line

example data with multiple key-value pairs per line

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo74es9hPaw35no45-%2F-LNo7JgUGDM2KOtmYGaJ%2Fone_key_value.csv?alt=media&token=f373a090-5046-4668-b646-7d1dcce7cef1
https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo7QGdudjqPAQBejmG%2F-LNo7dzH3qXMvAoSjkTq%2Fmulti_key_value.csv?alt=media&token=1399a4cb-a3ed-47d5-91d9-34bdcb19395d

655

The SPLIT() function cannot be used for UDT type elements.

Loading a Composite Key for a vertex works no differently that normal loading. Simply

load all the attributes as you word for a vertex with a single-attribute primary key. The

primary key will automatically be constructed from the appropriate attributes.

When loading to an edge where either TO_VERTEX or FROM_VERTEX contains a

composite key, the composite set of attributes must be enclosed in parameters. See the

example below.

vid,key_value_list
v1,1:mike#4:lin
v2,2:tom
v1,3:lucy#1:john#6:jack

CREATE VERTEX v_map (PRIMARY_ID id STRING, att_map MAP<INT, STRING>)
CREATE GRAPH test_graph (*)
CREATE LOADING JOB load_map FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f TO VERTEX v_map VALUES ($0, SPLIT($1, ":", "#"));
}

Loading Composite Key Attributes

Loading a MAP by method 3: SPLIT() function

Example: loading composite key to vertex and edge

5/13/25, 1:39 PM TigerGraph Documentation

656

If an edge has been defined using a wildcard vertex type, a vertex type name must be

specified, following the vertex id, in a load statement for the edge. An example is shown

below:

#schema setup
CREATE VERTEX compositePerson (id uint, name string, PRIMARY KEY (name,id)
CREATE VERTEX compositeMovie (id uint, title string, country string, year
CREATE DIRECTED EDGE compositeRoles (from compositePerson,to compositeMovi
CREATE GRAPH MyGraph(*)

#loading job
CREATE LOADING JOB composite_load FOR GRAPH MyGraph {
 LOAD "$sys.data_root/movies.csv" TO VERTEX compositeMovie VALUES
 ($"id", $"title", $"country" ,$"year") USING header ="true", separa

 LOAD "$sys.data_root/persons.csv" TO VERTEX compositePerson VALUES
 ($"id",$"name") USING header = "true", separator =",";

 LOAD "$sys.data_root/compositeroles.csv" TO EDGE compositeRoles VALUES
 (($"personName", $"personId"),($"movieTitle",$"movieYear",$"movieId
 USING header="true", separator = ",";
}

#schema setup
CREATE VERTEX user(PRIMARY_ID id UINT)
CREATE VERTEX product(PRIMARY_ID id UINT)
CREATE VERTEX picture(PRIMARY_ID id UINT)
CREATE UNDIRECTED EDGE purchase (FROM *, TO *)
CREATE GRAPH test_graph(*)

#loading job
CREATE LOADING JOB test2 FOR GRAPH test_graph {
 DEFINE FILENAME f;
 LOAD f
 TO EDGE purchase VALUES ($0 user, $1 product),
 TO EDGE purchase VALUES ($0 user, $2 picture);
 }

Loading Wildcard Type Edges

Example: explicit vertex typing for an untyped edge

5/13/25, 1:39 PM TigerGraph Documentation

657

The GSQL Loader provides several built-in functions which operate on tokens. Some may

be used to construct attribute expressions and some may be used for conditional

expressions in the WHERE clause.

The following token functions can be used in an id or attribute expression

Function name and

parameters
Output type Description of function

gsql_reverse(in_string) string

Returns a string with the

characters in the reverse order

of the input string in_string .

gsql_concat(string1,

string2,...,stringN)
string

Returns a string which is the

concatenation of all the input

strings.

gsql_split_by_space(in_string

)
string

Returns a modified version of

in_string , in which each space

character is replaced with

ASCII 30 (decimal).

gsql_to_bool(in_string) bool

Returns true if the in_string is

either "t" or "true", with case

insensitive checking. Returns

false otherwise.

gsql_to_uint(in_string) uint

If in_string is the string

representation of an unsigned

int, the function returns that

integer.

If in_string is the string

representation of a

nonnegative float, the function

returns that number cast as

an int.

Built-in Loader Token Functions

Token Functions for Attribute Expressions

5/13/25, 1:39 PM TigerGraph Documentation

658

gsql_to_int(in_string) int

If in_string is the string

representation of an int, the

function returns that integer.

If in_string is the string

representation of a float, the

function returns that number

cast as an int.

gsql_ts_to_epoch_seconds(

timestamp)
uint

Converts a timestamp in

canonical string format to

Unix epoch time, which is the

int number of seconds since

Jan. 1, 1970. Refer to the

timestamp input format note

below.

gsql_current_time_epoch(0)
uint

Returns the current time in

Unix epoch seconds. *By

convention, the input

parameter should be 0, but it

is ignored.

flatten(column_to_be_split,

group_separator, 1)

flatten(column_to_be_split,

group_separator,

sub_field_separator,

number_of_sub_fields_in_one

_group)

See the section "TEMP_TABLE

and Flatten Functions" below.

flatten_json_array (

$"array_name")

flatten_json_array (

$"array_name", $"sub_obj_1",

$"sub_obj_2", ..., $"sub_obj_n"

)

See the section "TEMP_TABLE

and Flatten Functions" below.

split(column_to_be_split,

element_separator)

split(column_to_be_split,

key_value_separator, element

_separator)

See the section "Loading a

LIST or SET Attribute" above.

See the section "Loading a

MAP Attribute" above.

gsql_upper(in_string) string
Returns the input string in

upper-case.

5/13/25, 1:39 PM TigerGraph Documentation

659

The timestamp parameter should be in one of the following formats:

"%Y-%m-%d %H:%M:%S"

gsql_lower(in_string) string
Returns the input string in

lower-case.

gsql_trim(in_string) string

Trims whitespace from the

beginning and end of the input

string.

gsql_ltrim(in_string)

gsql_rtrim(in_string)
string

Trims white space from either

the beginning or the end of

the input string (Left or right).

gsql_year(timestamp) int

Returns 4-digit year from

timestamp. Refer to

timestamp input format note

below.

gsql_month(timestamp) int

Returns month (1-12) from

timestamp. Refer to

timestamp input format note

below.

gsql_day(timestamp) int

Returns day (1-31) from

timestamp. Refer to

timestamp input format note

below.

gsql_year_epoch(epoch) int

Returns 4-digit year from Unix

epoch time, which is the int

number of seconds since Jan.

1, 1970.

gsql_month_epoch(epoch) int

Returns month (1-12) from

Unix epoch time, which is the

int number of seconds since

Jan. 1, 1970.

gsql_day_epoch(epoch) int

Returns day (1-31) from Unix

epoch time, which is the int

number of seconds since Jan.

Timestamp Input Format

5/13/25, 1:39 PM TigerGraph Documentation

660

"%Y/%m/%d %H:%M:%S"
"%Y-%m-%dT%H:%M:%S.000z" // text after the dot . is ignored

A reducer function aggregates multiple values of a non-id attribute into one attribute value

of a single vertex or edge. Reducer functions are computed incrementally; that is, each

time a new input token is applied, a new resulting value is computed.

To reduce and load aggregate data to an attribute, the attribute expression has the form

where reducer_function is one of the functions in the table below. input_expr can include

non-reducer functions, but reducer functions cannot be nested.

Each reducer function is overloaded so that one function can be used for several different

data types. For primitive data types, the output type is the same as the input_expr type.

For LIST, SET, and MAP containers, the input_expr type is one of the allowed element types

for these containers (see "Complex Types" in the Attribute Data Types section). The

output is the entire container.

REDUCE(reducer_function (input_expr))

Function name
Data type of arg : Description of function's

return value

max(arg)
INT, UINT, FLOAT, DOUBLE: maximum of all arg

values cumulatively received

min(arg)
INT, UINT, FLOAT, DOUBLE: minimum of all arg

values cumulatively received

add(arg)

INT, UINT, FLOAT, DOUBLE: sum of all arg values

cumulatively received

STRING: concatenation of all arg values

cumulatively received

LIST, SET element: list/set of all arg values

cumulatively received

MAP (key -> value) pair: key-value dictionary of

Reducer Functions

5/13/25, 1:39 PM TigerGraph Documentation

661

Each function supports a certain set of attribute types. Calling a reducer function with an

incompatible type crashes the service. In order to prevent that, use the WHERE clause

(introduced below) together with IS NUMERIC or other operators, functions, predicates for

type checking if necessary.

The WHERE clause is an optional clause. The WHERE clause's condition is a boolean

expression. The expression may use column token variables, token functions, and

operators which are described below. The expression is evaluated for each input data line.

If the condition is true, then the vertex or edge instance is loaded into the graph store. If

the condition is false, then this instance is skipped. Note that all attribute values are

treated as string values in the expression, so the type conversion functions to_int() and

to_float(), which are described below, are provided to enable numerical conditions.

The GSQL Loader language supports most of the standard arithmetic, relational, and

boolean operators found in C++. Standard operator precedence applies, and parentheses

provide the usual override of precedence.

all key-value pair arg values cumulatively

received

and(arg)

BOOL: AND of all arg values cumulatively

received

INT, UINT: bitwise AND of all arg values

cumulatively received

or(arg)

BOOL: OR of all arg values cumulatively

received

INT, UINT: bitwise OR of all arg values

cumulatively received

overwrite(arg)
non-container: arg

LIST, SET: new list/set containing only arg

ignore_if_exists(arg)

Any: If an attribute value already exists,

return(retain) the existing value. Otherwise,

return(load) arg .

WHERE Clause

Operators in the WHERE Clause

5/13/25, 1:39 PM TigerGraph Documentation

662

• Arithmetic Operators: +, -, *, /, ^

Numeric operation can be used to express complex operation between numeric types.

Just as in ordinary mathematical expressions, parentheses can be used to define a

group and to modify the order of precedence.

Because computers necessarily can only store approximations for most DOUBLE and FLOAT

type values, it is not recommended to perform test for exact equality or inequality. Instead, o

ne should allow for an acceptable amount of error. The following example checks if $0 = 5,

with an error of 0.00001 permitted:

• Relational Operators: <, >, ==, !=, <=, >=

Comparisons can be performed between two numeric values or between two string

values.

• Predicate Operators:

◦ AND, OR, NOT operators are the same as in SQL. They can be used to combine

multiple conditions together.

E.g., $0 < "abc" AND $1 > "abc" selects the rows with the first token less than "abc"

and the second token greater than "abc".

E.g., NOT $1 < "abc" selects the rows with the second token greater than or equal

to "abc".

◦ IS NUMERIC

token IS NUMERIC returns true if token is in numeric format. Numeric format

include integers, decimal notation, and exponential notation. Specifically, IS

NUMERIC is true if token matches the following regular expression: (+/-) ? [0-9] + (.

[0-9]) ? [0-9] * ((e/E)(+/-) ? [0-9] +) ? . Any leading space and trailing space is

skipped, but no other spaces are allowed.

E.g., $0 IS NUMERIC checks whether the first token is in numeric format.

◦ IS EMPTY

token IS EMPTY returns true if token is an empty string.

E.g., $1 IS EMPTY checks whether the second token is empty.

◦ IN

token IN (set_of_values) returns true if token is equal to one member of a set of

specified values. The values may be string or numeric types.

E.g., $2 IN ("abc", "def", "lhm") tests whether the third token equals one of the three

strings in the given set.

WHERE to_float($0) BETWEEN 5-0.00001 AND 5+0.00001

5/13/25, 1:39 PM TigerGraph Documentation

663

E.g., to_int($3) IN (10, 1, 12, 13, 19) tests whether the fourth token equals one of

the specified five numbers.

◦ BETWEEN ... AND

token BETWEEN lowerVal AND upperVal returns true if token is within the

specified range, inclusive of the endpoints. The values may be string or numeric

types.

E.g., $4 BETWEEN "abc" AND "def" checks whether the fifth token is greater than

or equal to "abc" and also less than or equal to "def"

E.g., to_float($5) BETWEEN 1 AND 100.5 checks whether the sixth token is greater

than or equal to 1.0 and less than or equal to 100.5.

The GSQL loading language provides several built-in functions for the WHERE clause.

Function name Output type Description of function

to_int(main_string) int
Converts main_string to an

integer value.

to_float(main_string) float
Converts main_string to a

float value.

concat(string1, string2) string

Returns a string which is the

concatenation of string1 and

string2 .

token_len(main_string) int
Returns the length of

main_string.

gsql_is_not_empty_string(

main_string)
bool

Returns true if main_string is

empty after removing white

space. Returns false

otherwise.

gsql_token_equal(string1,

string2)
bool

Returns true if string1 is

exactly the same (case

sensitive) as string2 . Returns

false otherwise.

gsql_token_ignore_case_equa

l(string1, string2)
bool

Returns true if string1 is

exactly the same (case

Token functions in the WHERE clause

5/13/25, 1:39 PM TigerGraph Documentation

664

The token functions in the WHERE clause and those token functions used for attribute

expression are different. They cannot be used exchangeably.

Users can write their own token functions in C++ and install them in the GSQL system. The

system installation already contains a source code file containing sample functions. Users

simply add their customized token functions to this file. The file for user-defined token

functions for attribute expressions or WHERE clauses is at

<tigergraph.root.dir>/dev/gdk/gsql/src/TokenBank/TokenBank.cpp. There are a few

examples in this file, and details are presented below .

Testing your functions is simple. In the same directory with the TokenBank.cpp file is a

command script called compile.

1. To test that your function compiles:

2. To test that your function works correctly, write your own test and add it to the main()

procedure in the TokenBank.cpp. Then, compile the file and run it. Note that files located

in ../TokenLib need to be included:

insensitive) as string2 .

Returns false otherwise.

gsql_is_true(main_string) bool

Returns true if main_string is

either "t" or "true" (case

insensitive). Returns false

otherwise.

gsql_is_false(main_string) bool

Returns true if main_string is

either "f" or "false" (case

insensitive). Returns false

otherwise.

./compile

g++ -I../TokenLib TokenBank.cpp
./a.out

User-Defined Token Functions

5/13/25, 1:39 PM TigerGraph Documentation

665

The parameters are as follows: iToken is the array of string tokens, iTokenLen is the array

of the length of the string tokens, and iTokenNum is the number of tokens. Note that the

input tokens are always in string (char*) format.

If the attribute type is not string nor string compress, the return type should be the

corresponding type: bool for bool; uint64_t for uint; int64_t for int; float for float double for

double. If the attribute type is string or string compress, the return type should be void,

and use the extra parameters (char *const oToken, uint32_t& oTokenLen) for storing the

return string. oToken is the returned string value, and oTokenLen is the length of this

string.

The built-in token function gsql_concat is used as an example below. It takes multiple-

token parameter and returns a string.

Attribute type Function signature

string or string compress

extern "C" void funcName (const char* const

iToken[], uint32_t iTokenLen[], uint32_t

iTokenNum,

char* const oToken, uint32_t& oTokenLen)

bool

extern "C" bool funcName (const char* const

iToken[], uint32_t iTokenLen[], uint32_t

iTokenNum)

uint

extern "C" uint64_t funcName (const char*

const iToken[], uint32_t iTokenLen[], uint32_t

iTokenNum)

int

extern "C" int64_t funcName (const char* const

iToken[], uint32_t iTokenLen[], uint32_t

iTokenNum)

float

extern "C" float funcName (const char* const

iToken[], uint32_t iTokenLen[], uint32_t

iTokenNum)

double

extern "C" double funcName (const char* const

iToken[], uint32_t iTokenLen[], uint32_t

iTokenNum)

User-defined Token Functions for Attribute Expressions

5/13/25, 1:39 PM TigerGraph Documentation

666

User-defined token functions (described above) can also be used to construct the boolean

conditional expression in the WHERE clause. However, there are some restrictions in the

WHERE clause:

In the clause "WHERE conditions ",

• The only type of user-defined token function allowed are those that return a boolean

value.

• If a user-defined token function is used in a WHERE Clause, then it must constitute the

entire condition; it cannot be combined with another function or operator to produce a

subsequent value. However, the arguments of the UDF can include other functions.

The source code for the built-in token function gsql_token_equal is used as an example for

how to write a user-defined token function.

extern "C" void gsql_concat(const char* const iToken[], uint32_t iTokenLen
 int k = 0;
 for (int i=0; i < iTokenNum; i++) {
 for (int j =0; j < iTokenLen[i]; j++) {
 oToken[k++] = iToken[i][j];
 }
 }
 oTokenLen = k;
}

User-defined Token Functions for WHERE Clause

gsql_concat

gsql_token_equal

5/13/25, 1:39 PM TigerGraph Documentation

667

There are no supported options for the OPTION clause at this time.

A USING clause contains one or more optional parameter value pairs:

In the v2.0 loading syntax, the USING clause only appears at the end of a LOAD statement.

In earlier versions, the location of the USING clause and which parameters were valid

depending the whether the job was a v1.x online loading job or v1.x offline loading job.

If multiple LOAD statements use the same source (the same file path, the same

TEMP_TABLE, or the same file variable), the USING clauses in these LOAD statements must

be the same. Therefore, we recommend that if multiple destination clauses share the same

source, put all of these destination clauses into the same LOAD statement.

extern "C" bool gsql_token_equal(const char* const iToken[], uint32_t iTok
 if (iTokenNum != 2) {
 return false;
 }
 if (iTokenLen[0] != iTokenLen[1]) {
 return false;
 }
 for (int i =0; i < iTokenLen[0]; i++) {
 if (iToken[0][i] != iToken[1][i]) {
 return false;
 }
 }
 return true;
}

USING parameter=value [,parameter=value]*

Other Optional LOAD Clauses

OPTION clause

USING clause

5/13/25, 1:39 PM TigerGraph Documentation

668

Parameter Meaning of Value Allowed Values

SEPARATOR

specifies the special

character that separates

tokens (columns) in the data

file

any single ASCII character.

Default is comma ","

"\t" for tab "\xy" for

ASCII decimal code xy

EOL the end-of-line character

any ASCII sequence

Default = "\n" (system-

defined newline character or

character sequence)

QUOTE

(See note below)

specifies explicit boundary

markers for string tokens,

either single or double

quotation marks. See more

details below.

"single" for '

"double" for "

USER_DEFINED_HEADER

specifies the name of the

header variable, when a

header has been defined in

the loading job, rather than in

the data file

the variable name in the

preceding DEFINE HEADER

statement

REJECT_LINE_RULE

if the filter expression

evaluates to true, then do not

use this input data line.

name of filter from a

preceding DEFINE

INPUT_LINE_FILTER

statement

JSON_FILE

(See note below)

whether each line is a json

object (see Section "JSON

Loader" below for more

details)

"true", "false"

Default is "false"

HEADER

whether the data file's first

line is a header line.

The header assigns names to

the columns.

The LOAD statement must

refer to an actual file with a

valid header.

"true", "false"

Default is "false"

VERTEXMUSTEXIST

(See note below)

specifies whether to require

that the endpoint vertices of "true", "false"

Default is "false"

5/13/25, 1:39 PM TigerGraph Documentation

669

The parser will not treat separator characters found within a pair of quotation marks as a

separator. For example, if the parsing conditions are QUOTE="double", SEPARATOR=",", the

comma in "Leonard,Euler" will not separate Leonard and Euler into separate tokens.

• If QUOTE is not declared, quotation marks are treated as ordinary characters.

• If QUOTE is declared, but a string does not contain a matching pair of quotation

marks, then the string is treated as if QUOTE is not declared.

• Only the string inside the first pair of quote (from left to right) marks are loaded. For

example QUOTE="double", the string a"b"c"d"e will be loaded as b.

• There is no escape character in the loader, so the only way to include quotation marks

within a string is for the string body to use one type of quote (single or double) and to

declare the other type as the string boundary marker.

Previously, ill-formatted strings such as a"a,b"ac,d would be parsed as a,b,d ignoring a,a,c.

The expected input string should be a,"a,b",ac,d. In v2.4, incorrectly formatted strings such as

this example will be parsed normally, giving you this result: a"a,b"ac and d.

When the USING option JSON_FILE="true" is used, the loader loads JSON objects instead

of tabular data. A JSON object is an unordered set of key/value pairs, where each value

may itself be an array or object, leading to nested structures. A colon separates each key

from its value, and a comma separates items in a collection. A more complete description

of JSON format is available at www.json.org . The JSON loader requires that each input

line has exactly one JSON object . Instead of using column values as tokens, the JSON

loader uses JSON values as tokens, that is, the second part of each JSON key/value pair.

In a GSQL loading job, a JSON field is identified by a dollar sign $ followed by the colon-

separated sequence of nested key names to reach the value from the top level. For

example, given the JSON object {"abc":{"def": "this_value"}}, the identifier $"abc":"def" is

used to access "this_value". T he double quotes are mandatory.

an edge must exist in order to

QUOTE parameter

Loading JSON Data

5/13/25, 1:39 PM TigerGraph Documentation

http://www.json.org/
http://www.json.org/

670

An example is shown below:

In the above data encoding.json, the order of fields are not fixed and some fields are

missing. The JSON loader ignores the order and accesses the fields by the nested key

names. The missing fields are loaded with default values. The result vertices are:

Normally, if vertices do not exist when loading data to edges, a vertex will be created for

the connecting edge, using default values for all attributes. Using the

CREATE VERTEX encoding (PRIMARY_ID id STRING, length FLOAT default 10)
CREATE UNDIRECTED EDGE encoding_edge (FROM encoding, TO encoding)
CREATE GRAPH encoding_graph (*)

CREATE LOADING JOB json_load FOR GRAPH encoding_graph {
 LOAD "encoding.json" TO VERTEX encoding
 VALUES ($"encoding", $"indent":"length") USING JSON_FILE="true";
}
RUN JOB json_load

encoding.json - Download

267B
encoding.json

{"encoding": "UTF-7","plug-ins":["c"],"indent" : { "length" : 30, "use_spa
{"encoding":"UTF-1","indent":{"use_space": "dontloadme"}, "plug-ins" : [nu
{"plug-ins":["C","c++"],"indent":{"length" : 3, "use_space": false},"encod

id attr1

"UTF-7" 30

"UTF-1" 0

"UTF-6" 3

VertexMustExist Parameter

USING JSON_FILE test schema and loading job

encoding.json

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNqKbTOU-JA7bZGITQx%2F-LNqKl2uZxxA6XunSGXx%2Fencoding.json?alt=media&token=9ac6937c-9ee0-45d2-a09b-cc3d737ff9e2

671

VERTEXMUSTEXIST="true" option will load data only if the vertices on both sides of an

edge already exist, therefore no longer creating extra vertices.

The keyword TEMP_TABLE triggers the use of a temporary data table which is used to

store data generated by one LOAD statement, for use by a later LOAD statement. Earlier

we introduced the syntax for loading data to a TEMP_TABLE:

This clause is designed to be used in conjunction with the flatten or flatten_json_array

function in one of the attr_expr expressions. The flatten function splits a multi-value field

into a set of records. Those records can first be stored into a temporary table, and then the

temporary table can be loaded into vertices and/or edges. Only one flatten function is

allowed in one temp table destination clause.

There are two versions of the flatten function: One parses single-level groups and the

other parses two-level groups. There are also two versions of the flatten_json_array

function: One splits an array of primitive values, and the other splits an array of JSON

objects.

flatten(column_to_be_split, separator, 1) is used to parse a one-level group into individual

elements. An example is shown below:

CREATE LOADING JOB load_edge FOR GRAPH MyGraph {
 DEFINE FILENAME f;
 LOAD f
 TO EDGE MyEdge VALUES ($1, $2, $3,) USING VERTEXMUSTEXIST="true";
}

TO TEMP_TABLE table_name (id_name [, attr_name]*) VALUES (id_expr [, attr_
 [WHERE conditions] [OPTION (options)]

TEMP_TABLE and Flatten Functions

One-Level Flatten Function

TEMP_TABLE Destination Clause

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo7klxBO8lIHs12YSF%2F-LNo8CDF9M7asuJwE_7J%2Fbook1.dat?alt=media&token=a9f739fc-7afc-45e7-8fcf-3c6befa6c81a

672

The loading job contains two LOAD statements. The first one loads input data to Book

vertices and to a TEMP_TABLE. The second one loads the TEMP_TABLE data to Genre

vertices and book_genre edges.

Line 5 says that the third column ($2) of each input line should be split into separate

tokens, with comma "," as the separator. Each token will have its own row in table t1. The

book1.dat

140B book1.dat

101|"Harry Potter and the Philosopher's Stone"|"fiction,fantasy,young adul
102|"The Three-Body Problem"|"fiction,science fiction,Chinese"

CREATE LOADING JOB load_books_flatten1 FOR GRAPH Book_rating {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX Book VALUES ($0, $1, _),
 TO TEMP_TABLE t1(bookcode,genre) VALUES ($0, flatten($2,",",1))
 USING QUOTE="double", SEPARATOR="|";

 LOAD TEMP_TABLE t1
 TO VERTEX Genre VALUES($"genre", $"genre"),
 TO EDGE book_genre VALUES($"bookcode", $"genre");
}
RUN LOADING JOB load_books_flatten1 USING f="../data/book1.dat"

bookcode genre

101 fiction

101 fantasy

101 young_adult

102 fiction

102 science_fiction

102 Chinese

book1.dat

One-level Flatten Function loading (load_book_flatten1.gsql)

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo7klxBO8lIHs12YSF%2F-LNo8CDF9M7asuJwE_7J%2Fbook1.dat?alt=media&token=a9f739fc-7afc-45e7-8fcf-3c6befa6c81a

673

first column is labeled "bookcode" with value $0 and the second column is "genre" with

one of the $2 tokens. The contents of TEMP_TABLE t1 are shown below:

Then, lines 8 to 10 say to read TEMP_TABLE t1 and to do the following for each row:

• Create a Genre vertex for each new value of "genre".

• Create a book_genre edge from "bookcode" to "genre". In this case, each row of

TEMP_TABLE t1 generates one book_genre edge.

The final graph will contain two Book vertices (101 and 102), five Genre vertices, and six

book_genre edges.

List of all book_genre edges after loading

5/13/25, 1:39 PM TigerGraph Documentation

674

5/13/25, 1:39 PM TigerGraph Documentation

675

{
 "results": [{"@@edgeSet": [
 {
 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "101",
 "to_id": "fiction",
 "attributes": {},
 "e_type": "book_genre"
 },
 {
 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "101",
 "to_id": "fantasy",
 "attributes": {},
 "e_type": "book_genre"
 },
 {
 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "102",
 "to_id": "sciencevfiction",
 "attributes": {},
 "e_type": "book_genre"
 },
 {
 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "101",
 "to_id": "young adult",
 "attributes": {},
 "e_type": "book_genre"
 },
 {
 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "102",
 "to_id": "fiction",
 "attributes": {},
 "e_type": "book_genre"
 },
 {

5/13/25, 1:39 PM TigerGraph Documentation

676

flatten(column_to_be_split, group_separator, sub_field_separator,

number_of_sub_fields_in_one_group) is used for parse a two-level group into individual

elements. Each token in the main group may itself be a group, so there are two separators:

one for the top level and one for the second level. An example is shown below.

The flatten function now has four parameters instead of three. The additional parameter

is used to record the genre_name in the Genre vertices.

 "from_type": "Book",
 "to_type": "Genre",
 "directed": false,
 "from_id": "102",
 "to_id": "Chinese",
 "attributes": {},
 "e_type": "book_genre"
 }
]}]
}

101|"Harry Potter and the Philosopher's Stone"|"FIC:fiction,FTS:fantasy,YA
102|"The Three-Body Problem"|"FIC:fiction,SF:science fiction,CHN:Chinese"

CREATE LOADING JOB load_books_flatten2 FOR GRAPH Book_rating {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX Book VALUES ($0, $1, _),
 TO TEMP_TABLE t2(bookcode,genre_id,genre_name) VALUES ($0, flatten($
 USING QUOTE="double", SEPARATOR="|";

 LOAD TEMP_TABLE t2
 TO VERTEX Genre VALUES($"genre_id", $"genre_name"),
 TO EDGE book_genre VALUES($"bookcode", $"genre_id");
}
RUN LOADING JOB load_books_flatten2 USING f="book2.dat"

Two-Level Flatten Function

book2.dat

Two-level Flatten Function loading (book_flatten2_load.gsql)

5/13/25, 1:39 PM TigerGraph Documentation

677

In this example, in the genres column ($2), there are multiple groups, and each group has

two sub-fields, genre_id and genre_name. After running the loading job, the file book2.dat

will be loaded into the TEMP_TABLE t2 as shown below.

flatten_json_array($" array_name ") parses a JSON array of primitive (string, numberic, or

bool) values, where "array_name" is the name of the array. Each value in the array creates

a record. Below is an example:

bookcode genre_id

101 FIC fiction

101 FTS fantasy

101 YA young adult

102 FIC fiction

102 SF science fiction

102 CHN Chinese

CREATE VERTEX encoding (PRIMARY_ID id STRING, length FLOAT default 10)
CREATE UNDIRECTED EDGE encoding_edge (FROM encoding, TO encoding)
CREATE GRAPH encoding_graph (*)

CREATE LOADING JOB json_flatten FOR GRAPH encoding_graph {
 LOAD "encoding2.json" TO TEMP_TABLE t2 (name, length)
 VALUES (flatten_json_array($"plug-ins"), $"indent":"length") USING JSO
 LOAD TEMP_TABLE t2
 TO VERTEX encoding VALUES ($"name", $"length");
}
RUN LOADING JOB json_flatten

encoding2.json - Download

95B
encoding2.json

Flatten a JSON Array of Primitive Values

flatten_json_array_values loading

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNqKbTOU-JA7bZGITQx%2F-LNqKzCTaP0_IS8JT229%2Fencoding2.json?alt=media&token=57ba2960-9f2b-40e7-bdd9-1bd418811b12

678

The above data and loading job creates the following temporary table:

flatten_json_array ($"array_name", $"sub_obj_1", $"sub_obj_2", ..., $"sub_obj_n") parses a

JSON array of JSON objects. "array_name" is the name of the array, and the following

parameters $"sub_obj_1", $"sub_obj_2", ..., $"sub_obj_n" are the field key names in each

object in the array. See complete example below:

{"plug-ins" : ["C", "c++"],"encoding" : "UTF-6","indent" : { "length" : 3,

id length

C 3

c++ 3

encoding3.json - Download

594B
encoding3.json

{"encoding":"UTF-1","indent":{"use_space": "dontloadme"}, "plug-ins" : [nu
{"encoding": "UTF-8", "plug-ins" : [{"lang": "pascal", "score":"1.0", "pro
{"encoding": "UTF-7", "plug-ins" : [{"lang":"java", "score":2.22}, {"lang
{"plug-ins" : ["C", "c++"],"encoding" : "UTF-6","indent" : { "length" : 3,

Flatten a JSON Array of JSON Objects

encoding2.json

encoding3.json

json_flatten_array_test.gsql

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNqKbTOU-JA7bZGITQx%2F-LNqLLFUyvmLDZUeliPz%2Fencoding3.json?alt=media&token=b88f3cac-02fb-4136-a3b5-92bd08fd7953

679

When splitting a JSON array of JSON objects, the primitive values are skipped and only

JSON objects are processed. As in the example above, the 4th line's "plug-ins" field will not

generate any record because its "plug-ins" array doesn't contain any JSON object. Any field

which does not exist in the object will be loaded with default value. The above example

generates the temporary table shown below:

flatten_json_array() can also be used to split a column of a tabular file, where the column

contains JSON arrays. An example is given below:

CREATE VERTEX encoding3 (PRIMARY_ID id STRING, score FLOAT default -1.0, a
CREATE UNDIRECTED EDGE encoding3_edge (FROM encoding3, TO encoding3)
CREATE GRAPH encoding_graph (*)

CREATE LOADING JOB json_flatten_array FOR GRAPH encoding_graph {
 LOAD "encoding3.json" TO TEMP_TABLE t3 (name, score, prop_age, indent_le
 VALUES (flatten_json_array($"plug-ins", $"lang", $"score", $"prop":"ag
 USING JSON_FILE="true";
 LOAD TEMP_TABLE t3
 TO VERTEX encoding3 VALUES ($"name", $"score", $"prop_age", $"indent_l
}
RUN LOADING JOB json_flatten_array

id score age length

"golang" default "noidea" default

"pascal" 1.0 "old" 12

"c++" 2.0 default 12

"java" 2.22 default 30

"python" 3.0 default 30

"go" 4.0 "new" 30

encoding.csv

336B
encoding.csv

Flatten a JSON Array in a CSV file

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNo8JTdS5aX7hpufdyJ%2F-LNo8ZGkDgCWTDv3Eue6%2Fencoding.csv?alt=media&token=5d34364d-8447-4608-9a82-e4576158c2dd

680

The second column in the csv file is a JSON array which we want to split.

flatten_json_array() can be used in this case without the USING JSON_FILE="true" clause:

The above example generates the temporary table shown below:

flatten_json_array in csv

golang|{"prop":{"age":"noidea"}}
pascal|{"score":"1.0", "prop":{"age":"old"}}
c++|{"score":2.0, "indent":{"length":12, "use_space": true}}
java|{"score":2.22, "prop":{"age":"new"}, "indent":{"use_space":"true", "l
python|{ "prop":{"compiled":"false"}, "indent":{"length":4}, "score":3.0}
go|{"score":4.0, "prop":{"age":"new"}}

CREATE VERTEX encoding3 (PRIMARY_ID id STRING, score FLOAT default -1.0, a
CREATE UNDIRECTED EDGE encoding3_edge (FROM encoding3, TO encoding3)
CREATE GRAPH encoding_graph (*)

CREATE LOADING JOB json_flatten_cvs FOR GRAPH encoding_graph {
 LOAD "encoding.csv" TO TEMP_TABLE t4 (name, score, prop_age, indent_leng
 VALUES ($0,flatten_json_array($1, $"score", $"prop":"age", $"indent":"
 USING SEPARATOR="|";
 LOAD TEMP_TABLE t4
 TO VERTEX encoding3 VALUES ($"name", $"score", $"prop_age", $"indent_l
}
RUN LOADING JOB json_flatten_cvs

id score age length

golang -1 (default) noidea -1 (default)

pascal 1 old -1 (default)

c++ 2 unknown (default) 12

java 2.22 new 2

python 3 unknown (default) 4

go 4 new -1 (default)

encoding.csv

json_flatten_cvs.gsql

5/13/25, 1:39 PM TigerGraph Documentation

681

flatten_json_array() does not work if the separator appears also within the json array column.

For example, if the separator is comma, the csv loader will erroneously divide the json array

into multiple columns. Therefore, it is recommended that the csv file use a special column

separator, such as "|" in the above example .

In addition to loading data, a LOADING JOB can be used to perform the opposite

operation: deleting vertices and edges, using the DELETE statement. DELETE cannot be

used in offline loading. Just as a LOAD statement uses the tokens from each input line to

set the id and attribute values of a vertex or edge to be created, a DELETE statement uses

the tokens from each input line to specify the id value of the item(s) to be deleted.

In the v2.0 syntax, there is now a " FROM (filepath_string | filevar) " clause just

before the WHERE clause.

There are four variations of the DELETE statement. The syntax of the four cases is shown

below.

An example using book_rating data is shown below:

CREATE LOADING JOB abc FOR GRAPH graph_name {
 DEFINE FILENAME f;
 # 1. Delete each vertex which has the given vertex type and primary id.
 DELETE VERTEX vertex_type_name (PRIMARY_ID id_expr) FROM f [WHERE condit

 # 2. Delete each edge which has the given edge type, source vertex id, a
 DELETE EDGE edge_type_name (FROM id_expr, TO id_expr) FROM f [WHERE cond

 # 3. Delete all edges which have the given edge type and source vertex i
 DELETE EDGE edge_type_name (FROM id_expr) FROM f [WHERE condition] ;

 # 4. Delete all edges which have the given source vertex id. (Edge type
 DELETE EDGE * (FROM id_expr vertex_type_name) FROM f [WHERE condition] ;
}

DELETE statement

DELETE VERTEX | EDGE Syntax

DELETE example

5/13/25, 1:39 PM TigerGraph Documentation

682

There is a separate DELETE statement in the GSQL Query Language. The query delete

statement can leverage the query language's ability to explore the graph and to use complex

conditions to determine which items to delete. In contrast, the loading job delete statement

requires that the id values of the items to be deleted must be specified in advance in an input

file.

The gsql command offline2online converts an installed offline loading job to an equivalent

online loading job or set of jobs.

An offline loading job contains one or more LOAD statements, each one specifying the

name of an input data file. The offline2online will convert each LOAD statement into a

separate online loading job. The data filename will be appended to the offline job name, to

create the new online job name. For example, if the offline job has this format:

Delete all user occupation edges if the user is in the new files, then l
CREATE LOADING JOB clean_user_occupation FOR GRAPH Book_rating {
 DEFINE FILENAME f;
 DELETE EDGE user_occupation (FROM $0) FROM f;
}
CREATE LOADING JOB load_user_occupation FOR GRAPH Book_rating {
 DEFINE FILENAME f;
 LOAD f TO EDGE user_occupation VALUES ($0,$1);
}
RUN LOADING JOB clean_user_occupation USING f="./data/user_occupation_upda
RUN LOADING JOB load_user_occupation USING f="./data/user_occupation_updat

offline2online <offline_job_name>

CREATE LOADING JOB loadEx FOR GRAPH graphEx {
 LOAD "fileA" TO ...
 LOAD "fileB" TO ...
}

offline2online Job Conversion (DEPRECATED)

Online Job Names

5/13/25, 1:39 PM TigerGraph Documentation

683

then running the GSQL command offline2online loadEx will create two new online

loading jobs, called loadEx_fileA and loadEx_fileB . The converted loading jobs are

installed in the GSQL system; they are not available as text files. However, if there are

already jobs with these names, then a version number will be appended: first "_1", then

"_2", etc.

For example, if you were to execute offline2online loadEx three times, this would

generate the following online jobs:

• 1st time: loadEx_fileA, loadEx_fileB

• 2nd time: loadEx_fileA_1, loadEx_fileB_1

• 3rd time: loadEx_fileA_2, loadEx_fileB_2

Some parameters of a loading job which are built in to offline loading jobs instead cannot be

included in online jobs:

• input data filename

• SEPARATOR

• HEADER

Instead, they should be provided when running the loading job. However, online jobs do not

have full support for HEADER.

When running any online loading job, the input data filename and the separator character

must be provided. See sections on the USING clause and Running a Loading Job for

more details.

If an online loading job is run with the HEADER="true" option, it will skip the first line in the

data file, but it will not read that line to get the column names. Therefore, offline jobs

which read and use column header names must be manually converted to online jobs.

The following example is taken from the Social Network case in the GSQL Tutorial with

Real-Life Examples . In version 0.2 of the tutorial, we used offline loading. The job below

uses the same syntax as v0.2, but some names have been updated:

Conversion and RUN JOB Details

5/13/25, 1:39 PM TigerGraph Documentation

684

To run, this job:

Note that the first LOAD statement has HEADER="true", but is does not make use of

column names. It simply uses column indices $0, $1, $2, and $3. Therefore, the HEADER

option can still be used with the converted job. Running offline2online load_social1 ,

creates two new jobs called load_social_social_users.csv and

load_social_social_connection.csv.

The equivalent run commands for the jobs are the following:

For comparison, here is the online loading job in the current version of the Tutorial and its

loading commands:

CREATE LOADING JOB load_social FOR GRAPH gsql_demo
{
 LOAD "data/social_users.csv"
 TO VERTEX SocialUser VALUES ($0,$1,$2,$3)
 USING QUOTE="double", SEPARATOR=",", HEADER="true";

 LOAD "data/social_connection.csv"
 TO EDGE SocialConn VALUES ($0, $1)
 USING SEPARATOR=",", HEADER="false";
}

RUN LOADING JOB load_social

RUN LOADING JOB load_social_social_users.csv USING FILENAME="data/social_u
RUN LOADING JOB load_social_social_connection.csv USING FILENAME="data/soc

Offline loading example, based on social_load.gsql, version 0.2

social_load.gsql, version 0.8.1

5/13/25, 1:39 PM TigerGraph Documentation

685

CREATE LOADING JOB load_social1 FOR GRAPH gsql_demo
{
 LOAD
 TO VERTEX SocialUser VALUES ($0,$1,$2,$3) USING QUOTE="double";
}
CREATE LOADING JOB load_social2 FOR GRAPH gsql_demo {
 LOAD
 TO EDGE SocialConn VALUES ($0, $1);
}
load the data
RUN JOB load_social1 USING FILENAME="../social/data/social_users.csv", SEP
RUN JOB load_social2 USING FILENAME="../social/data/social_connection.csv"

5/13/25, 1:39 PM TigerGraph Documentation

686

Running a Loading Job

There are two aspects to clearing the system: flushing the data and clearing the schema

definitions in the catalog. Two different commands are available.

Available only to superusers.

The CLEAR GRAPH STORE command flushes all the data out of the graph store

(database). By default, the system will ask the user to confirm that you really want to

discard all the graph data. To force the clear operation and bypass the confirmation

question, use the -HARD option, e.g.,

Clearing the graph store does not affect the schema.

1. Use the -HARD option with extreme caution. There is no undo option. -HARD must be in

all capital letters.

2. CLEAR GRAPH STORE stops all the TigerGraph servers (GPE, GSE, RESTPP, Kafka, and

Zookeeper).

3. Loading jobs and queries are aborted.

Available only to superusers.

CLEAR GRAPH STORE -HARD

Clearing and Initializing the Graph Store

CLEAR GRAPH STORE

DROP ALL

5/13/25, 1:39 PM TigerGraph Documentation

687

The DROP ALL statement clears the graph store and removes all definitions from the

catalog: vertex types, edge types, graph types, jobs, and queries.

Running a loading job executes a previously installed loading job. The job reads lines from

an input source, parses each line into data tokens, and applies loading rules and

conditions to create new vertex and edge instances to store in the graph data store.

TigerGraph 2.0 introduces enhanced data loading with slightly modified syntax for

CREATE and RUN statements. The previous RUN JOB syntaxes for v1.x online loading

and offline loading and still supported for backward compatibility. Additionally, loading

jobs can also be run by directly submitted a HTTP request to the REST++ server.

pre-v2.0 RUN JOB syntax is deprecated

As of v2.0, RUN LOADING JOB is the preferred syntax for running all loading jobs. The pre-

v2.0 syntaxes for running online post jobs and offline loading jobs are still support for now

but are deprecated.

Note that the keyword LOADING is included. This makes it more clear to users and to

GSQL that the job is a loading job and not some other type of job (such as a

SCHEMA_CHANGE JOB).

When a concurrent loading job is submitted, it is assigned a job ID number, which is

displayed on the GSQL console. The user can use this job ID to refer to the job, for a

status update, to abort the job, or to re-start the job. These operations are described later

in this section.

RUN LOADING JOB [-noprint] [-dryrun] [-n [i],j] jobname [USING filevar [=

Running a Loading Job

RUN LOADING JOB

RUN LOADING JOB syntax for concurrent loading

5/13/25, 1:39 PM TigerGraph Documentation

688

-noprint

By default, the command will print several several lines of status information while the

loading is running.

If the -noprint option is included, the job will run omit the progress and summary details,

but it will still display the job id and the location of the log file.

-dryrun

If -dryrun is used, the system will read the data files and process the data as instructed by

the job, but will NOT load any data into the graph. This option can be a useful diagnostic

tool.

-n [i], j

The -n option limits the loading job to processing only a range of lines of each input

data file. The -n flag accepts one or two arguments. For example, -n 50 means read

lines 1 to 50.

-n 10, 50 means read lines 10 to 50. The special symbol $ is interpreted as "last line",

so -n 10,$ means reads from line 10 to the end.

filevar list

The optional USING clause may contain a list of file variables. Each file variable may

optionally be assigned a filepath_string , obeying the same format as in the CREATE

LOADING JOB. This list of file variables determines which parts of a loading job are run

and what data files are used.

1. When a loading job is compiled, it generates one RESTPP endpoint for each filevar and

filepath_string . As a consequence, a loading job can be run in parts. When RUN

Kick off the following job:
 JobName: load_videoE, jobid: gsql_demo_m1.1525091090494
 Loading log: '/usr/local/tigergraph/logs/restpp/restpp_loader_logs/gsql_

Options

Example of minimal output when -noprint option is used

5/13/25, 1:39 PM TigerGraph Documentation

689

LOADING JOB is executed, only those endpoints whose filevar or file identifier ("

__GSQL_FILENAME_n__") is mentioned in the USING clause will be used. However, if

the USING clause is omitted, then the entire loading job will be run.

2. If a filepath_string is given, it overrides the filepath_string defined in the loading job. If

a particular filevar is not assigned a filepath_string either in the loading job or in the

RUN LOADING JOB statement, then an error is reported and the job exits.

CONCURRENCY

The CONCURRENCY parameter sets the maximum number of concurrent requests that

the loading job may send to the GPE. The default is 256.

BATCH_SIZE

The BATCH_SIZE parameter sets the number of data lines included in each concurrent

request sent to the GPE. The default is 1024.

Another way to run a loading job is to submit an HTTP request to the POST

/ddl/<graph_name> endpoint of the REST++ server. Since the REST++ server has more

direct access to the graph processing engine, this can execute more quickly than a RUN

LOADING JOB statement in GSQL.

When a CREATE LOADING JOB block is executed, the GSQL system creates one REST

endpoint for each file source. Therefore, one REST request can invoke loading for one file

source at a time. Running an entire loading job may take more than one REST request.

The Linux curl command is a handy way to make HTTP requests. If the data size is small,

it can be included directly in the command line by using the -d flag with a data string:

If the data size is large, it is better to reference the data filename, using the --data-binary

flag:

curl -X POST -d "<data_string>" "http://<server_ip>:9000/ddl/<graph_name>?

Running Loading Jobs as REST Requests

Curl/REST++ syntax for loading using the POST /ddl endpoint

5/13/25, 1:39 PM TigerGraph Documentation

690

<filepath> should be replaced with either a file variable (from a DEFINE FILENAME

statement) or a position-based file identifier ("__GSQL_FILENAME_n__") for an explicit

filepath_string.

For more information, about sending REST++ requests, see the RESTPP API User Guide .

Example : The code block below shows three equivalent commands for the same loading

job. The first uses the gsql command RUN JOB. The second uses the Linux curl

command to support a HTTP request, placing the parameter values in the URL's query

string. T he third gives the parameter values through the curl command's data payload -d

option.

Starting with v2.0, there are now commands to checking loading job status, to abort a

loading job and to restart a loading job.

When a loading job starts, the GSQL server assigns it a job id and displays it for the user to

see. The job id format is typically the name of the loading job, followed by the machine

alias, following by a code number, e.g., gsql_demo_m1.1525091090494

curl -X POST --data-binary @<data_filename> "http://<server_ip>:9000/ddl/<

Case 1: Using GSQL
GSQL -g gsql_demo RUN LOADING JOB load_cf USING FILENAME="../cf/data/cf_da

Case 2: Using REST++ Request with data in a file, where file1 is one of
curl -X POST --data-binary @data/cf_data.csv "http://localhost:9000/ddl/gs

Case 3: Using REST++ Request with data inline, where file1 is one of the
curl -X POST -d
"id2,id1\nid2,id3\nid3,id1\nid3,id4\nid5,id1\nid5,id2\nid5,id4" "http://lo

Inspecting and Managing Loading Jobs

Job ID and Status

Curl/REST++ syntax for loading using the POST /ddl endpoint

REST++ ddl loading examples

5/13/25, 1:39 PM TigerGraph Documentation

691

By default, an active loading job will display periodic updates of its progress. There are

two ways to inhibit these automatic output displays:

1. Run the loading job with the -noprint option.

2. After the loading job has started, enter CTRL+C. This will abort the output display

process, but the loading job will continue.

The command SHOW LOADING JOB shows the current status of either a specified loading

job or all current jobs:

Kick off the following job, i.e.
 JobName: load_test1, jobid: demo_graph_m1.1523663024967
 Loading log: '/home/tigergraph/tigergraph/logs/restpp/restpp_loader_logs

Job "demo_graph_m1.1523663024967" loading status

[RUNNING] m1 (Finished: 3 / Total: 4)
 [LOADING] /data/output/company.data
 [=============] 20%, 200 kl/s
 [LOADED]
 +---+
FILENAME	LOADED LINES	AVG SPEED	DURATION
/data/output/movie.dat	100	100 l/s	1.00 s
/data/output/person.dat	100	100 l/s	1.00 s
/data/output/roles.dat	200	200 l/s	1.00 s
+---+			
[RUNNING] m2 (Finished: 1 / Total: 2)			
[LOADING] /data/output/company.data			
[==========================] 60%, 200 kl/s			
[LOADED]			
+---+			
FILENAME	LOADED LINES	AVG SPEED	DURATION
/data/output/movie.dat	100	100 l/s	1.00 s
 +---+

SHOW LOADING STATUS job_id|ALL

SHOW LOADING STATUS

Example of SHOW LOADING STATUS output

SHOW LOADING JOB syntax

5/13/25, 1:39 PM TigerGraph Documentation

692

The display format is the same as that displayed during the periodic progress updates of

the RUN LOADING JOB command. If you do not know the job id, but you know the job

name and possibly the machine, then the ALL option is a handy way to see a list of active

job ids.

The command ABORT LOADING JOB aborts either a specified load job or all active loading

jobs:

The output will show a summary of aborted loading jobs.

ABORT LOADING JOB job_id|ALL

gsql -g demo_graph "abort loading job all"

Job "demo_graph_m1.1519111662589" loading status
[ABORT_SUCCESS] m1
[SUMMARY] Finished: 0 / Total: 2
 +---
 | FILENAME | LOADED LINES | AVG SPEED | DURATION
 | /home/tigergraph/data.csv | 23901701 | 174 kl/s | 136.83 s
 |/home/tigergraph/data1.csv | 0 | 0 l/s | 0.00 s
 +---

Job "demo_graph_m2.1519111662615" loading status
[ABORT_SUCCESS] m2
[SUMMARY] Finished: 0 / Total: 2
 +---
 | FILENAME | LOADED LINES | AVG SPEED | DURATION
 | /home/tigergraph/data.csv | 23860559 | 175 kl/s | 136.23 s
 |/home/tigergraph/data1.csv | 0 | 0 l/s | 0.00 s
 +---

ABORT LOADING JOB

RESUME LOADING JOB

ABORT LOADING JOB syntax

ABORT LOADING JOB example

5/13/25, 1:39 PM TigerGraph Documentation

693

The command RESUME LOADING JOB will restart a previously-run job which ended for

some reason before completion.

If the job is finished, this command will do nothing. The RESUME command should pick up

where the previous run ended; that is, it should not load the same data twice.

Every loading job creates a log file. When the job starts, it will display the location of the

log file. Typically, the file is located at

<TigerGraph.root.dir>/logs/restpp/restpp_loader_logs/<graph_name>/<job_id>.log

This file contains the following information which most users will find useful:

• A list of all the parameter and option settings for the loading job

• A copy of the status information that is printed

• Statistics report on the number of lines successfully read and parsed

The statistics report include how many objects of each type is created, and how many

lines are invalid due to different reasons. This report also shows which lines cause the

errors. Here is the list of statistics shown in the report. There are two types of statistics.

One is file level (the number of lines), and the other is data object level (the number of

objects). If an file level error occurs, e.g., a line does not have enough columns, this line of

data is skipped for all LOAD statements in this loading job. If an object level error or failed

condition occurs, only the corresponding object is not created, i.e., all other objects in the

same loading job are still created if no object level error or failed condition for each

corresponding object.

RESUME LOADING JOB job_id

gsql -g demo_graph "RESUME LOADING JOB demo_graph_m1.1519111662589"
[RESUME_SUCCESS] m1
[MESSAGE] The current job got resummed

Verifying and Debugging a Loading Job

RESUME LOADING JOB syntax

RESUME LOADING JOB example

5/13/25, 1:39 PM TigerGraph Documentation

694

Note that failing a WHERE clause is not necessarily a bad result. If the user's intent for the

WHERE clause is to select only certain lines, then it is natural for some lines to pass and

some lines to fail.

Below is an example.

File level statistics Explanation

Valid lines The number of valid lines in the source file

Reject lines
The number of lines which are rejected by

reject_line_rules

Invalid Json format The number of lines with invalid JSON format

Not enough token The number of lines with missing column(s)

Oversize token

The number of lines with oversize token(s).

Please increase "OutputTokenBufferSize" in the

tigergraph/dev/gdk/gsql/config file.

Object level statistics Explanation

Valid Object
The number of objects which have been loaded

successfully

No ID found
The number of objects in which PRIMARY_ID is

empty

Invalid Attributes
The number of invalid objects caused by wrong

data format for the attribute type

Invalid primary id
The number of invalid objects caused by wrong

data format for the PRIMARY_ID type

incorrect fixed binary length

The number of invalid objects caused by the

mismatch of the length of the data to the type

defined in the schema

5/13/25, 1:39 PM TigerGraph Documentation

695

The above loading job and data generate the following report

There are a total of 7 data lines. The report shows that

• Six of the lines are valid data lines

• One line (Line 7) does not have enough tokens.

CREATE VERTEX movie (PRIMARY_ID id UINT, title STRING, country STRING COMP
CREATE DIRECTED EDGE sequel_of (FROM movie, TO movie)
CREATE GRAPH movie_graph(*)
CREATE LOADING JOB load_movie FOR GRAPH movie_graph{
 DEFINE FILENAME f
 LOAD f TO VERTEX movie VALUES ($0, $1, $2, $3) WHERE to_int($3) < 2000;
}
RUN LOADING JOB load_movie USING f="movie.dat"

0,abc,USA,-1990
1,abc,CHN,1990
2,abc,CHN,1990
3,abc,FRA,2015
4,abc,FRA,2005
5,abc,USA,1990
6,abc,1990

--------------------Statistics------------------------------
Valid lines: 6
Reject lines: 0
Invalid Json format: 0
Not enough token: 1 [ERROR] (e.g. 7)
Oversize token: 0

Vertex: movie
Valid Object: 3
No ID found: 0
Invalid Attributes: 1 [ERROR] (e.g. 1:year)
Invalid primary id: 0
Incorrect fixed
binary length: 0
Passed condition lines: 4
Failed condition lines: 2 (e.g. 4,5)

movie.dat

load_output.log (tail)

5/13/25, 1:39 PM TigerGraph Documentation

696

Of the 6 valid lines,

• Three of the 6 valid lines generate valid movie vertices.

• One line has an invalid attribute (Line 1: year)

• Two lines (Lines 4 and 5) do not pass the WHERE clause.

5/13/25, 1:39 PM TigerGraph Documentation

697

Appendix

5/13/25, 1:39 PM TigerGraph Documentation

698

Keywords & Reserved Words

The following words are reserved for use by the Data Definition Language. That is, a graph

schema or loading job may not use any of these words for a user-defined identifier, for the

name of a vertex type, edge type, graph, or attribute.

A separate list of reserved keywords exists for the Query language here.

The compiler will reject the use of a Reserved Word as a user-defined identifier.

5/13/25, 1:39 PM TigerGraph Documentation

699

5/13/25, 1:39 PM TigerGraph Documentation

700

_SUBSTRING ABORT ACCESS ADD
ADMIN AFTER ALL ALLOCATE
ALTER ANALYZE AND ANY
APPROX_COUNT ARCHIVE ARE ARRANGE
ARRAY AS ASC ASENSITIVE
ASYMMETRIC AT ATOMIC ATTRIBUTE
AUTHORIZATION AV AVG BAG
BEFORE BEGIN BETWEEN BIGINT
BINARY BINSTORAGE BLOB BOOL
BOOLEAN BOTH BUCKET BUCKETS
BY BYTEARRAY CACHE CALL
CALLED CASCADE CASCADED CASE
CAST CAT CD CHANGE
CHAR CHARACTER CHARARRAY CHECK
CLEAR CLOB CLOSE CLUSTER
CLUSTERED CLUSTERSTATUS COGROUP COLLATE
COLLECTION COLUMN COLUMNS COMMIT
COMPACT COMPACTIONS COMPRESS COMPUTE
CONCAT CONCATENATE CONF
CONNECT CONST CONSTRAINT CONTINUE
COPYFROMLOCAL COPYTOLOCAL CORRESPONDING COUNT
CP CREATE CROSS CUBE
CURRENT CURRENT_DATE CURRENT_PATH CURRENT_ROLE
CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER CURSOR
CYCLE DATA DATA_SOURCE DATABASE
DATABASES DATE DATETIME DAY
DBPROPERTIES DD DEALLOCATE DEC
DECIMAL DECLARE DECRYPT DEFAULT
DEFERRED DEFINE DEFINED DELETE
DELIMITED DEPENDENCY DEREF DESC
DESCRIBE DETERMINISTIC DIFF DIRECTED
DIRECTORIES DIRECTORY DISABLE DISCONNECT
DISTINCT DISTRIBUTE DISTRIBUTED DM
DO DOUBLE DROP DRYRUN
DU DUMP DYNAMIC EACH
EDGE ELEMENT ELEM_TYPE ELSE
ELSEIF EMPTY ENABLE END
EOL ESCAPE ESCAPED EVAL
EXCEPT EXCHANGE EXCLUSIVE EXEC
EXECUTE EXISTS EXIT EXPLAIN
EXPORT EXTENDED EXTERN EXTERNAL
FALSE FETCH FIELDS FILE
FILEFORMAT FILENAME FILTER FIRST
FIXED_BINARY FLATTEN FLATTEN_JSON_ARRAY FLOAT
FOLLOWING FOR FOREACH FOREIGN
FORMAT FORMATTED FREE FROM
FULL FUNCTION FUNCTIONS GENERATE
GET GLOBAL GPATH GPATH_QUERY

5/13/25, 1:39 PM TigerGraph Documentation

701

GSQL Start-to-End

GQL GQUERY GRANT GRAPH
GROUP GROUPING GSHELL HANDLER
HARD HASH_PARTITION HAVING HEADER
HELP HOLD HOLD_DDLTIME HOST_GRAPH
HOUR ICON IDENTIFIED IDENTITY
IDXPROPERTIES IF IGNORE ILLUSTRATE
IMMEDIATE IMPORT IN INCREMENTAL
INDEX INDEXES INDICATOR INIT
INNER INOUT INPATH INPUT
INPUTDRIVER INPUTFORMAT INPUT_LINE_FILTER INSENSITIVE
INSERT INSTALL INT INT16
INT32 INT32_T INT64_T INT8
INTEGER INTERPRET INTERSECT INTERVAL
INTO INT_LIST INT_SET IS
ITEMS ITERATE JAR JOB
JOIN JSON KAFKA KEY
KEYS KEY_TYPE KILL LANGUAGE
LARGE LATERAL LEADING LEAVE
LEFT LESS LIKE LIMIT
LINES LISTLOAD LOADING LOCAL
LOCALTIME LOCALTIMESTAMP LOCK
LOCKS LOGICAL LONG LOOP
LS MACRO MAP MAPJOIN
MATCH MATCHES MATERIALIZED MAX
MEMBER MERGE METHOD MIN
MINUS MINUTE MKDIR MODIFIES
MODULE MONTH MSCK MULTISET
MV NATIONAL NATURAL NCHAR
NCLOB NEW NO NOPRINT
NONE NOSCAN NOT NO_DROP
NULL NUMERIC OF OFFLINE
OFFLINE2ONLINE OLD ON ONLINE_POST
ONLY ONSCHEMA OPEN OPTIMIZE
OPTION OR ORDER OUT
OUTER OUTPUT OUTPUTDRIVER OUTPUTFORMAT
OVER OVERLAPS OVERWRITE OWNER
PARALLEL PARAMETER PARTIALSCAN PARTITION
PARTITIONED PARTITIONS PASSWORD PERCENT
PIG PIGDUMP PIGSTORAGE PLUS
PRECEDING PRECISION PREPARE PRESERVE
PRETTY PRIMARY PRIMARY_ID PRINCIPALS
PROCEDURE PROTECTION PROXY PURGE
PWD QUERY QUIT QUOTE
RANGE RANGE_PARTITION READ READONLY
READS REAL REBUILD RECOMPILE
RECORDREADER RECORDWRITER RECURSIVE REDUCE
REF REFERENCES REFERENCING REFRESH
REGEXP REGISTER RELEASE RENAME
REPAIR REPEAT REPLACE RESIGNAL

5/13/25, 1:39 PM TigerGraph Documentation

702

Process and Data Flow

The figures below illustrates the sequence of steps and the dependencies to progress

from no graph to a loaded graph and a query result, for TigerGraph platform version 0.8

and higher. Note that online and offline follow the same flow.

REPAIR REPEAT REPLACE RESIGNAL
RESTRICT RESULT RESUME RETURN
RETURNS REVERSE_EDGE REVOKE REWRITE
RIGHT RLIKE RM RMF
ROLE ROLES ROLLBACK ROLLUP
ROW ROWS RUN S3
SAMPLE SAVEPOINT SCHEMA SCHEMAS
SCHEMA_CHANGE SCOPE SCROLL SEARCH
SECOND SECONDARY_ID SECRET SELECT
SEMI SENSITIVE SEPARATOR SERDE
SERDEPROPERTIES SERVER SESSION_USER SET
SETS SHARED SHIP SHOW
SHOW_DATABASE SIGNAL SIMILAR SIZE
SKEWED SMALLINT SOME SORT
SORTED SPECIFIC SPECIFICTYPE SPLIT
SQL SQLEXCEPTION SQLSTATE SQLWARNING
SSL START START_ID STATIC
STATISTICS STATUS STATS STDERR
STDIN STDOUT STORE STORED
STREAM STREAMTABLE STRING STRING_LIST
STRING_SET STRUCT SUBMULTISET SUM
SYMMETRIC SYSTEM SYSTEM_USER SYS.FILE_NAME
SYS.INTERNAL_ID TABLE TABLES TABLESAMPLE
TBLPROPERTIES TEMPORARY TEMP_TABLE TERMINATED
TEXTLOADER THEN THROUGH TIME
TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE TINYINT
TO TOKEN TOKENIZE TOKEN_LEN
TOUCH TO_FLOAT TO_INT TRAILING
TRANSACTION TRANSACTIONS TRANSFORM TRANSLATION
TREAT TRIGGER TRUE TRUNCATE
TUPLE TYPE TYPEDEF UDF_PARTITION
UINT UINT16 UINT32 UINT32_T
UINT64_T UINT8 UINT8_T UINT_SET
UNARCHIVE UNBOUNDED UNDIRECTED UNDO
UNION UNIONTYPE UNIQUE UNIQUEJOIN
UNKNOWN UNLOCK UNNEST UNSET
UNSIGNED UNTIL UPDATE UPSERT
URI USE USER USING
UTC UTCTIMESTAMP VAL VALUE
VALUES VALUE_TYPE VARCHAR VARYING
VECTOR VERSION VERTEX VIEW
VOID WHEN WHENEVER WHERE
WHILE WINDOW WITH WITHIN
WITHOUT YEAR CURRENT_DEFAULT_TRANSFORM_GROUP
CURRENT_TRANSFORM_GROUP_FOR_TYPE INT32_INT32_KV_LIST
UINT32_UDT_KV_LIST UINT32_UINT32_KV_LIST

5/13/25, 1:39 PM TigerGraph Documentation

703

5/13/25, 1:39 PM TigerGraph Documentation

704

Figure B1: Complete GSQL Workflow

5/13/25, 1:39 PM TigerGraph Documentation

705

Part 2 - Querying
Version 2.2. This work is licensed under a Creative Commons Attribution 4.0 International

License.

5/13/25, 1:39 PM TigerGraph Documentation

706

Introduction

The GSQL ® Query Language is a language for the exploration and analysis of large scale

graphs. The high-level language makes it easy to perform powerful graph traversal queries

in the TigerGraph system. By combining features familiar to database users and

programmers with highly expressive new capabilities, the GSQL query language offers

both easy authoring and powerful execution. A GSQL query contains one or more SELECT

statements, where each SELECT statement describes a traversal over a set of vertices and

edges in the graph or describes a selection of a subset of vertices. By combining multiple

SELECT statements, the user can map out query patterns to answer a virtually unlimited

set of real-life data questions.

This document focuses on the formal specification for the GSQL Query Language. It

includes example queries which demonstrate the language, each of which works on one

of the following six graphs:workNet, socialNet, friendNet, computerNet, minimalNet, and

investmentNet . Their schemas are shown below. Appendix D lists the full command and

data files to create and load these graphs with small sets of data (~10 to 20 vertices). The

data sets are small so that you can understand the result of each query example. The

tarball file gsql_ref_examples_2.0.tar.gz contains all of the graph schemas, data files, and

queries. Schemas for Example Graphs

gsql_ref_examples_2.0.tar.gz

66KB
gsql_ref_examples_2.0.tar.gz

CREATE VERTEX person(PRIMARY_ID personId UINT, id STRING, gender STRING) W
CREATE UNDIRECTED EDGE friend(FROM person, TO person)
CREATE VERTEX post(PRIMARY_ID postId UINT, subject STRING, postTime DATETI
CREATE DIRECTED EDGE posted(FROM person, TO post)
CREATE DIRECTED EDGE liked(FROM person, TO post, actionTime DATETIME)

CREATE VERTEX person(PRIMARY_ID personId STRING, id STRING, locationId STR
CREATE VERTEX company(PRIMARY_ID clientId STRING, id STRING, country STRIN
CREATE UNDIRECTED EDGE worksFor(FROM person, TO company, startYear INT, st

Graph Schema: socialNet

Graph Schema: workNet

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNeAzZnzivCPIivP44u%2F-LNeBS5efd0sgQSn_pFO%2Fgsql_ref_examples_2.0.tar.gz?alt=media&token=09f55e93-31a6-4e21-a108-317edd080a97

707

CREATE VERTEX person(PRIMARY_ID personId UINT, id STRING)
CREATE UNDIRECTED EDGE friend(FROM person, TO person)
CREATE UNDIRECTED EDGE coworker(FROM person, TO person)

CREATE VERTEX computer(PRIMARY_ID compID STRING, id STRING)
CREATE DIRECTED EDGE connected(FROM computer, TO computer, connectionSpeed

CREATE VERTEX testV(PRIMARY_ID id STRING)
CREATE UNDIRECTED EDGE testE(FROM testV, TO testV)

TYPEDEF TUPLE < age UINT (4), mothersName STRING(20) > SECRET_INFO
CREATE VERTEX person(PRIMARY_ID personId STRING, portfolio MAP<STRING, DOU
CREATE VERTEX stockOrder(PRIMARY_ID orderId STRING, ticker STRING, orderSi
CREATE UNDIRECTED EDGE makeOrder(FROM person, TO stockOrder, orderTime DAT

Graph Schema: friendNet

Graph Schema: computerNet

Graph Schema: minimalNet

Graph Schema: investmentNet

5/13/25, 1:39 PM TigerGraph Documentation

708

CREATE/INTERPRET/INSTALL/RUN
QUERY
Version 2.4

Query Action Privileges

Users with querywriter role or greater (architect, admin, and superuser) can create, install and

drop queries.

Any user with queryreader role or greater for a given graph can run the queries for that graph.

To implement fine-grained control over which queries can be executed by which sets of

users:

1. Group your queries into your desired privilege groups.

2. Define a graph for each privilege group. These graphs can all have the same domain if

you wish.

3. Create your queries, assigning each to its appropriate privilege group.

EBNF for CREATE QUERY

5/13/25, 1:39 PM TigerGraph Documentation

709

A GSQL query is a sequence of data retrieval-and-computation statements executed as a

single operation. Users can write queries to explore a data graph however they like, to read

and make computations on the graph data along the way, to update the graph, and to

deliver resulting data. A query is analogous to a user-defined procedure or function: it can

have one or more input parameters, and it can produce output in two ways: by returning a

value or by printing. A query can be run in one of three ways:

1. Define and run an unnamed query immediately:

a. INTERPRET QUERY: execute the query's statements

Alternately, there is also a built-in REST++ endpoint to interpret a query string:

POST /gsqlserver/interpreted_query
See the RESTPP API User Guide for details.

2. Define a named query and then run it.

createQuery := CREATE [DISTRIBUTED] QUERY name "(" [parameterList] ")" FOR
 [RETURNS "(" baseType | accumType ")"]
 [API "(" stringLiteral ")"]
 "{" [typedefs] [declStmts] [declExceptStmts] queryBodyStmts

interpretAnonymousQuery := INTERPRET QUERY "("")" FOR GRAPH name
 "{" [typedefs] [declStmts] [declExceptStmts] queryBodyStmts

interpretPredefineQuery := INTERPRET QUERY name "(" parameterValueList ")"

parameterValueList := parameterValue ["," parameterValue]*
parameterValue := parameterConstant
 | "[" parameterValue ["," parameterValue]* "]" // BAG or
 | "(" stringLiteral, stringLiteral ")" // a generic
parameterConstant := numeric | stringLiteral | TRUE | FALSE
parameterList := parameterType name ["=" constant] ["," parameterType name

typedefs := (typedef ";")+
declStmts := (declStmt ";")+
declStmt := baseDeclStat | accumDeclStmt | fileDeclStmt
declExceptStmts := (declExceptStmt ";")+
queryBodyStmts := (queryBodyStmt ";")+

installQuery := INSTALL QUERY [installOptions] ("*" | ALL |name ["," name
runQuery := RUN QUERY [runOptions] name "(" parameterValueList ")"

showQuery := SHOW QUERY name
dropQuery := DROP QUERY ("*" | ALL | name ["," name]*)

5/13/25, 1:39 PM TigerGraph Documentation

710

a. CREATE QUERY: define the functionality of the query

b. INTERPRET QUERY: execute the query with input values

3. Define a named query, compile it to optimize performance, and then run it.

a. CREATE QUERY: define the functionality of the query

b. INSTALL QUERY: compile the query

c. RUN QUERY: execute the query with input values

There are some limitations to Interpreted mode. See the section on INTERPRET QUERY

and the appendix section Interpreted GSQL Limitations.

CREATE QUERY defines the functionality of a query on a given graph schema.

A query has a name, a parameter list, the name of the graph being queried, an optional

RETURNS type (see Section "RETURN Statement" for more details), an optional specifier

for the output api, and a body. The body consists of an optional sequence of typedefs ,

followed by an optional sequence of declarations, then followed by one or more

statements. The body defines the behavior of the query.

The DISTRIBUTED option applies only to installations where the graph has been

distributed across a cluster . If specified, the query will run with a different execution

model which may give better performance for queries which traverse a large portion of the

cluster. Not all GSQL query language features are supported in DISTRIBUTED mode. For

details, see the separate document: Distributed Query Mode.

OR REPLACE is deprecated

If the optional keywords OR REPLACE are included, then this query definition, if error-free, will

replace a previous definition with the same query name. However, if there are any errors in

this query definition, then the previous query definition will be maintained. If the OR REPLACE

createQuery := CREATE [DISTRIBUTED] QUERY name "(" [parameterList] ")" FOR
 [RETURNS "(" baseType | accumType ")"]
 [API "(" stringLiteral ")"]
 "{" [typedefs] [declStmts] [declExceptStmts] queryBodyStmts

CREATE QUERY Statement

5/13/25, 1:39 PM TigerGraph Documentation

711

option is not used, then GSQL will reject a CREATE QUERY command that uses an existing

name.

Typedefs allow the programmer to define custom types for use within the body. The

declarations support definition of accumulators (see Chapter "Accumulators" for more

details) and global/local variables. All accumulators and global variables must be

declared before any statements. There are various types of statements that can be used

within the body. Typically, the core statement(s) in the body of a query is one or more

SELECT, UPDATE, INSERT, DELETE statements. The language supports conditional

statements such as an IF statement as well as looping constructs such as WHILE and

FOREACH. It also supports calling functions, assigning variables, printing, and modifying

the graph data.

The query body may include calls to other queries. That is, the other queries are treated as

subquery functions. See the subsection on "Queries as Functions".

This table lists the supported data types for input parameters and return values.

CREATE QUERY createQueryEx (STRING uid) FOR GRAPH socialNet RETURNS (int)
 # declaration statements
 users = {person.*};
 # body statements
 posts = SELECT p
 FROM users:u-(posted)->:p
 WHERE u.id == uid;
 PRINT posts;
 RETURN posts.size();
}

Parameter Types

• any baseType (except EDGE or

JSONOBJECT): INT, UINT, FLOAT, DOUBLE,

STRING, BOOL, STRING, VERTEX,

JSONARRAY

• SET<baseType>, BAG<baseType>

Query Parameter and Return Types

Example of a CREATE QUERY statement

5/13/25, 1:39 PM TigerGraph Documentation

712

A statement is a standalone instruction that expresses an action to be carried out. The

most common statements are data manipulation language (DML) statements . DML

statements include the SELECT, UPDATE, INSERT INTO, DELETE FROM, and DELETE

statements.

A GSQL query has two levels of statements. The upper-level statement type is called

query-body-level statement , or query-body statement for short. This statement type is

part of either the top-level block or a query-body control flow block. For example, each of

the statements at the top level directly under CREATE QUERY is a query-body statement. If

one of the statements is a CASE statement with several THEN blocks, each of the

statements in the THEN blocks is also a query-body statement. Each query-body

statement ends with a semicolon.

The lower-level statement type is called DML-sub-level statement or DML-sub-statement

for short. This statement type is used inside certain query-body DML statements, to define

particular data manipulation actions. DML-sub-statements are comma-separated. There is

no comma or semicolon after the last DML-sub-statement in a block. For example, one of

the top-level statements is a SELECT statement, each of the statements in its ACCUM

clause is a DML-sub-statement. If one of those DML-sub-statements is a CASE statement,

each of the statement in the THEN blocks is a DML-sub-statement.

There is some overlap in the types. For example, an assignStmt can be used either at the

query-body level or the DML-sub-level.

• Exception: EDGE and JSONOBJECT type

are not supported, either as a primitive

parameter or as part of a complex type.

Return Types

• any baseType (including EDGE): INT, UINT,

FLOAT, DOUBLE, STRING, BOOL, STRING,

VERTEX, EDGE, JSONOBJECT, JSONARRAY

• any accumulator type, except

GroupByAccum

Statement Types

5/13/25, 1:39 PM TigerGraph Documentation

713

Guidelines for understanding statement type hierarchy:

• Top-level statements are Query-Body type (each statement ending with a semicolon).

queryBodyStmts := (queryBodyStmt ";")+

queryBodyStmt := assignStmt // Assignment
 | vSetVarDeclStmt // Declaration
 | gAccumAssignStmt // Assignment
 | gAccumAccumStmt // Assignment
 | funcCallStmt // Function Call
 | selectStmt // Select
 | queryBodyCaseStmt // Control Flow
 | queryBodyIfStmt // Control Flow
 | queryBodyWhileStmt // Control Flow
 | queryBodyForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | updateStmt // Data Modification
 | insertStmt // Data Modification
 | queryBodyDeleteStmt // Data Modification
 | printStmt // Output
 | printlnStmt // Output
 | logStmt // Output
 | returnStmt // Output
 | raiseStmt // Exception
 | tryStmt // Exception

DMLSubStmtList := DMLSubStmt ["," DMLSubStmt]*

DMLSubStmt := assignStmt // Assignment
 | funcCallStmt // Function Call
 | gAccumAccumStmt // Assignment
 | vAccumFuncCall // Function Call
 | localVarDeclStmt // Declaration
 | DMLSubCaseStmt // Control Flow
 | DMLSubIfStmt // Control Flow
 | DMLSubWhileStmt // Control Flow
 | DMLSubForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | insertStmt // Data Modification
 | DMLSubDeleteStmt // Data Modification
 | printlnStmt // Output
 | logStmt // Output

5/13/25, 1:39 PM TigerGraph Documentation

714

• The statements within a DML statement are DML-sub statements (comma-separated

list).

• The blocks within a Control Flow statement have the same type as the entire Control

Flow statement itself.

Here is a descriptive list of query-body statements:

Each statement's operation type is either ControlFlow, DML, or other.
Each statement's syntax type is either queryBodyStmt or DMLSubStmt.

CREATE QUERY stmtTypes (parameterList) FOR GRAPH g [
other queryBodyStmt1;
ControlFlow queryBodyStmt2 # ControlFlow inside top level.

other queryBodyStmt2.1; # subStmts in ControlFlow are queryBo
ControlFlow queryBodyStmt2.2 # ControlFlow inside ControlFlow insi

other queryBodyStmt2.2.1;
other queryBodyStmt2.2.2;

END;
DML queryBodyStmt2.3 # DML inside ControlFlow inside top-level

other DMLSubStmt2.3.1, # switch to DMLSubStmt
other DMLSubStmt2.3.2

;
END;
DML queryBodyStmt3 # DML inside top level.

other DMLSubStmt3.1, # All subStmts in DML must be DMLSubStmt
ControlFlow DMLSubStmt3.2 # ControlFlow inside DML inside top leve

other DMLSubStmt3.2.1,
other DMLSubStmt3.2.2

,
DML DMLsubStmt3.3

other DMLSubStmt3.3.1,
other DMLSubStmt3.3.2

;
other queryBodyStmt4;

EBNF term Common Name Description

assignStmt Assignment Statement
See Chapter 6: "Declaration

and Assignment Statements"

vSetVarDeclStmt
Vertex Set Variable

Declaration Statement

See Chapter 6: "Declaration

and Assignment Statements"

Schematic illustration of relationship between queryBodyStmt and DMLSubStmt

5/13/25, 1:39 PM TigerGraph Documentation

715

Here is a descriptive list of DML-sub-statements:

gAccumAssignStmt
Global Accumulator

Assignment Statement

See Chapter 6: "Declaration

and Assignment Statements"

gAccumAccumStmt
Global Accumulator

Accumulation Statement

See Chapter 6: "Declaration

and Assignment Statements"

funcCallStmt
Functional Call or Query Call

Statement

See Chapter 6: "Declaration

and Assignment Statements"

selectStmt SELECT Statement
See Chapter 7: "SELECT

Statement"

queryBodyCaseStmt query-body CASE statement
See Chapter 8: "Control Flow

Statements"

queryBodyIfStmt query-body IF statement
See Chapter 8: "Control Flow

Statements"

queryBodyWhileStmt query-body WHILE statement
See Chapter 8: "Control Flow

Statements"

queryBodyForEachStmt
query-body FOREACH

statement

See Chapter 8: "Control Flow

Statements"

updateStmt UPDATE Statement
See Chapter 9: "Data

Modification Statements"

insertStmt INSERT INTO statement
See Chapter 9: "Data

Modification Statements"

queryBodyDeleteStmt
Query-body DELETE

Statement

See Chapter 9: "Data

Modification Statements"

printStmt PRINT Statement
See Chapter 10: "Output

Statements"

logStmt LOG Statement
See Chapter 10: "Output

Statements"

returnStmt RETURN Statement
See Chapter 10: "Output

Statements"

raiseStmt PRINT Statement
See Chapter 11: "Exception

Statements"

tryStmt TRY Statement
See Chapter 11: "Exception

5/13/25, 1:39 PM TigerGraph Documentation

716

EBNF term Common Name Description

assignStmt Assignment Statement
See Chapter 6: "Declaration

and Assignment Statements"

funcCallStmt Functional Call Statement
See Chapter 6: "Declaration

and Assignment Statements"

gAccumAccumStmt
Global Accumulator

Accumulation Statement

See Chapter 6: "Declaration

and Assignment Statements"

vAccumFuncCall
Vertex-attached Accumulator

Function Call Statement

See Chapter 6: "Declaration

and Assignment Statements"

localVarDeclStmt
Local Variable Declaration

Statement

See Chapter 7: "SELECT

Statement"

insertStmt INSERT INTO Statement
See Chapter 8: "Control Flow

Statements"

DMLSubDeleteStmt DML-sub DELETE Statement
See Chapter 9: "Data

Modification Statements"

DMLSubcaseStmt DML-sub CASE statement
See Chapter 9: "Data

Modification Statements"

DMLSubIfStmt DML-sub IF statement
See Chapter 9: "Data

Modification Statements"

DMLSubForEachStmt DML-sub FOREACH statement
See Chapter 9: "Data

Modification Statements"

DMLSubWhileStmt DML-sub WHILE statement
See Chapter 9: "Data

Modification Statements"

logStmt LOG Statement
See Chapter 10: "Output

Statements"

installQuery := INSTALL QUERY [installOptions] ("*" | ALL | name [, name]

INTERPRET QUERY

5/13/25, 1:39 PM TigerGraph Documentation

717

A query must be installed before it can be executed. The INSTALL QUERY command will

install the queries listed:

INTERPRET QUERY runs a query by translating it line-by-line. This is in contrast to the 2-

step flow: INSTALL to pre-translate and optimize a query. then RUN to execute the

installed query. The basic trade-off between INTERPRET QUERY and INSTALL/RUN

QUERY is as follows:

• INTERPRET:

◦ Starts running immediately but may take longer to finish than running an

INSTALLed query.

◦ Suitable for ad hoc exploration of a graph or when developing and debugging an

application, and rapid experimentation is desired.

◦ Supports most but not all of the features of the full GSQL query language. See the

Appendix section Interpreted GSQL Limitations.

• INSTALL/RUN:

◦ Takes up to a minute to INSTALL.

◦ Runs faster than INTERPRET, from only a few percent faster to twice as fast.

◦ Should always be used for production environments with fixed queries.

There are two GSQL syntax options for Interpreted GSQL: Immediate mode and Interpret-

only mode. In addition there is also a predefined RESTful endpoint for running interpreted

GSQL: POST /gsqlserver/interpreted_query . The query body is sent as the payload

of the request. The syntax is like the Immediate query option, except that it is possible to

provide parameters, using the query string of the endpoint's request URL. The example

below shows a parameterized query using the POST /gsqlserver/interpreted_query

endpoint. For more details, see the RESTPP API User Guide.

curl --user tigergraph:tigergraph -X POST 'localhost:14240/gsqlserver/inte
 INTERPRET QUERY (int a) FOR GRAPH gsql_demo {
 PRINT a;
 }
'

Interpreted GSQL REST Endpoint with Immediate Query

5/13/25, 1:39 PM TigerGraph Documentation

718

This syntax is similar in concept to SQL queries. Queries are not named, do not accept

parameters, and are not saved after being run. Syntax differences from compiled GSQL:

1. The keyword CREATE is replaced with INTERPRET.

2. The query is executed immediately by the INTERPRET statement. The INSTALL and

RUN statements are not used.

3. Parameters are not accepted.

Compare the example below to the example in the Create Query section:

• No query name, no parameters, no RETURN

• Because no parameter is allowed, the parameter uid is set within the query.

interpretAnonymousQuery := INTERPRET QUERY "("")" FOR GRAPH name
 "{" [typedefs] [declStmts] [declExceptStmts] queryBodyStmts

INTERPRET QUERY () FOR GRAPH socialNet {
 # declaration statements
 STRING uid = "Jane.Doe";
 users = {person.*};
 # body statements
 posts = SELECT p
 FROM users:u-(posted)->:p
 WHERE u.id == uid;
 PRINT posts, posts.size();
}

interpretPredefinedQuery := INTERPRET QUERY name "(" parameterValueList ")

Immediate Mode: Define and Interpret

Interpret-Only Mode: Interpret a Predefined Query

interpret-anonymous-query syntax

Example of Immediate Mode for INTERPRET QUERY

interpret-named-qjuery syntax

5/13/25, 1:39 PM TigerGraph Documentation

719

This syntax is like RUN query, except

1. The keyword RUN is replaced with INTERPRET.

2. Run options are not supported.

INSTALL QUERY queryName1, queryName2, ...

It can also install all uninstalled queries, using either of the following commands:

INSTALL QUERY *

INSTALL QUERY ALL

Note: Installing takes several seconds for each query. The current version does not support

concurrent installation and running of queries. Other concurrent graph operations will be

delayed until the installation finishes.

The following options are available:

Reinstall the query even if the system indicates the query is already installed. This is

useful for overwriting an installation that is corrupted or otherwise outdated, without

having to drop and then recreate the query. If this option is not used, the GSQL shell will

refuse to re-install a query that is already installed.

During standard installation, the user-defined queries are dynamically linked to the GSQL

language code. Anytime after INSTALL QUERY has been performed, another statement,

INTERPRET QUERY createQueryEx ("Jane.Doe")

INSTALL QUERY

-force Option

-OPTIMIZE Option

Example of Interpret-Only Mode for INTERPRET QUERY

5/13/25, 1:39 PM TigerGraph Documentation

720

INSTALL QUERY -OPTIMIZE can be executed. The names of the individual queries are not

needed. This operation optimizes all previously installed queries, reducing their run times

by about 20%. Optimize a query if query run time is more important to you than query

installation time.

Legal:

Illegal:

If you have a distributed database deployment, installing the query in DISTRIBUTED mode

can increase performance for single queries - using a single worker from each available

machine to yield results. Certain cases may benefit more from this option than others --

more detailed information is available on the next page: Distributed Query Mode .

Installing a query creates a REST++ endpoint. Once a query is installed, there are two ways

of executing a query. One way is through the GSQL shell:

RUN QUERY query_name(parameterValues) .

CREATE QUERY query1...
INSTALL QUERY query1
RUN QUERY query1(...)
...
INSTALL QUERY -OPTIMIZE # (optional) optimizes run time performance for
RUN QUERY query1(...) # runs faster than before

INSTALL QUERY -OPTIMIZE query_name

INSTALL QUERY -DISTRIBUTED query_name

-DISTRIBUTED Option

Running a Query

CREATE, INSTALL, RUN example

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.tigergraph.com/dev/gsql-ref/querying/distributed-query-mode
https://docs.tigergraph.com/dev/gsql-ref/querying/distributed-query-mode

721

Query output size limitation

There is a maximum size limit of 2GB for the result set of a SELECT block. A SELECT block is

the main component of a query which searches for and returns data from the graph. If the

result of the SELECT block is larger than 2GB, the system will return no data. NO error

message is produced.

The query response time can be reduced by directly submitting an HTTP request to the

REST++ server: send a GET request to "

http://server_ip:9000/query/graphname/queryname ". If the REST++ server is local,

then server_ip is localhost . The query parameter values are either included directly in

the query string of the HTTP request's URL or supplied using a data payload.

Starting with TigerGraph v1.2, the graph name is now part of the GET /query URL.

The current version does not support concurrent installation and running of queries. Other

concurrent graph operations will be delayed until the installation finishes.

The following two curl commands are each equivalent to the RUN QUERY command

above. The first gives the parameter values in the query string in a URL. This example

illustrates the simple format for primitive data types such as INT, DOUBLE, and STRING.

The second gives the parameter values through the curl command's data payload -d

option.

where RunQueryExPara.dat has the exact string as the query string in the first URL.

CREATE QUERY RunQueryEx(INT p1, STRING p2, DOUBLE p3) FOR GRAPH testGraph{
INSTALL QUERY RunQueryEx
RUN QUERY RunQueryEx(1, "test", 3.14)

curl -X GET "http://localhost:9000/query/testGraph/RunQueryEx?p1=1&p2=test
curl -d @RunQueryExPara.dat -X GET "http://localhost:9000/query/testGraph/

Running a query via HTTP request

RunQueryExPara.dat

5/13/25, 1:39 PM TigerGraph Documentation

722

To see a list of the parameter names and types for the user-installed GSQL queries, run the

following REST++ request:

curl -X GET "http://localhost:9000/endpoints?dynamic=true"

By using the data payload option, the user can avoid using a long and complex URL. In

fact, to call the same query but with different parameters, only the data payload file

contents need to be changed; the HTTP request can be the same. The file loader loads the

entire file, appends multiple lines into one, and uses the resulting string as the URL query

string. If both a query string and a data payload are given (which we strongly discourage),

both are included, where the URL query string's parameter values overwrite the values

given in the data payload.

This subsection describes how to format the complex type parameter values when

executing a query by RUN QUERY or curl command. More details about all parameter

types are described in Section "Query Parameter Types"

p1=1&p2=test&p3=3.14

Parameter type RUN QUERY
Query string for GET /query

HTTP Request

SET or BAG of primitives

Square brackets enclose the

collection of values.

Example: a set p1 of integers:

[1,5,10]

Assign multiple values to the

same parameter name.

Example: a set p1 of integers:

p1=1&p1=5&p1=10

VERTEX<type>

If the vertex type is specified

in the query definition, then

the vertex argument is simply

vertex_id

Example: vertex type is

person and desired id is

person2.

"person2"

parameterName=vertex_id

Example: vertex type is person

and desired id is person2.

vp=person2

Complex Type Parameter Passing

5/13/25, 1:39 PM TigerGraph Documentation

723

When square brackets are used in a curl URL, the -g option or escape characters must be

adopted. If the parameters are given by data payload (either by file or data payload string),

the -g option is not needed and escape characters should not be used.

Below are examples.

VERTEX

(type not pre-specified)

If the type is not defined in the

query definition, then the

argument must provide both

the id and type in

parentheses:(vertex_id,

vertex_type)

Example: a vertex va w ith

id="person1" and

type="person:

("person1","person")

parameterName=vertex_id&p

arameterName.type=vertex_t

ype

Example: parameter vertex va

when type="person" and

id="person1":

va=person1&va.type=person

SET or BAG of VERTEX<type>

Same as a SET or BAG of

primitives, where the primitive

type is vertex_id. Example:

["person3", "person4"]

Same as a SET or BAG of

primitives, where the primitive

type is vertex_id. Example:

vp=person3&vp=person4

SET or BAG of VERTEX

(type not pre-specified)

Same as a SET or BAG of

vertices, with vertex type not

pre-specified. Square brackets

enclose a comma-separated

list of vertex (id, type) pairs.

Mixed types are permitted.

Example:

[("person1","person") ,

("11","post")]

The SET or BAG must be

treated like an array,

specifying the first, second,

etc. elements with indices [0],

[1], etc. The example below

provides the same input

arguments as the RUN QUERY

example to the left.

vp[0]=person1&vp[0].type=pe

rson&vp[1]=11&vp[1] type=po

Running a query via HTTP request - complex parameter type

5/13/25, 1:39 PM TigerGraph Documentation

724

This data payload option can accept a file up to 128MB by default. To increase this limit to

xxx MB, use the following command:

1. SET or BAG
CREATE QUERY RunQueryEx2(SET<INT> p1) FOR GRAPH testGraph{ }
To run this query (either RUN QUERY or curl):
GSQL > RUN QUERY RunQueryEx2([1,5,10])
curl -X GET "http://localhost:9000/query/testGraph/RunQueryEx2?p1=1&p1=5&p

2. VERTEX.
First parameter is any vertex; second parameter must be a person type.
CREATE QUERY printOneVertex(VERTEX va, VERTEX<person> vp) FOR GRAPH social
 PRINT va, vp;
}
To run this query:
GSQL > RUN QUERY printOneVertex(("person1","person"),"person2") # 1st pa
curl -X GET 'http://localhost:9000/query/socialNet/printOneVertex?va=perso

3. BAG or SET of VERTEX, any type
CREATE QUERY printOneBagVertices(BAG<VERTEX> va) FOR GRAPH socialNet {
 PRINT va;
}
To run this query:
GSQL > RUN QUERY printOneBagVertices([("person1","person"), ("11","post")]
curl -X GET 'http://localhost:9000/query/socialNet/printOneBagVertices?va\
curl -g -X GET 'http://localhost:9000/query/socialNet/printOneBagVertices?

4. BAG or SET of VERTEX, pre-specified type
CREATE QUERY printOneSetVertices(SET<VERTEX<person>> vp) FOR GRAPH socialN
 PRINT vp;
}
To run this query:
GSQL > RUN QUERY printOneSetVertices(["person3", "person4"]) # [vertex_1_
curl -X GET 'http://localhost:9000/query/socialNet/printOneSetVertices?vp=

gadmin --set nginx.client_max_body_size xxx -f

Payload Size Limit

5/13/25, 1:39 PM TigerGraph Documentation

725

The upper limit of this setting is 1024 MB. Raising the size limit for the data payload buffer

reduces the memory available for other operations, so be cautious about increasing this

limit.

For more detailed information about REST++ endpoints and requests, see the RESTPP API

User Guide .

The following options are available when running a query:

Some queries run with all or almost all vertices in a SELECT statement s, e.g. PageRank

algorithm. In this case, the graph processing engine can run much more efficiently in all-

vertex mode. In the all-vertex mode, all vertices are always selected, and the following

actions become ineffective:

• Filtering with selected vertices or vertex types. The source vertex set must be all

vertices.

• Filtering with the WHERE clause.

• Filtering with the HAVING clause.

• Assigning designated vertex or designated type of vertexes. E.g. X = { vertex_type .*}

To run the query in all-vertex mode, use the -av option in shell mode or include

__GQUERY__USING_ALL_ACTIVE_MODE=true in the query string of an HTTP request.

The diagnose option can be turned on in order to produce a diagnostic monitoring log,

which contains the processing time of each SELECT block . To turn on the monitoring log,

GSQL > RUN QUERY -av test()

In a curl URL call. Note the use of both single and double underscores
curl -X GET 'http://localhost:9000/query/graphname/queryname?__GQUERY__USI

All-Vertex Mode -av Option

Diagnose -d Option

5/13/25, 1:39 PM TigerGraph Documentation

726

use the -d option in shell mode or __GQUERY__monitor=true in the query string of an

HTTP request.

The path of the generated log file will be shown as a part of output message. An example

log is shown below:

The standard output of GSQL queries is in industry-standard JSON format. A JSON object

is an unordered set of key:value pairs , enclosed in curly braces. Among the acceptable

data types for a JSONvalue are array and object . A JSON array is an ordered list of

values , enclosed in square brackets. Since values can be objects or arrays, JSON

supports hierarchical, nested structures. Strings are enclosed in double quotation marks.

We also use the term field to refer to a key (or a key:value pair) of a given object.

At the top level of the JSON structure are four required fields ("version", "error", "message",

and "results") and one dependent field ("code"). If a query is successful, the value of "error"

will be "false", the "message" value will be empty, and the "results" value will be the

GSQL > RUN QUERY -d test()

In a curl URL call. Note the use of both single and double underscores
curl -X GET 'http://localhost:9000/query/graphname/queryname?__GQUERY__mon

Query Block Start (#6) start at 11:52:06.415284
Query Block Start (#6) end at 11:52:06.415745 (takes 0.000442 s)

Query test takes totally 0.001 s (restpp's pre/post process time not inclu
---------------- Summary (sort by total_time desc) ----------------

Query Block Start on Line 6
--
 total iterations count : 1
 avg iterations stats : 0.000442s
 max iterations stats : 0.000442s
 min iterations stats : 0.000442s
 total activated vertex count : 2
 max activated vertex count : 2
 min activated vertex count : 2

GSQL Query Output Format

5/13/25, 1:39 PM TigerGraph Documentation

727

intended output of the query.If an error or exception occurred during query execution, the

"error" value will be "true", the "message" value will be a string message describing the

error condition, and the "results" field will be empty. Also, the "code" field will contain an

error code.

Beginning with version 2 (v2) of the output specification, an additional top-level field is

required: "version". The "version" value is an object with the following fields:

Other top-level objects, such as "code" may appear in certain circumstances. Note that the

top-level objects are enclosed in curly braces, meaning that they form an unordered set.

They may appear in any order.

Below is an example of the output of a successful query:

"version" field value

api

A string specifying the output API version.

Values are specified as follows:

• "v1": Output API used in TigerGraph

platform v0.8 through v1.0. If the output

does not have a "version" field, the JSON

format is presumed to be v1.

• "v2": Output API introduced in TigerGraph

platform v1.1. This is the latest API. (Note:

for backward compatibility, TigerGraph

platforms which support the v2 output api

can be configured to produce either v1 or

v2 output.)

edition

A string indicating which edition of the product.

Current possible values are "developer" and

"enterprise".

schema

An integer representing which version of the

user's graph schema is currently in use. When

a CREATE GRAPH statement is executed, the

version is initialized to 0. Each time a

SCHEMA_CHANGE JOB is run, the schema

value is incremented (e.g., 1, 2, etc.).

Top Level JSON of a Valid Query - Example

5/13/25, 1:39 PM TigerGraph Documentation

728

The following REST response misspells the name of the endpoint

For backward compatibility, TigerGraph platforms whose principal output API is v2 can

also produce output with API v1.

The value of the "results" key-value pair is a sequential list of the data objects specified by

the PRINT statements of the query. The list order follows the order of PRINT execution.

The detailed format of the PRINT statement results is described in the Chapter "Output

Statements".

and generates the following output:

The following GSQL statement can be used to set the JSON output API configuration.

{
 "version": {"edition": "developer","api": "v2","schema": "1"},
 "error": false,
 "message": "",
 "results": [
 {results_of_PRINT_statement_1},
 ...,
 {results_of_PRINT_statement_N}
]
}

curl -X GET "http://localhost:9000/eco"

{"
 version": {"api":"v2","schema":0},
 "error": true,
 "message": "Endpoint is not found from url = /eco, please use GET /endpo
 "code": "REST-1000"
}

SET json_api = <version_string>

Changing the Default Output API

GET echo/ Request and Response

5/13/25, 1:39 PM TigerGraph Documentation

729

Currently, the legal values for <version_string> are "v1" and "v2". This statement sets a

persistent system parameter. Each version of the TigerGraph platform is pre-configured to

what was the latest output API that at the time of release. For example, platform version

1.1 is configured so that each query will produce v2 output by default.

To show the GSQL text of a query, run "SHOW QUERY query_name ". Additionally, the "ls"

GSQL command lists all created queries and identifies which queries have been installed.

As of v2.3, the query_name argument can now use * or ? wildcards from Linux globbing, or

it can be a regular expression, when preceded by -r. See SHOW: View Parts of the Catalog

To drop a query, run "DROP QUERY query_name ". The query will be uninstalled (if it has

been installed) and removed from the dictionary. The GSQL language will refuse to drop

an installed query Q if another query R is installed which calls query Q . That is, all calling

queries must be dropped before or at the same time that their called subqueries are

dropped.

To drop all queries,, either of the following commands can be used:

DROP QUERY ALL

DROP QUERY *

The scope of ALL depends on the user's current scope. If the user has set a working graph,

then DROP ALL removes all the jobs for that graph. If a superuser has set their scope to be

global, then DROP ALL removes all jobs across all graph spaces.

SHOW QUERY

DROP QUERY

5/13/25, 1:39 PM TigerGraph Documentation

730

Distributed Query Mode

In a distributed graph (where the data are spread across multiple machines), the default

execution plan is as follows:

• One machine will be selected as the execution hub, regardless of the number or

distribution of starting point vertices.

• All the computation work for the query will take place at the execution hub. The vertex

and edge data from other machines will be copied to the hub machine for processing.

TigerGraph Enterprise Edition offers a Distributed Query mode which provides a more

optimized execution plan for queries which are likely to start at several machines and

continue their traversal across several machines.

• A set of machines representing one full copy of the entire graph will participate in the

query. If the cluster has a replication factor of 2 (so there are two copies of each piece

of data), then half the machines will participate.

• The query executes in parallel across all the machines which have source vertex data

for a given hop in the query. That is, each SELECT statement defines a 1-hop traversal

from a set of source vertices to a set of target vertices. Unlike the default mode where

all the needed data are brought to one machine, in Distributed Query mode, the

computation moves across the cluster, following the traversal pattern of the query.

• The output results will be gathered at one machine.

To invoke Distributed Query mode, simply insert the keyword "DISTRIBUTED" before

"QUERY" in a query definition:

createQuery := CREATE [OR REPLACE] [DISTRIBUTED] QUERY name "(" [parameter
 [RETURNS "(" baseType | accumType ")"]
 [API "(" stringLiteral ")"]
 "{" [typedefs] [declStmts] [declExceptStmts] queryBodyStmts

Distributed Query Mode

Guidelines for Selecting Distributed Query Mode

5/13/25, 1:39 PM TigerGraph Documentation

731

The basic trade-off between distributed query mode and default mode is greater

parallelism for the given query vs. using more system resources, which reduces the

potential for concurrency with other operations. Each machine has a certain number of

workers available for concurrent execution of queries. A query in default mode uses only

one worker out of the whole system. (This one worker will have multiple threads for

processing edge traversals in parallel.) However, a query in distributed mode uses one

query worker per machine. This means this query can run faster, but it leaves fewer

workers for other queries running concurrently.

We suggest the following guidelines for deciding whether to use default mode or

distributed mode.

1. Queries with one or a few starting point vertices and which take only a few hops →
default mode is better.

2. Queries which start at a very large set of starting point vertices and which traverse

many hops → distributed mode is better.

For example, algorithms which either compute a value for every vertex or one value for

the entire graph should use Distributed Mode. This includes PageRank, Centrality, and

Connected Component algorithms.

3. For applications where the same query (same logic but with different input

parameters) will be run many times in production, the application designer can simply

try both modes during development and chose the one which works better for their

use case and data.

Currently, Distributed Query mode cannot be used for all queries. Please note the

limitations carefully. In most cases, the GSQL parser and compiler will report an error if

you try to write a Distributed Query using an unsupported feature.

Support was added for many features in TigerGraph 2.2. The table below has changed

significantly between v2.1 and v2.2.

The following GSQL features are not supported in Distributed Query mode:

Feature Not Supported Supported as of v2.2 (1)

Supported and Unsupported Features

5/13/25, 1:39 PM TigerGraph Documentation

732

(1) Items in the Supported column are listed only for clarity, so you can compare to the

Unsupported column. If a feature which is supported in non-distributed queries is not

mentioned in either column, then it is supported in Distributed Query mode .

General User-defined exceptions

Data update to the graph

Access to target vertex's

values in ACCUM

Query calling a distributed

query

Statement Types LOADACCUM
FOREACH, WHILE, UPDATE,

INSERT, DELETE

SELECT clauses

SAMPLE clause

exact count for LIMIT clause

(2)

Data types

LIST, SET, BAG

JSONOBJECT, JSONARRAY

ArrayAccum

SET<> parameter,

GroupByAccum

Operations and Operators

Any data update to the graph,

including assignment

statements to vertex

attributes

vertex and edge functions

.neighbors(),

.neighborAttribute(),

.edgeAttribute()

isDirected()

.outdegree()

accumulator and collection

functions
reallocate()

size(), get(), top(), pop(),

update(), remove(),

removeAll(), clear(), contains),

containskey(), resize()

Other functions

selectVertex(), to_vertex(),

to_vertex_set(),

COALESCE(), EVALUATE()

sum(), count(), min(), max(),

avg()

5/13/25, 1:39 PM TigerGraph Documentation

733

(2) If the query contains "LIMIT N", and if the number of GPEs working on this query is G,

then the output size will be N +/- (G-1). In a conventional cluster configuration, there is one

GPE per machine. For example, if N=10 and the graph is distributed across 4 machines,

then the output size will be between 7 and 13, inclusive.

5/13/25, 1:39 PM TigerGraph Documentation

734

Data Types

This section describes the data types that are native to and are supported by the GSQL

Query Language. Most of the data objects used in queries come from one of three

sources: (1) the query's input parameters, (2) the vertices, edges, and their attributes

which are encountered when traversing the graph, or (3) variables defined within the query

that are used to assist in the computational work of the query.

This section covers the following subset of the EBNF language definitions:

EBNF for Data Types

5/13/25, 1:39 PM TigerGraph Documentation

735

An identifier is the name for an instance of a language element. In the GSQL query

language, identifiers are used to name elements such as a query, a variable, or a user-

defined function. In the EBNF syntax, an identifier is referred as a name . It can be a

sequence of letters, digits, or underscores ("_"). Other punctuation characters are not

supported. The initial character can only be letter or an underscore.

lowercase := [a-z]
uppercase := [A-Z]
letter := lowercase | uppercase
digit := [0-9]
integer := ["-"]digit+
real := ["-"]("." digit+) | ["-"](digit+ "." digit*)
numeric := integer | real
stringLiteral := '"' [~["] | '\\' ('"' | '\\')]* '"'

name := (letter | "_") [letter | digit | "_"]* // Can be a single "_" or

type := baseType | name | accumType | STRING COMPRESS

baseType := INT
 | UINT
 | FLOAT
 | DOUBLE
 | STRING
 | BOOL
 | VERTEX ["<" name ">"]
 | EDGE
 | JSONOBJECT
 | JSONARRAY
 | DATETIME

filePath := name | stringLiteral

typedef := TYPEDEF TUPLE "<" tupleType ">" name

tupleType := (baseType name) | (name baseType) ["," (baseType name) | (nam

parameterType := baseType
 | [SET | BAG] "<" baseType ">"
 | FILE

Identifiers

5/13/25, 1:39 PM TigerGraph Documentation

736

Different types of data can be used in different contexts. The EBNF syntax defines several

classes of data types. The most basic is called baseType. The other independent types

are FILE and STRING COMPRESS. The remaining types are either compound data types

built from the independent data types, or supersets of other types. The table below gives

an overview of their definitions and their uses.

name := (letter | "_") [letter | digit | "_"]*

EBNF term Description Use Case

baseType

INT, UINT, FLOAT, DOUBLE,

STRING, BOOL, DATETIME,

VERTEX, EDGE,

JSONOBJECT, or JSONARRAY

• global variable

• query return value

tupleType sequence of baseType • user-defined tuple

accumType

family of specialized data

objects which support

accumulation operations

• accumulate and

aggregate data, when

traversing a set of

vertices or edges

(Details are in the Query

Lang Spec -

Accumulators chapter.)

FILE FILE object • global sequential data

object, linked to a text file

parameterType

baseType (except EDGE or

JSONOBJECT), a SET or BAG

of baseType, or FILE object
• query parameter

STRING COMPRESS STRING COMPRESS

• more compact storage of

STRING, when there is a

limited number of

different values

Overview of Types

name (identifier)

5/13/25, 1:39 PM TigerGraph Documentation

737

The query language supports the following base types , which can be declared and

assigned anywhere within their scope. Any of these base types may be used when

defining a global variable, a local variable, a query return value, a parameter, part of a tuple,

or an element of a container accumulator. Accumulators are described in detail in a later

section.

The default value of each base type is shown in the table below. The default value is the

initial value of a base type variable (see Section "Variable Types" for more details), or the

default return value for some functions (see Section "Operators, Functions, and

Expressions" for more details).

elementType
baseType, STRING

COMPRESS, or identifier

• element for most types of

container accumulators:

SetAccum, BagAccum,

GroupByAccum, key of a

MapAccum element

type

baseType, STRING

COMPRESS, identifier, or

accumType

• element of a ListAccum,

value of a MapAccum

element

• local variable

baseType := INT
 | UINT
 | FLOAT
 | DOUBLE
 | STRING
 | BOOL
 | VERTEX ["<" name ">"]
 | EDGE
 | JSONOBJECT
 | JSONARRAY
 | DATETIME

Base Types

BNF

5/13/25, 1:39 PM TigerGraph Documentation

738

The first seven types (INT, UINT, FLOAT, DOUBLE, BOOL, STRING, and DATETIME) are the

same ones mentioned in the "Attribute Data Types" section of the GSQL Language

Reference, Part 1 .

FLOAT and DOUBLE input values must be in fixed point d.dddd format, where d is a digit.

Output values will be printed in either fixed point for exponential notation, whichever is more

compact.

The GSQL Loader can read FLOAT and DOUBLE values with exponential notation (e.g., 1.25 E-

7).

VERTEX and EDGE are the two types of objects which form a graph. A query parameter or

variable can be declared as either of these two types. In additional, the schema for the

graph defines specific vertex and edge types (e.g., CREATE VERTEX person). The

parameter or variable type can be restricted by giving the vertex/edge type in angle

brackets < > after the keyword VERTEX/EDGE. A VERTEX or EDGE variable declared

without a specifier is called a generic type. Below are examples of generic and typed

vertex and edge variable declarations:

type default value

INT, UINT, FLOAT, DOUBLE

(see note below)
0

BOOL false

STRING ""

DATETIME 1970-01-01 00:00:00

VERTEX "Unknown"

EDGE No edge: {}

JSONOBJECT An empty object: {}

JSONARRAY An empty array: []

VERTEX and EDGE

Examples of generic and typed VERTEX and EDGE declarations

5/13/25, 1:39 PM TigerGraph Documentation

739

The following table map s vertex or edge attribute types in the Data Definition Language

(DDL) to GSQL query language types. Accumulators are introduced in Section

"Accumulators".

These two base types allow users to pass a complex data object or to write output in a

customized format. These types follow the industry standard definition of JSON at

www.json.org . A JSONOBJECT instance's external representation (as input and output)

is a string, starting and ending with curly braces "{" and "}", which enclose an unordered list

of string:value pairs. A JSONARRAY is represented as a string, starting and ending with

VERTEX anyVertex;
VERTEX<person> owner;
EDGE anyEdge;
EDGE<friendship> friendEdge;

DDL GSQL Query

INT INT

UINT UINT

FLOAT FLOAT

DOUBLE DOUBLE

BOOL BOOL

STRING STRING

STRING COMPRESS STRING

SET< type > SetAccum< type >

LIST< type > ListAccum< type >

DATETIME DATETIME

Vertex and Edge Attribute Types

JSONOBJECT and JSONARRAY

5/13/25, 1:39 PM TigerGraph Documentation

http://www.json.org/
http://www.json.org/

740

square brackets "[" and "]", which enclose an ordered list of values . Since a value can be

an object or an array, JSON supports hierarchical, nested data structures.

More details are introduced in the Section entitled "JSONOBJECT and JSONARRAY

Functions".

A JSONOBJECT or JSONARRAY value is immutable. No operator is allowed to modify its

value.

A tuple is a user-defined data structure consisting of a fixed sequence of baseType

variables. Tuple types can be created and named using a TYPEDEF statement. Tuples

must be defined first, before any other statements in a query.

A tuple can also be defined in a graph schema and then can be used as a vertex or edge

attribute type. A tuple type which has been defined in the graph schema does not need to

be re-defined in a query.

The graph schema investmentNet contains two complex attributes:

• user-defined tuple SECRET_INFO, which is used for the secret_info attribute in the

person vertex.

• portfolio MAP<STRING, DOUBLE > attribute, also in the person vertex.

typedef := TYPEDEF TUPLE "<" tupleType ">" name

tupleType := (baseType name) | (name baseType) ["," (baseType name) | (nam

TUPLE

ENBF for tuples

investmentNet schema

5/13/25, 1:39 PM TigerGraph Documentation

741

The query below reads both the SECRET_INFO tuple and the portfolio MAP. The tuple type

does not need to redefine SECRET_INFO. To read and save the map, we define a

MapAccum with the same key:value type as the original portfolio map. (The

"Accumulators" chapter has more information about accumulators.) In addition, the query

creates a new tuple type, ORDER_RECORD.

TYPEDEF TUPLE <age UINT (4), mothersName STRING(20) > SECRET_INFO
CREATE VERTEX person(PRIMARY_ID personId STRING, portfolio MAP<STRING, DOU
CREATE VERTEX stockOrder(PRIMARY_ID orderId STRING, ticker STRING, orderSi
CREATE UNDIRECTED EDGE makeOrder(FROM person, TO stockOrder, orderTime DAT
CREATE GRAPH investmentNet (*)

CREATE QUERY tupleEx(VERTEX<person> p) FOR GRAPH investmentNet{
 #TYPEDEF TUPLE <UINT age, STRING mothersName> SECRET_INFO; # alrea
 TYPEDEF TUPLE <STRING ticker, FLOAT price, DATETIME orderTime> ORDER_REC

 SetAccum<SECRET_INFO> @@info;
 ListAccum<ORDER_RECORD> @@orderRecords;
 MapAccum<STRING, DOUBLE> @@portf; # corresponds to MAP<STRING, DOU

 INIT = {p};

 # Get person p's secret_info and portfolio
 X = SELECT v FROM INIT:v
 ACCUM @@portf += v.portfolio, @@info += v.secretInfo;

 # Search person p's orders to record ticker, price, and order time.
 # Note that the tuple gathers info from both edges and vertices.
 orders = SELECT t
 FROM INIT:s -(makeOrder:e)->stockOrder:t
 ACCUM @@orderRecords += ORDER_RECORD(t.ticker, t.price, e.orderTime)

 PRINT @@portf, @@info;
 PRINT @@orderRecords;
}

tupleEx query

tupleEx.json

5/13/25, 1:39 PM TigerGraph Documentation

742

GSQL > RUN QUERY tupleEx("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@info": [{
 "mothersName": "JAMES",
 "age": 25
 }],
 "@@portf": {
 "AAPL": 3142.24,
 "MS": 5000,
 "G": 6112.23
 }
 },
 {"@@orderRecords": [
 {
 "ticker": "AAPL",
 "orderTime": "2017-03-03 18:42:28",
 "price": 34.42
 },
 {
 "ticker": "B",
 "orderTime": "2017-03-03 18:42:30",
 "price": 202.32001
 },
 {
 "ticker": "A",
 "orderTime": "2017-03-03 18:42:29",
 "price": 50.55
 }
]}
]
}

STRING COMPRESS

5/13/25, 1:39 PM TigerGraph Documentation

743

STRING COMPRESS is an integer type encoded by the system to represent string values.

STRING COMPRESS uses less memory than STRING. The STRING COMPRESS type is

designed to act like STRING: data are loaded and printed just as string data, and most

functions and operators which take STRING input can also take STRING COMPRESS input.

The difference is in how the data are stored internally. A STRING COMPRESS value can be

obtained from a STRING_SET COMPRESS or STRING_LIST COMPRESS attribute or from

converting a STRING value.

STRING COMPRESS type is beneficial for sets of string values when the same values are

used multiple times. In practice, STRING COMPRESS are most useful for container

accumulators like ListAccum<STRING COMPRESS> or SetAccum<STRING COMPRESS>.

An accumulator (introduced in Section "Accumulator") containing STRING COMPRESS

stores the dictionary when it is assigned an attribute value or from another accumulator

containing STRING COMPRESS. An accumulator containing STRING COMPRESS can store

multiple dictionaries. A STRING value can be converted to a STRING COMPRESS value

only if the value is in the dictionaries. If the STRING value is not in the dictionaries, the

original string value is saved. A STRING COMPRESS value can be automatically converted

to a STRING value.

When a STRING COMPRESS value is output (e.g. by PRINT statement, which is introduced

in), it is shown as a STRING.

STRING COMPRESS is not a base type.

STRING COMPRESS example

5/13/25, 1:39 PM TigerGraph Documentation

744

CREATE QUERY stringCompressEx(VERTEX<person> m1) FOR GRAPH workNet {
 ListAccum<STRING COMPRESS> @@strCompressList, @@strCompressList2;
 SetAccum<STRING COMPRESS> @@strCompressSet, @@strCompressSet2;
 ListAccum<STRING> @@strList, @@strList2;
 SetAccum<STRING> @@strSet, @@strSet2;

 S = {m1};

 S = SELECT s
 FROM S:s
 ACCUM @@strSet += s.interestSet,
 @@strList += s.interestList,
 @@strCompressSet += s.interestSet, # use the dictionary from
 @@strCompressList += s.interestList; # use the dictionary from

 @@strCompressList2 += @@strCompressList; # @@strCompressList2 gets the
 @@strCompressList2 += "xyz"; # "xyz" is not in the dictionary, so stor

 @@strCompressSet2 += @@strCompressSet;
 @@strCompressSet2 += @@strSet;

 @@strList2 += @@strCompressList; # string compress integer values are d
 @@strSet2 += @@strCompressSet;

 PRINT @@strSet, @@strList, @@strCompressSet, @@strCompressList;
 PRINT @@strSet2, @@strList2, @@strCompressSet2, @@strCompressList2;
}

stringCompressEx.json Results

5/13/25, 1:39 PM TigerGraph Documentation

745

5/13/25, 1:39 PM TigerGraph Documentation

746

GSQL > RUN QUERY stringCompressEx("person12")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@strCompressList": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
],
 "@@strSet": ["teaching", "engineering", "music"],
 "@@strCompressSet": ["music", "engineering", "teaching"],
 "@@strList": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
]
 },
 {
 "@@strSet2": ["music", "engineering", "teaching"],
 "@@strCompressList2": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching",
 "xyz"
],
 "@@strList2": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
],
 "@@strCompressSet2": ["teaching", "engineering", "music"]
 }
]

5/13/25, 1:39 PM TigerGraph Documentation

747

A FILE object is a sequential data storage object, associated with a text file on the local

machine.

When referring to a FILE object, we always capitalize the word FILE, to distinguish it from

ordinary files.

When a FILE object is declared, associated with a particular text file, any existing content

in the text file will be erased . During the execution of the query, content written to the FILE

will be appended to the FILE. When the query where the FILE was declared finishes

running, the FILE contents are saved to the text file.

A FILE object can be passed as a parameter to another query. When a query receives a

FILE object as a parameter, it can append data to that FILE, as can every other query which

receives this FILE object as a parameter.

Input parameters to a query can be base type (except EDGE or JSONOBJECT). A

parameter can also be a SET or BAG which uses base type (except EDGE or

JSONOBJECT) as the element type. A FILE object can also be a parameter. Within the

query, SET and BAG are converted to SetAccum and BagAccum, respectively (See Section

"Accumulator" for more details).

A query parameter is immutable . It cannot be assigned a new value within the query.

The FILE object is a special case. It is passed by reference, meaning that the receiving query

gets a link to the original FILE object. The receiving query can write to the FILE.

}

FILE Object

Query Parameter Types

BNF

5/13/25, 1:39 PM TigerGraph Documentation

748

parameterType := baseType
 | [SET | BAG] "<" baseType ">"
 | FILE

(SET<VERTEX<person> p1, BAG<INT> ids, FILE f1)

Examples of collection type parameters

5/13/25, 1:39 PM TigerGraph Documentation

749

Accumulators

Accumulators are special types of variables that accumulate information about the graph

during its traversal and exploration. Because they are a unique and important feature of

the GSQL query language, we devote a separate section for their introduction, but

additional detail on their usage will be covered in other sections, the "SELECT Statement"

section in particular. This section covers the following subset of the EBNF language

definitions:

There are a number of different types of accumulators, each providing specific

accumulation functions. Accumulators are declared to have one of two types of

accumDeclStmt := accumType "@"name ["=" constant][, "@"name ["=" constant]
 | "@"name ["=" constant][, "@"name ["=" constant]]* accumTy
 | [STATIC] accumType "@@"name ["=" constant][, "@@"name ["=
 | [STATIC] "@@"name ["=" constant][, "@@"name ["=" constant

accumType := "SumAccum" "<" (INT | FLOAT | DOUBLE | STRING) ">"
 | "MaxAccum" "<" (INT | FLOAT | DOUBLE) ">"

 | "MinAccum" "<" (INT | FLOAT | DOUBLE) ">"
 | "AvgAccum"

 | "OrAccum"
 | "AndAccum"

 | "BitwiseOrAccum"
 | "BitwiseAndAccum"

 | "ListAccum" "<" type ">"
 | "SetAccum" "<" elementType ">"
 | "BagAccum" "<" elementType ">"

 | "MapAccum" "<" elementType "," (baseType | accumType | name
 | "HeapAccum" "<" name ">" "(" (integer | name) "," name [ASC |

 | "GroupByAccum" "<" elementType name ["," elementType name]* ,
 | "ArrayAccum" "<" name ">"

elementType := baseType | name | STRING COMPRESS

gAccumAccumStmt := "@@"name "+=" expr

accumClause := ACCUM DMLSubStmtList

postAccumClause := POST-ACCUM DMLSubStmtList

EBNF

5/13/25, 1:39 PM TigerGraph Documentation

750

association: global or vertex-attached .

More technically, accumulators are mutable mutex variables shared among all the graph

computation threads exploring the graph within a given query. To improve performance,

the graph processing engine employs multithreaded processing. Modification of

accumulators is coordinated at run-time so the accumulation operator works correctly

(i.e., mutually exclusively) across all threads. This is particularly relevant in the ACCUM

clause. During traversal of the graph, the selected set of edges or vertices is partitioned

among a group of threads. These threads have shared mutually exclusive access to the

accumulators.

All accumulator variables must be declared at the beginning of a query, immediately after

any typedefs, and before any other type of statement. The scope of the accumulator

variables is the entire query.

The name of a vertex-attached accumulator begins with a single "@". The name of a

global accumulator begins with "@@". Additionally, a global accumulator may be declared

to be static.

Vertex-attached accumulators are mutable state variables that are attached to each vertex

in the graph for the duration of the query's lifetime. They act as run-time attributes of a

vertex. They are shared, mutual exclusively, among all of the query's processes. Vertex-

attached accumulators can be set to a value with the = operator. Additionally, an

accumulate operator += can be used to update the state of the accumulator; the function

accumDeclStmt := accumType "@"name ["=" constant][, "@"name ["=" constant]
 | "@"name ["=" constant][, "@"name ["=" constant]]* accumTy
 | [STATIC] accumType "@@"name ["=" constant][, "@@"name ["=
 | [STATIC] "@@"name ["=" constant][, "@@"name ["=" constant

Declaration of Accumulators

Vertex-attached Accumulators

EBNF for Accumulator Declaration

5/13/25, 1:39 PM TigerGraph Documentation

751

of += depends on the accumulator type. In the example below, there are two accumulators

attached to each vertex. The initial value of an accumulator of a given type is predefined,

however it can be changed at declaration as in the accumulator @weight below. All

vertex-attached accumulator names have a single leading at-sign "@".

If there is a graph with 10 vertices, then there is an instance of @neighbors and @weight

for each vertex (hence 10 of each, and 20 total accumulator instances). These are

accessed via the dot operator on a vertex variable or a vertex alias (e.g., v.@neighbor).

The accumulator operator += only impacts the accumulator for the specific vertex being

referenced. A statement such as v1.@neighbors += 1will only impact v1 's @neighbors

and not the @neighbors for other vertices.

Vertex-attached accumulators can only be accessed or updated (via = or +=) in an ACCUM

or POST-ACCUM clause within a SELECT block. The only exception to this rule is that

vertex-attached accumulators can be referenced in a PRINT statement, as the PRINT has

access to all information attached to a vertex set.

Edge-attached accumulators are not supported.

A global accumulator is a single mutable accumulator that can be accessed or updated

within a query. The names of global accumulators start with a double at-sign "@@".

Global accumulators can only be assigned (using the = operator) outside a SELECT block

(i.e., not within an ACCUM or POST-ACCUM clause). Global accumulators can be accessed

SumAccum<int> @neighbors;
MaxAccum<float> @weight = 2.8;

SumAccum<int> @@totalNeighbors;
MaxAccum<float> @@entropy = 1.0;

Global Accumulators

Vertex-Attached Accumulators

Global Accumulators

5/13/25, 1:39 PM TigerGraph Documentation

752

or updated via the accumulate operator += anywhere within a query, including inside a

SELECT block.

It is important to note that the accumulation operation for global accumulators in an

ACCUM clause executes once for each process. That is, if the FROM clause uses an edge-

induced selection (introduced in Section "SELECT Statement"), the ACCUM clause

executes one process for each edge in the selected edge set. If the FROM clause uses a

vertex-induced selection (introduced in Section "SELECT Statement"), the ACCUM clause

executes one process for each vertex in the selected vertex set. Since global

accumulators are shared in a mutually exclusive manner among processes, they behave

very differently than a non-accumulator variable (see Section "Variable Types" for more

details) in an ACCUM clause. Take the following code example. The global

accumulator@@globalRelationshipCount is accumulated for every worksFor edge

traversed since it is shared among processes. Conversely, relationshipCount appears to

have only been incremented once. This is because a non-accumulator variable is not

shared among processes. Each process has its own separate unshared copy of

relationshipCount and increments the original value by one. (E.g., each process

increments relationshipCount from 0 to 1.) There is no accumulation and the final value is

one.

#Count the total number of employment relationships for all companies
CREATE QUERY countEmploymentRelationships() FOR GRAPH workNet {

 INT localRelationshipCount;
 SumAccum<INT> @@globalRelationshipCount;

 start = {company.*};

 companies = SELECT s FROM start:s -(worksFor)-> :t
 ACCUM @@globalRelationshipCount += 1,
 localRelationshipCount = localRelationshipCount + 1;

 PRINT localRelationshipCount;
 PRINT @@globalRelationshipCount;
}

Global Variable vs Global Accumulator

countEmploymentRelationship.json Results

5/13/25, 1:39 PM TigerGraph Documentation

753

A static global accumulator retains its value after the execution of a query. To declare a

static global accumulator, include the STATIC keyword at the beginning of the declaration

statement. For example, if a static global accumulator is incremented by 1 each time a

query is executed, then its value is equal to the number of times the query has been run,

since the query was installed. Each static global accumulator belongs to the particular

query in which it is declared; it cannot be shared among different queries. The value only

persists in the context of running the same query multiple times. The value will reset to

the default value when the GPE is restarted.

GSQL > RUN QUERY countEmploymentRelationships()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"localRelationshipCount": 1},
 {"@@globalRelationshipCount": 17}
]
}

CREATE QUERY staticAccumEx(INT x) FOR GRAPH minimalNet {
 STATIC ListAccum<INT> @@testList;
 @@testList += x;
 PRINT @@testList;
}

Static Global Accumulators

Static Global Accumulators example

staticAccumEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

754

There is no command to deallocate a static global accumulator. If a static global

accumulator is a collection accumulator and it no longer needed, it should be cleared to

minimize the memory usage.

The following are the accumulator types we currently support. Each type of accumulator

supports one or more data types .

GSQL > RUN QUERY staticAccumEx(3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@testList": [
 3,
 -5,
 3
]}]
}
GSQL > RUN QUERY staticAccumEx(-5)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@testList": [
 3,
 -5,
 3,
 -5
]}]
}

Accumulator Types

EBNF for Accumulator Types

5/13/25, 1:39 PM TigerGraph Documentation

755

The accumulators fall into two major groups :

• Scalar Accumulators store a single value:

◦ SumAccum

◦ MinAccum, MaxAccum

◦ AvgAccum

◦ AndAccum, OrAccum

◦ BitwiseAndAccum, BitwiseOrAccum

• Collection Accumulators store a set of values:

◦ ListAccum

◦ SetAccum

◦ BagAccum

◦ MapAccum

◦ ArrayAccum

◦ HeapAccum

◦ GroupByAccum

accumType := "SumAccum" "<" (INT | FLOAT | DOUBLE | STRING) ">"
 | "MaxAccum" "<" (INT | FLOAT | DOUBLE) ">"

 | "MinAccum" "<" (INT | FLOAT | DOUBLE) ">"
 | "AvgAccum"

 | "OrAccum"
 | "AndAccum"

 | "BitwiseOrAccum"
 | "BitwiseAndAccum"

 | "ListAccum" "<" type ">"
 | "SetAccum" "<" elementType ">"
 | "BagAccum" "<" elementType ">"

 | "MapAccum" "<" elementType "," (baseType | accumType | name
 | "HeapAccum" "<" name ">" "(" (integer | name) "," name [ASC |

 | "GroupByAccum" "<" elementType name ["," elementType name]* ,
 | "ArrayAccum" "<" name ">"

elementType := baseType | name | STRING COMPRESS

gAccumAccumStmt := "@@"name "+=" expr

5/13/25, 1:39 PM TigerGraph Documentation

756

The details of each accumulator type are summarized in the table below. The

Accumulation Operation column explains how the accumulator accumName is updated

when the statement accumName += newVal is executed. Following the table are example

queries for each accumulator type.

Table Ac1: Accumulator Types and Their Accumulation Behavior

Accumulator Type (Case

Sensitive)
Default Initial Value

Accumulation operation

(result of accumName +=
newVal)

SumAccum<INT> 0 accumName plus newVal

SumAccum<FLOAT or

DOUBLE>
0.0 accumName plus newVal

SumAccum<STRING> empty string
String concatenation of

accumName and newVal

MaxAccum<INT> INT_MIN
The greater of newVal and

accumName

MaxAccum<FLOAT or

DOUBLE>
FLOAT_MIN or DOUBLE_MIN

The greater of newVal and

accumName

MaxAccum<VERTEX> the vertex with internal id 0

The vertex with the greater

internal id , either newVal or

accumName

MinAccum<INT> INT_MAX
The lesser of newVal and

accumName

MinAccum<FLOAT or

DOUBLE>
FLOAT_MAX or DOUBLE_MAX

The lesser of newVal and

accumName

MinAccum<VERTEX> unknown

The vertex with the lesser

internal id, either newVal or

accumName

AvgAccum 0.0 (double precision)

Double precision average of

newVal and all previous

values accumulated

toaccumName

AndAccum True
Boolean AND of newVal and

accumName

5/13/25, 1:39 PM TigerGraph Documentation

757

OrAccum False
Boolean OR of newVal and

accumName

BitwiseAndAccum
-1 (INT) = 64-bit sequence of

1s

Bitwise AND of newVal and

accumName

BitwiseOrAccum
0 (INT) = 64-bit sequence of

0s

Bitwise OR of newVal and

accumName

ListAccum< typ e >

(ordered collection of

elements)

empty list

List with newVal appended to

end of accumName. newVal

can be a single value or a list.

If accumName is [2, 4, 6],

then accumName += 4

produces accumName equal

to [2, 4, 6, 4]

SetAccum<t ype >

(unordered collection of

elements, duplicate items not

allowed)

empty set

Set union of newVal and

accumName . newVal can be

a single value or a set/bag.If

accumName is (2, 4, 6), then

accumName += 4

produces accumName equal

to (2, 4, 6)

BagAccum<t ype >

(unordered collection of

elements, duplicate items

allowed)

empty bag

Bag union of newVal and

accumName . newVal can be

a single value or a set/bag.If

accumName is (2, 4, 6), then

accumName += 4

would result in accumName

equal to (2, 4, 4, 6)

MapAccum< type, type >

(unordered collection of

(key,value) pairs)

empty map

Add or update a key:value pair

to the accumName map. If

accumName is [("red",3),

("green",4),("blue",2)], then

accumName += ("black"-> 5)

produces accumName equal

to [("red",3), ("green",4),

("blue",2), ("black",5)]

ArrayAccum< accumType > empty list
See the ArrayAccum section

below for details.

Insert newVal into the

accumName heap,

5/13/25, 1:39 PM TigerGraph Documentation

758

The SumAccum type computes and stores the cumulative sum of numeric values or the

cumulative concatenation of text values. The output of a SumAccum is a single numeric

or string value. SumAccum variables operate on values of type INT , UINT, FLOAT, DOUBLE,

or STRING only.

The += operator updates the accumulator's state. For INT, FLOAT, and DOUBLE types, +=

arg performs a numeric addition, while for the STRING value type += arg

concatenates arg to the current value of the SumAccum.

HeapAccum< tuple >

(heapSize, sortKey [,

sortKey_i]*)

(sorted collection of tuples)

empty heap maintaining the heap in sorted

order, according to the

sortKey(s) and size limit

declared for this HeapAccum

GroupByAccum< type [, type]*

, accumType [, accumType]* >
empty group by map

Add or update a key:value pair

in accumName . See Section

"GroupByAccum" for more

details.

SumAccum

SumAccum Example

5/13/25, 1:39 PM TigerGraph Documentation

759

SumAccum Example
CREATE QUERY sumAccumEx() FOR GRAPH minimalNet {

 SumAccum<INT> @@intAccum;
 SumAccum<FLOAT> @@floatAccum;
 SumAccum<DOUBLE> @@doubleAccum;
 SumAccum<STRING> @@stringAccum;

 @@intAccum = 1;
 @@intAccum += 1;

 @@floatAccum = @@intAccum;
 @@floatAccum = @@floatAccum / 3;

 @@doubleAccum = @@floatAccum * 8;
 @@doubleAccum += -1;

 @@stringAccum = "Hello ";
 @@stringAccum += "World";

 PRINT @@intAccum;
 PRINT @@floatAccum;
 PRINT @@doubleAccum;
 PRINT @@stringAccum;
}

GSQL > RUN QUERY sumAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@intAccum": 2},
 {"@@floatAccum": 0.66667},
 {"@@doubleAccum": 4.33333},
 {"@@stringAccum": "Hello World"}
]
}

sumAccumEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

760

The MinAccum and MaxAccum types calculate and store the cumulative minimum or the

cumulative maximum of a series of values. The output of a MinAccum or a MaxAccum is

a single numeric value. MinAccum and MaxAccum variables operate on values of type INT,

UINT, FLOAT, and DOUBLE, VERTEX (with optional specific vertex type) only.

For MinAccum, += arg checks if the current value held is less than arg and stores the

smaller of the two. MaxAccum behaves the same, with the exception that it checks for

and stores the greater instead of the lesser of the two.

MinAccum and MaxAccum Example
CREATE QUERY minMaxAccumEx() FOR GRAPH minimalNet {

 MinAccum<INT> @@minAccum;
 MaxAccum<FLOAT> @@maxAccum;

 @@minAccum += 40;
 @@minAccum += 20;
 @@minAccum += -10;

 @@maxAccum += -1.1;
 @@maxAccum += 2.5;
 @@maxAccum += 2.8;

 PRINT @@minAccum;
 PRINT @@maxAccum;
}

MinAccum / MaxAccum

MinAccum and MaxAccum Example

minMaxAccumEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

761

MinAccum and MaxAccum operating on VERTEX type have a special comparison. They do

not compare vertex ids, but TigerGraph internal ids, which might n ot be in t he same order

as the external ids. Comparing internal ids is much faster, so MinAccum/

MaxAccum<VERTEX> provide an efficient way to compar e and select vertices. This is

helpful for some graph algorithms that require the vertices to be numbered and sortable .

For example, the following query returns one post from each person. The returned vertex

is not necessarily the vertex with alphabetically largest id.

GSQL > RUN QUERY minMaxAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@minAccum": -10},
 {"@@maxAccum": 2.8}
]
}

Output one random post vertex from each person
CREATE QUERY minMaxAccumVertex() FOR GRAPH socialNet api("v2") {

 MaxAccum<VERTEX> @maxVertex;
 allUser = {person.*};
 allUser = SELECT src
 FROM allUser:src -(posted)-> post:tgt
 ACCUM src.@maxVertex += tgt
 ORDER BY src.id;
 PRINT allUser[allUser.@maxVertex]; // api v2
}

MaxAccum<VERTEX> example

minMaxAccuxVertex.json Result

5/13/25, 1:39 PM TigerGraph Documentation

762

5/13/25, 1:39 PM TigerGraph Documentation

763

GSQL > RUN QUERY minMaxAccumVertex()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"allUser": [
 {
 "v_id": "person1",
 "attributes": {"allUser.@maxVertex": "0"},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"allUser.@maxVertex": "1"},
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {"allUser.@maxVertex": "2"},
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {"allUser.@maxVertex": "3"},
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"allUser.@maxVertex": "11"},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"allUser.@maxVertex": "10"},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"allUser.@maxVertex": "9"},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"allUser.@maxVertex": "7"},

5/13/25, 1:39 PM TigerGraph Documentation

764

The AvgAccum type calculates and stores the cumulative mean of a series of numeric

values. Internally, its state information includes the sum value of all inputs and a count of

how many input values it has accumulated. The output is the mean value; the sum and the

count values are not accessible to the user. The data type of a AvgAccum variable is not

declared; all AvgAccum accumulators accept inputs of type INT, UINT, FLOAT, and

DOUBLE. The output is always DOUBLE type.

The += arg operation updates the AvgAccum variable's state to be the mean of all the

previous arguments along with the current argument; The = arg operation clears all the

previously accumulated state and sets the new state to be arg with a count of one.

 "v_type": "person"
 }
]}]
}

AvgAccum Example
CREATE QUERY avgAccumEx() FOR GRAPH minimalNet {

 AvgAccum @@averageAccum;

 @@averageAccum += 10;
 @@averageAccum += 5.5; # avg = (10+5.5) / 2.0
 @@averageAccum += -1; # avg = (10+5.5-1) / 3.0

 PRINT @@averageAccum; # 4.8333...

 @@averageAccum = 99; # reset
 @@averageAccum += 101; # avg = (99 + 101) / 2

 PRINT @@averageAccum; # 100
}

AvgAccum

AvgAccum Example

avgAccumEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

765

The AndAccum and OrAccum types calculate and store the cumulative result of a series

of boolean operations. The output of an AndAccum or an OrAccum is a single boolean

value (True or False). AndAccum and OrAccum variables operate on boolean values only.

The data type does not need to be declared.

For AndAccum, += arg updates the state to be the logical AND between the current

boolean state and arg . OrAccum behaves the same, with the exception that it stores the

result of a logical OR operation.

GSQL > RUN QUERY avgAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@averageAccum": 4.83333},
 {"@@averageAccum": 100}
]
}

AndAccum / OrAccum

AndAccum and OrAccum Example

5/13/25, 1:39 PM TigerGraph Documentation

766

The BitwiseAndAccum and BitwiseOrAccum types calculate and store the cumulative

result of a series of bitwise boolean operations and store the resulting bit sequences.

AndAccum and OrAccum Example
CREATE QUERY andOrAccumEx() FOR GRAPH minimalNet {
 # T = True
 # F = False

 AndAccum @@andAccumVar; # (default value = T)
 OrAccum @@orAccumVar; # (default value = F)

 @@andAccumVar += True; # T and T = T
 @@andAccumVar += False; # T and F = F
 @@andAccumVar += True; # F and T = F

 PRINT @@andAccumVar;

 @@orAccumVar += False; # F or F == F
 @@orAccumVar += True; # F or T == T
 @@orAccumVar += False; # T or F == T

 PRINT @@orAccumVar;
}

GSQL > RUN QUERY andOrAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@andAccumVar": false},
 {"@@orAccumVar": true}
]
}

BitwiseAndAccum / BitwiseOrAccum

andOrAccumEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

767

BitwiseAndAccum and BitwiseOrAccum operator on INT only. The data type does not need

to be declared.

Fundamental for understanding and using bitwise operations is the knowledge that

integers are stored in base-2 representation as a 64-bit sequence of 1s and 0s. "Bitwise"

means that each bit is treated as a separate boolean value, with 1 representing true and 0

representing false. Hence, an integer is equivalent to a sequence of boolean values.

Computing the Bitwise AND of two numbers A and B means to compute the bit sequence

C where the j th bit of C, denoted C j , is equal to (A j AND B j).

For BitwiseAndAccum, += arg updates the accumulator's state to be the Bitwise AND of

the current state and arg . BitwiseOrAccum behaves the same, with the exception that

it computes a Bitwise OR.

Bitwise Operations and Negative Integers

Most computer systems represent negative integers using "2's complement" format, where

the uppermost bit has special significance. Operations which affect the uppermost bit are

crossing the boundary between positive and negative numbers, and vice versa.

BitwiseAndAccum and BitwiseOrAccum Example

5/13/25, 1:39 PM TigerGraph Documentation

768

BitwiseAndAccum and BitwiseOrAccum Example
CREATE QUERY bitwiseAccumEx() FOR GRAPH minimalNet {

 BitwiseAndAccum @@bwAndAccumVar; # default value = 64-bits of 1 = -1 (IN
 BitwiseOrAccum @@bwOrAccumVar; # default value = 64-bits of 0 = 0 (INT

 # 11110000 = 240
 # 00001111 = 15
 # 10101010 = 170
 # 01010101 = 85

 # BitwiseAndAccum
 @@bwAndAccumVar += 170; # 11111111 & 10101010 -> 10101010
 @@bwAndAccumVar += 85; # 10101010 & 01010101 -> 00000000
 PRINT @@bwAndAccumVar; # 0

 @@bwAndAccumVar = 15; # reset to 00001111
 @@bwAndAccumVar += 85; # 00001111 & 01010101 -> 00000101
 PRINT @@bwAndAccumVar; # 5

 # BitwiseOrAccum
 @@bwOrAccumVar += 170; # 00000000 | 10101010 -> 10101010
 @@bwOrAccumVar += 85; # 10101010 | 01010101 -> 11111111 = 255
 PRINT @@bwOrAccumVar; # 255

 @@bwOrAccumVar = 15; # reset to 00001111
 @@bwOrAccumVar += 85; # 00001111 | 01010101 -> 01011111 = 95
 PRINT @@bwOrAccumVar; # 95
}

bitwiseAccumEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

769

The ListAccum type maintains a sequential collection of elements. The output of a

ListAccum is a list of values in the order the elements were added. The element type can

be any base type, tuple, or STRING COMPRESS. Additionally, a ListAccum can contain a

nested collection of type ListAccum. Nesting of ListAccums is limited to a depth of three.

The += arg operation appends arg to the end of the list. In this case, arg may be

either a single element or another ListAccum.

ListAccum supports two additional operations:

• @list1 + @list2 creates a new ListAccum, which contains the elements of @list1

followed by the elements of @list2. The two ListAccums must have identical data

types.

Change in "+" definition

The pre-v2.0 definition of the ListAccum "+" operator (@list + arg : Add arg to each member

of @list) is no longer supported.

• @list1 * @list2 (STRING data only) generates a new list of strings consisting of all

permutations of an element of the first list followed by an element of the second list.

GSQL > RUN QUERY bitwiseAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@bwAndAccumVar": 0},
 {"@@bwAndAccumVar": 5},
 {"@@bwOrAccumVar": 255},
 {"@@bwOrAccumVar": 95}
]
}

ListAccum

5/13/25, 1:39 PM TigerGraph Documentation

770

ListAccum also supports the following class functions.

Functions which modify the ListAccum (mutator functions) can be used only under the

following conditions:

• Mutator functions of global accumulators may only be used at the query-body level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-ACCUM

clause.

function (T is the

element type)
return type Accessor / Mutator description

size() INT Accessor

Returns the number

of elements in the

list.

contains(T val) BOOL Accessor

Returns true/false if

the list does/doesn't

contain the value .

get(INT idx) T Accessor

Returns the value at

the given index

position in the list.

The index begins at

0. If the index is out

of bound (including

any negative value),

the default value of

the element type is

returned.

clear() VOID Mutator

Clears the list so it

becomes empty with

size 0.

update (INT index, T

value)
VOID Mutator

Assigns value to the

list element at

position index .

ListAccum Example

5/13/25, 1:39 PM TigerGraph Documentation

771

5/13/25, 1:39 PM TigerGraph Documentation

772

ListAccum Example
CREATE QUERY listAccumEx() FOR GRAPH minimalNet {

 ListAccum<INT> @@intListAccum;
 ListAccum<STRING> @@stringListAccum;
 ListAccum<STRING> @@stringMultiplyListAccum;
 ListAccum<STRING> @@stringAdditionAccum;
 ListAccum<STRING> @@letterListAccum;
 ListAccum<ListAccum<STRING>> @@nestedListAccum;

 @@intListAccum = [1,3,5];
 @@intListAccum += [7,9];
 @@intListAccum += 11;
 @@intListAccum += 13;
 @@intListAccum += 15;

 PRINT @@intListAccum;
 PRINT @@intListAccum.get(0), @@intListAccum.get(1);
 PRINT @@intListAccum.get(8); # Out of bound: default value of int: 0

 #Other built-in functions
 PRINT @@intListAccum.size();
 PRINT @@intListAccum.contains(2);
 PRINT @@intListAccum.contains(3);

 @@stringListAccum += "Hello";
 @@stringListAccum += "World";

 PRINT @@stringListAccum; // ["Hello","World"]

 @@letterListAccum += "a";
 @@letterListAccum += "b";

 # ListA + ListB produces a new list equivalent to ListB appended to List
 # Ex: [a,b,c] + [d,e,f] => [a,b,c,d,e,f]
 @@stringAdditionAccum = @@stringListAccum + @@letterListAccum;

 PRINT @@stringAdditionAccum;

 #Multiplication produces a list of all list-to-list element combinations
 # Ex: [a,b] * [c,d] = [ac, ad, bc, bd]
 @@stringMultiplyListAccum = @@stringListAccum * @@letterListAccum;

 PRINT @@stringMultiplyListAccum;

 #Two dimensional list (3 dimensions is possible as well)
 @@nestedListAccum += [["foo", "bar"], ["Big", "Bang", "Theory"], ["Strin

5/13/25, 1:39 PM TigerGraph Documentation

773

 PRINT @@nestedListAccum;
 PRINT @@nestedListAccum.get(0);
 PRINT @@nestedListAccum.get(0).get(1);
}

GSQL > RUN QUERY listAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@intListAccum": [1, 3, 5, 7, 9, 11, 13, 15]},
 {
 "@@intListAccum.get(0)": 1,
 "@@intListAccum.get(1)": 3
 },
 {"@@intListAccum.get(8)": 0},
 {"@@intListAccum.size()": 8},
 {"@@intListAccum.contains(2)": false},
 {"@@intListAccum.contains(3)": true},
 {"@@stringListAccum": ["Hello", "World"]},
 {"@@stringAdditionAccum": ["Hello", "World", "a", "b"]},
 {"@@stringMultiplyListAccum": ["Helloa", "Worlda", "Hellob", "Worldb"
 {"@@nestedListAccum": [
 ["foo", "bar"],
 ["Big", "Bang", "Theory"],
 ["String", "Theory"]
]},
 {"@@nestedListAccum.get(0)": ["foo", "bar"]},
 {"@@nestedListAccum.get(0).get(1)": "bar"}
]
}

listAccumEx.json Result

Example for update function on a global ListAccum

5/13/25, 1:39 PM TigerGraph Documentation

774

CREATE QUERY listAccumUpdateEx() FOR GRAPH workNet {

 # Global ListAccum
 ListAccum<INT> @@intListAccum;
 ListAccum<STRING> @@stringListAccum;
 ListAccum<BOOL> @@passFail;

 @@intListAccum += [0,2,4,6,8];
 @@stringListAccum += ["apple","banana","carrot","daikon"];

 # Global update at Query-Body Level
 @@passFail += @@intListAccum.update(1,-99);
 @@passFail += @@intListAccum.update(@@intListAccum.size()-1,40); // las
 @@passFail += @@stringListAccum.update(0,"zero"); // first element
 @@passFail += @@stringListAccum.update(4,"four"); // FAIL: out-of-range

 PRINT @@intListAccum, @@stringListAccum, @@passFail;
}

GSQL > RUN QUERY listAccumUpdateEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@passFail": [true, true, true, false],
 "@@intListAccum": [0, -99, 4, 6, 40],
 "@@stringListAccum": ["zero", "banana", "carrot", "daikon"]
 }]
}

Results in listAcccumUpdateEx.json

Example for update function on a vertex-attached ListAccum

5/13/25, 1:39 PM TigerGraph Documentation

775

CREATE QUERY listAccumUpdateEx2(SET<VERTEX<person>> seed) FOR GRAPH workNe

 # Each person has an LIST<INT> of skills and a LIST<STRING COMPRESS> of
 # This function copies their lists into ListAccums, and then udpates the
 # int with -99 and updates the last string with "fizz".
 ListAccum<INT> @intList;
 ListAccum<STRING COMPRESS> @stringList;
 ListAccum<STRING> @@intFails, @@strFails;

 S0 (person) = seed;
 S1 = SELECT s
 FROM S0:s
 ACCUM
 s.@intList = s.skillList,
 s.@stringList = s.interestList
 POST-ACCUM
 INT len = s.@intList.size(),
 IF NOT s.@intList.update(len-1,-99) THEN
 @@intFails += s.id END,
 INT len2 = s.@stringList.size(),
 IF NOT s.@stringList.update(len2-1,"fizz") THEN
 @@strFails += s.id END
 ;
 PRINT S1[S1.skillList, S1.interestList, S1.@intList, S1.@stringList]; //
 PRINT @@intFails, @@strFails;
}

Results for listAccumUpdateEx2

5/13/25, 1:39 PM TigerGraph Documentation

776

The SetAccum type maintains a collection of unique elements. The output of a SetAccum

is a list of elements in arbitrary order. A SetAccum instance can contain values of one

type. The element type can be any base type, tuple, or STRING COMPRESS.

GSQL > RUN QUERY listAccumUpdateEx2(["person1","person5"])
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"S1": [
 {
 "v_id": "person1",
 "attributes": {
 "S1.@stringList": ["management","fizz"],
 "S1.interestList": ["management", "financial"],
 "S1.skillList": [1, 2, 3],
 "S1.@intList": [1, 2, -99]
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "S1.@stringList": ["sport", "financial", "fizz"],
 "S1.interestList": ["sport", "financial", "engineering"],
 "S1.skillList": [8, 2, 5],
 "S1.@intList": [8, 2, -99]
 },
 "v_type": "person"
 }
]},
 {
 "@@strFails": [],
 "@@intFails": []
 }
]
}

SetAccum

5/13/25, 1:39 PM TigerGraph Documentation

777

For SetAccum, the += arg operation adds a non-duplicate element or set of elements to

the set. If an element is already represented in the set, then the SetAccum state does not

change.

SetAccum also can be used with the three canonical set operators: UNION, INTERSECT,

and MINUS (see Section "Set/Bag Expression and Operators" for more details).

SetAccum also supports the following class functions.

Functions which modify the SetAccum (mutator functions) can be used only under the

following conditions:

• Mutator functions of global accumulators may only be used at the query-body level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-ACCUM

clause.

function (T is the

element type)
return type Accessor / Mutator description

size() INT Accessor

Returns the number

of elements in the

set.

contains(T value) BOOL Accessor

Returns true/false if

the set does/doesn't

contain the value .

remove(T value) VOID Mutator
Removes value from

the set.

clear() VOID Mutator

Clears the set so it

becomes empty with

size 0.

SetAccum Example

5/13/25, 1:39 PM TigerGraph Documentation

778

SetAccum Example
CREATE QUERY setAccumEx() FOR GRAPH minimalNet {

 SetAccum<INT> @@intSetAccum;
 SetAccum<STRING> @@stringSetAccum;

 @@intSetAccum += 5;
 @@intSetAccum.clear();

 @@intSetAccum += 4;
 @@intSetAccum += 11;
 @@intSetAccum += 1;
 @@intSetAccum += 11; # Sets do not store duplicates

 @@intSetAccum += (1,2,3,4); # Can create simple sets this way
 PRINT @@intSetAccum;
 @@intSetAccum.remove(2);
 PRINT @@intSetAccum AS RemovedVal2; # Demostrate remove.

 PRINT @@intSetAccum.contains(3);

 @@stringSetAccum += "Hello";
 @@stringSetAccum += "Hello";
 @@stringSetAccum += "There";
 @@stringSetAccum += "World";
 PRINT @@stringSetAccum;

 PRINT @@stringSetAccum.contains("Hello");
 PRINT @@stringSetAccum.size();
}

setAccumEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

779

The BagAccum type maintains a collection of elements with duplicated elements allowed.

The output of a BagAccum is a list of elements in arbitrary order. A BagAccum instance

can contain values of one type. The element type can be any base type, tuple, or STRING

COMPRESS.

For BagAccum, the += arg operation adds an element or bag of elements to the bag.

BagAccum also supports the + operator:

• @bag1 + @bag2 creates a new BagAccum, which contains the elements of @bag1

and the elements of @bag2. The two BagAccums must have identical data types.

BagAccum also supports the following class functions.

Functions which modify the BagAccum (mutator functions) can be used only under the

following conditions:

• Mutator functions of global accumulators may only be used at the query-body level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-ACCUM

clause.

GSQL > RUN QUERY setAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@intSetAccum": [3, 2, 1, 11, 4]},
 {"@@intSetAccum.contains(3)": true},
 {"@@stringSetAccum": ["World", "There", "Hello"]},
 {"@@stringSetAccum.contains(Hello)": true},
 {"@@stringSetAccum.size()": 3}
]
}

BagAccum

5/13/25, 1:39 PM TigerGraph Documentation

780

function (T is the

element type)
return type Accessor / Mutator description

size() INT Accessor

Returns the number

of elements in the

bag.

contains(T value) BOOL Accessor

Returns true/false if

the bag does/doesn't

contain the value .

clear() VOID Mutator

Clears the bag so it

becomes empty with

size 0.

remove(T value) VOID Mutator

Removes one

instance of value

from the bag.

removeAll(T value) VOID Mutator

Removes all

instances of the

given value from the

bag.

BagAccum Example

5/13/25, 1:39 PM TigerGraph Documentation

781

BagAccum Example
CREATE QUERY bagAccumEx() FOR GRAPH minimalNet {

 #Unordered collection
 BagAccum<INT> @@intBagAccum;
 BagAccum<STRING> @@stringBagAccum;

 @@intBagAccum += 5;
 @@intBagAccum.clear();

 @@intBagAccum += 4;
 @@intBagAccum += 11;
 @@intBagAccum += 1;
 @@intBagAccum += 11; #Bag accums can store duplicates
 @@intBagAccum += (1,2,3,4);
 PRINT @@intBagAccum;

 PRINT @@intBagAccum.size();
 PRINT @@intBagAccum.contains(4);

 @@stringBagAccum += "Hello";
 @@stringBagAccum += "Hello";
 @@stringBagAccum += "There";
 @@stringBagAccum += "World";
 PRINT @@stringBagAccum.contains("Hello");
 @@stringBagAccum.remove("Hello"); #Remove one matching element
 @@stringBagAccum.removeAll("There"); #Remove all matching elements
 PRINT @@stringBagAccum;
}

bagAccumEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

782

The MapAccum type maintains a collection of (key -> value) pairs. The output of a

MapAccum is a set of key and value pairs in which the keys are unique.

The key type of a MapAccum can be all base types or tuples. If the key type is VERTEX,

then only the vertex's id is stored and displayed.

The value type of a MapAccum can be all base types, tuples, or any type of accumulator,

except for HeapAccum.

For MapAccum, the += (key->val) operation adds a key-value element to the collection

if key is not yet used in the MapAccum. If the MapAccum already contains key , then val is

accumulated to the current value, where the accumulation operation depends on the data

type of val . (Strings would get concatenated, lists would be appended, numerical values

would be added, etc.)

MapAccum also supports the + operator:

• @map1 + @map2 creates a new MapAccum, which contains the (key,value) pairs of

@map2 added to the (key,value) pairs of @map1. The two MapAccums must have

identical data types.

GSQL > RUN QUERY bagAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@intBagAccum": [2, 3, 1, 1, 11, 11, 4, 4]},
 {"@@intBagAccum.size()": 8},
 {"@@intBagAccum.contains(4)": true},
 {"@@stringBagAccum.contains(Hello)": true},
 {"@@stringBagAccum": ["World", "Hello"]}
]
}

MapAccum

5/13/25, 1:39 PM TigerGraph Documentation

783

MapAccum also supports the following class functions.

Functions which modify the MapAccum (mutator functions) can be used only under the

following conditions:

• Mutator functions of global accumulators may only be used at the query-body level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-ACCUM

clause.

function (KEY is the

key type)
return type Accessor / Mutator description

size() INT Accessor

Returns the number

of elements in the

map.

containsKey(KEY

key)
BOOL Accessor

Returns true/false if

the map does/doesn't

contain key .

get(KEY key) value type Accessor

Returns the value

which the map

associates with key .

If the map doesn't

containkey , then the

return value is

undefined.

clear() VOID Mutator

Clears the map so it

becomes empty with

size 0.

MapAccum Example

5/13/25, 1:39 PM TigerGraph Documentation

784

5/13/25, 1:39 PM TigerGraph Documentation

785

#MapAccum Example
CREATE QUERY mapAccumEx() FOR GRAPH minimalNet {

 #Map(Key, Value)
 # Keys can be INT or STRING only
 MapAccum<STRING, INT> @@intMapAccum;
 MapAccum<INT, STRING> @@stringMapAccum;
 MapAccum<INT, MapAccum<STRING, STRING>> @@nestedMapAccum;

 @@intMapAccum += ("foo" -> 1);
 @@intMapAccum.clear();

 @@intMapAccum += ("foo" -> 3);
 @@intMapAccum += ("bar" -> 2);
 @@intMapAccum += ("baz" -> 2);
 @@intMapAccum += ("baz" -> 1); #add 1 to existing value

 PRINT @@intMapAccum.containsKey("baz");
 PRINT @@intMapAccum.get("bar");
 PRINT @@intMapAccum.get("root");

 @@stringMapAccum += (1 -> "apple");
 @@stringMapAccum += (2 -> "pear");
 @@stringMapAccum += (3 -> "banana");
 @@stringMapAccum += (4 -> "a");
 @@stringMapAccum += (4 -> "b"); #append "b" to existing value
 @@stringMapAccum += (4 -> "c"); #append "c" to existing value

 PRINT @@intMapAccum;
 PRINT @@stringMapAccum;

 #Checking and getting keys
 if @@stringMapAccum.containsKey(1) THEN
 PRINT @@stringMapAccum.get(1);
 END;

 #Map nesting
 @@nestedMapAccum += (1 -> ("foo" -> "bar"));
 @@nestedMapAccum += (1 -> ("flip" -> "top"));
 @@nestedMapAccum += (2 -> ("fizz" -> "pop"));
 @@nestedMapAccum += (1 -> ("foo" -> "s"));

 PRINT @@nestedMapAccum;

 if @@nestedMapAccum.containsKey(1) THEN
 if @@nestedMapAccum.get(1).containsKey("foo") THEN
 PRINT @@nestedMapAccum.get(1).get("foo");
 END;

5/13/25, 1:39 PM TigerGraph Documentation

786

The ArrayAccum type maintains an array of accumulators. An array is a fixed-length

sequence of elements, with direct access to elements by position. The ArrayAccum has

 END;
}

GSQL > RUN QUERY mapAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@intMapAccum.containsKey(baz)": true},
 {"@@intMapAccum.get(bar)": 2},
 {"@@intMapAccum.get(root)": 0},
 {"@@intMapAccum": {
 "bar": 2,
 "foo": 3,
 "baz": 3
 }},
 {"@@stringMapAccum": {
 "1": "apple",
 "2": "pear",
 "3": "banana",
 "4": "abc"
 }},
 {"@@stringMapAccum.get(1)": "apple"},
 {"@@nestedMapAccum": {
 "1": {
 "foo": "bars",
 "flip": "top"
 },
 "2": {"fizz": "pop"}
 }},
 {"@@nestedMapAccum.get(1).get(foo)": "bars"}
]
}

ArrayAccum

mapAccumEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

787

these particular characteristics:

• The elements are accumulators, not primitive or base data types. All accumulators,

except HeapAccum, MapAccum, and GroupByAccum, can be used.

• An ArrayAccum instance can be multidimensional. There is no limit to the number of

dimensions.

• The size can be set at run-time (dynamically).

• There are operators which update the entire array efficiently.

When an ArrayAccum is declared, the instance name should be followed by a pair of

brackets for each dimension. The brackets may either contain an integer constant to set

the size of the array, or they may be empty. In that case, the size must be set with the

reallocate function before the ArrayAccum can be used.

Because each element of an ArrayAccum itself is an accumulator, the operators =, +=, and

+ can be used in two contexts: accumulator-level and element-level.

If @A is an ArrayAccum of length 6, then @A[0] and @A[5] refer to its first and last

elements, respectively. Referring to an ArrayAccum element is like referring to an

accumulator of that type. For example, given the following definitions:

then @@Sums[0], @@Sums[1], and @@Sums[2] each refer to an individual

SumAccum<INT>, and @@Lists[0] and @@Lists[1] each refer to a ListAccum<STRING>,

supporting all the operations for those accumulator and data types.

ArrayAccum<SetAccum<STRING>> @@names[10];
ArrayAccum<SetAccum<INT>> @@ids[][]; // 2-dimensional, size to be determi

ArrayAccum<SumAccum<INT>> @@Sums[3];
ArrayAccum<ListAccum<STRING>> @@Lists[2];

Element-level operations

ArrayAccum declaration example

5/13/25, 1:39 PM TigerGraph Documentation

788

The operators =, +=, and + have special meanings when applied to an ArrayAccum as a

whole. There operations efficiently update an entire ArrayAccum. All of the ArrayAccums

must have the same element type.

ArrayAccum also supports the following class functions.

Functions which modify the ArrayAccum (mutator functions) can be used only under the

following conditions:

@@Sums[1] = 1;
@@Sums[1] += 2; // value is now 3
@@Lists[0] = "cat";
@@Lists[0] += "egory"; // value is now "category"

Operator Description Example

=

sets the ArrayAccum on the

left equal to the ArrayAccum

on the right. The two

ArrayAccums must have the

same element type, but the

left-side ArrayAccum will

change its size and

dimensions to match the one

on the right-side.

@A = @B;

+

performs element-by-element

addition of two ArrayAccums

of the same type and size.

The result is a new

ArrayAccum of the same size.

@C = @A + @B;

// @A and @B must be the

same size

+=

performs element-by-element

accumulation (+=) from the

right-side ArrayAccum to the

left-side ArrayAccum. They

must be the same type and

size.

@A += @B;

// @A and @B must be the

same size

Accumulator-level operations

5/13/25, 1:39 PM TigerGraph Documentation

789

• Mutator functions of global accumulators may only be used at the query-body level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-ACCUM

clause.

function return type Accessor / Mutator description

size() INT Accessor

Returns the total

number of elements

in the (multi-

dimensional) array.

For example, the size

of an ArrayAccum

declared as @A[3][4]

is 12.

reallocate(INT, ...) VOID Mutator

Discards the previous

ArrayAccum instance

and creates a new

ArrayAccum, with the

size(s) given. An N-

dimensional

ArrayAccum requires

N integer parameters.

The reallocate

function cannot be

used to change the

number of

dimensions.

Example of ArrayAccum Element-level Operations

5/13/25, 1:39 PM TigerGraph Documentation

790

5/13/25, 1:39 PM TigerGraph Documentation

791

CREATE QUERY ArrayAccumElem() FOR GRAPH minimalNet {

ArrayAccum<SumAccum<DOUBLE>> @@aaSumD[2][2]; # 2D Sum Double
ArrayAccum<SumAccum<STRING>> @@aaSumS[2][2]; # 2D Sum String
ArrayAccum<MaxAccum<INT>> @@aaMax[2];
ArrayAccum<MinAccum<UINT>> @@aaMin[2];
ArrayAccum<AvgAccum> @@aaAvg[2];
ArrayAccum<AndAccum<BOOL>> @@aaAnd[2];
ArrayAccum<OrAccum<BOOL>> @@aaOr[2];
ArrayAccum<BitwiseAndAccum> @@aaBitAnd[2];
ArrayAccum<BitwiseOrAccum> @@aaBitOr[2];
ArrayAccum<ListAccum<INT>> @@aaList[2][2]; # 2D List
ArrayAccum<SetAccum<FLOAT>> @@aaSetF[2];
ArrayAccum<BagAccum<DATETIME>> @@aaBagT[2];

for test data
ListAccum<STRING> @@words;
BOOL toggle = false;
@@words += "1st"; @@words += "2nd"; @@words += "3rd"; @@words += "4th"

Int: a[0] += 1, 2; a[1] += 3, 4
Bool: alternate true/false
Float: a[0] += 1.111, 2.222; a[1] += 3.333, 4.444
2D Doub: a[0][0] += 1.111, 2.222; a[0][1] += 5.555, 6.666;
a[1][0] += 3.333, 4.444; a[0][1] += 7.777, 8.888;

FOREACH i IN RANGE [0,1] DO
FOREACH n IN RANGE [1, 2] DO

toggle = NOT toggle;
@@aaMax[i] += i*2 + n;
@@aaMin[i] += i*2 + n;
@@aaAvg[i] += i*2 + n;
@@aaAnd[i] += toggle;
@@aaOr[i] += toggle;
@@aaBitAnd[i] += i*2 + n;
@@aaBitOr[i] += i*2 + n;
@@aaSetF[i] += (i*2 + n)/0.9;
@@aaBagT[i] += epoch_to_datetime(i*2 + n);

FOREACH j IN RANGE [0,1] DO
@@aaSumD[i][j] += (j*4 + i*2 + n)/0.9;
@@aaSumS[i][j] += @@words.get((j*2 + i + n)%4);
@@aaList[i][j] += j*4 +i*2 + n ;

END;
END;

END;

PRINT @@aaSumD; PRINT @@aaSumS;

5/13/25, 1:39 PM TigerGraph Documentation

792

PRINT @@aaMax; PRINT @@aaMin; PRINT @@aaAvg;
PRINT @@aaAnd; PRINT @@aaOr;
PRINT @@aaBitAnd; PRINT @@aaBitOr;
PRINT @@aaList; PRINT @@aaSetF; PRINT @@aaBagT;

}

ArrayAccumElem.json Results

5/13/25, 1:39 PM TigerGraph Documentation

793

GSQL > RUN QUERY ArrayAccumElem()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@aaSumD": [
 [3.33333, 12.22222],
 [7.77778, 16.66667]
]},
 {"@@aaSumS": [
 ["2nd3rd", "4th1st"],
 ["3rd4th", "1st2nd"]
]},
 {"@@aaMax": [2, 4]},
 {"@@aaMin": [1, 3]},
 {"@@aaAvg": [1.5, 3.5]},
 {"@@aaAnd": [false, false]},
 {"@@aaOr": [true, true]},
 {"@@aaBitAnd": [0, 0]},
 {"@@aaBitOr": [3, 7]},
 {"@@aaList": [
 [
 [1, 2],
 [5, 6]
],
 [
 [3, 4],
 [7, 8]
]
]},
 {"@@aaSetF": [
 [2.22222, 1.11111],
 [4.44444, 3.33333]
]},
 {"@@aaBagT": [
 [2, 1],
 [4, 3]
]}
]
}

Example of Operations between Whole ArrayAccums

5/13/25, 1:39 PM TigerGraph Documentation

794

CREATE QUERY ArrayAccumOp3(INT lenA) FOR GRAPH minimalNet {

ArrayAccum<SumAccum<INT>> @@arrayA[5]; // Original size
ArrayAccum<SumAccum<INT>> @@arrayB[2];
ArrayAccum<SumAccum<INT>> @@arrayC[][]; // No size
STRING msg;
@@arrayA.reallocate(lenA); # Set/Change size dynamically
@@arrayB.reallocate(lenA+1);
@@arrayC.reallocate(lenA, lenA+1);

// Initialize arrays
FOREACH i IN RANGE[0,lenA-1] DO

@@arrayA[i] += i*i;
FOREACH j IN RANGE[0,lenA] DO

@@arrayC[i][j] += j*10 + i;
END;

END;
FOREACH i IN RANGE[0,lenA] DO

@@arrayB[i] += 100-i;
END;
msg = "Initial Values";
PRINT msg, @@arrayA, @@arrayB, @@arrayC;

 msg = "Test 1: A = C, C = B"; // = operator
 @@arrayA = @@arrayC; // change dimensions: 1D <- 2D
 @@arrayC = @@arrayB; // change dimensions: 2D <- 1D
 PRINT msg, @@arrayA, @@arrayC;

 msg = "Test 2: B += C"; // += operator
 @@arrayB += @@arrayC; // B and C must have same size & dim
 PRINT msg, @@arrayB, @@arrayC;

 msg = "Test 3: A = B + C"; // + operator
 @@arrayA = @@arrayB + @@arrayC; // B & C must have same size & dim
 PRINT msg, @@arrayA; // A changes size & dim
}

ArrayAccumOp3.json Results

5/13/25, 1:39 PM TigerGraph Documentation

795

GSQL > RUN QUERY ArrayAccumOp3(3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "msg": "Initial Values",
 "@@arrayC": [

[0, 10, 20, 30],
 [1, 11, 21, 31],
 [2, 12, 22, 32]
],
 "@@arrayB": [100, 99, 98, 97],
 "@@arrayA": [0, 1, 4]
 },
 {
 "msg": "Test 1: A = C, C = B",
 "@@arrayC": [100, 99, 98, 97],
 "@@arrayA": [

[0, 10, 20, 30],
 [1, 11, 21, 31],
 [2, 12, 22, 32]
]
 },
 {
 "msg": "Test 2: B += C",
 "@@arrayC": [100, 99, 98, 97],
 "@@arrayB": [200, 198,196, 194]
 },
 {
 "msg": "Test 3: A = B + C",
 "@@arrayA": [300, 297, 294, 291]
 }
]
}

Example for Vertex-Attached ArrayAccum

5/13/25, 1:39 PM TigerGraph Documentation

796

CREATE QUERY arrayAccumLocal() FOR GRAPH socialNet api("v2") {
Count each person's edges by type
friend/liked/posted edges are type 0/1/2, respectively
ArrayAccum<SumAccum<INT>> @edgesByType[3];
Persons = {person.*};

Persons = SELECT s
FROM Persons:s -(:e)-> :t
ACCUM CASE e.type

WHEN "friend" THEN s.@edgesByType[0] += 1
WHEN "liked" THEN s.@edgesByType[1] += 1
WHEN "posted" THEN s.@edgesByType[2] += 1
END

ORDER BY s.id;

#PRINT Persons.@edgesByType; // api v1
 PRINT Persons[Persons.@edgesByType]; // api v2
}

Results for Query ArrayAccumLocal

5/13/25, 1:39 PM TigerGraph Documentation

797

5/13/25, 1:39 PM TigerGraph Documentation

798

GSQL > RUN QUERY arrayAccumLocal()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Persons": [
 {
 "v_id": "person1",
 "attributes": {"Persons.@edgesByType": [2, 1, 1]},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"Persons.@edgesByType": [2, 2, 1]},
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {"Persons.@edgesByType": [2, 1, 1]},
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {"Persons.@edgesByType": [3, 1, 1]},
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"Persons.@edgesByType": [2, 1, 2]},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"Persons.@edgesByType": [2, 1, 2]},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"Persons.@edgesByType": [2, 1, 2]},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"Persons.@edgesByType": [3, 1, 2]},

5/13/25, 1:39 PM TigerGraph Documentation

799

The HeapAccum type maintains a sorted collection of tuples and enforces a maximum

number of tuples in the collection. The output of a HeapAccum is a sorted collection of

tuple elements. The += arg operation adds a tuple to the collection in sorted order. If the

HeapAccum is already at maximum capacity when the += operator is applied, then the

tuple which is last in the sorted order is dropped from the HeapAccum. Sorting of tuples is

performed on one or more defined tuple fields ordered either ascending or descending.

Sorting precedence is performed based on defined tuple fields from left to right.

The declaration of a HeapAccum is more complex than for most other accumulators,

because the user must define a custom tuple type, set the maximum capacity of the

HeapAccum, and specify how the HeapAccum should be sorted. The declaration syntax is

outlined in the figure below:

First, the HeapAccum declaration must be preceded by a TYPEDEF statement which

defines the tuple type. At least one of the fields (field_1, ..., field_n) must be of a data type

that can be sorted.

In the declaration of the HeapAccum itself, the keyword "HeapAccum" is followed by the

tuple type in angle brackets < >. This is followed by a parenthesized list of two or more

parameters. The first parameter is the maximum number of tuples that the HeapAccum

may store. This parameter must be a positive integer. The subsequent parameters are a

subset of the tuple's field, which are used as sort keys. The sort key hierarchy is from left

to right, with the leftmost key being the primary sort key. The keywords ASC and DESC

indicate Ascending (lowest value first) or Descending (highest value first) sort order.

Ascending order is the default.

 "v_type": "person"
 }
]}]
}

TYPEDEF TUPLE<type field_1,.., type field_n> tupleName;
...
HeapAccum<tupleName>(capacity, field_a [ASC|DESC],... , field_z [ASC|DESC]

HeapAccum

HeapAccum declaration syntax

5/13/25, 1:39 PM TigerGraph Documentation

800

HeapAccum also supports the following class functions.

Functions which modify the HeapAccum (mutator functions) can be used only under the

following conditions:

• Mutator functions of global accumulators may only be used at the query-body level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-ACCUM

clause.

function return type Accessor / Mutator description

size() INT Accessor

Returns the number

of elements in the

heap.

top() tupleType Accessor

Returns the top tuple.

If this heap is empty,

returns a tuple with

each element equal

to the default value.

pop() tupleType Mutator

Returns the top tuple

and removes it from

the heap. If this heap

is empty, returns a

tuple with each

element equal to the

default value.

resize(INT) VOID Mutator

Changes the

maximum capacity of

the heap.

clear() VOID Mutator

Clears the heap so it

becomes empty with

size 0.

HeapAccum Example

5/13/25, 1:39 PM TigerGraph Documentation

801

#HeapAccum Example
CREATE QUERY heapAccumEx() FOR GRAPH minimalNet {
 TYPEDEF tuple<STRING firstName, STRING lastName, INT score> testResults;

 #Heap with max size of 4 sorted decending by score then ascending last n
 HeapAccum<testResults>(4, score DESC, lastName ASC) @@topTestResults;

 PRINT @@topTestResults.top();

 @@topTestResults += testResults("Bruce", "Wayne", 80);
 @@topTestResults += testResults("Peter", "Parker", 80);
 @@topTestResults += testResults("Tony", "Stark", 100);
 @@topTestResults += testResults("Bruce", "Banner", 95);
 @@topTestResults += testResults("Jean", "Summers", 95);
 @@topTestResults += testResults("Clark", "Kent", 80);

 #Show element with the highest sorted position
 PRINT @@topTestResults.top();
 PRINT @@topTestResults.top().firstName, @@topTestResults.top().lastName,

 PRINT @@topTestResults;

 #Increase the size of the heap to add more elements
 @@topTestResults.resize(5);

 #Find the size of the current heap
 PRINT @@topTestResults.size();

 @@topTestResults += testResults("Bruce", "Wayne", 80);
 @@topTestResults += testResults("Peter", "Parker", 80);

 PRINT @@topTestResults;

 #Resizing smaller WILL REMOVE excess elements from the HeapAccum
 @@topTestResults.resize(3);
 PRINT @@topTestResults;

 #Increasing capacity will not restore dropped elements
 @@topTestResults.resize(5);
 PRINT @@topTestResults;

 #Removes all elements from the HeapAccum
 @@topTestResults.clear();
 PRINT @@topTestResults.size();
}

heapAccumEx.json Results

5/13/25, 1:39 PM TigerGraph Documentation

802

5/13/25, 1:39 PM TigerGraph Documentation

803

GSQL > RUN QUERY heapAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@topTestResults.top()": {
 "firstName": "",
 "lastName": "",
 "score": 0
 }},
 {"@@topTestResults.top()": {
 "firstName": "Tony",
 "lastName": "Stark",
 "score": 100
 }},
 {
 "@@topTestResults.top().firstName": "Tony",
 "@@topTestResults.top().lastName": "Stark",
 "@@topTestResults.top().score": 100
 },
 {"@@topTestResults": [
 {
 "firstName": "Tony",
 "lastName": "Stark",
 "score": 100
 },
 {
 "firstName": "Bruce",
 "lastName": "Banner",
 "score": 95
 },
 {
 "firstName": "Jean",
 "lastName": "Summers",
 "score": 95
 },
 {
 "firstName": "Clark",
 "lastName": "Kent",
 "score": 80
 }
]},
 {"@@topTestResults.size()": 4},

5/13/25, 1:39 PM TigerGraph Documentation

804

The GroupByAccum is compound accumulator, an accumulator of accumulators. At the

top level, it is a MapAccum where both the key and the value can have multiple fields.

Moreover, each of the value fields is an accumulator type.

In the EBNF above, the type terms form the key set, and the accumType terms form the

map's value. Since they are accumulators, they perform a grouping. Like a MapAccum, if

we try to store a (key->value) whose key has already been used, then the new value will

accumulate to the data which is already stored. In this case, each field of the multiple-

field value has its own accumulation function. One way to think about GroupByAccum is

that each unique key is a group ID.

In GroupByAccum, the key types can be base type, tuple, or STRING COMPRESS. The

accumulators are used for aggregating group values. Each accumulator type can be any

type except HeapAccum. Each base type and each accumulator type must be followed an

alias. Below is an example declaration.

 {"@@topTestResults": [
 {
 "firstName": "Tony",
 "lastName": "Stark",
 "score": 100
 },
 {
 "firstName": "Bruce",
 "lastName": "Banner",
 "score": 95
 },
 {
 "firstName": "Jean",
 "lastName": "Summers",
 "score": 95
 },
 {
 "firstName": "Clark",
 "lastName": "Kent",
 "score": 80
 },
 {
 "firstName": "Peter",
 "lastName": "Parker",
 "score": 80
 }
]},
 {"@@topTestResults": [
 {
 "firstName": "Tony",
 "lastName": "Stark",
 "score": 100
 },
 {
 "firstName": "Bruce",
 "lastName": "Banner",
 "score": 95
 },
 {
 "firstName": "Jean",
 "lastName": "Summers",
 "score": 95
 }
]},
 {"@@topTestResults": [
 {
 "firstName": "Tony",
 "lastName": "Stark",

"score": 100

GroupByAccum<type [, type]* , accumType [, accumType]* >

GroupByAccum<INT a, STRING b, MaxAccum<INT> maxa, ListAccum<ListAccum<INT>

GroupByAccum

GroupByAccum syntax

5/13/25, 1:39 PM TigerGraph Documentation

805

To add new data to this GroupByAccum, the data should be formatted as (key1, key2 ->

value1, value2) .

GroupByAccum also supports the following class functions.

Functions which modify the GroupByAccum (mutator functions) can be used only under the

following conditions:

• Mutator functions of global accumulators may only be used at the query-body level.

• Mutator functions of vertex-attached accumulators may only be used in a POST-ACCUM

clause.

 score : 100
 },
 {
 "firstName": "Bruce",
 "lastName": "Banner",
 "score": 95
 },
 {
 "firstName": "Jean",
 "lastName": "Summers",
 "score": 95
 }
]},
 {"@@topTestResults.size()": 0}
]
}

function (KEY1..KEYn

are the key types)
return type Accessor / Mutator description

size() INT Accessor

Returns the number

of elements in the

heap.

get(KEY1 key_value1

, KEY2 key_value2 ...)

element type(s) of

the accumulator(s)
Accessor

Returns the values

from each

accumulator in the

group associating

with the given key(s).

If the key(s) doesn't

exist, return the

default value(s) of

the accumulator

type(s).

containsKey(KEY1

key_value1 , KEY2

key_value2...)

BOOL Accessor

Returns true/false if

the accumulator

contains the key(s)

clear() VOID Mutator

Clears the heap so it

becomes empty with

size 0.

remove (KEY1

key_value1 , KEY2

key_value2 ...)

VOID Mutator

Removes the group

associating with the

key(s)

GroupByAccum Example

5/13/25, 1:39 PM TigerGraph Documentation

806

#GroupByAccum Example
CREATE QUERY groupByAccumEx () FOR GRAPH socialNet {

 ## declaration, first two primitive type are group by keys; the rest acc
 GroupByAccum<INT a, STRING b, MaxAccum<INT> maxa, ListAccum<ListAccum<IN
 GroupByAccum<STRING gender, MapAccum<VERTEX<person>, DATETIME> m> @@grou
 # nested GroupByAccum
 GroupByAccum<INT a, MaxAccum<INT> maxa, GroupByAccum<INT a, MaxAccum<INT

 Start = { person.* };

 ## usage of global GroupByAccum
 @@group += (1, "a" -> 1, [1]);
 @@group += (1, "a" -> 2, [2]);
 @@group += (2, "b" -> 1, [4]);

 @@group3 += (2 -> 1, (2 -> 0));
 @@group3 += (2 -> 1, (2 -> 5));
 @@group3 += (2 -> 5, (3 -> 3));
 PRINT @@group, @@group.get(1, "a"), @@group.get(1, "a").lists, @@group.

 ## two kinds of foreach
 FOREACH g IN @@group DO
 PRINT g.a, g.b, g.maxa, g.lists;
 END;
 FOREACH (g1,g2,g3,g4) IN @@group DO
 PRINT g1,g2,g3,g4;
 END;

 S = SELECT v
 FROM Start:v - (liked:e) - post:t
 ACCUM @@group2 += (v.gender -> (v -> e.actionTime));

 PRINT @@group2, @@group2.get("Male").m, @@group2.get("Female").m;
}

Result for Query groupByAccum

5/13/25, 1:39 PM TigerGraph Documentation

807

5/13/25, 1:39 PM TigerGraph Documentation

808

GSQL > RUN QUERY groupByAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@group.get(1,a).lists": [
 [1],
 [2]
],
 "@@group3": [{
 "a": 2,
 "heap": [
 {
 "a": 3,
 "maxa": 3
 },
 {
 "a": 2,
 "maxa": 5
 }
],
 "maxa": 5
 }],
 "@@group.containsKey(1,c)": false,
 "@@group.get(1,a)": {
 "lists": [
 [1],
 [2]
],
 "maxa": 2
 },
 "@@group": [
 {
 "a": 2,
 "b": "b",
 "lists": [[4]],
 "maxa": 1
 },
 {
 "a": 1,
 "b": "a",
 "lists": [

5/13/25, 1:39 PM TigerGraph Documentation

809

Certain collection accumulators may be nested. That is, an accumulator may contain a

collection of elements where the elements themselves are accumulators. For example:

Only ListAccum, ArrayAccum, MapAccum, and GroupByAccum can contain other

accumulators. However, not all combinations of collection accumulators are allowed. The

following constraints apply:

1. ListAccum: ListAccum is the only accumulator type which can be nested within

ListAccum, up to a depth of 3:

 [1],
 [2]
],
 "maxa": 2
 }
]
 },
 {
 "g.b": "b",
 "g.maxa": 1,
 "g.lists": [[4]],
 "g.a": 2
 },
 {
 "g.b": "a",
 "g.maxa": 2,
 "g.lists": [
 [1],
 [2]
],
 "g.a": 1
 },
 {
 "g1": 2,
 "g2": "b",
 "g3": 1,
 "g4": [[4]]
 },
 {
 "g1": 1,
 "g2": "a",
 "g3": 2,
 "g4": [
 [1],
 [2]
]
 },
 {
 "@@group2.get(Male).m": {
 "person3": 1263618953,
 "person1": 1263209520,
 "person8": 1263180365,
 "person7": 1263295325,
 "person6": 1263468185
 },
 "@@group2": [
 {
 "gender": "Male",

"m": {

ListAccum<ListAccum<INT>> @@matrix; # a 2-dimensional jagged array of inte

Nested Accumulators

5/13/25, 1:39 PM TigerGraph Documentation

810

2. MapAccum: All accumulator types, except for HeapAccum, can be nested within

MapAccum as the value type. For example,

3. GroupByAccum: All accumulator types, except for HeapAccum, can be nested within

GroupByAccum as the accumulator type. For example:

4. ArrayAccum: Unlike the other accumulators in this list, where nesting is optional,

nesting is mandatory for ArrayAccum. See the ArrayAccum section above.

It is legal to define nested ListAccums to form a multi-dimensional array. Note the

declaration statements and the nested [bracket] notation in the example below:

 m : {
 "person3": 1263618953,
 "person1": 1263209520,
 "person8": 1263180365,
 "person7": 1263295325,
 "person6": 1263468185
 }
 },
 {
 "gender": "Female",
 "m": {
 "person4": 1263352565,
 "person2": 2526519281,
 "person5": 1263330725
 }
 }
],
 "@@group2.get(Female).m": {
 "person4": 1263352565,
 "person2": 2526519281,
 "person5": 1263330725
 }
 }
]
}

ListAccum<ListAccum<INT>>
ListAccum<ListAccum<ListAccum<INT>>>
ListAccum<SetAccum<INT>> # illegal

MapAccum<STRING, ListAccum<INT>>
MapAccum<INT, MapAccum<INT, STRING>>
MapAccum<VERTEX, SumAccum<INT>>
MapAccum<STRING, SetAccum<VERTEX>>
MapAccum<STRING, GroupByAccum<VERTEX a, MaxAccum<INT> maxs>>
MapAccum<SetAccum<INT>, INT> # illegal

GroupByAccum<INT a, STRING b, MaxAccum<INT> maxs, ListAccum<ListAccum<INT>

5/13/25, 1:39 PM TigerGraph Documentation

811

CREATE QUERY nestedAccumEx() FOR GRAPH minimalNet {
 ListAccum<ListAccum<INT>> @@_2d_list;
 ListAccum<ListAccum<ListAccum<INT>>> @@_3d_list;
 ListAccum<INT> @@_1d_list;
 SumAccum <INT> @@sum = 4;

 @@_1d_list += 1;
 @@_1d_list += 2;
 // add 1D-list to 2D-list as element
 @@_2d_list += @@_1d_list;

 // add 1D-enum-list to 2D-list as element
 @@_2d_list += [@@sum, 5, 6];
 // combine 2D-enum-list and 2d-list
 @@_2d_list += [[7, 8, 9], [10, 11], [12]];

 // add an empty 1D-list
 @@_1d_list.clear();
 @@_2d_list += @@_1d_list;

 // combine two 2D-list
 @@_2d_list += @@_2d_list;

 PRINT @@_2d_list;

 // test 3D-list
 @@_3d_list += @@_2d_list;
 @@_3d_list += [[7, 8, 9], [10, 11], [12]];
 PRINT @@_3d_list;
}

nestedAccumEx.json Results

5/13/25, 1:39 PM TigerGraph Documentation

812

GSQL > RUN QUERY nestedAccumEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@_2d_list": [
 [1,2],
 [4,5,6],
 [7,8,9],
 [10,11],
 [12],
 [],
 [1,2],
 [4,5,6],
 [7,8,9],
 [10,11],
 [12],
 []
]},
 {"@@_3d_list": [
 [
 [1,2],
 [4,5,6],
 [7,8,9],
 [10,11],
 [12],
 [],
 [1,2],
 [4,5,6],
 [7,8,9],
 [10,11],
 [12],
 []
],
 [
 [7,8,9],
 [10,11],
 [12]
]
]}
]
}

5/13/25, 1:39 PM TigerGraph Documentation

813

Operators, Functions, and Expressions

An expression is a combination of fixed values, variables, operators, function calls, and

groupings which specify a computation, resulting in a data value. This section of the

specification describes the literals (fixed values), operators, and functions available in the

GSQL query language. It covers the subset of the EBNF definitions shown below. However,

more so than in other sections of the specification, syntax alone is not an adequate

description. The semantics (functionality) of the particular operators and functions are an

essential complement to the syntax.

EBNF for Operations, Functions, and Expressions

5/13/25, 1:39 PM TigerGraph Documentation

814

constant := numeric | stringLiteral | TRUE | FALSE | GSQL_UINT_MAX | GSQL_

mathOperator := "*" | "/" | "%" | "+" | "-" | "<<" | ">>" | "&" | "|"

comparisonOperator := "<" | "<=" | ">" | ">=" | "==" | "!="

condition := expr
 | expr comparisonOperator expr
 | expr [NOT] IN setBagExpr
 | expr IS [NOT] NULL
 | expr BETWEEN expr AND expr
 | "(" condition ")"
 | NOT condition
 | condition (AND | OR) condition
 | (TRUE | FALSE)

expr := ["@@"]name
 | name "." "type"
 | name "." ["@"]name
 | name "." "@"name ["\'"]
 | name "." name "." name "(" [argList] ")"
 | name "." name "(" [argList] ")" [".".FILTER "(" condition ")"]
 | name ["<" type ["," type"]* ">"] "(" [argList] ")"
 | name "." "@"name ("." name "(" [argList] ")")+ ["." name]
 | "@@"name ("." name "(" [argList] ")")+ ["." name]
 | COALESCE "(" [argList] ")"
 | (COUNT | ISEMPTY | MAX | MIN | AVG | SUM) "(" setBagExpr ")"
 | expr mathOperator expr
 | "-" expr
 | "(" expr ")"
 | "(" argList "->" argList ")" // key value pair for MapAccum
 | "[" argList "]" // a list
 | constant
 | setBagExpr
 | name "(" argList ")"

setBagExpr := ["@@"]name
 | name "." ["@"]name
 | name "." "@"name ("." name "(" [argList] ")")+
 | name "." name "(" [argList] ")" [".".FILTER "(" condition ")"
 | "@@"name ("." name "(" [argList] ")")+
 | setBagExpr (UNION | INTERSECT | MINUS) setBagExpr
 | "(" argList ")"
 | "(" setBagExpr ")"

argList := expr ["," expr]*

5/13/25, 1:39 PM TigerGraph Documentation

815

Each primitive data type supports constant values:

GSL_UINT_MAX = 2 ^ 64 - 1 = 18446744073709551615

GSQL_INT_MAX = 2 ^ 63 - 1 = 9223372036854775807

GSQL_INT_MIN = -2 ^ 63 = -9223372036854775808

An operator is a keyword token which performs a specific computational function to return

a resulting value, using the adjacent expressions (its operands) as input values. An

operator is similar to a function in that both compute a result from inputs, but syntactically

constant := numeric | stringLiteral | TRUE | FALSE | GSQL_UINT_MAX | GSQL_

Data Type Constant Examples

Numeric types (INT, UINT,

FLOAT, DOUBLE)
numeric

123

-5

45.67

2.0e-0.5

UINT GSQL_UINT_MAX

INT
GSQL_INT_MAX

GSQL_INT_MIN

boolean
TRUE

FALSE

string stringLiteral
"atoz@com"
"0.25"

Constants

Operators

5/13/25, 1:39 PM TigerGraph Documentation

816

they are different. The most familiar operators are the mathematical operators for addition

+ and subtraction - .

Tip: The operators listed in this section are designed to behave like the operators in MySQL.

We support the following standard mathematical operators and meanings. The latter four

("<<" | ">>" | "&" | "|") are for bitwise operations. See the section below: "Bit Operators".

Operator precedences are shown in the following list, from highest precedence to the

lowest. Operators that are shown together on a line have the same precedence:

mathOperator := "*" | "/" | "%" | "+" | "-" | "<<" | ">>" | "&" | "|"

*, /, %
-, +
<<, >>
&
|
==, >=, >, <=, <, !=

Mathematical Operators and Expressions

Operator Precedence, highest to lowest

Example 1. Math Operators + - * /

5/13/25, 1:39 PM TigerGraph Documentation

817

CREATE QUERY mathOperators() FOR GRAPH minimalNet api("v2")
{
 int x,y;
 int z1,z2,z3,z4,z5;
 float f1,f2,f3,f4;

 x = 7;
 y = 3;

 z1 = x * y; # z = 21
 z2 = x - y; # z = 4
 z3 = x + y; # z = 10
 z4 = x / y; # z = 2
 z5 = x / 4.0; # z = 1
 f1 = x / y; # v = 2
 f2 = x / 4.0; # v = 1.75
 f3 = x % 3; # v = 1
 f4 = x % y; # z = 1

 PRINT x,y;
 PRINT z1 AS xTIMESy, z2 AS xMINUSy, z3 AS xPLUSy, z4 AS xDIVy, z5 AS x
 PRINT f1 AS xDIVy, f2 AS xDIV4f, f3 AS xMOD3, f4 AS xMODy;
}

mathOperators.json Results

5/13/25, 1:39 PM TigerGraph Documentation

818

We support the standard Boolean operators and standard order of precedence: AND, OR,

NOT

Bit operators (<<, >>, &, and |) operate on integers and return an integer.

GSQL > RUN QUERY mathOperators()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "x": 7,
 "y": 3
 },
 {
 "xTIMESy": 21,
 "xPLUSy": 10,
 "xMINUSy": 4,
 "xDIVy": 2,
 "xDIV4f": 1
 },
 {
 "xMODy": 1,
 "xMOD3": 1,
 "xDIVy": 2,
 "xDIV4f": 1.75
 }
]
}

Boolean Operators

Bit Operators

Bit Operators

5/13/25, 1:39 PM TigerGraph Documentation

819

Operator + can be used for concatenating strings.

The fields of the tuple can be accessed using the dot operator.

A condition is an expression which evaluates to a boolean value of either true or false.

One type of condition uses the familiar comparison operators. A comparison operator

compares two numeric values.

CREATE QUERY bitOperationTest() FOR GRAPH minimalNet{
 PRINT 80 >> 2; # 20
 PRINT 80 << 2; # 320
 PRINT 2 + 80 >> 4; # 5
 PRINT 2 | 3 ; # 3
 PRINT 2 & 3 ; # 2
 PRINT 2 | 3 + 2; # 7
 PRINT 2 & 3 - 2; # 0
}

comparisonOperator := "<" | "<=" | ">" | ">=" | "==" | "!="

condition := expr
 | expr comparisonOperator expr
 | expr [NOT] IN setBagExpr
 | expr IS [NOT] NULL
 | expr BETWEEN expr AND expr
 | "(" condition ")"
 | NOT condition
 | condition (AND | OR) condition
 | (TRUE | FALSE)
 | expr NOT? LIKE expr (ESCAPE ESCAPE_CHAR)?

String Operators

Tuple Fields

Comparison Operators and Conditions

5/13/25, 1:39 PM TigerGraph Documentation

820

The expression expr1 BETWEEN expr2 AND expr3 is true if the value expr1 is in the range

from expr2 to expr3, including the endpoint values. Each expression must be numeric.

" expr1 BETWEEN expr2 AND expr3 " is equivalent to " expr1 <= expr3 AND expr1 >=

expr2".

IS NULL and IS NOT NULL can be used for checking whether an optional parameter is

given any value.

CREATE QUERY mathOperatorBetween() FOR GRAPH minimalNet
{
 int x;
 bool b;
 x = 1;
 b = (x BETWEEN 0 AND 100); PRINT b; # True
 b = (x BETWEEN 1 AND 2); PRINT b; # True
 b = (x BETWEEN 0 AND 1); PRINT b; # True
}

CREATE QUERY parameterIsNULL (INT p) FOR GRAPH minimalNet {
 IF p IS NULL THEN
 PRINT "p is null";
 ELSE
 PRINT "p is not null";
 END;
}

BETWEEN expr AND expr

IS NULL, IS NOT NULL

BETWEEN AND example

IS NULL example

parameterIsNULL.json Results

5/13/25, 1:39 PM TigerGraph Documentation

821

Every attribute value stored in GSQL is a valid value, so IS NULL and IS NOT NULL is only

effective for query parameters.

The LIKE operator is used for string pattern matching. The expression

string1 LIKE string_pattern

evaluates to boolean true if string1 matches the pattern in string_pattern ; otherwise it is

false. Both operands must be strings. LIKE may be used only in WHERE clauses.

Additionally, string_patternsupports the following wildcard and other symbols, in order to

express a pattern:

GSQL > RUN QUERY parameterIsNULL(_)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"p is null": "p is null"}]
}
GSQL > RUN QUERY parameterIsNULL(3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"p is not null": "p is not null"}]
}

character or syntax meaning

matches zero or more

characters.

LIKE

5/13/25, 1:39 PM TigerGraph Documentation

822

% Example : %abc% matches

any string which contains the

sequence "abc".

_ (underscore)

matches any single character.

Example : _abc_e matches

any 6-character string where

the 2nd to 4th characters are

"abc" and the last character is

"e".

[charlist]

match any character in

charlist. charlist is a

concatenated character set,

with no separators.

Example : [Tiger] matches

either T, i, g, e, or r.

[^charlist]

matches any character NOT in

charlist.

Example : [^qxz] matches

any character other than q, x,

or z.

[!charlist]
matches any character NOT in

charlist.

special syntax within charlist α-β

matches a character in the

range from α to β. A charlist

can have multiple ranges.

Example :

[a-mA-M0-3] matches a

letter from a to m, upper or

lower case, or a digit from 0 to

3.

special syntax within charlist \\ matches the character \

special syntax within charlist \\]

matches the character]

No special treatment is

needed for [inside a charlist.

Example : %[\\]!] matches

any string which ends with

either] or !

5/13/25, 1:39 PM TigerGraph Documentation

823

There are a number of built-in functions which act on either an accumulator, a base type,

or vertex variable. The accumulator function calls are discussed in detail in the

"Accumulators" section.

Below is a list of built-in functions which act on either INT, FLOAT, or DOUBLE value(s).

function name and

parameters(NUM means INT,

FLOAT, or DOUBLE)

description return type

abs (NUM num)
Returns the absolute value of

num
Same as parameter type

sqrt (NUM num)
Returns the square root of

num
FLOAT

pow (NUM base , NUM exp) Returns base exp

If base and exp are both INT

→ INT;

Otherwise → FLOAT

acos (NUM num) arc cosine FLOAT

asin (NUM num) arc sine FLOAT

atan (NUM num) arc tangent FLOAT

atan2 (NUM y , NUM x) arc tangent of y / x FLOAT

ceil (NUM num) rounds upward INT

cos (NUM num) cosine FLOAT

cosh (NUM num) hyperbolic cosine FLOAT

exp (NUM num) base-e exponential FLOAT

floor (NUM num) rounds downward INT

fmod (NUM numer , NUM

denom)

floating-point remainder of

numer / denom
FLOAT

ldexp (NUM x , NUM exp) x * 2 exp FLOAT

Mathematical Functions

5/13/25, 1:39 PM TigerGraph Documentation

824

log (NUM num) natural logarithm FLOAT

log10 (NUM num) common (base-10) logarithm FLOAT

sin (NUM num) sine FLOAT

sinh (NUM num) hyperbolic sine FLOAT

tan (NUM num) tangent FLOAT

tanh (NUM num) hyperbolic tangent FLOAT

to_string (NUM num)
Converts num to a STRING

value
STRING

float_to_int (FLOAT num)
Converts num to a INT value

by truncating the floating part
INT

str_to_int (STRING str)

Converts str to a INT value. If

str is a floating number, the

floating part is truncated; If str

is not a numerical value,

returns 0.

INT

function name and

parameters
description return type

to_string (NUM num) Converts num to a STRING STRING

float_to_int (FLOAT num)

Converts num to a INT value

by truncating the floating

point

INT

str_to_int (STRING str)

Concerts str to a INT value. If

str is a floating number, the

floating part is truncated. If

str is not a numerical value,

returns 0.

INT

Type Conversion Functions

String Functions

5/13/25, 1:39 PM TigerGraph Documentation

825

The following built-in functions are provided for text processing. Note that these functions

do not modify the input parameter. They each return a new string.

• In the syntax for trim(), the words in bold (LEADING, TRAILING, BOTH, and FROM)

are keywords which should appear exactly as shown.

• STRING is just an indicator of the datatype; it is not an explicit keyword.

• The trim() function have the following options:

◦ By using one of the keywords LEADING, TRAILING, or BOTH, the user can specify

that characters are to be removed from the left end, right end, or both ends of the

string, respectively. If none of these keywords is used, the function will removed

from both ends.

◦ removal_char is a single character. The function will remove consecutive

instances of removal_char , until it encounters a different character. If

removal_char is not specified, then trim() removes whitespace (spaces, tabs, and

newlines).

function name and

parameters
description return type

lower(STRING str)
Converts str to all lowercase

letters
STRING

upper(STRING str)
Converts str to all uppercase

letters
STRING

trim([[LEADING | TRAILING |

BOTH] [STRING removal_char

] FROM] STRING str)

Trims* characters from the

leading and/or trailing ends of

str

STRING

5/13/25, 1:39 PM TigerGraph Documentation

826

Notes about the trim() function:

The following functions convert from/to DATETIME to/from other types.

The following function converts a DATETIME value into a string format specified by the

user:

CREATE QUERY stringFuncEx() FOR GRAPH minimalNet {
 #Example strings
 string a = " Abc ";
 string b = "aa ABC aaa";
 string c = " a A ";

 PRINT lower(a); # prints " abc "
 PRINT upper(b); # prints "AA ABCC AAA"
 PRINT trim(a); # prints "Abc"
 PRINT trim(BOTH a); # prints "Abc"
 PRINT trim(LEADING c); # prints "a A "
 PRINT trim(TRAILING "a" FROM b); # prints "aa ABC "

 #You can combine functions for more convenient calling:
 PRINT trim(BOTH trim(BOTH " " FROM c) FROM b);
 # prints "BC"
}

function name and

parameters
description return type

to_datetime (STRING str)
Converts str to a DATETIME

value
DATETIME

epoch_to_datetime (INT

int_value)

Converts int_value to a

DATETIME value by epoch

time conversion

DATETIME

datetime_to_epoch

(DATETIME date)
Converts date to epoch time. INT

Datetime Functions

5/13/25, 1:39 PM TigerGraph Documentation

827

The followings are other functions related to DATETIME :

function name and

parameters
description return type

datetime_format(DATETIME

date[, STRING str])

Prints date as the str

indicates. The following

specifiers may be used as the

format of str . The “%”

character is required before

the format specifier

characters. If str is not given,

"%Y-%m-%d %H:%M:%S" is

used. Specifier:

• %Y: Year, numeric, four

digits

• %S: Seconds (0..59)

• %m: Month, numeric

(1..12)

• %M: Minutes, numeric

(0..59)

• %H: Hour, numeric

(0..23)

• %d: Day of the month,

numeric (1..31)

STRING

Show all posts's post time
CREATE QUERY allPostTime() FOR GRAPH socialNet api("v2") {
 start = {post.*};
 #PRINT datetime_format(start.postTime, "a message was posted at %H:%M:%S
 PRINT start[datetime_format(start.postTime, "a message was posted at %H:
}

function name and

parameters
description return type

now()
Returns the current time in

DATETIME type.
DATETIME

year(DATETIME date) Extracts the year of date . INT

datetime_format example

5/13/25, 1:39 PM TigerGraph Documentation

828

JSONOBJECT and JSONARRAY are base types, meaning they can be used as a parameter

type, an element type for most accumulators, or a return type. This enables the input and

output of complex, customized data structures. For input and output, a string

representation of the JSON is used. Hence, the GSQL query language offers several

functions to convert a formatted string into JSON and then to search and access the

components of a JSON structure.

month(DATETIME date) Extracts the month of date. INT

day(DATETIME date)
Extracts the day of month of

date .
INT

hour(DATETIME date) Extracts the hour of date . INT

minute(DATETIME date) Extracts the minute of date . INT

second(DATETIME date) Extracts the second of date . INT

datetime_add(DATETIME

date, INTERVAL int_value

time_unit)

INTERVAL is a keyword;

time_unit is one of the

keywords YEAR, MONTH, DAY,

HOUR, MINUTE, or SECOND.

The function returns the

DATETIME value which is

int_value units later than date

. For example, datetime_add(

now() , INTERVAL 1 MONTH)

returns a DATETIME value

which is 1 month from now.

DATETIME

datetime_sub(DATETIME

date, INTERVAL

int_value time_unit)

Same as datetime_add,

except that the returned value

is int_value units earlier than

date .

DATETIME

datetime_diff(

DATETIMEdate1 , DATETIME

date2)

Returns the difference in

seconds of these two

DATETIME values: (date1 -

date2) .

INT

JSONOBJECT and JSONARRAY Functions

5/13/25, 1:39 PM TigerGraph Documentation

829

Data Conversion Functions

The following parsing functions convert a string into a JSONOBJECT or a JSONARRAY:

Both functions generate a run-time error if the input string cannot be converted into a

JSON object or a JSON array. To be properly formatted, besides having the proper nesting

and matching of curly braces { } and brackets [], each value field must be one of the

following: a string (in double quotes "), a number, a boolean (true or false), or a

JSONOBJECT or JSONARRAY. Each key of a key:value pair must be a string in double

quotes.

See examples below.

function name description return type

parse_json_object(STRING str

)

Converts str into a JSON

object
JSONOBJECT

parse_json_array(STRING str

)
Converts str into a JSON array JSONARRAY

CREATE QUERY jsonEx (STRING strA, STRING strB) FOR GRAPH minimalNet {
 JSONARRAY jsonA;
 JSONOBJECT jsonO;

 jsonA = parse_json_array(strA);
 jsonO = parse_json_object(strB);

 PRINT jsonA, jsonO;
}

parse_json_object and parse_json_array example

jsonEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

830

Data Access Methods

JSONOBJECT and JSONARRAY are object classes, each class supporting a set of data

access methods, using dot notation:

jsonVariable.functionName(parameter_list)

The following methods (class functions) can act on a JSONOBJECT variable:

GSQL > RUN QUERY jsonEx("[123]","{\"abc\":123}")
or curl -X GET 'http://localhost:9000/query/jsonEx?strA=\[123\]&strB=\{"ab
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "jsonA": [123],
 "jsonO": {"abc": 123}
 }]
}
GSQL > RUN QUERY jsonEx("{123}","{\"123\":\"123\"}")
Runtime Error: {123} cannot be parsed as a json array.

method name description return type

containsKey(STRING keyStr)

Returns a boolean value

indicating whether the JSON

object contains the key keyStr

.

BOOL

getInt(STRING keyStr)

Returns the numeric value

associated with key keyStr as

an INT.

INT

getDouble (STRING keyS tr)

Returns the numeric value

associated with key keyStr as

a DOUBLE.

DOUBLE

getString (STRING keyS tr)
Returns the string value

associated with key keyStr .
STRING

5/13/25, 1:39 PM TigerGraph Documentation

831

The above getType(STRING keyStr) function generates a run-time error if

1. The key keyStr doesn't exist, or

2. The function's return type is different than the stored value type. See the next note

about numeric data.

3. Pure JSON stores "numbers" without distinguishing between INT and DOUBLE, but for

TigerGraph, if the input value is all digits, it will be stored as INT. Other numeric values

are stored as DOUBLE. The getDouble function can read an INT and return its

equivalent DOUBLE value, but it is an error to call getINT for a DOUBLE value.

The following methods can act on a JSONARRAY variable:

getBool (STRING keyS tr)
Returns the bool value

associated with key keyStr .
BOOL

getJsonObject (STRING keyS

tr)

Returns the JSONOBJECT

associated with key keyStr .
JSONOBJECT

getJsonArray (STRING keySt r

)

Returns the JSONARRAY

associated with key keyStr .
JSONARRAY

method name description return type

size() Returns the size of this array. INT

getInt(INT idx)
Returns the numeric value at

position idx as an INT.
INT

getDouble(INT idx)
Returns the numeric value at

position idx as a DOUBLE.
DOUBLE

getString(INT idx)
Returns the string value at

position idx .
STRING

getBool(INT idx)
Returns the bool value at

position idx .
BOOL

getJsonObject(INT idx)
Returns the JSONOBJECT

value at position idx .
JSONOBJECT

getJsonArray(INT idx)
Returns the JSONARRAY

value at position idx .
JSONARRAY

5/13/25, 1:39 PM TigerGraph Documentation

832

Similar to the methods of JSONOBJECT, the above getType(INT idx) function generates a

run-time error if

1. idx is out of bounds, or

2. The function's return type is different than the stored value type. See the next note

about numeric data.

3. Pure JSON stores "numbers" without distinguishing between INT and DOUBLE, but for

TigerGraph, if the input value is all digits, it will be stored as INT. Other numeric values

are stored as DOUBLE. The getDouble function can read an INT and return its

equivalent DOUBLE value, but it is an error to call getINT for a DOUBLE value.

Below is an example of using these functions and methods :

CREATE QUERY jsonEx2 () FOR GRAPH minimalNet {

 JSONOBJECT jsonO, jsonO2;
 JSONARRAY jsonA, jsonA2;
 STRING str, str2;

 str = "{\"int\":1, \"double\":3.0, \"string\":\"xyz\", \"bool\":true, \"
 str2 = "[\"xyz\", 123, false, 5.0]";
 jsonO = parse_json_object(str) ;
 jsonA = parse_json_array(str2) ;

 jsonO2 = jsonO.getJsonObject("obj");
 jsonA2 = jsonO.getJsonArray("arr");

 PRINT jsonO;
 PRINT jsonO.getBool("bool"), jsonO.getJsonObject("obj"), jsonO.getJsonAr
}

JSONOBJECT and JSONARRAY function example

jsonEx2.json Result

5/13/25, 1:39 PM TigerGraph Documentation

833

Attributes on vertices or edges are defined in the graph schema. Additionally, each vertex

and edge has a built-in STRING attribute called type which represents the user-defined

type of that edge or vertex. These attributes, including type , can be accessed for a

particular edge or vertex with the dot operator.

For example, the following code snippet shows two different SELECT statements which

produce equivalent results. The first uses the dot operator on the vertex variable v to

GSQL > RUN QUERY jsonEx2()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"jsonO": { "arr": ["xyz", 123, true],
 "bool": true,
 "string": "xyz",
 "double": 3,
 "obj": {"obj": {"bool": false}},
 "int": 1
 }},
 {
 "jsonO.getBool(bool)": true,
 "jsonA.getDouble(3)": 5,
 "jsonA.getDouble(1)": 123,
 "jsonO.getJsonObject(obj)": {"obj": {"bool": false}},
 "jsonO2.getJsonObject(obj)": {"bool": false},
 "jsonO.getJsonArray(arr)": ["xyz", 123, true],
 "jsonA2.getString(0)": "xyz"
 }
]
}

Vertex, Edge, and Accumulator Functions and
Attributes

Accessing attributes

5/13/25, 1:39 PM TigerGraph Documentation

834

access the "subject" attribute, which is defined in the graph schema. The FROM clause in

the first SELECT statement necessitates that any target vertices will be of type "post" (also

defined in the graph schema). The second SELECT schema checks that the vertex variable

v's type is a "post" vertex by using the dot operator to access the built-in type attribute.

CREATE QUERY coffeeRelatedPosts() FOR GRAPH socialNet
{
 allVertices = {ANY};
 results = SELECT v FROM allVertices:s -(:e)-> post:v WHERE v.subject =
 PRINT results;
 results = SELECT v FROM allVertices:s -(:e)-> :v WHERE v.type == "post
 PRINT results;
}

GSQL > RUN QUERY coffeeRelatedPosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"results": [{
 "v_id": "4",
 "attributes": {
 "postTime": "2011-02-07 05:02:51",
 "subject": "coffee"
 },
 "v_type": "post"
 }]},
 {"results": [{
 "v_id": "4",
 "attributes": {
 "postTime": "2011-02-07 05:02:51",
 "subject": "coffee"
 },
 "v_type": "post"
 }]}
]
}

Accessing vertex variable attributes

Results for Query coffeeRelatedPosts

5/13/25, 1:39 PM TigerGraph Documentation

835

Below is a list of built-in functions that can be accessed by vertex aliases, using the dot

operator:

Currently, these functions are only available for vertex aliases (defined in the FROM

clause); vertex variables do not have these functions.

Note that in order to calculate outdegree by edge type, the graph schema must be defined

such that vertices keep track of their edge types using WITH

STATS="OUTDEGREE_BY_EDGETYPE" (however, "OUTDEGREE_BY_EDGETYPE" is now the

default STATS option).

vertex_alias.function_name(parameter)[.FILTER(condition)]

function name description return type

outdegree ([STRING

edgeType])

Returns the number of

outgoing or undirected edges

connected to the vertex. If the

optional STRING argument

edgeTypeis given, then count

only edges of the given

edgeType.

INT

neighbors ([STRING

edgeType])

Returns the set of ids for the

vertices which are out-

neighbors or undirected

neighbors of the vertex. If the

optional STRING argument

edgeType is given, then

include only those neighbors

reachable by edges of the

given edgeType .

BagAccum<VERTEX>

neighborAttribute (STRING

edgeType,STRING

From the given vertex,

traverses the given edgeType

to the given targetVertexType

, and return the set of values

for the given attribute .

BagAccum<attributeType>

Vertex Functions

Syntax for vertex functions

5/13/25, 1:39 PM TigerGraph Documentation

836

targetVertexType, STRING

attribute)

edgeType can only be string

literal.

edgeAttribute (STRING

edgeType, STRINGattribute)

From the given vertex,

traverses the given edgeType ,

and return the set of values

for the given edge attribute .

edgeTypecan only be string

literal.

BagAccum<attributeType>

CREATE QUERY vertexFunctionExample(vertex<person> m1) FOR GRAPH socialNet

 SetAccum<Vertex> @neighborSet;
 SetAccum<Vertex> @neighborSet2;
 SetAccum<DATETIME> @attr1;
 BagAccum<DATETIME> @attr2;

 int deg1, deg2, deg3, deg4;

 S = {m1};
 S2 = SELECT S
 FROM S - (posted:e) -> post:t
 ACCUM deg1 = S.outdegree(),
 deg2 = S.outdegree("posted"),
 deg3 = S.outdegree(e.type), # same as deg2
 STRING str = "posted",
 deg4 = S.outdegree(str); # same as deg2
 PRINT deg1, deg2, deg3, deg4;

 S3 = SELECT S
 FROM S:s
 POST-ACCUM s.@neighborSet += s.neighbors(),
 s.@neighborSet2 += s.neighbors("posted"),
 s.@attr1 += s.neighborAttribute("posted", "post", "postT
 s.@attr2 += s.edgeAttribute("liked", "actionTime");
 PRINT S3;
}

Vertex function examples

vertexFunctionExample Result

5/13/25, 1:39 PM TigerGraph Documentation

837

GSQL > RUN QUERY vertexFunctionExample("person5")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "deg4": 2,
 "deg2": 2,
 "deg3": 2,
 "deg1": 5
 },
 {"S3": [{
 "v_id": "person5",
 "attributes": {
 "@attr2": [1263330725],
 "@attr1": [
 1297054971,
 1296694941
],
 "gender": "Female",
 "@neighborSet": [
 "6",
 "11",
 "4",
 "person7",
 "person4"
],
 "id": "person5",
 "@neighborSet2": [
 "4",
 "11"
]
 },
 "v_type": "person"
 }]}
]
}

FILTER

5/13/25, 1:39 PM TigerGraph Documentation

838

The optional .FILTER(condition) clause offers an additional filter for selecting which

elements are added to the output set of the neighbor, neighborAttribute and edgeAttribute

functions. The condition is evaluated for each element . If the condition is true, the

element is added to the output set; if false, it is not. An example is shown below:

CREATE QUERY filterEx (SET<STRING> pIds, INT yr) FOR GRAPH workNet api("v2

 SetAccum<vertex<company>> @recentEmplr, @allEmplr;
 BagAccum<string> @diffCountry, @allCountry;

 Start = {person.*};

 L0 = SELECT v
 FROM Start:v
 WHERE v.id IN pIds
 ACCUM
 # filter using edge attribute
 v.@recentEmplr += v.neighbors("worksFor").filter(worksFor.startYe
 v.@allEmplr += v.neighbors("worksFor").filter(true),

 # vertex alias attribute and neighbor type attribute
 v.@diffCountry += v.neighborAttribute("worksFor", "company", "id")
 .filter(v.locationId != company.country),
 v.@allCountry += v.neighborAttribute("worksFor", "company", "id")
 ;

 PRINT yr, L0[L0.@recentEmplr, L0.@allEmplr, L0.@diffCountry, L0.@allCoun
}

Example: vertex functions with optional filter

Results in filterEx.json

5/13/25, 1:39 PM TigerGraph Documentation

839

Below are the built-in functions that can be accessed by edge aliases, using the dot

operator. Edge functions follow the same general rules as vertex functions (see above).

GSQL > RUN QUERY filterEx(["person1","person2"],2016)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "L0": [
 {
 "v_id": "person1",
 "attributes": {
 "L0.@diffCountry": ["company2"],
 "L0.@recentEmplr": ["company1"],
 "L0.@allCountry": ["company1", "company2"],
 "L0.@allEmplr": ["company2", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "L0.@diffCountry": ["company1"],
 "L0.@recentEmplr": [],
 "L0.@allCountry": ["company1", "company2"],
 "L0.@allEmplr": ["company2", "company1"]
 },
 "v_type": "person"
 }
],
 "yr": 2016
 }]
}

function name description return type

Edge Functions

5/13/25, 1:39 PM TigerGraph Documentation

840

Accumulator functions for each accumulator type are illustrated at the "Accumulator Type"

section.

SELECT blocks take an input vertex set and perform various selection and filtering

operations to produce an output set. Therefore, set/bag expressions and their operators

are a useful and powerful part of the GSQL query language. A set/bag expression can use

either SetAccum or BagAccum.

The operators are straightforward, when two operands are both sets, the result expression

is a set. When at least one operant is a bag, the result expression is a bag. If one operant

is a bag and the other is a set, the operator treats the set operant as a bag containing one

of each value.

isDirected ()

Returns a boolean value

indicating whether this edge BOOL

setBagExpr := ["@@"] name
 | name "." ["@"] name
 | name "." "@" name ("." name "(" [argList] ")")+
 | name "." name "(" [argList] ")" [".".FILTER "(" condition "
 | "@@" name ("." name "(" [argList] ")")+
 | setBagExpr (UNION | INTERSECT | MINUS) setBagExpr
 | "(" argList ")"
 | "(" setBagExpr ")"

Accumulator Functions

Set/Bag Expression and Operators

Set/Bag Expression Operators - UNION, INTERSECT, MINUS

BNF

Set/Bag Operator Examples

5/13/25, 1:39 PM TigerGraph Documentation

841

Demonstrate Set & Bag operators
CREATE QUERY setOperatorsEx() FOR GRAPH minimalNet {
 SetAccum<INT> @@setA, @@setB, @@AunionB, @@AintsctB, @@AminusB;
 BagAccum<INT> @@bagD, @@bagE, @@DunionE, @@DintsctE, @@DminusE;
 BagAccum<INT> @@DminusA, @@DunionA, @@AunionBbag;

 BOOL x;

 @@setA = (1,2,3,4); PRINT @@setA;
 @@setB = (2,4,6,8); PRINT @@setB;

 @@AunionB = @@setA UNION @@setB ; PRINT @@AunionB; // (1, 2, 3, 4
 @@AintsctB = @@setA INTERSECT @@setB; PRINT @@AintsctB; // (2, 4)
 @@AminusB = @@setA MINUS @@setB ; PRINT @@AminusB; // C = (1, 3)

 @@bagD = (1,2,2,3); PRINT @@bagD;
 @@bagE = (2,3,5,7); PRINT @@bagE;

 @@DunionE = @@bagD UNION @@bagE; PRINT @@DunionE; // (1, 2, 2, 2,
 @@DintsctE = @@bagD INTERSECT @@bagE; PRINT @@DintsctE; // (2, 3)
 @@DminusE = @@bagD MINUS @@bagE; PRINT @@DminusE; // (1, 2)
 @@DminusA = @@bagD MINUS @@setA; PRINT @@DminusA; // (2)
 @@DunionA = @@bagD UNION @@setA; PRINT @@DunionA; // (1, 1, 2, 2,
 // because bag U
 @@AunionBbag = @@setA UNION @@setB; PRINT @@AunionBbag; // (1, 2, 3, 4
 // because set U
}

setOperatorsEx Query Results

5/13/25, 1:39 PM TigerGraph Documentation

842

The result of these operators is another set or bag, so these operations can be nested and

chained to form more complex expressions, such as

For example , suppose setBagExpr_A is ("a", "b", "c")

The IN and NOT IN operators support all base types on the left-hand side, and any set/bag

expression on the right-hand side. The base type must be the same as the accumulator's

GSQL > RUN QUERY setOperatorsEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@setA": [4, 3, 2, 1]},
 {"@@setB": [8, 6, 4, 2]},
 {"@@AunionB": [4, 3, 2, 1, 8, 6]},
 {"@@AintsctB": [4, 2]},
 {"@@AminusB": [3, 1]},
 {"@@bagD": [1, 2, 2, 3]},
 {"@@bagE": [2, 7, 3, 5]},
 {"@@DunionE": [1, 2, 2, 2, 3, 3, 7, 5]},
 {"@@DintsctE": [2, 3]},
 {"@@DminusE": [1, 2]},
 {"@@DminusA": [2]},
 {"@@DunionA": [1, 1, 2, 2, 2, 3, 3, 4]},
 {"@@AunionBbag": [6, 8, 1, 2, 3, 4]}
]
}

(setBagExpr_A INTERSECT (setBagExpr_B UNION setBagExpr_C)) MINUS setBagEx

"a" IN setBagExpr_A => true
"d" IN setBagExpr_A => false
"a" NOT IN setBagExpr_A => false
"d" NOT IN setBagExpr_A => true

Set/Bag Expression Membership Operators

5/13/25, 1:39 PM TigerGraph Documentation

843

element type. IN and NOT IN return a BOOL value.

The following example uses NOT IN to exclude neighbors that are on a blacklist.

The aggregation functions take a set/bag expression as its input parameter and return

one value or element.

• count() : Returns the size (INT) of the set.

CREATE QUERY friendsNotInblacklist (VERTEX<person> seed, SET<VERTEX<person
 Start = {seed};
 Result = SELECT v
 FROM Start:s-(friend:e)-person:v
 WHERE v NOT IN blackList;
 PRINT Result;
}

GSQL > RUN QUERY friendsNotInblacklist("person1", ["person2"])
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "person8",
 "attributes": {
 "gender": "Male",
 "id": "person8"
 },
 "v_type": "person"
 }]}]
}

Aggregation Functions - COUNT, SUM, MIN, MAX, AVG

Set Membership example

Results for Query friendsNotInblacklist

5/13/25, 1:39 PM TigerGraph Documentation

844

• sum() : Returns the sum of all elements. This is only applicable to a set/bag

expression with numeric type.

• min() : Returns the member with minimum value. This is only applicable to a set/bag

expression with numeric type.

• max() : Returns the member with maximum value. This is only applicable to a set/bag

expression with numeric type.

• avg() : Returns the average of all elements. This is only applicable to a set/bag

expression with numeric type. The average is INT if the element type of the set/bag

expression is INT.

CREATE QUERY aggregateFuncEx(BAG<INT> x) FOR GRAPH minimalNet {
 BagAccum<INT> @@t;
 @@t += -5; @@t += 2; @@t+= -1;
 PRINT max(@@t), min(@@t), avg(@@t), count(@@t), sum(@@t);
 PRINT max(x), min(x), avg(x), count(x), sum(x);
}

Aggregation function example

aggregateFuncEx.json Result

5/13/25, 1:39 PM TigerGraph Documentation

845

SelectVertex() reads a data file which lists particular vertices of the graph and returns the

corresponding vertex set. This function can only be used in a vertex set variable

declaration statement as a seed set. The data file must be organized as a table with one

or more columns. One column must be for vertex id. Optionally, another column is for

vertex type. SelectVertex() has five parameters explained in the below table: filePath,

vertexIdColumn, vertexTypeColumn, separator, and header. The rules for column

separators and column headings are the same as for the GSQL Loader.

GSQL > RUN QUERY aggregateFuncEx([1,2,5])
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "sum(@@t)": -4,
 "count(@@t)": 3,
 "max(@@t)": 2,
 "avg(@@t)": -1,
 "min(@@t)": -5
 },
 {
 "avg(x)": 2,
 "count(x)": 3,
 "max(x)": 5,
 "min(x)": 1,
 "sum(x)": 8
 }
]
}

Miscellaneous Functions

SelectVertex()

5/13/25, 1:39 PM TigerGraph Documentation

846

One vertex set variable declaration statement can have multiple SelectVertex() function

calls. However, if a declaration statement has multiple SelectVertex() calls referring to the

same file, they must use the same separator and header parameters. If any row of the file

contains an invalid vertex type, a run time error occurs; if any row of the file contains an

nonexistent vertex id, a warning message is shown with the count of nonexistent ids.

Below is a query example using SelectVertex calls, reading from the data file

selectVertexInput.csv.

parameter name type description

filePath string

The absolute file path of the

input file to be read. A relative

path is not supported.

vertexIdColumn
$ num , or $ "column_name" if

header is true.
The vertex id column position.

vertexTypeColumn
$ num , $ "column_name" if

header is true, or a vertex type

The vertex type column

position or a specific vertex

type.

separator single-character string
The column separator

character.

header bool Whether this file has a header.

c1,c2,c3
person1,person,3
person5,person,4
person6,person,5

CREATE QUERY selectVertexEx(STRING filename) FOR GRAPH socialNet {
 S = {SelectVertex(filename, $"c1", $1, ",", true),
 SelectVertex(filename, $2, post, ",", true)
 };
 PRINT S;
}

selectVertexInput.csv

selectVertex example

5/13/25, 1:39 PM TigerGraph Documentation

847

Result

5/13/25, 1:39 PM TigerGraph Documentation

848

5/13/25, 1:39 PM TigerGraph Documentation

849

GSQL > RUN QUERY selectVertexEx("/file_directory/selectVertexInput.csv")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"S": [
 {
 "v_id": "4",
 "attributes": {
 "postTime": "2011-02-07 05:02:51",
 "subject": "coffee"
 },
 "v_type": "post"
 },
 {
 "v_id": "person1",
 "attributes": {
 "gender": "Male",
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "gender": "Female",
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "3",
 "attributes": {
 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"
 },

5/13/25, 1:39 PM TigerGraph Documentation

850

to_vertex() and to_vertex_set() convert a string or a string set into a vertex or a vertex set,

respectively, of a given vertex type. These two functions are useful when the vertex id(s)

are obtained and only known at run-time.

Running these functions requires real-time conversion of an external id to a GSQL internal id,

which is a relatively slow process. Therefore,

1. If the user can always know the id before running the query, define the query with

VERTEX or SET<VERTEX> parameters instead of STRING or SET<STRING> parameters,

and avoid calling to_vertex() or to_vertex_set().

2. Calling to_vertex_set() one time is much faster than c alling to_vertex() multiple times .

Use to_vertex_set() instead of to_vertex() as much as possible.

The first parameter of to_vertex() is the vertex id string. The first parameter of

to_vertex_set() is a string set representing vertex ids. The second parameter of both

functions is the vertex type string.

to_vertex_set can accept a bag of vertices as input, but the function will reduce the bag to

a set by eliminating duplicate items.

 "v_type": "post"
 },
 {
 "v_id": "person6",
 "attributes": {
 "gender": "Male",
 "id": "person6"
 },
 "v_type": "person"
 }
]}]
}

 VERTEX to_vertex(STRING id, STRING vertex_type)
SET<VERTEX> to_vertex_set(SET<VERTEX>, STRING vertex_type)
SET<VERTEX> to_vertex_set(BAG<VERTEX>, STRING vertex_type)

to_vertex() and to_vertex_set()

Function signatures for to_vertex() and to_vertex_set()

5/13/25, 1:39 PM TigerGraph Documentation

851

If the vertex id or the vertex type doesn't exist, to_vertex() will have a run-time error, as

shown below. However, to_vertex_set() will have a run-time error only if the vertex type

doesn't exist. If one or more vertex ids are nonexistent, to_vertex_set() will display a

warning message but will still run, converting all valid ids and skipping nonexistent vertex

ids. If the user wants an error instead of a warning if a nonexistent id is given when

converting a string set to a vertex set, the user can use to_vertex() inside a FOREACH loop,

instead of to_vertex_set(). See the example below .

CREATE QUERY to_vertex_setTest (SET<STRING> uids, STRING uid, STRING vtype
 SetAccum<VERTEX> @@v2, @@v3;
 SetAccum<STRING> @@strSet;
 VERTEX v;

 v = to_vertex (uid, vtype); # to_vertex assigned to a vertex v
 PRINT v; # vertex variable -> only vertex i

 @@v2 += to_vertex (uid, vtype); # to_vertex accumulated to a SetAccum<
 PRINT @@v2; # SetAccum of vertex -> only verte

 S2 = to_vertex_set (uids, vtype); # to_vertex_set assigned to a vertex s
 PRINT S2; # vertex set variable-> full detai

 @@strSet = uids; # Show SET<STRING> & SetAccumm<STR
 S3 = to_vertex_set(@@strSet, vtype); # Input to to_vertex_set is SetAccu
 SDIFF = S2 MINUS S3; # Now S2 = S3, so SDIFF2 is empty
 PRINT SDIFF.size();

 #FOREACH vid in uids DO # In this case non-existing ids in uids cause
 # @@v3 += to_vertex(vid, vtype);
 #END;
 #L3 = @@v3;
 #PRINT L3;
}

to_vertex() and to_vertex_set() example

to_vertex_set.json Results

5/13/25, 1:39 PM TigerGraph Documentation

852

GSQL > RUN QUERY to_vertex_setTest(["person1","personx","person2"], "perso
{
 "error": false,
 "message": "Runtime Warning: 1 ids are invalid person vertex ids.",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"v": "person3"},
 {"@@v2": ["person3"]},
 {"S2": [
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "id": "person2"
 },
 "v_type": "person"
 }
]},
 {"SDIFF.size()": 0}
]
}

GSQL > RUN QUERY to_vertex_setTest(["person1","personx"], "person1", "abc"
Runtime Error: abc is not valid vertex type.

5/13/25, 1:39 PM TigerGraph Documentation

853

The getvid(v) function returns the internal ID number of the given vertex v. The internal ID

is not the primary_id which the user assigned when creating the vertex. However, there is a

1-to-1 mapping between the external ID (primary_id) and internal ID. The engine can

access the internal ID faster than accessing the external ID, so if a query needs unique

values for a large number of vertices, but doesn't care about particular values, getvid() can

be a useful option.

For example, in many community detection algorithms, we start by assigning every vertex

a unique community ID. Then, as the algorithm progresses, some vertices will join the

community of one of their neighbors, giving up their current community ID and copying the

IDs of their neighbors.

CREATE QUERY getvid_ex () FOR GRAPH socialNet {
 MinAccum<int> @cc_id = 0; //each vertex's tentative component id

 Start = {person.*};
 # Initialize: Label each vertex with its own internal ID
 S = SELECT x FROM Start:x
 POST-ACCUM
 x.@cc_id = getvid(x);

 # Community detection steps omitted
 PRINT Start.@cc_id;
}

getvid()

getvid_ex.gsql

getvid_ex.json

5/13/25, 1:39 PM TigerGraph Documentation

854

5/13/25, 1:39 PM TigerGraph Documentation

855

GSQL > RUN QUERY getvid_ex()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Start": [
 {
 "v_id": "person7",
 "attributes": {"Start.@cc_id": 0},
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"Start.@cc_id": 4194304},
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {"Start.@cc_id": 4194305},
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {"Start.@cc_id": 11534336},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"Start.@cc_id": 13631488},
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {"Start.@cc_id": 20971520},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"Start.@cc_id": 22020096},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"Start.@cc_id": 24117248},

5/13/25, 1:39 PM TigerGraph Documentation

856

The COALESCE function evaluates each argument value in order, and returns the first

value which is not NULL. This evaluation is the same as that used for IS NULL and IS NOT

NULL. The COALESCE function requires all its arguments have the same data type (BOOL,

INT, FLOAT, DOUBLE, STRING, or VERTEX). The only exception is that different numeric

types can be used together. In this case, all values are converted into the first argument

type.

 "v_type": "person"
 }
]}]
}

CREATE QUERY coalesceFuncEx (INT p1, DOUBLE p2) FOR GRAPH minimalNet {
 PRINT COALESCE(p1, p2, 999.5); # p2 and the last value will be converte
}

COALESCE()

coalesce function example

coalesceFuncEx.json Results

5/13/25, 1:39 PM TigerGraph Documentation

857

The COALESCE function is useful when multiple optional parameters are allowed, and one

of them must be chosen if available. For example,

GSQL > RUN QUERY coalesceFuncEx(_,_)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"coalesce(p1,p2,999.5)": 999}]
}
GSQL > RUN QUERY coalesceFuncEx(1,2)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"coalesce(p1,p2,999.5)": 1}]
}
GSQL > RUN QUERY coalesceFuncEx(_,2.5)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"coalesce(p1,p2,999.5)": 2}]
}

CREATE QUERY coalesceFuncEx2 (STRING homePhone, STRING cellPhone, STRING c
 PRINT "contact number: " + COALESCE(homePhone, cellPhone, companyPhone);
 PRINT "contact number: " + COALESCE(homePhone, cellPhone, companyPhone,
}

coalesce function example

5/13/25, 1:39 PM TigerGraph Documentation

858

The COALESCE function's parameter list should have a default value as the last argument.

Otherwise, i f all values are NULL, the default value of the data type is returned.

The function evaluate() takes a string argument and interprets it as an expression which is

evaluated during run-time. This enables users to create a general purpose query instead of

separate queries for each specific computation.

The evaluate() function has two parameters: expressionStr is the expression string, and

typeStr is a string literal indicating the type of expression. This function returns a value

whose type is typeStr and whose value is the evaluation of expressionStr. The following

rules apply:

1. evaluate() can only be used inside a SELECT block, and only inside a WHERE clause,

ACCUM clause, POST-ACCUM clause, HAVING clause, or ORDER BY clause. It cannot

be used in a LIMIT clause or outside a SELECT block.

2. The result type must be specified at query installation time: typeStr must be a string

literal for a primitive data type, e.g., one of "int", "float", "double", "bool", "string" (case

insensitive). The default value is "bool".

GSQL > RUN QUERY coalesceFuncEx2(_,_,_)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"contact number: +coalesce(homePhone,cellPhone,companyPhone)": "conta
 {"contact number:+coalesce(homePhone,cellPhone,companyPhone,N/A)": "co
]
}

evaluate(expressionStr, typeStr)

Dynamic Expressions with EVALUATE()

coalesceFuncEx2.json Results

5/13/25, 1:39 PM TigerGraph Documentation

859

3. In expressionStr, identifiers can refer only to a vertex or edge aliases, vertex-attached

accumulators, global accumulators, parameters, or scalar function calls involving the

above variables. The expression may not refer to local variables, global variables, or to

FROM clause vertices or edges by type.

4. Any accumulators in the expression must be scalar accumulators (e.g., MaxAccum)

for primitive-type data. Container accumulators (e.g., SetAccum) or scalar

accumulators with non-primitive type (e.g. VERTEX, EDGE, DATETIME) are not

supported. Container type attributes are not supported.

5. evaluate() cannot be nested.

The following situations generate a run-time error:

1. The expression string expressionStr cannot be compiled (unless the error is due to a

non-existent vertex or edge attribute).

2. The result type of the expression does not match the parameter typeStr.

Silent failure conditions

If any of the following conditions occur, the query may continue running, but the entire clause

or statement in which the evaluate() function resides will fail, without producing a run-time

error message. For conditional clauses (WHERE, HAVING), a failing evaluate() clause is

treated as if the condition is false. An assignment statement with a failing evaluate() will not

execute, and an ORDER BY clause with a failing evaluate() will not sort.

1. The expression references a non-existent attribute of a vertex or edge alias.

2. The expression uses an operator for non-compatible operation. For example, 123 ==

"xyz".

The following example employs dynamic expressions in both the WHERE condition and

the accumulator value in the POST-ACCUM clause.

Evaluate example

5/13/25, 1:39 PM TigerGraph Documentation

860

CREATE QUERY evaluateEx (STRING whereCond = "TRUE", STRING postAccumIntExp
 SetAccum<INT> @@timeSet;
 MaxAccum<INT> @latestLikeTime, @latestLikePostTime;

 S = {person.*};
 S2 = SELECT s
 FROM S:s - (liked:e) -> post:t
 WHERE evaluate(whereCond)
 ACCUM s.@latestLikeTime += datetime_to_epoch(e.actionTime),
 s.@latestLikePostTime += datetime_to_epoch(t.postTime)
 POST-ACCUM @@timeSet += evaluate(postAccumIntExpr, "int")
 ;
 PRINT @@timeSet;
}

Results for Query evaluateEx

5/13/25, 1:39 PM TigerGraph Documentation

861

5/13/25, 1:39 PM TigerGraph Documentation

862

GSQL > RUN QUERY evaluateEx(_,_)
{
 "error": false,
 "message": "",
 "results": [{"@@timeSet": [1]}]
}

GSQL > RUN QUERY evaluateEx("s.gender==\"Male\"", "s.@latestLikePostTime")
{
 "error": false,
 "message": "",
 "results": [
 {
 "@@timeSet": [1263295325,1296752752,1297054971,1296788551]
 }
]
}

GSQL > RUN QUERY evaluateEx("s.gender==\"Female\"", "s.@latestLikeTime + 1
{
 "error": false,
 "message": "",
 "results": [
 {
 "@@timeSet": [1263293536,1263352566,1263330726]
 }
]
}

GSQL > RUN QUERY evaluateEx("xx", _)
Runtime Error: xx is undefined parameter.

GSQL > RUN QUERY evaluateEx("e.xyz", _)' # The attribute doesn't exist,
{
 "error": false,
 "message": "",
 "results": [{"@@timeSet": []}]
}

GSQL > RUN QUERY evaluateEx("e.actionTime", _)
Runtime Error: actionTime is not a primitive type attribute.

GSQL > RUN QUERY evaluateEx("s.id", _)
Runtime Error: Expression 's.id' value type is not bool.

5/13/25, 1:39 PM TigerGraph Documentation

863

A query that has been defined (with a CREATE QUERY ... RETURNS statement) can be

treated as a callable function. A query can call itself recursively.

The following limitations apply to queries calling queries:

1. Each parameter of the called query may be one of the following types:

a. Primitives: INT, UINT, FLOAT, DOUBLE, STRING, BOOL

b. VERTEX

c. A Set or Bag of primitive or VERTEX elements

2. The return value may be one of the following types. See also the "Return Statement"

section.

a. Primitives: INT, UINT, FLOAT, DOUBLE, STRING, BOOL

b. VERTEX

c. a vertex set (e.g., the result of a SELECT statement)

d. An accumulator of primitive types. GroupByAccum and accumulators containing

tuples are not supported.

3. A query which returns a SetAccum or BagAccum may be called with a Set or Bag

argument, respectively.

4. The order of definition matters. A query cannot call a query which has not yet been

defined.

GSQL > RUN QUERY evaluateEx("s.gender==\"Female\"", "s.xx") # The attrib
{
 "error": false,
 "message": "",
 "results": [{"@@timeSet": []}]
}

Queries as Functions

Subquery Example 1

5/13/25, 1:39 PM TigerGraph Documentation

864

Users can define their own expression functions in C++ in

<tigergraph.root.dir>/dev/gdk/gsql/src/QueryUdf/ExprFunctions.hpp. Only bool, int, float,

double, and string (NOT std::string) are allowed as the return value type and the function

argument type. However, any C++ type is allowed inside a function body. Once defined, the

new functions will be added into GSQL automatically next time GSQL is executed.

If a user-defined struct or a helper function needs to be defined, define it in

<tigergraph.root.dir>/dev/gdk/gsql/src/QueryUdf/ExprUtil.hpp.

Here is an example:

CREATE QUERY subquery1 (VERTEX<person> m1) FOR GRAPH socialNet RETURNS(Bag
{
 Start = {m1};
 L = SELECT t
 FROM Start:s - (liked:e) - post:t;
 RETURN L;
}
CREATE QUERY mainquery1 () FOR GRAPH socialNet
{
 BagAccum<VERTEX<post>> @@testBag;
 Start = {person.*};
 Start = SELECT s FROM Start:s
 ACCUM @@testBag += subquery1(s);
 PRINT @@testBag;
}

#include <algorithm> // for std::reverse
inline bool greater_than_three (double x) {
 return x > 3;
}
inline string reverse(string str){
 std::reverse(str.begin(), str.end());
 return str;
}

User-Defined Functions

new code in ExprFunction.hpp

5/13/25, 1:39 PM TigerGraph Documentation

865

If any code in ExprFunctions.hpp or ExprUtil.hpp causes a compilation error, GSQL cannot

install any GSQL query, even if the GSQL query doesn't call any user-defined function.

Therefore, please test each new user-defined expression function after adding it. One way of

testing the function is creating a new cpp file test.cpp and compiling it by

> g++ test.cpp

> ./a.out

You might need to remove the include header #include <gle/engine/cpplib/headers.hpp> in

ExprFunction.hpp and ExprUtil.hpp in order to compile.

CREATE QUERY udfExample() FOR GRAPH minimalNet {
 DOUBLE x;
 BOOL y;

 x = 3.5;
 PRINT greater_than_three(x);
 y = greater_than_three(2.5);
 PRINT y;

 PRINT reverse("abc");
}

 GSQL > RUN QUERY udfExample()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"greater_than_three(x)": true},
 {"y": false},
 {"reverse(abc)": "cba"}
]
}

user defined expression function

udfExample.json Results

test.cpp

5/13/25, 1:39 PM TigerGraph Documentation

866

Below is a list of examples of expressions. Note that (argList) is a set/bag expression,

while [argList] is a list expression.

#include "ExprFunctions.hpp"
#include <iostream>
int main () {
 std::cout << to_string (123) << std::endl; // to_string and st
 std::cout << str_to_int ("123") << std::endl;
 return 0;
}

Examples of Expressions

Expression Examples

5/13/25, 1:39 PM TigerGraph Documentation

867

5/13/25, 1:39 PM TigerGraph Documentation

868

#Show various types of expressions
CREATE QUERY expressionEx() FOR GRAPH workNet {
 TYPEDEF tuple<STRING countryName, STRING companyName> companyInfo;

 ListAccum<STRING> @companyNames;
 SumAccum<INT> @companyCount;
 SumAccum<INT> @numberOfRelationships;
 ListAccum<companyInfo> @info;
 MapAccum< STRING,ListAccum<STRING> > @@companyEmployeeRelationships;
 SumAccum<INT> @@totalRelationshipCount;

 ListAccum<INT> @@valueList;
 SetAccum<INT> @@valueSet;

 SumAccum<INT> @@a;
 SumAccum<INT> @@b;

 #expr := constant
 @@a = 10;

 #expr := ["@@"] name
 @@b = @@a;

 #expr := expr mathOperator expr
 @@b = @@a + 5;

 #expr := "(" expr ")"
 @@b = (@@a + 5);

 #expr := "-" expr
 @@b = -(@@a + 5);

 PRINT @@a, @@b;

 #expr := "[" argList "]" // a list
 @@valueList = [1,2,3,4,5];
 @@valueList += [24,80];

 #expr := "(" argList ")" // setBagExpr
 @@valueSet += (1,2,3,4,5);

 #expr := (COUNT | ISEMPTY | MAX | MIN | AVG | SUM) "(" setBagExpr ")"
 PRINT MAX(@@valueList);
 PRINT AVG(@@valueList);

 seed = {ANY};

 company1 = SELECT t FROM seed:s -(worksFor)-> :t WHERE (s.id == "company

5/13/25, 1:39 PM TigerGraph Documentation

869

 company2 = SELECT t FROM seed:s -(worksFor)-> :t WHERE (s.id == "company

 #expr := setBagExpr
 worksForBoth = company1 INTERSECT company2;
 PRINT worksForBoth;

 #expr := name "." "type"
 employees = SELECT s FROM seed:s WHERE (s.type == "person");

 employees = SELECT s FROM employees:s -(worksFor)-> :t

 ACCUM
 #expr := name "." ["@"] name
 s.@companyNames += t.id,

 #expr := name "." name "(" [argList] ")" [".".FILTER "(" condition
 s.@numberOfRelationships += s.outdegree(),

 #expr := name ["<" type ["," type"]* ">"] "(" [argList] ")"
 s.@info += companyInfo(t.country, t.id)

 POST-ACCUM
 #expr := name "." "@" name ("." name "(" [argList] ")")+ ["." name]
 s.@companyCount += s.@companyNames.size(),

 #expr := name "." "@" name ["\'"]
 @@totalRelationshipCount += s.@companyCount,

 FOREACH comp IN s.@companyNames DO
 #expr := "(" argList "->" argList ")"
 @@companyEmployeeRelationships += (s.id -> comp)
 END;

 PRINT employees;
 PRINT @@totalRelationshipCount;
 PRINT @@companyEmployeeRelationships;

 #expr := "@@" name ("." name "(" [argList] ")")+ ["." name]
 PRINT @@companyEmployeeRelationships.size();
}

expressionEx.json Results

5/13/25, 1:39 PM TigerGraph Documentation

870

5/13/25, 1:39 PM TigerGraph Documentation

871

GSQL > RUN QUERY expressionEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@a": 10,
 "@@b": -15
 },
 {"max(@@valueList)": 80},
 {"avg(@@valueList)": 17},
 {"worksForBoth": [
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "@companyCount": 0,
 "@numberOfRelationships": 0,
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "@info": [],
 "id": "person2",
 "@companyNames": []
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "@companyCount": 0,
 "@numberOfRelationships": 0,
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "@info": [],
 "id": "person1",
 "@companyNames": []
 },
 "v_type": "person"

5/13/25, 1:39 PM TigerGraph Documentation

872

 }
]},
 {"employees": [
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "interestSet": ["football"],
 "@info": [{ "companyName": "company2", "countryName": "chn" }],
 "id": "person4",
 "@companyNames": ["company2"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person12",
 "attributes": {
 "interestList": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2, 2, 2],
 "locationId": "jp",
 "interestSet": ["teaching", "engineering", "music"],
 "@info": [{ "companyName": "company4", "countryName": "us" }],
 "id": "person12",
 "@companyNames": ["company4"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "interestList": ["teaching"],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [6, 1, 4],

"skillList": [4, 1, 6],

5/13/25, 1:39 PM TigerGraph Documentation

873

 skillList : [4, 1, 6],
 "locationId": "jp",
 "interestSet": ["teaching"],
 "@info": [{ "companyName": "company1", "countryName": "us" }],
 "id": "person3",
 "@companyNames": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "@companyCount": 2,
 "@numberOfRelationships": 4,
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "@info": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company2",
 "countryName": "chn"
 }
],
 "id": "person9",
 "@companyNames": ["company3", "company2"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person11",
 "attributes": {
 "interestList": ["sport", "football"],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [10],
 "skillList": [10],
 "locationId": "can",
 "interestSet": ["football", "sport"],
 "@info": [{ "companyName": "company5", "countryName": "can" }],
 "id": "person11",
 "@companyNames": ["company5"]
 },
 "v_type": "person"

}

5/13/25, 1:39 PM TigerGraph Documentation

874

 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "@companyCount": 2,
 "@numberOfRelationships": 4,
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "@info": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "id": "person10",
 "@companyNames": ["company3", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "@companyCount": 2,
 "@numberOfRelationships": 4,
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "interestSet": ["sport", "art"],
 "@info": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company2",
 "countryName": "chn"
 }
],
 "id": "person7",
 "@companyNames": ["company3", "company2"]
 },

5/13/25, 1:39 PM TigerGraph Documentation

875

},
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "@companyCount": 2,
 "@numberOfRelationships": 4,
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "@info": [
 {
 "companyName": "company2",
 "countryName": "chn"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "id": "person1",
 "@companyNames": ["company2", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "interestList": ["sport", "financial", "engineering"],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [5, 2, 8],
 "skillList": [8, 2, 5],
 "locationId": "can",
 "interestSet": ["engineering", "financial", "sport"],
 "@info": [{ "companyName": "company2", "countryName": "chn" }],
 "id": "person5",
 "@companyNames": ["company2"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "interestList": ["music", "art"],
 "@companyCount": 1,

"@ b OfR l ti hi " 1

5/13/25, 1:39 PM TigerGraph Documentation

876

 "@numberOfRelationships": 1,
 "skillSet": [10, 7],
 "skillList": [7, 10],
 "locationId": "jp",
 "interestSet": ["art", "music"],
 "@info": [{ "companyName": "company1", "countryName": "us" }],
 "id": "person6",
 "@companyNames": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "@companyCount": 2,
 "@numberOfRelationships": 4,
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "@info": [
 {
 "companyName": "company2",
 "countryName": "chn"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "id": "person2",
 "@companyNames": ["company2", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "interestList": ["management"],
 "@companyCount": 1,
 "@numberOfRelationships": 1,
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2],
 "locationId": "chn",
 "interestSet": ["management"],
 "@info": [{ "companyName": "company1", "countryName": "us" }],
 "id": "person8",
 "@companyNames": ["company1"]

Examples of Expression Statements

Expression Statement Examples

5/13/25, 1:39 PM TigerGraph Documentation

877

 },
 "v_type": "person"
 }
]},
 {"@@totalRelationshipCount": 17},
 {"@@companyEmployeeRelationships": {
 "person4": ["company2"],
 "person3": ["company1"],
 "person2": ["company2", "company1"],
 "person1": ["company2", "company1"],
 "person9": ["company3", "company2"],
 "person12": ["company4"],
 "person8": ["company1"],
 "person7": ["company3", "company2"],
 "person6": ["company1"],
 "person10": ["company3", "company1"],
 "person5": ["company2"],
 "person11": ["company5"]
 }},
 {"@@companyEmployeeRelationships.size()": 12}
]
}

#Show various types of expression statements
CREATE QUERY expressionStmntEx() FOR GRAPH workNet {
 TYPEDEF tuple<STRING countryName, STRING companyName> companyInfo;

 ListAccum<companyInfo> @employerInfo;
 SumAccum<INT> @@a;
 ListAccum<STRING> @employers;
 SumAccum<INT> @employerCount;
 SetAccum<STRING> @@countrySet;

 int x;

 #exprStmnt := name "=" expr
 x = 10;

 #gAccumAssignStmt := "@@" name ("+=" | "=") expr
 @@a = 10;

 PRINT x, @@a;

 start = {person.*};

 employees = SELECT s FROM start:s -(worksFor)-> :t
 ACCUM #exprStmnt := name "." "@" name ("+="| "=") expr
 s.@employers += t.id,
 #exprStmnt := name ["<" type ["," type"]* ">"] "(" [ar

 s.@employerInfo += companyInfo(t.country, t.id),
 #gAccumAccumStmt := "@@" name "+=" expr

 @@countrySet += t.country
 #exprStmnt := name "." "@" name ["." name "(" [argList
 POST-ACCUM s.@employerCount += s.@employers.size();

 #exprStmnt := "@@" name ["." name "(" [argList] ")"]+
 PRINT @@countrySet.size();
 PRINT employees;
}

5/13/25, 1:39 PM TigerGraph Documentation

878

5/13/25, 1:39 PM TigerGraph Documentation

879

GSQL > RUN QUERY expressionStmntEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@a": 10,
 "x": 10
 },
 {"@@countrySet.size()": 4},
 {"employees": [
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "@employerInfo": [{
 "companyName": "company2",
 "countryName": "chn"
 }],
 "interestSet": ["football"],
 "@employerCount": 1,
 "id": "person4",
 "@employers": ["company2"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person11",
 "attributes": {
 "interestList": ["sport", "football"],
 "skillSet": [10],
 "skillList": [10],
 "locationId": "can",
 "@employerInfo": [{
 "companyName": "company5",
 "countryName": "can"
 }],
 "interestSet": ["football", "sport"],
 "@employerCount": 1,
 "id": "person11",

5/13/25, 1:39 PM TigerGraph Documentation

880

 "@employers": ["company5"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "@employerInfo": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "interestSet": ["sport", "football"],
 "@employerCount": 2,
 "id": "person10",
 "@employers": ["company3", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "@employerInfo": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company2",
 "countryName": "chn"
 }
],
 "interestSet": ["sport", "art"],
 "@employerCount": 2,
 "id": "person7",

"@employers": ["company3", "company2"]

5/13/25, 1:39 PM TigerGraph Documentation

881

 @employers : [company3 , company2]
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "@employerInfo": [
 {
 "companyName": "company2",
 "countryName": "chn"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "interestSet": ["financial", "management"],
 "@employerCount": 2,
 "id": "person1",
 "@employers": ["company2", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "interestList": ["music", "art"],
 "skillSet": [10, 7],
 "skillList": [7, 10],
 "locationId": "jp",
 "@employerInfo": [{ "companyName": "company1", "countryName": "u
 "interestSet": ["art", "music"],
 "@employerCount": 1,
 "id": "person6",
 "@employers": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],

"l i d" " h "

5/13/25, 1:39 PM TigerGraph Documentation

882

 "locationId": "chn",
 "@employerInfo": [
 {
 "companyName": "company2",
 "countryName": "chn"
 },
 {
 "companyName": "company1",
 "countryName": "us"
 }
],
 "interestSet": ["engineering"],
 "@employerCount": 2,
 "id": "person2",
 "@employers": ["company2", "company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "interestList": ["sport", "financial", "engineering"],
 "skillSet": [5, 2, 8],
 "skillList": [8, 2, 5],
 "locationId": "can",
 "@employerInfo": [{
 "companyName": "company2",
 "countryName": "chn"
 }],
 "interestSet": ["engineering", "financial", "sport"],
 "@employerCount": 1,
 "id": "person5",
 "@employers": ["company2"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person12",
 "attributes": {
 "interestList": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2, 2, 2],
 "locationId": "jp",

5/13/25, 1:39 PM TigerGraph Documentation

883

Declaration and Assignment Statements

Previous sections focused on the lowest level building blocks of queries: data types

(Section 3), operators, functions, and expressions (Section 5), and a special section

devoted to accumulators (Section 4). We now begin to look at the types of statements

available in GSQL queries. This section focuses on declaration and assignment

statements. Later sections will provide a closer look at the all-important SELECT

statement, control flow statements and data modification statements. Furthermore, some

types of statements can be nested within SELECT, UPDATE, or control flow statements.

This section covers the following subset of the EBNF syntax:

jp ,
 "@employerInfo": [{ "companyName": "company4", "countryName": "u
 "interestSet": ["teaching", "engineering", "music"],
 "@employerCount": 1,
 "id": "person12",
 "@employers": ["company4"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "interestList": ["teaching"],
 "skillSet": [6, 1, 4],
 "skillList": [4, 1, 6],
 "locationId": "jp",
 "@employerInfo": [{ "companyName": "company1", "countryName": "u
 "interestSet": ["teaching"],
 "@employerCount": 1,
 "id": "person3",
 "@employers": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "@employerInfo": [
 {
 "companyName": "company3",
 "countryName": "jp"
 },
 {
 "companyName": "company2",
 "countryName": "chn"
 }
],
 "interestSet": ["teaching", "financial"],
 "@employerCount": 2,
 "id": "person9",
 "@employers": ["company3", "company2"]
 },
 "v_type": "person"
 },
 {

" id" " 8"

EBNF

5/13/25, 1:39 PM TigerGraph Documentation

884

 "v_id": "person8",
 "attributes": {
 "interestList": ["management"],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2],
 "locationId": "chn",
 "@employerInfo": [{ "companyName": "company1", "countryName": "u
 "interestSet": ["management"],
 "@employerCount": 1,
 "id": "person8",
 "@employers": ["company1"]
 },
 "v_type": "person"
 }
]}
]
}

Declarations
accumDeclStmt := accumType "@"name ["=" constant][, "@"name ["=" constant]
 | "@"name ["=" constant][, "@"name ["=" constant]]* accumTy
 | [STATIC] accumType "@@"name ["=" constant][, "@@"name ["=
 | [STATIC] "@@"name ["=" constant][, "@@"name ["=" constant

baseDeclStmt := baseType name ["=" constant][, name ["=" constant]]*

fileDeclStmt := FILE fileVar "(" filePath ")"
fileVar := name

localVarDeclStmt := baseType name "=" expr

vSetVarDeclStmt := name ["(" vertexEdgeType ")"] "=" (seedSet | simpleSet

simpleSet := name | "(" simpleSet ")" | simpleSet (UNION | INTERSECT | MIN

seedSet := "{" [seed ["," seed]*] "}"
seed := '_'
 | ANY
 | ["@@"]name
 | name ".*"
 | "SelectVertex" selectVertParams

selectVertParams := "(" filePath "," columnId "," (columnId | name) ","
 stringLiteral "," (TRUE | FALSE) ")" [".".FILTER "(" cond

columnId := "$" (integer | stringLiteral)

Assignment Statements
assignStmt := name "=" expr
 | name "." name "=" expr
 | name "." "@"name ("+="| "=") expr

gAccumAssignStmt := "@@"name ("+=" | "=") expr

loadAccumStmt := "@@"name "=" "{" "LOADACCUM" loadAccumParams ["," "LOADAC

loadAccumParams := "(" filePath "," columnId "," [columnId ","]*
 stringLiteral "," (TRUE | FALSE) ")" [".".FILTER "(" condi

Function Call Statement
funcCallStmt := name ["<" type ["," type"]* ">"] "(" [argList] ")"
 | "@@"name ("." name "(" [argList] ")")+

argList := expr ["," expr]*

5/13/25, 1:39 PM TigerGraph Documentation

885

There are six types of variable declarations in a GSQL query:

• Accumulator

• Global baseType variable

• Local baseType variable

• Vertex set

• File object

• Vertex or Edge aliases

The first five types each have their own declaration statement syntax and are covered in

this section. Aliases are declared implicitly in a SELECT statement.

Accumulator declaration is discussed in Section 4: "Accumulators".

After accumulator declarations, base type variables can be declared as global variables.

The scope of a global variable is from the point of declaration until the end of the query.

A global variable can be accessed (read) anywhere in the query; however, there are

restrictions on wh ere it can be updated. See the subsection below on "Assignment

Statements".

vertexEdgeType := "_" | ANY | name | ("(" name ["|" name]* ")")

baseDeclStmt := baseType name ["=" constant][, name ["=" constant]]*

Declaration Statements

Accumulators

Global Variables

EBNF for global variable declaration

5/13/25, 1:39 PM TigerGraph Documentation

886

Assign global variable at various places
CREATE QUERY globalVariable(VERTEX<person> m1) FOR GRAPH socialNet {

 SetAccum<VERTEX<person>> @@personSet;
 SetAccum<Edge> @@edgeSet;

 # Declare global variables
 STRING gender;
 DATETIME dt;
 VERTEX v;
 VERTEX<person> vx;
 EDGE ee;

 allUser = {person.*};
 allUser = SELECT src
 FROM allUser:src - (liked:e) -> post
 ACCUM dt = e.actionTime,
 ee = e, # assignment does NOT take effect yet
 @@edgeSet += ee # so ee is null
 POST-ACCUM @@personSet += src;
 PRINT @@edgeSet; # EMPTY because ee was frozen in the SELECT statement.
 PRINT dt; # actionTime of the last edge e processed.

 v = m1; # assign a vertex value to a global variable.
 gender = m1.gender; # assign a vertex's attribute value to a global var
 PRINT v, gender;

 FOREACH m IN @@personSet DO
 vx = m; # global variable assignment inside FOREACH takes
 gender = m.gender; # global variable assignment inside FOREACH takes
 PRINT vx, gender; # display the values for each iteration of the lo
 END;
}

Global Variable Example

globalVariable Query Result

5/13/25, 1:39 PM TigerGraph Documentation

887

5/13/25, 1:39 PM TigerGraph Documentation

888

GSQL > RUN QUERY globalVariable("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@edgeSet": [{}]},
 {"dt": "2010-01-12 21:12:05"},
 {
 "gender": "Male",
 "v": "person1"
 },
 {
 "vx": "person3",
 "gender": "Male"
 },
 {
 "vx": "person7",
 "gender": "Male"
 },
 {
 "vx": "person1",
 "gender": "Male"
 },
 {
 "vx": "person5",
 "gender": "Female"
 },
 {
 "vx": "person6",
 "gender": "Male"
 },
 {
 "vx": "person2",
 "gender": "Female"
 },
 {
 "vx": "person8",
 "gender": "Male"
 },
 {
 "vx": "person4",
 "gender": "Female"
 }

5/13/25, 1:39 PM TigerGraph Documentation

889

Multiple global variables of the same type can be declared and initialized at the same line,

as in the example below:

]
}

CREATE QUERY variableDeclaration() FOR GRAPH minimalNet {
 INT a=5,b=1;
 INT c,d=10;

 MaxAccum<INT> @@max1 = 3, @@max2 = 5, @@max3;
 MaxAccum<INT> @@max4, @@max5 = 2;

 PRINT a,b,c,d;
 PRINT @@max1, @@max2, @@max3, @@max4, @@max5;
}

Multiple variable declaration example

variableDeclaration.json Result

5/13/25, 1:39 PM TigerGraph Documentation

890

A local variable can be declared only in an ACCUM, POST-ACCUM, or UPDATE SET clause,

and its scope is limited to that clause. Local variables can only be of base types (e.g. INT,

FLOAT, DOUBLE, BOOL, STRING, VERTEX). A local variable must be declared and initialized

together at the same statement.

Within a local variable's scope, another local variable with the same name cannot be

declared at the same level. However, a new local variable with the same name can be

declared at a lower level (i.e., within a nested SELECT or UPDATE statement.) . The lower

declaration takes precedence at the lower level.

GSQL > RUN QUERY variableDeclaration()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "a": 5,
 "b": 1,
 "c": 0,
 "d": 10
 },
 {
 "@@max3": -9223372036854775808,
 "@@max2": 5,
 "@@max1": 3,
 "@@max5": 2,
 "@@max4": -9223372036854775808
 }
]
}

localVarDeclStmt := baseType name "=" expr

Local Variables

EBNF for local variable declaration and initialization

5/13/25, 1:39 PM TigerGraph Documentation

891

In a POST-ACCUM clause, each local variable may only be used in source vertex

statements or target vertex statements, not both.

Vertex set variables play a special role within GSQL queries. They are used for both the

input and output of SELECT statements. Therefore, before the first SELECT statement in a

An example showing a local variable succeeded where a global variable fa
CREATE QUERY localVariable(vertex<person> m1) FOR GRAPH socialNet {
 MaxAccum<INT> @@maxDate, @@maxDateGlob;
 DATETIME dtGlob;

 allUser = {person.*};
 allUser = SELECT src
 FROM allUser:src - (liked:e) -> post
 ACCUM
 DATETIME dt = e.actionTime, # Declare and assign local dt
 dtGlob = e.actionTime, # dtGlob doesn't update yet
 @@maxDate += datetime_to_epoch(dt),
 @@maxDateGlob += datetime_to_epoch(dtGlob);
 PRINT @@maxDate, @@maxDateGlob, dtGlob; # @@maxDateGlob will be 0
}

GSQL > RUN QUERY localVariable("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "dtGlob": "2010-01-11 03:26:05",
 "@@maxDateGlob": 0,
 "@@maxDate": 1263618953
 }]
}

Vertex Set Variable Declaration and Assignment

Local Variable Example

localVariable Query Results

5/13/25, 1:39 PM TigerGraph Documentation

892

query, a vertex set variable must be declared and initialized. This initial vertex set is called

the seed set .

The query below lists all ways of assigning a vertex set variable an initial set of vertices

(that is, forming a seed set).

• a vertex parameter, untyped (S1) or typed (S2)

• a vertex set parameter, untyped (S3) or typed (S4)

• a global SetAccum<VERTEX> accumulator, untyped (S5) or typed (S6)

• all vertices of any type (S7, S9) or of one type (S8)

• a list of vertex ids in an external file (S10)

• copy of another vertex set (S11)

• a combination of individual vertices, vertex set parameters, or global variables (S12)

• union of vertex set variables (S13)

vSetVarDeclStmt := name ["(" vertexEdgeType ")"] "=" (seedSet | simpleSet
Seed Sets
seedSet := "{" [seed ["," seed]*] "}"
seed := '_'
 | ANY
 | ["@@"]name
 | name ".*"
 | "SelectVertex" selectVertParams

selectVertParams := "(" filePath "," columnId "," (columnId | name) ","
 stringLiteral "," (TRUE | FALSE) ")" [".".FILTER "(" cond

columnId := "$" (integer | stringLiteral)

simpleSet := name | "(" simpleSet ")" | simpleSet (UNION | INTERSECT | MIN

EBNF for Vertex Set Variable Declaration

Seed Set Example

5/13/25, 1:39 PM TigerGraph Documentation

893

When declaring a vertex set variable, a set of vertex types can be optionally specified to

the vertex set variable. If the vertex set variable set type is not specified explicitly, the

system determines the type implicitly by the vertex set value. The type can be ANY, _

(equivalent to ANY), or any explicit vertex type(s). See the EBNF grammar rule

vertexEdgeType.

Declaration syntax difference: vertex set variable vs. base type variable

In a vertex set variable declaration, the type specifier follows the variable name and should be

surrounded by parentheses: vSetName (type)

This is different than a base type variable declaration, where the type specifier comes before

the base variable name: type varName

After a vertex set variable is declared, the vertex type of the vertex set variable is

immutable. Every assignment (e.g. SELECT statement) to this vertex set variable must

match the type. The following is an example in which we must declare the vertex set

variable type.

CREATE QUERY seedSetExample(VERTEX v1, VERTEX<person> v2, SET<VERTEX> v3,
 SetAccum<VERTEX> @@testSet;
 SetAccum<VERTEX<person>> @@testSet2;
 S1 = { v1 };
 S2 = { v2 };
 S3 = v3;
 S4 = v4;
 S5 = @@testSet;
 S6 = @@testSet2;
 S7 = ANY; # All vertices
 S8 = person.*; # All person vertices
 S9 = _; # Equivalent to ANY
 S10 = SelectVertex("absolute_path_to_input_file", $0, post, ",", false);
 S11 = S1;
 S12 = {@@testSet, v2, v3}; # S1 is not allowed to be in {}
 S13 = S11 UNION S12; # but we can use UNION to combine S1
}

Vertex set variable type

5/13/25, 1:39 PM TigerGraph Documentation

894

In the above example, the query returns the set of vertices after a 5-step traversal from the

input "person" vertex. If we declare the vertex set variable S without explicitly giving a type,

because the type of vertex parameter m1 is "person", the GSQL engine will implicitly

assign S to be "person"-type. However, if S is assigned to "person"-type, the SELECT

statement inside the WHILE loop causes a type checking error, because the SELECT block

will generate all connected vertices, including non-"person" vertices. Therefore, S must be

declared as a ANY-type vertex set variable.

A FILE object is a sequential text storage object, associated with a text file on the local

machine.

When referring to a FILE object, we always capitalize the word FILE, to distinguish it from

ordinary files.

When a FILE object is declared, associated with a particular text file, any existing content

in the text file will be erased . During the execution of the query, content written to or

printed to the FILE will be appended to the FILE. When the query where the FILE was

declared finishes running, the FILE contents are saved to the text file.

CREATE QUERY vertexSetVariableTypeExample(vertex<person> m1) FOR GRAPH soc
 INT ite = 0;
 S (ANY) = {m1}; # ANY is necessary
 WHILE ite < 5 DO
 S = SELECT t
 FROM S:s - (ANY:e) -> ANY:t;

 ite = ite + 1;
 END;
 PRINT S;
}

fileDeclStmt := FILE fileVar "(" filePath ")"
fileVar := name

FILE Object Declaration

EBNF for FILE object declaration

5/13/25, 1:39 PM TigerGraph Documentation

895

Note that the declaration statement is invoking the FILE object constructor. The syntax for

the constructor includes parentheses surrounding the filepath parameter.

Currently, the filePath must be a absolute path.

Assignment statements are used to set or update the value of a variable, after it has been

declared. This applies to baseType variables, vertex set variables, and accumulators.

Accumulators also have the special += accumulate statement, which was discussed in the

Accumulator section. Assignment statements can use expressions (expr) to define the

new value of the variable.

CREATE QUERY fileEx (STRING fileLocation) FOR GRAPH workNet {

 FILE f1 (fileLocation);
 P = {person.*};

 PRINT "header" TO_CSV f1;

 USWorkers = SELECT v FROM P:v
 WHERE v.locationId == "us"
 ACCUM f1.println(v.id, v.interestList);
 PRINT "footer" TO_CSV f1;
}
INSTALL QUERY fileEx
RUN QUERY fileEx("/home/tigergraph/fileEx.txt")

Assignment Statement
assignStmt := name "=" expr # baseType variable, ver
 | name "." name "=" expr # attribute of a vertex
 | name "." "@"name ("+="| "=") expr # vertex.attached accumu

gAccumAssignStmt := "@@"name "=" expr # global accumulator
 | loadAccumStmt
loadAccumStmt := "@@"name "=" "{" "LOADACCUM" loadAccumParams ["," "LOADAC

Assignment and Accumulate Statements

File object query example

EBNF for Assignment Statements

5/13/25, 1:39 PM TigerGraph Documentation

896

In general, assignment statements can take place anywhere after the variable has been

declared. However, t here are some restrictions. These restrictions apply to "inner level"

statements which are within the body of a higher-level statement:

• The ACCUM or POST-ACCUM clause of a SELECT statement

• The SET clause of an UPDATE statement

• The body of a FOREACH statement

• Global accumulator assignment "=" is not permitted within the body of SELECT or

UPDATE statements

• Global variable assignment is permitted in ACCUM or POST-ACCUM clauses, but the

change in value will not take place until exiting the clause. Therefore, if there are multiple

assignment statements for the same variable, only the final one will take effect.

• Vertex attribute assignment "=" is not permitted in an ACCUM clause. However, edge

attribute assignment is permitted. This is because the ACCUM clause iterates over an

edge set.

• There are additional restrictions within FOREACH loops for the loop variable. See the

Data Modification section.

LOADACCUM() can initialize a global accumulator by loading data from a file.

LOADACCUM() has 3+n parameters explained in the table below: (filePath, fieldColumn_1,

...., fieldColumn_n, separator, header), where n is the number of fields in the accumulator.

One assignment statement can have multiple LOADACCUM() function calls. However,

loadAccumStmt := "@@" name "=" "{" "LOADACCUM" loadAccumParams ("," "LOADA

loadAccumParams := "(" filePath "," columnId "," [columnId ","]*
 stringLiteral "," (TRUE | FALSE) ")" [".".FILTER "(" condi
columnId := "$" (integer | stringLiteral)

Restrictions on Assignment Statements

LOADACCUM Statement

5/13/25, 1:39 PM TigerGraph Documentation

897

every LOADACCUM() referring to the same file in the same assignment statement must

use the same separator and header parameter values.

Any accumulator using generic VERTEX as an element type cannot be initialized by

LOADACCUM().

Below is an example with an external file

parameter name type description

filePath string

The absolute file path of the

input file to be read. A relative

path is not supported.

accumField1,....,

accumFieldN

$ num , or $ "column_name"

if header is true.

The column position(s) or

column name(s) of the data

file which supply data values

to each field of the

accumulator.

separator single-character string The separator of columns.

header bool
Whether this file has a

header.

person1,1,"test1",3
person5,2,"test2",4
person6,3,"test3",5

CREATE QUERY loadAccumEx(STRING filename) FOR GRAPH socialNet {
 TYPEDEF TUPLE<STRING aaa, VERTEX<post> ddd> yourTuple;
 MapAccum<VERTEX<person>, MapAccum<INT, yourTuple>> @@testMap;
 GroupByAccum<STRING a, STRING b, MapAccum<STRING, STRING> strList> @@tes

 @@testMap = { LOADACCUM (filename, $0, $1, $2, $3, ",", false)};
 @@testGroupBy = { LOADACCUM (filename, $1, $2, $3, $3, ",", true) };

 PRINT @@testMap, @@testGroupBy;
}

loadAccumInput.csv

LoadAccum example

5/13/25, 1:39 PM TigerGraph Documentation

898

GSQL > RUN QUERY loadAccumEx("/file_directory/loadAccumInput.csv")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@testGroupBy": [
 {
 "a": "3",
 "b": "\"test3\"",
 "strList": {"5": "5"}
 },
 {
 "a": "2",
 "b": "\"test2\"",
 "strList": {"4": "4"}
 }
],
 "@@testMap": {
 "person1": {"1": {
 "aaa": "\"test1\"",
 "ddd": "3"
 }},
 "person6": {"3": {
 "aaa": "\"test3\"",
 "ddd": "5"
 }},
 "person5": {"2": {
 "aaa": "\"test2\"",
 "ddd": "4"
 }}
 }
 }]
}

Function Call Statements

Results of Query loadAccumEx

5/13/25, 1:39 PM TigerGraph Documentation

899

Typically, a function call returns a value and so is part of an expression (see Section 5 -

Operators, Functions and Expressions). In some cases, however, the function does not

return a value (i.e., returns VOID) or the return value can be ignored, so the function call

can be used as an entire statement. This is a Function Call Statement.

funcCallStmt := name ["<" type ["," type"]* ">"] "(" [argList] ")"
 | "@@"name ("." name "(" [argList] ")")+

argList := expr ["," expr]*

ListAccum<STRING> @@listAcc;
BagAccum<INT> @@bagAcc;
...
examples of function call statements
@@listAcc.clear();
@@bagAcc.removeAll(0);

Examples of Function Call statements

5/13/25, 1:39 PM TigerGraph Documentation

900

SELECT Statement

This section discusses the SELECT statement in depth and covers the following EBNF

syntax:

EBNF for Select Statement

5/13/25, 1:39 PM TigerGraph Documentation

901

5/13/25, 1:39 PM TigerGraph Documentation

902

selectStmt := name "=" selectBlock

selectBlock := SELECT name FROM (edgeSet | vertexSet)
 [sampleClause]
 [whereClause]
 [accumClause]
 [postAccumClause]
 [havingClause]
 [orderClause]
 [limitClause]

vertexSet := name [":" name]

edgeSet := name [":" name]
 "-" "(" [vertexEdgeType] [":" name] ")" "->"
 [vertexEdgeType] [":" name]

vertexEdgeType := "_" | ANY | name | ("(" name ["|" name]* ")")

sampleClause := SAMPLE (expr | expr "%") EDGE WHEN condition
 | SAMPLE expr TARGET WHEN condition
 | SAMPLE expr "%" TARGET PINNED WHEN condition

whereClause := WHERE condition

accumClause := ACCUM DMLSubStmtList

postAccumClause := POST-ACCUM DMLSubStmtList

DMLSubStmtList := DMLSubStmt ["," DMLSubStmt]*

DMLSubStmt := assignStmt // Assignment
 | funcCallStmt // Function Call
 | gAccumAccumStmt // Assignment
 | vAccumFuncCall // Function Call
 | localVarDeclStmt // Declaration
 | DMLSubCaseStmt // Control Flow
 | DMLSubIfStmt // Control Flow
 | DMLSubWhileStmt // Control Flow
 | DMLSubForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | insertStmt // Data Modification
 | DMLSubDeleteStmt // Data Modification
 | printlnStmt // Output
 | logStmt // Output

vAccumFuncCall := name "." "@"name ("." name "(" [argList] ")")+

5/13/25, 1:39 PM TigerGraph Documentation

903

The SELECT block selects a set of vertices FROM a vertex set or edge set . There are a

number of optional clauses that define and/or refine the selection by constraining the

vertex or edge set or the result set. There are two types of SELECT, vertex-induced and

edge-induced . Both result in a vertex set, known as the result set .

Size limitation

There is a maximum size limit of 2GB for the result set of a SELECT block . If the result of the

SELECT block is larger than 2GB, the system will return no data. NO error message is

produced.

The SELECT statement is an assignment statement with a SELECT block on the right hand

side. The SELECT block has many possible clauses, which fit together in a logical flow.

Overall, the SELECT block starts from a source set of vertices and returns a result set that

is either a subset of the source vertices or a subset of their neighboring vertices. Along

the way, computations can be performed on the selected vertices and edges. The figure

below graphically depicts the overall SELECT data flow. While the ACCUM and POST-

ACCUM clauses do not directly affect which vertices are included in the result set, they

affect the data (accumulators) which are attached to those vertices.

havingClause := HAVING condition

orderClause := ORDER BY expr [ASC | DESC] ["," expr [ASC | DESC]]*

limitClause := LIMIT (expr | expr "," expr | expr OFFSET expr)

SELECT Statement Data Flow

FROM Clause: Vertex and Edge Sets

5/13/25, 1:39 PM TigerGraph Documentation

904

5/13/25, 1:39 PM TigerGraph Documentation

905

There are two options for the FROM clause: vertexSet or edgeSet. If vertexSet is used,

then the query will be a vertex-induced selection. If edge is used, then the query is an

edge-induced selection.

A vertex-induced selection takes an input set of vertices and produces a result set, which

is a subset of the input set. The FROM argument has the form Source:s , where Source is

a vertex set. Sourceis optionally followed by :s , where s is a vertex alias which represents

any vertex in the set Source.

This statement can be interpreted as " Select all vertices s, from the vertex set Source ."

The result is a vertex set.

Below is a simple example of a vertex-induced selection.

selectBlock := SELECT name FROM (edgeSet | vertexSet) ...

vertexSet := name [":" name]

resultSet = SELECT s FROM Source:s;

Vertex-Induced Selection

FROM clause

EBNF for vertexSet, signaling a vertex-induced selection

Vertex-Induced SELECT example

5/13/25, 1:39 PM TigerGraph Documentation

906

displays all 'post'-type vertices
CREATE QUERY printAllPosts() FOR GRAPH socialNet
{
 start = {post.*}; # initialized with all vertices of type
 results = SELECT s FROM start:s; # select these vertices
 PRINT results;
}

Results of Query printAllPosts

5/13/25, 1:39 PM TigerGraph Documentation

907

5/13/25, 1:39 PM TigerGraph Documentation

908

GSQL > RUN QUERY printAllPosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"results": [
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "10",
 "attributes": {
 "postTime": "2011-02-04 03:02:31",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "2",
 "attributes": {
 "postTime": "2011-02-03 01:02:42",
 "subject": "query languages"
 },
 "v_type": "post"
 },
 {
 "v_id": "4",
 "attributes": {
 "postTime": "2011-02-07 05:02:51",
 "subject": "coffee"
 },
 "v_type": "post"
 },
 {
 "v_id": "9",
 "attributes": {
 "postTime": "2011-02-05 23:12:42",
 "subject": "cats"
 },

5/13/25, 1:39 PM TigerGraph Documentation

909

Multiple types can also be specified by using delimiter "|". Additionally, the keywords "_" or

"ANY" can be used for denoting a set which can include any vertex or edge type.

An edge-induced selection starts from a set of vertices, defines a set of edges incident to

that set, and produces a result set of vertices that are also incident to those edges.

Typically, this is used to traverse from a set of source vertices over a specific edge type to

a set of target vertices. The FROM clause argument (defined formally by the EBNF

edgeSet rule) is structured as an edge template:Source:s-(eType:e)->tType:t . The edge

template has three parts: the source vertex set (Source), the edge type or types (eType),

and the target vertex type or types (tType). Both s and t are the vertex aliases and e is the

edge alias. The template defines a pattern s → e → t, from source vertex s, across eType

edges, to tType target vertices. The edge alias e represents any edge that fits the

complete pattern. Likewise, s and t are aliases that represent any source vertices and

target vertices, respectively, that fit the complete pattern.

Either the source vertex set (s) or target vertex set (t) can be used as the SELECT

argument, which determines the result of the SELECT statement. Note the small

difference in the two SELECT statements below.

 "v_type": "post"
 },
 {
 "v_id": "3",
 "attributes": {
 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "7",
 "attributes": {
 "postTime": "2011-02-04 17:02:41",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "11",
 "attributes": {
 "postTime": "2011-02-03 01:02:21",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "8",
 "attributes": {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },

"v type": "post"

edgeSet := name [":" name]
 "-" "(" [vertexEdgeType] [":" name] ")" "->"
 [vertexEdgeType] [":" name]

vertexEdgeType := "_" | ANY | name | ("(" name ["|" name]* ")")

Edge-Induced Selection

EBNF for edgeSet, signaling edge-induced selection

5/13/25, 1:39 PM TigerGraph Documentation

910

resultSet1 is based on the source end of the edges. resultSet2 is based on the target end

of the selected edges. However, resultSet1 is NOT identical to the Source vertex set. It is

only those members of Source which connect to an eType edge and then to a tType

vertex. Other clauses (presented later in this "SELECT Statement" section, can do

additional filtering of the Source set.

We strongly suggest that an alias should be declared with every vertex and edge in the FROM

clause, as there are several functions and features which are only available to vertex and

edge aliases.

The FROM clause chooses edges and target vertices by type. The EBNF symbol

vertexEdgeType describes the options:

Note that eType and tType are optional. If eType/tType is omitted (or if ANY or _ is used),

then the SELECT will seek out any edge or target vertex that is valid (i.e., there exists a

valid path between two vertices over an edge). For the example below, if V1 and V2 are the

only possible reachable vertex types via eType , we can omit the target vertex type,

making all of the following SELECT statements equivalent. The system will infer the target

vertex type at run time.

 v_type : post
 },
 {
 "v_id": "6",
 "attributes": {
 "postTime": "2011-02-05 02:02:05",
 "subject": "tigergraph"
 },
 "v_type": "post"
 }
]}]
}

resultSet1 = SELECT s FROM Source:s-(eType:e)->tType:t; //Select from th
resultSet2 = SELECT t FROM Source:s-(eType:e)->tType:t; //Select from th

accepted vertex/edge types
accepted vertex/edge types

_ any type

ANY any type

name the given vertex/edge type

name | name ... any of the vertex/edge types listed

Edge Set and Target Vertex Set Options

Selecting source or target vertices from edge-induced selection

5/13/25, 1:39 PM TigerGraph Documentation

911

If is legal to declare an alias without explicitly stating an edge/target type. See the

examples below.

Type inference is used whenever possible for the edge set and target vertex set to prune

ineligible edges and thereby optimize performance. The vertex type in Source is checked

against the graph schema to find all incident edge types. The knowledge of the graph

schema is combined with the selection's explicit type conditions given by eType and tType,

as well as explicit and implicit type conditions in the WHERE clause to determine a final

set of eligible edge sets which match the pattern Source → eType → tType. With type

inference, the user has the freedom to express only as much as necessary to select

edges.

Similarly, the GSQL engine will infer the edge type at run time. For example, if E1, E2 , and

E3 are the only possible edge types that can be traversed to reach vertices of type tType ,

we can omit specifying the edge type, making the following SELECT statements

equivalent.

The following are a set of queries that demonstrate edge-induced SELECT blocks. The

allPostsLiked and allPostsMade queries show how the target vertex type can be omitted.

The allPostsLikedOrMade query uses the "|" operator to select multiple types of edges.

resultSet3 = SELECT v FROM Source:v-(eType:e)->(V1|V2):t;
resultSet4 = SELECT v FROM Source:v-(eType:e)->:t;
resultSet5 = SELECT v FROM Source:v-(eType:e)->ANY:t;
resultSet6 = SELECT v FROM Source:v-(eType:e)->_:t;

resultSet7 = SELECT v FROM Source:v-((E1|E2|E3):e)->tType:t;
resultSet8 = SELECT v FROM Source:v-(:e)->tType:t;
resultSet9 = SELECT v FROM Source:v-(_:e)->tType:t;
resultSet10 = SELECT v FROM Source:v-(ANY:e)->tType:t;

Target vertex type inference

Edge type inference

Edge induced SELECT example

5/13/25, 1:39 PM TigerGraph Documentation

912

5/13/25, 1:39 PM TigerGraph Documentation

913

uses various SELECT statements (some of which are equivalent) to print o
either the posts made by the given user, the posts liked by the given
user, or the posts made or liked by the given user.
CREATE QUERY printAllPosts2(vertex<person> seed) FOR GRAPH socialNet
{

start = {seed}; # initialize starting set of vertices

--- statements produce equivalent results
select all 'post' vertices which can be reached from 'start' in one
using an edge of type 'liked'
allPostsLiked = SELECT targetVertex FROM start -(liked:e)-> post:targe

select all vertices of any type which can be reached from 'start' in
using an edge of type 'liked'
allPostsLiked = SELECT targetVertex FROM start -(liked:e)-> :targetVer

--- statements produce equivalent results
start with the vertex set from above, and traverse all edges of type

 # (locally those edges are just given a name 'e' in case they need a
 # and return all vertices of type 'post' which can be reached within

allPostsMade = SELECT targetVertex FROM start -(posted:e)-> post:targe

start with the vertex set from above, and traverse all edges of type
 # (locally those edges are just given a name 'e' in case they need a
 # and return all vertices of any type which can be reached within on

allPostsMade = SELECT targetVertex FROM start -(posted:e)-> :targetVer

--- statements produce equivalent results
select all vertices of type 'post' which can be reached from 'start'
using an edge of any type
not equivalent to any statement. because it doesn't restrict the edg
this will include any vertex connected by 'liked' or 'posted' edge
allPostsLikedOrMade = SELECT t FROM start -(:e)-> t;

select all vertices of type 'post' which can be reached from 'start'
using an edge of type either 'posted' or 'liked'
allPostsLikedOrMade = SELECT t FROM start -((posted|liked):e)-> post:t

select all vertices of any type which can be reached from 'start' in
using an edge of type either 'posted' or 'liked/
allPostsLikedOrMade = SELECT t FROM start -((posted|liked):e)-> :t;

5/13/25, 1:39 PM TigerGraph Documentation

914

PRINT allPostsLiked;
 PRINT allPostsMade;
 PRINT allPostsLikedOrMade;
}

Results of Query printAllPosts2

5/13/25, 1:39 PM TigerGraph Documentation

915

5/13/25, 1:39 PM TigerGraph Documentation

916

GSQL > RUN QUERY printAllPosts2("person2")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"allPostsLiked": [
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "3",
 "attributes": {
 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 }
]},
 {"allPostsMade": [{
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },
 "v_type": "post"
 }]},
 {"allPostsLikedOrMade": [
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "3",
 "attributes": {

5/13/25, 1:39 PM TigerGraph Documentation

917

This example is another edge selection that uses the "|" operator to select edges that have

target vertices of multiple types.

 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },
 "v_type": "post"
 }
]}
]
}
GSQL > RUN QUERY printAllPosts2("person6")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"allPostsLiked": [{
 "v_id": "8",
 "attributes": {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },
 "v_type": "post"
 }]},
 {"allPostsMade": [
 {
 "v_id": "10",
 "attributes": {
 "postTime": "2011-02-04 03:02:31",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"

},

Edge induced SELECT example

5/13/25, 1:39 PM TigerGraph Documentation

918

 },
 "v_type": "post"
 }
]},
 {"allPostsLikedOrMade": [
 {
 "v_id": "10",
 "attributes": {
 "postTime": "2011-02-04 03:02:31",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "8",
 "attributes": {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },
 "v_type": "post"
 }
]}
]
}

uses a SELECT statement to print out everything related to a given user
this includes posts that the user liked, posts that the user made, and
of the user
CREATE QUERY printAllRelatedItems(vertex<person> seed) FOR GRAPH socialNet
{

sourceVertex = {seed};

-- statements produce equivalent output
returns all vertices of type either 'person' or 'post' that can be r
from the sourceVertex set using one edge of any type
everythingRelated = SELECT v FROM sourceVertex -(:e)-> (person|post):v

returns all vertices of any type that can be reached from the source
using one edge of any type
this statement is equivalent to the above one because the graph sche
has vertex types of either 'person' or 'post'. if there were more
types present, these would not be equivalent.
everythingRelated = SELECT v FROM sourceVertex -(:e)-> :v;
--

PRINT everythingRelated;
}

Results

5/13/25, 1:39 PM TigerGraph Documentation

919

5/13/25, 1:39 PM TigerGraph Documentation

920

GSQL > RUN QUERY printAllRelatedItems("person2")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"everythingRelated": [
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs"
 },
 "v_type": "post"
 },
 {
 "v_id": "person3",
 "attributes": {
 "gender": "Male",
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "gender": "Male",
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "3",
 "attributes": {
 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },

5/13/25, 1:39 PM TigerGraph Documentation

921

Vertex and edge aliases are declared within the FROM clause of a SELECT block, by using

the character ":", followed by the alias name. Aliases can be accessed anywhere within the

same SELECT block. They are used to reference a single selected vertex or edge of a set.

It is through the vertex or edge aliases that attributes of these vertices or edges can be

accessed.

For example, the following code snippets shows two different SELECT statements. The

first SELECT statement starts from a vertex set called allVertices, and the vertex alias

name v can access each individual vertex from allVertices. The second SELECT statement

selects a set of edges. It can use the vertex alias s to reference the source vertices, or the

alias t to reference the target vertices.

The following example shows an edge-based SELECT statement, declaring aliases for all

three parts of the edge. In the ACCUM clause, the e and t aliases are assigned to local

vertex and edge variables.

We strongly suggest that an alias should be declared with every vertex and edge in the FROM

clause, as there are several functions and features which are only available to vertex and

 "v_type": "post"
 }
]}]
}
GSQL > RUN QUERY printAllRelatedItems("person6")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"everythingRelated": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "10",
 "attributes": {
 "postTime": "2011-02-04 03:02:31",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "person8",
 "attributes": {
 "gender": "Male",
 "id": "person8"
 },
 "v_type": "person"
 },
 {
 "v_id": "8",

"attributes": {

results = SELECT v FROM allVertices:v;
results = SELECT v FROM allVertices:s -()-> :t;

results = SELECT v
 FROM allVertices:s -(:e)-> :t
 ACCUM VERTEX v = t, EDGE eg = e;

Vertex and Edge Aliases

Vertex variables

Edge variables

5/13/25, 1:39 PM TigerGraph Documentation

922

edge aliases.

The SAMPLE clause is an optional clause that selects a uniform random sample from the

population of edges or target vertices specified in the FROM argument.

If you want to sample from a set of vertices directly, not from edges or from neighboring

(target) vertices, then the following technique is simpler and faster:

The SAMPLE clause draws from the edge population consisting of those edges which

satisfy all three parts – source set, edge type, and target type – of the FROM clause. The

SAMPLE clause is intended to provide a representative sample of the distribution of edges

(or vertices) connected to hub vertices, instead of dealing with all edges. A hub vertex is a

vertex with a relatively high degree. (The degree of a vertex is the number of edges which

connect to it. If edges are directional, one can distinguish between indegree and

outdegree.)

The expression following SAMPLE specifies the sample size, either an absolute number or

a percentage of the population. The expression in sampleClause must evaluate to a

positive integer. There are two sampling methods. One is sampling based on edge id. The

other is based on target vertex id: if a target vertex id is sampled, all edges from this

source vertex to the sampled target vertex are sampled.

 attributes : {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },
 "v_type": "post"
 }
]}]
}

Random = SELECT s
 FROM S:s
 LIMIT k;

sampleClause := SAMPLE (expr | expr "%") EDGE WHEN condition # Sample a
 | SAMPLE expr TARGET WHEN condition # Sample a
 | SAMPLE expr "%" TARGET PINNED WHEN condition # Sample a

SAMPLE Clause

Select k random vertices from a vertex set S

EBNF for Sample Clause

5/13/25, 1:39 PM TigerGraph Documentation

923

Note: Currently, the WHEN condition that can be used with a SAMPLE clause is limited strictly

to checking if the result of a function call on a vertex is greater than or greater than/equal to

some number.

Given that the sampling is random, some of the details of each of the example queries

may change each time they are run.

The following query displays two modes of sampling: an absolute number of edges from a

source vertex and a percentage of edges fro a source vertex. We use the computerNet

graph (see Appendix D). In computerNet, there are 31 vertices and 43 edges, but only 7

vertices are source vertices. Moreover, c1, c12, and c23 are hub nodes, with at least 10

outgoing edges each. For the absolute count case, we set the size to 1 edge per source

vertex, which is equivalent to a random walk. We expect exactly 7 edges to be selected.

For the percentage sampling case, we sample 33% of the edges for vertices which have 3

or more outgoing edges. We expect about 15 edges, but the number may vary.

CREATE QUERY sampleEx3() FOR GRAPH computerNet
{
 MapAccum<STRING,ListAccum<STRING>> @@absEdges; // record each selected
 SumAccum<INT> @@totalAbs;
 MapAccum<STRING,ListAccum<STRING>> @@pctEdges; // record each selected
 SumAccum<INT> @@totalPct;

 start = {computer.*};

 # Sample one outgoing edge per source vertex = Random Walk
 absSample = SELECT v FROM start:s -(:e)-> :v
 SAMPLE 1 EDGE WHEN s.outdegree() >= 1 # sample 1 target ve
 ACCUM @@absEdges += (s.id -> v.id),
 @@totalAbs += 1;
 PRINT @@totalAbs, @@absEdges;

 pctSample = SELECT v FROM start:s -(:e)-> :v
 SAMPLE 33% EDGE WHEN s.outdegree() >= 3 # select ~1/3 of edg
 ACCUM @@pctEdges += (s.id -> v.id),
 @@totalPct += 1;
 PRINT @@totalPct, @@pctEdges;
}

sampleEx3: SAMPLE based on edges per source vertex

sampleEx3.json

5/13/25, 1:39 PM TigerGraph Documentation

924

5/13/25, 1:39 PM TigerGraph Documentation

925

GSQL > RUN QUERY sampleEx3()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@totalAbs": 7,
 "@@absEdges": {
 "c4": ["c23"],
 "c11": ["c12"],
 "c10": ["c11"],
 "c12": ["c14"],
 "c23": ["c26"],
 "c14": ["c24"],
 "c1": ["c10"]
 }
 },
 {
 "@@totalPct": 13,
 "@@pctEdges": {
 "c4": ["c23"],
 "c11": ["c12"],
 "c10": ["c11"],
 "c12": [
 "c14",
 "c15",
 "c19"
],
 "c23": [
 "c29",
 "c25"
],
 "c14": [
 "c24",
 "c23"
],
 "c1": [
 "c3",
 "c8",
 "c2"
]
 }
 }

5/13/25, 1:39 PM TigerGraph Documentation

926

Below is an example of using SELECT to only traverse one edge for each source vertex.

The vertex-attached accumulators @timesTraversedNoSample and

@timesTraversedWithSample are used to keep track of the number of times an edge is

traversed to reach the target vertex. Without using sampling, this occurs once for each

edge; thus @timesTraversedNoSample has the same number as the in-degree of the

vertex. With sampling edges, the number of edges is restricted. This is reflected in the

@timesTraversedWithSample accumulator. Notice the difference in the result set.

Because only one edge per source vertex is traversed when the SAMPLE clause is used,

not all target vertices are reached. The vertex company3 has 3 incident edges, but in one

instance of the query execution, it is never reached. Additionally, company2 has 6 incident

edges, but only 4 source vertices sampled an edge incident to company2 .

]
}

CREATE QUERY sampleEx1() FOR GRAPH workNet
{

SumAccum<INT> @timesTraversedNoSample;
SumAccum<INT> @timesTraversedWithSample;
workers = {person.*};

The 'beforeSample' result set encapsulates the normal functionality
a SELECT statement, where 'timesTraversedNoSample' vertex accumulato
each edge incident to the vertex.
beforeSample = SELECT v FROM workers:t -(:e)-> :v

 ACCUM v.@timesTraversedNoSample += 1;

The 'afterSample' result set is formed by those vertices which can b
reached when for each source vertex, only one edge is used for trave
This is demonstrated by the values of 'timesTraversedWithSample' ver
is increased for each edge incident to the vertex which is used in t
sample.
afterSample = SELECT v FROM workers:t -(:e)-> :v

 SAMPLE 1 EDGE WHEN t.outdegree() >= 1 # only use 1 edge
 ACCUM v.@timesTraversedWithSample += 1;

PRINT beforeSample;
PRINT afterSample;

}

example of SAMPLE using an absolute number of edges

sampleEx1.json

5/13/25, 1:39 PM TigerGraph Documentation

927

5/13/25, 1:39 PM TigerGraph Documentation

928

GSQL > RUN QUERY sampleEx1()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"beforeSample": [
 {
 "v_id": "company4",
 "attributes": {
 "country": "us",
 "@timesTraversedNoSample": 1,
 "@timesTraversedWithSample": 1,
 "id": "company4"
 },
 "v_type": "company"
 },
 {
 "v_id": "company5",
 "attributes": {
 "country": "can",
 "@timesTraversedNoSample": 1,
 "@timesTraversedWithSample": 1,
 "id": "company5"
 },
 "v_type": "company"
 },
 {
 "v_id": "company3",
 "attributes": {
 "country": "jp",
 "@timesTraversedNoSample": 3,
 "@timesTraversedWithSample": 3,
 "id": "company3"
 },
 "v_type": "company"
 },
 {
 "v_id": "company2",
 "attributes": {
 "country": "chn",
 "@timesTraversedNoSample": 6,
 "@timesTraversedWithSample": 4,
 "id": "company2"

5/13/25, 1:39 PM TigerGraph Documentation

929

Since the PRINT statements are placed at the end of query, the two vertex sets

beforeSample and afterSample are almost identical, showing the final values of both

accumulators@timesTraversedNoSample and @timesTraversedWithSample. There is one

difference: company3 is not included in afterSample because none of the sample-selected

edges reached company3.

The WHERE clause is an optional clause that constrains edges and vertices specified in

the FROM and SAMPLE clauses.

The WHERE clause uses a boolean condition to test each vertex or edge in the FROM set

(or the sampled vertex and edge sets, if the SAMPLE clause was used).

If the expression evaluates to false for vertex/edge X, then X excluded from further

consideration in the result set. The expression may use constants or any variables or

parameters within the scope of the SELECT, arithmetic operators (+, -, *, /,%), comparison

 },
 "v_type": "company"
 },
 {
 "v_id": "company1",
 "attributes": {
 "country": "us",
 "@timesTraversedNoSample": 6,
 "@timesTraversedWithSample": 3,
 "id": "company1"
 },
 "v_type": "company"
 }
]},
 {"afterSample": [
 {
 "v_id": "company4",
 "attributes": {
 "country": "us",
 "@timesTraversedNoSample": 1,
 "@timesTraversedWithSample": 1,
 "id": "company4"
 },
 "v_type": "company"
 },
 {
 "v_id": "company5",
 "attributes": {
 "country": "can",
 "@timesTraversedNoSample": 1,
 "@timesTraversedWithSample": 1,
 "id": "company5"
 },
 "v_type": "company"
 },
 {
 "v_id": "company3",
 "attributes": {
 "country": "jp",
 "@timesTraversedNoSample": 3,
 "@timesTraversedWithSample": 3,
 "id": "company3"
 },
 "v_type": "company"
 },
 {
 "v_id": "company2",
 "attributes": {

"country": "chn",

whereClause := WHERE condition

WHERE Clause

EBNF for Where Clause

5/13/25, 1:39 PM TigerGraph Documentation

930

operators (==, !=, <, <=, >,>=), boolean operators (AND, OR, NOT), set operators (IN, NOT IN)

and parentheses to enforce precedence. The WHERE conditional expression may use any

of the variables within its scope (global accumulators, vertex set variables, query input

parameters, the FROM clause's vertex and edge sets (or their vertex and edge aliases), or

any of the attributes or accumulators of the vertex/edge sets.) For a more formal

explanation of condition, see the EBNF definitions of condition and expr.

Using built-in vertex and edge attributes and functions, such as .type and .neighbors(), the

WHERE clause can be used to implement sophisticated selection rules for the edge

traversal. In the following example, the selection conditions are completely specified in

the WHERE clause, with no edge types or vertex types mentioned in the FROM clause.

The following examples demonstrate using the WHERE clause to limit the resulting vertex

set based on a vertex attribute.

 country : chn ,
 "@timesTraversedNoSample": 6,
 "@timesTraversedWithSample": 4,
 "id": "company2"
 },
 "v_type": "company"
 },
 {
 "v_id": "company1",
 "attributes": {
 "country": "us",
 "@timesTraversedNoSample": 6,
 "@timesTraversedWithSample": 3,
 "id": "company1"
 },
 "v_type": "company"
 }
]}
]
}
resultSet1 = SELECT v FROM S:v-((E1|E2|E3):e)->(V1|V2):t;
resultSet2 = SELECT v FROM S:v-(:e)->:t

 WHERE t.type IN ("V1", "V2") AND
 t IN v.neighbors("E1|E2|E3")

CREATE QUERY printCatPosts() FOR GRAPH socialNet {
posts = {post.*};
catPosts = SELECT v FROM posts:v # select only those post verti

 WHERE v.subject == "cats"; # which have a subset of 'cats
PRINT catPosts;

}

WHERE used as a filter

Basic SELECT WHERE

Results for Query printCatPosts

5/13/25, 1:39 PM TigerGraph Documentation

931

5/13/25, 1:39 PM TigerGraph Documentation

932

GSQL > RUN QUERY printCatPosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"catPosts": [
 {
 "v_id": "10",
 "attributes": {
 "postTime": "2011-02-04 03:02:31",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "9",
 "attributes": {
 "postTime": "2011-02-05 23:12:42",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "3",
 "attributes": {
 "postTime": "2011-02-05 01:02:44",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "11",
 "attributes": {
 "postTime": "2011-02-03 01:02:21",
 "subject": "cats"
 },
 "v_type": "post"
 },
 {
 "v_id": "8",
 "attributes": {
 "postTime": "2011-02-03 17:05:52",
 "subject": "cats"
 },

5/13/25, 1:39 PM TigerGraph Documentation

933

 "v_type": "post"
 }
]}]
}

CREATE QUERY findGraphFocusedPosts() FOR GRAPH socialNet
{

posts = {post.*};
results = SELECT v FROM posts:v # select only post ver

WHERE v.subject IN ("Graph", "tigergraph"); # which have a subject
PRINT results;

}

SELECT WHERE using IN operator

Results for Query findGraphFocusedPosts

5/13/25, 1:39 PM TigerGraph Documentation

934

WHERE NOT limitations

The NOT operator may not be used in combination with the .type attribute selector. To check

if an edge or vertex type is not equal to a given type, use the != operator. See the example

below.

The following example shows the equivalence of using WHERE as a type filter as well as

its limitations.

GSQL > RUN QUERY findGraphFocusedPosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"results": [
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph"
 },
 "v_type": "post"
 },
 {
 "v_id": "6",
 "attributes": {
 "postTime": "2011-02-05 02:02:05",
 "subject": "tigergraph"
 },
 "v_type": "post"
 }
]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

935

finds female person in the social network. all of the following statemen
are equivalent (i.e., produce the same results)
CREATE QUERY findFemaleMembers() FOR GRAPH socialNet
{

allVertices = {ANY}; # includes all posts and person
females = SELECT v FROM allVertices:v

 WHERE v.type == "person" AND
 v.gender != "Male";

females = SELECT v FROM allVertices:v
 WHERE v.type == "person" AND
 v.gender == "Female";

females = SELECT v FROM allVertices:v
 WHERE v.type == "person" AND
 NOT v.gender == "Male";

females = SELECT v FROM allVertices:v

 WHERE v.type != "post" AND
 NOT v.gender == "Male";

 # does not compile. cannot use NOT operator in combination with type a
#females = SELECT v FROM allVertices:v
WHERE NOT v.type != "person" AND
NOT v.gender == "Male";

 # does not compile. cannot use NOT operator in combination with type a
#females = SELECT v FROM allVertices:v
WHERE NOT v.type == "post" AND
NOT v.gender == "Male";

personVertices = {person.*};
females = SELECT v FROM personVertices:v

 WHERE NOT v.gender == "Male";

females = SELECT v FROM personVertices:v
 WHERE v.gender != "Male";

females = SELECT v FROM personVertices:v
 WHERE v.gender != "Male" AND true;

females = SELECT v FROM personVertices:v
 WHERE v.gender != "Male" OR false;

PRINT females;

}

SELECT WHERE using AND/OR

5/13/25, 1:39 PM TigerGraph Documentation

936

The following example uses edge attributes to determine which workers are registered as

full time for some company.

GSQL > RUN QUERY findFemaleMembers()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"females": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "gender": "Female",
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "gender": "Female",
 "id": "person2"
 },
 "v_type": "person"
 }
]}]
}

Results for Query findFemaleMembers

WHERE using edge attributes

5/13/25, 1:39 PM TigerGraph Documentation

937

find all workers who are full time at some company
CREATE QUERY fullTimeWorkers() FOR GRAPH workNet
{

start = {person.*};
fullTimeWorkers = SELECT v FROM start:v -(worksFor:e)-> company:t

WHERE e.fullTime; # fullTime is a boolean attribute on the e

PRINT fullTimeWorkers;
}

fullTimeWorkers Results

5/13/25, 1:39 PM TigerGraph Documentation

938

5/13/25, 1:39 PM TigerGraph Documentation

939

GSQL > RUN QUERY fullTimeWorkers()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"fullTimeWorkers": [
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "interestSet": ["football"],
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person11",
 "attributes": {
 "interestList": ["sport", "football"],
 "skillSet": [10],
 "skillList": [10],
 "locationId": "can",
 "interestSet": ["football", "sport"],
 "id": "person11"
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",

5/13/25, 1:39 PM TigerGraph Documentation

940

If multiple edge types are specified in edge-induced selection, the WHERE clause should use

OR to separate each edge type or each target vertex type. For example,

 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "interestList": ["music", "art"],
 "skillSet": [10, 7],
 "skillList": [7, 10],
 "locationId": "jp",
 "interestSet": ["art", "music"],
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "interestList": ["management"],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2],
 "locationId": "chn",
 "interestSet": ["management"],
 "id": "person8"
 },
 "v_type": "person"
 },
 {
 "v_id": "person12",

"attributes": {

Multiple Edge Type WHERE clause

5/13/25, 1:39 PM TigerGraph Documentation

941

The above query is compilable. However, if we use line 5 as the WHERE clause instead, the

query is not compilable. The edge-type conflict checking detects an error, because i t uses

attributes from both "liked" edges and "friend" edges without separating them out by OR.

The optional ACCUM and POST-ACCUM clauses enable sophisticated aggregation and

other computations across the set of vertices or edges selected by the preceding FROM,

SAMPLE, and WHERE clauses. A query can contain one or both of these clauses. The

statements in an ACCUM clause are applied for every edge in an edge-induced selection

or every vertex in a vertex-induced selection.

If there is more than one statement in the ACCUM clause, the statements are separated by

commas and executed sequentially for each selected element. However, the TigerGraph

system uses parallelism to improve performance. Within an ACCUM clause, each edge is

handled by a separate process. As such, there is no fixed order in which the edges are

processed within the ACCUM clause and the edges should not be treated as executing

sequentially. The accumulators are mutex variables shared among each of these

processes. The results of any accumulation within the ACCUM clause is not complete

until all edges are traversed. Any inspection of an intermediate result within the ACCUM is

incomplete and may not be that meaningful.

The statements within the ACCUM clause are executed sequentially for a given vertex or

edge. However, there is no fixed order in which a vertex set or edge set is processed.

 attributes : {
 "interestList": [
 "music",
 "engineering",
 "teaching",
 "teaching",
 "teaching"
],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2, 2, 2],
 "locationId": "jp",
 "interestSet": ["teaching", "engineering", "music"],
 "id": "person12"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "interestList": ["teaching"],
 "skillSet": [6, 1, 4],
 "skillList": [4, 1, 6],
 "locationId": "jp",
 "interestSet": ["teaching"],
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "id": "person9"
 },
 "v_type": "person"
 }
]}]
}

CREATE QUERY multipleEdgeTypeWhereEx(vertex<person> m1) FOR GRAPH s
 allUser = {m1};
 FilteredUser = SELECT s
 FROM allUser:s - ((posted|liked|friend):e) -> (post|person):t
 # WHERE e.actionTime > epoch_to_datetime(1) AND t.gender == "
 WHERE (e.type == "liked" AND e.actionTime > epoch_to_datetim
 (e.type == "friend" AND t.gender == "Male")
 ;
 PRINT FilteredUser;
}

ACCUM and POST-ACCUM Clauses

5/13/25, 1:39 PM TigerGraph Documentation

942

The optional POST-ACCUM clause enables aggregation and other computations across

the set of vertices (but not edges) selected by the preceding clauses. POST-ACCUM can

be used without ACCUM. If it is preceded by an ACCUM clause, then it can be used for 2-

stage accumulative computation: a first stage in ACCUM followed by a second stage in

POST-ACCUM.

As of v1.1, the keyword POST-ACCUM may also be spelled with an underscore:

POST_ACCUM.

Each statement within the POST-ACCUM clause can refer to either source vertices or target

vertices but not both.

In edge-induced selection, since the ACCUM clause iterates over edges, and often two

edges will connect to the same source vertex or to the same target vertex, the ACCUM

clause can be repeated multiple times for one vertex.

Operations that are to be performed exactly once per vertex should be performed in the

POST-ACCUM clause.

The primary purpose of the ACCUM or POST-ACCUM clause is to collect information

about the graph by updating accumulators (via += or =). See the "Accumulator" section for

details on the += operation. However, other kinds of statements (e.g., branching, iteration,

local assignments) are permitted to support more complex computations or to log

activity. The EBNF syntax below defines the allowable kinds of statements that can occur

within an ACCUM or POST-ACCUM. The DMLSubStmt list is similar to the queryBodyStmt

list which applies to statements outside of a SELECT block; it is important to note the

differences. Each of these statement types is discussed in one of the main sections of

this reference document.

EBNF for ACCUM and POST-ACCUM Clauses

5/13/25, 1:39 PM TigerGraph Documentation

943

Note that DML-sub-statements do not include global accumulator assignment statement

(gAccumAssignStmt) but global accumulator accumulation statement (gAccumAccumStmt).

Global accumulators may perform accumulation += but not assignment "=" within these

clauses.

There are additional restrictions on DML-sub level statements:

• Global variable assignment is permitted in ACCUM or POST-ACCUM clauses, but the

change in value will not take place until the query completes. Therefore, if there are

multiple assignment statements for the same variable, only the final one will take effect.

• Vertex attribute assignment "=" is not permitted in an ACCUM clause. However, edge

attribute assignment is permitted. This is because the ACCUM clause iterates over an

edge set. Vertex attribute attribute assignment is permitted in the POST-ACCUM clause.

Like all updates, the change in value does not take place until the query completes.

To reference each element of the selected set, use the aliases defined in the FROM clause.

For example, assume that we have the following aliases:

accumClause := ACCUM DMLSubStmtList

postAccumClause := POST-ACCUM DMLSubStmtList

DMLSubStmtList := DMLSubStmt ["," DMLSubStmt]*

DMLSubStmt := assignStmt // Assignment (including vertex-attache
 | funcCallStmt // Function Call
 | gAccumAccumStmt // Assignment (global accumulate)
 | vAccumFuncCall // Function Call
 | localVarDeclStmt // Declaration
 | DMLSubCaseStmt // Control Flow
 | DMLSubIfStmt // Control Flow
 | DMLSubWhileStmt // Control Flow
 | DMLSubForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | insertStmt // Data Modification
 | DMLSubDeleteStmt // Data Modification
 | printlnStmt // Output
 | logStmt // Output

Aliases and ACCUM/POST-ACCUM Iteration Model

5/13/25, 1:39 PM TigerGraph Documentation

944

Let (V1, V2,... Vn) be the vertices in the vertex-induced selection . The following

pseudocode emulates ACCUM clause behavior.

Let E = (E1, E2,... En) be the edges in the edge-induced selected set. Further, let S =

(S1,S1,...Sn) and T= (T1,T2,...Tn) be the multisets (bags) of source vertices and target

vertices which correspond to the edge set. S and T are bags, because they can contain

repeated elements.

Note that any reference to the source alias s or target alias t is for the endpoint vertices of

the current edge.

Similarly, the POST-ACCUM clause acts like a FOREACH loop on the vertex result set

specified in the SELECT clause (e.g., either S or T).

If multiple edge types are specified in edge-induced selection, each ACCUM statement in

ACCUM clause checks whether edge types are conflicted. If only a subset of edge types

are effective in an ACCUM statement , this statement is not executed on other edge types.

For example:

FROM Source:s -(edgeTypes:e)-> targetTypes:t # edge-induced selection
FROM Source:v # vertex-induced selection

FOREACH v in (V1,V2,...Vn) DO # iterations may occur in parallel, in unkno
 DMLSubStmts referencing v
DONE

FOREACH i in (1..n) DO # iterations may occur in parallel, in unknown orde
 DMLSubStmts referencing e, s, t, which really means e_i, s_i, t_i
DONE

Edge/Vertex Type Inference and Conflict

Example of vertex and edge aliases

Model for ACCUM behavior in vertex-induced selection

Model for ACCUM behavior in edge-induced selection

Multiple Edge Type ACCUM statement check

5/13/25, 1:39 PM TigerGraph Documentation

945

In the above example, line 6 is only executed on "liked" edges, because "actionTime" is the

attribute of "liked" edge only. Similarly, line 7 is only executed on "friend" edges, because

"gender" is the attribute of "person" only, and only "friend" edge uses "person" as target

vertex. However, line 8 causes a compilation error, because it uses multiple edges where

some edges cannot be supported in a part of the statement, i.e., "liked" edges doesn't

have t.gender, "friend" edges doesn't have e.actionTime.

We strongly suggest that if multiple edge types are specified in edge-induced selection,

ACCUM clauses should uses CASE statement (see Section "Control Flow Statements" for

more details) to separate the operation on each edge type or each target vertex type (or

combination of target vertex type and edge type). The edge-type conflict checking then

checks the ACCUM statement inside each THEN/ELSE blocks based on the condition. For

example,

CREATE QUERY multipleEdgeTypeCheckEx(vertex<person> m1) FOR GRAPH socialNe
 ListAccum<STRING> @@testList1, @@testList2, @@testList3;
 allUser = {m1};
 allUser = SELECT s
 FROM allUser:s - ((posted|liked|friend):e) -> (post|person):t
 ACCUM @@testList1 += to_string(datetime_to_epoch(e.actionTime))
 ,@@testList2 += t.gender
 #,@@testList3 += to_string(datetime_to_epoch(e.actionTime)) +
 ;
 PRINT @@testList1, @@testList2, @@testList3;
}

CREATE QUERY multipleEdgeTypeCheckEx2(vertex<person> m1) FOR GRAPH
 ListAccum<STRING> @@testList1;
 allUser = {m1};
 allUser = SELECT s
 FROM allUser:s - ((posted|liked|friend):e) -> (post|per
 ACCUM CASE
 WHEN e.type == "liked" THEN # for liked edge
 @@testList1 += to_string(datetime_to_epoch(e
 WHEN e.type == "friend" THEN # for friend edg
 @@testList1 += t.gender
 ELSE # For the remained edge type, which i
 @@testList1 += to_string(datetime_to_epoch(t
 END
 ;
 PRINT @@testList1;
}

Multiple Edge Type ACCUM statement check 2

5/13/25, 1:39 PM TigerGraph Documentation

946

The above query is compilable. However, if we switch line 8 and line 10, the edge-type conflict

checking generates errors because "liked" edges doesn't support t.gender and "friend" edges

doesn't support e.actionTime.

Similar to the ACCUM clause, if multiple source/target vertex types are specified in edge-

induced selection and the POST-ACCUM clauses accesses source/target vertex, each

ACCUM statement in POST-ACCUM clause checks whether source/target vertex types are

conflicted. If only a subset of source/target vertex types are effective in a POST-ACCUM

statement, this statement is not executed on other source/target vertex types.

Similar to ACCUM clause, we strongly suggest that if multiple source/target vertex types are

specified in edge-induced selection and the POST-ACCUM clauses accesses source/target

vertex, POST-ACCUM clauses should uses CASE statement (see Section "Control Flow

Statements" for more details) to separate the operation on each source/target vertex type.

The vertex type conflict checking then checks the ACCUM statement inside each THEN/ELSE

blocks based on the condition.

Prior to v1.0, a vertex-attached accumulator could only be updated in an ACCUM or POST-

ACCUM clause and only if its vertex was selected for by the preceding FROM-SAMPLE-

WHERE clauses.

Beginning in v1.0, there are additional circumstances where a vertex-attached

accumulator may be updated. Vertices which are referenced via a vertex-attached

accumulator of a selected vertex may have their vertex-attached accumulators updated in

the ACCUM clause (but not in the POST-ACCUM clause). That is, a vertex referenced by an

selected vertex can be updated, with some limitations explained below. Some examples

will help to illustrate this more complex condition.

• Suppose a query declares a vertex-attached accumulator which holds vertex

information . We call this a vertex-holding accumulator . This could take several

forms:

◦ A scalar accumulator, e.g., MaxAccum< VERTEX > @maxV;

◦ A collection accumulator: e.g., ListAccum< VERTEX > @listV;

◦ An accumulator containing tuple(s), where the tuple type contains a VERTEX field.

Rules for Updating Vertex-Attached Accumulators

5/13/25, 1:39 PM TigerGraph Documentation

947

• If a vertex V is selected, then not only can V's accumulators be updated, but the

vertices stored in its vertex-holding accumulators can also be updated, in the ACCUM

clause.

• Before these indirectly referenced vertices can be used, they need to be activated .

There are two ways to activate an indirect vertex:

◦ A vertex from a vertex-holding accumulator is first assigned to a local vertex

variable. The vertex can now be updated through the local vertex variable.

• A FOREACH loop can iterate on a vertex-holding collection accumulator. The vertices

can now be updated through the loop variable.

The following uses are NOT supported by the new rules:

• Indirectly activated vertices may not be updated in the POST-ACCUM clause or outside of

a SELECT statement.

• Passing a vertex into the query as an input parameter is not a route to activation.

• Using a global vertex-holding accumulator is not a route to activation.

• If a vertex is being indirectly activated by assigning it to a local variable (e.g., a variable

declaring in ACCUM or POST-ACCUM), note the following rule, which always applies to all

local variables:

◦ A local variable can be declared and initialized in an ACCUM block once. It cannot

be redeclared or reassigned later in the ACCUM block.

The following query demonstrates updates to indirectly activated vertices.

ACCUM
 VERTEX<person> mx = tgt.@maxV, # assign to local variable
 mx.@curId += src.id # access via local variable

ACCUM
 FOREACH vtx IN src.@setIds DO # iterate on collection accumulator
 vtx.@curId += tgt.id # access via loop variable
 END

Updating an Indirectly-Referenced Vertex

5/13/25, 1:39 PM TigerGraph Documentation

948

CREATE QUERY vUpdateIndirectAccum() FOR GRAPH socialNet {

 SetAccum<VERTEX<person>> @posters;
 SetAccum<VERTEX<person>> @fellows;

 Persons = {person.*};
 # To each post, attach a list of persons who liked the post
 likedPosts = SELECT p
 FROM Persons:src -(liked:e)-> post:p
 ACCUM
 p.@posters += src;

 # To each person who liked a post, attach a list of everyone
 # who also liked one of this person's liked posts.

likedPosts = SELECT src
FROM likedPosts:src
ACCUM
 FOREACH v IN src.@posters DO
 v.@fellows += src.@posters
 END

 ORDER BY src.subject;

PRINT Persons[Persons.@fellows];
}

Results from Query vUpdateIndirectAccums

5/13/25, 1:39 PM TigerGraph Documentation

949

5/13/25, 1:39 PM TigerGraph Documentation

950

GSQL > RUN QUERY vUpdateIndirectAccess()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Persons": [
 {
 "v_id": "person4",
 "attributes": {"Persons.@fellows": [
 "person8",
 "person4"
]},
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {"Persons.@fellows": ["person2", "person1", "person3"
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"Persons.@fellows": ["person7"]},
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {"Persons.@fellows": ["person2", "person1", "person3"
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"Persons.@fellows": ["person5"]},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"Persons.@fellows": ["person6"]},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"Persons.@fellows": ["person2", "person1", "person3"
 "v_type": "person"
 },

5/13/25, 1:39 PM TigerGraph Documentation

951

We now show several examples. This example demonstrates how ACCUM or POST-

ACCUM can be used to count the number of vertices in the given set.

 {
 "v_id": "person8",
 "attributes": {"Persons.@fellows": ["person8", "person4"]},
 "v_type": "person"
 }
]}]
}

ACCUM and POST-ACCUM Examples

Accum and PostAccum Semantics

5/13/25, 1:39 PM TigerGraph Documentation

952

5/13/25, 1:39 PM TigerGraph Documentation

953

#Show Accum PostAccum Behavior
CREATE QUERY accumPostAccumSemantics() FOR GRAPH workNet {

 SumAccum<INT> @@vertexOnlyAccum;
 SumAccum<INT> @@vertexOnlyPostAccum;

 SumAccum<INT> @@vertexOnlyWhereAccum;
 SumAccum<INT> @@vertexOnlyWherePostAccum;

 SumAccum<INT> @@sourceWithEdgeAccum;
 SumAccum<INT> @@sourceWithEdgePostAccum;

 SumAccum<INT> @@targetWithEdgeAccum;
 SumAccum<INT> @@targetWithEdgePostAccum;

 #Seed start set with all company vertices
 start = {company.*};

 #Select all vertices in source set start
 selectVertexSet = SELECT v from start:v

#Happens once for each vertex discovered
ACCUM @@vertexOnlyAccum += 1

#Happens once for each vertex in the result set "v"
POST-ACCUM @@vertexOnlyPostAccum += 1;

 #Select all vertices in source set start with a where constraint
 selectVertexSetWhere = SELECT v from start:v WHERE (v.country == "us")

#Happens once for each vertex discovered that also
meets the constraint condition
ACCUM @@vertexOnlyWhereAccum += 1

#Happens once for each vertex in the result set "v
POST-ACCUM @@vertexOnlyWherePostAccum += 1;

 #Select all source "s" vertices in set start and explore all "worksFor"
 selectSourceWithEdge = SELECT s from start:s -(worksFor)-> :t

 #Happens once for each "worksFor" edge discovered
 ACCUM @@sourceWithEdgeAccum += 1

#Happens once for each vertex in result set "s" (s
POST-ACCUM @@sourceWithEdgePostAccum += 1;

 #Select all target "t" vertices found from exploring all "worksFor" edge
 selectTargetWithEdge = SELECT t from start:s -(worksFor)-> :t

 #Happens once for each "worksFor" edge discovered
 ACCUM @@targetWithEdgeAccum += 1

5/13/25, 1:39 PM TigerGraph Documentation

954

This example uses ACCUM to find all the subjects a user posted about.

 #Happens once for each vertex in result set "t" (
 POST-ACCUM @@targetWithEdgePostAccum += 1;

 PRINT @@vertexOnlyAccum;
 PRINT @@vertexOnlyPostAccum;

 PRINT @@vertexOnlyWhereAccum;
 PRINT @@vertexOnlyWherePostAccum;

 PRINT @@sourceWithEdgeAccum;
 PRINT @@sourceWithEdgePostAccum;

 PRINT @@targetWithEdgeAccum;
 PRINT @@targetWithEdgePostAccum;
}

GSQL > RUN QUERY accumPostAccumSemantics()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@vertexOnlyAccum": 5},
 {"@@vertexOnlyPostAccum": 5},
 {"@@vertexOnlyWhereAccum": 2},
 {"@@vertexOnlyWherePostAccum": 2},
 {"@@sourceWithEdgeAccum": 17},
 {"@@sourceWithEdgePostAccum": 5},
 {"@@targetWithEdgeAccum": 17},
 {"@@targetWithEdgePostAccum": 12}
]
}

accumPostAccumSemantics Result

Vertex ACCUM Example

5/13/25, 1:39 PM TigerGraph Documentation

955

For each person, make a list of all their post subjects
CREATE QUERY userPosts() FOR GRAPH socialNet {
 ListAccum<STRING> @personPosts;
 start = {person.*};

 # Find all user post topics and append them to the vertex list accum
 userPostings = SELECT s FROM start:s -(posted)-> :g
 ACCUM s.@personPosts += g.subject;

 PRINT userPostings;
}

Results for Query userPosts

5/13/25, 1:39 PM TigerGraph Documentation

956

5/13/25, 1:39 PM TigerGraph Documentation

957

GSQL > RUN QUERY userPosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"userPostings": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "@personPosts": ["cats"],
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "gender": "Male",
 "@personPosts": ["query languages"],
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "@personPosts": ["cats", "tigergraph"],
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "gender": "Male",
 "@personPosts": ["Graphs"],
 "id": "person1"
 },
 "v_type": "person"
 },
/*** other vertices omitted ***/
]}]

5/13/25, 1:39 PM TigerGraph Documentation

958

This example shows each person's posted vertices and each person's like behaviors (liked

edges).

}

Show each user's post and liked post time
CREATE QUERY userPosts2() FOR GRAPH socialNet {
 ListAccum<VERTEX> @personPosts;
 ListAccum<EDGE> @personLikedInfo;
 start = {person.*};

 # Find all user post topics and append them to the vertex list accum
 userPostings = SELECT s FROM start:s -(posted)-> :g
 ACCUM s.@personPosts += g;

 userPostings = SELECT s from start:s -(liked:e)-> :g
 ACCUM s.@personLikedInfo += e;

 PRINT start;
}

ACCUM<VERTEX> and ACCUM<EDGE> Example

Results from Query userPosts2

5/13/25, 1:39 PM TigerGraph Documentation

959

5/13/25, 1:39 PM TigerGraph Documentation

960

GSQL > RUN QUERY userPosts2()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"start": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "@personPosts": ["3"],
 "id": "person4",
 "@personLikedInfo": [{
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person4",
 "to_id": "4",
 "attributes": {"actionTime": "2010-01-13 03:16:05"},
 "e_type": "liked"
 }]
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "@personPosts": ["9", "6"],
 "id": "person7",
 "@personLikedInfo": [{
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person7",
 "to_id": "10",
 "attributes": {"actionTime": "2010-01-12 11:22:05"},
 "e_type": "liked"
 }]
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",

5/13/25, 1:39 PM TigerGraph Documentation

961

This example counts the total number of times each topic is used.

 "attributes": {
 "gender": "Male",
 "@personPosts": ["0"],
 "id": "person1",
 "@personLikedInfo": [{
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person1",
 "to_id": "0",
 "attributes": {"actionTime": "2010-01-11 11:32:00"},
 "e_type": "liked"
 }]
 },
 "v_type": "person"
 },
/*** other vertices omitted ***/
]}]
}

Show number of total posts by topic
CREATE QUERY userPostsByTopic() FOR GRAPH socialNet {
 MapAccum<STRING, INT> @@postTopicCounts;
 start = {person.*};

 # Append subject and update the appearance count in the global map accum
 posts = SELECT g FROM start -(posted)-> :g

 ACCUM @@postTopicCounts += (g.subject -> 1);

 PRINT @@postTopicCounts;
}

Global ACCUM Example

Results for Query userPostsByTopic

5/13/25, 1:39 PM TigerGraph Documentation

962

This is an example of using ACCUM and POST-ACCUM in conjunction. The ACCUM

traverses the graph and finds all people who live and work in the same country. After this

is determined, POST-ACCUM examines each vertex (person) to see if they work where they

live.

GSQL > RUN QUERY userPostsByTopic()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@postTopicCounts": {
 "cats": 5,
 "coffee": 1,
 "query languages": 1,
 "Graphs": 2,
 "tigergraph": 3
 }}]
}

Vertex POST-ACCUM Example

5/13/25, 1:39 PM TigerGraph Documentation

963

#Show all person who both work and live in the same country
CREATE QUERY residentEmployees() FOR GRAPH workNet {

 ListAccum<STRING> @company;
 OrAccum @worksAndLives;

 start = {person.*};

 employees = SELECT s FROM start:s -(worksFor)-> :c
 #If a person works for a company in the same country where t
 # add the company to the list
 ACCUM CASE WHEN (s.locationId == c.country) THEN
 s.@company += c.id
 END

 #Check each vertex and see if a person works where they live
 POST-ACCUM CASE WHEN (s.@company.size() > 0) THEN
 s.@worksAndLives += True
 ELSE
 s.@worksAndLives += False
 END;

 PRINT employees WHERE (employees.@worksAndLives == True);
}

residentEmployees Result

5/13/25, 1:39 PM TigerGraph Documentation

964

5/13/25, 1:39 PM TigerGraph Documentation

965

GSQL > RUN QUERY residentEmployees()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"employees": [
 {
 "v_id": "person11",
 "attributes": {
 "interestList": [
 "sport",
 "football"
],
 "skillSet": [10],
 "skillList": [10],
 "@worksAndLives": true,
 "locationId": "can",
 "interestSet": ["football", "sport"],
 "id": "person11",
 "@company": ["company5"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "@worksAndLives": true,
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "id": "person10",
 "@company": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "@worksAndLives": true,

5/13/25, 1:39 PM TigerGraph Documentation

966

This is an example of a POST-ACCUM only that counts the number people with a particular

gender.

 "locationId": "us",
 "interestSet": ["financial", "management"],
 "id": "person1",
 "@company": ["company1"]
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "@worksAndLives": true,
 "locationId": "chn",
 "interestSet": ["engineering"],
 "id": "person2",
 "@company": ["company2"]
 },
 "v_type": "person"
 }
]}]
}

#Count the number of person of a given gender
CREATE QUERY personGender(STRING gender) FOR GRAPH socialNet {

 SumAccum<INT> @@genderCount;

 start = {ANY};

 # Select all person vertices and check the gender attribute
 friends = SELECT v FROM start:v
 WHERE v.type == "person"

 POST-ACCUM CASE WHEN (start.gender == gender) THEN
 @@genderCount += 1
 END;

 PRINT @@genderCount;
}

Global POST-ACCUM Example

5/13/25, 1:39 PM TigerGraph Documentation

967

The optional HAVING clause provides constraints on the result set of the SELECT. The

constraints are applied after ACCUM and POST-ACCUM actions. This differs from the

WHERE clause, which is applied before the ACCUM and POST-ACCUM actions.

A HAVING clause can only be used if there is an ACCUM or POST-ACCUM clause . The

condition is applied to each vertex in the SELECT set (either source or target vertices)

which also fulfilled the FROM and WHERE conditions. The HAVING clause is intended to

test one or more of the accumulator variables that were updated in the ACCUM or POST-

ACCUM clause, though the condition may be anything that equates to a boolean value. If

the condition is false for a particular vertex, then that vertex is excluded from the result

set.

The following example demonstrates using the HAVING clause to constrain a result set

based on the vertex accumulator variable which was updated during the ACCUM clause.

GSQL > RUN QUERY personGender("Female")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@genderCount": 3}]
}

havingClause := HAVING condition

HAVING Clause

Results for Query personGender

EBNF for HAVING Clause

Example 1. HAVING

5/13/25, 1:39 PM TigerGraph Documentation

968

If the activityThreshold parameter is set to 3, the query returns 5 vertices:

find all persons meeting a given activityThreshold, based on how many po
CREATE QUERY activeMembers(int activityThreshold) FOR GRAPH socialNet
{
 SumAccum<int> @activityAmount;
 start = {person.*};
 result = SELECT v FROM start:v -(:e)-> post:tgt
 ACCUM v.@activityAmount +=1

 HAVING v.@activityAmount >= activityThreshold;
 PRINT result;
}

Example 1 Results

5/13/25, 1:39 PM TigerGraph Documentation

969

5/13/25, 1:39 PM TigerGraph Documentation

970

GSQL > RUN QUERY activeMembers(3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result": [
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 3,
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "gender": "Female",
 "@activityAmount": 3,
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 3,
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "gender": "Female",
 "@activityAmount": 3,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",

5/13/25, 1:39 PM TigerGraph Documentation

971

If the activityThreshold parameter is set to 2, the query would return 8 vertices. With

activityThreshold = 4, the query would return no vertices.

The following example demonstrates the equivalence of a SELECT statement in which the

condition for the HAVING clause is always true.

 "attributes": {
 "gender": "Male",
 "@activityAmount": 3,
 "id": "person8"
 },
 "v_type": "person"
 }
]}]
}

find all person meeting a given activityThreshold, based on how many pos
CREATE QUERY printMemberActivity() FOR GRAPH socialNet
{
 SumAccum<int> @activityAmount;
 start = {person.*};

--- equivalent statements -----
 result = SELECT v FROM start:v -(:e)-> post:tgt

 ACCUM v.@activityAmount +=1
 HAVING true;

result = SELECT v FROM start:v -(:e)-> post:tgt

 ACCUM v.@activityAmount +=1;

 PRINT result;
}

Example 2. HAVING with literal condition

Results from Query printMemberActivity

5/13/25, 1:39 PM TigerGraph Documentation

972

5/13/25, 1:39 PM TigerGraph Documentation

973

GSQL > RUN QUERY printMemberActivity()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "@activityAmount": 4,
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 4,
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 6,
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 4,
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",

5/13/25, 1:39 PM TigerGraph Documentation

974

The following shows an example of equivalent result sets from using WHERE vs. HAVING.

Recall that the WHERE clause is evaluated before the ACCUM and that the HAVING clause

is evaluated after the ACCUM. Both constrain the result set based on a condition that

vertices must meet.

 "attributes": {
 "gender": "Female",
 "@activityAmount": 6,
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 6,
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "gender": "Female",
 "@activityAmount": 6,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "gender": "Male",
 "@activityAmount": 6,
 "id": "person8"
 },
 "v_type": "person"
 }
]}]
}

Example 3. HAVING vs. WHERE

5/13/25, 1:39 PM TigerGraph Documentation

975

Compute the total post activity for each male person.
Because the gender of the vertex does not change, evaluating whether the
is male before (WHERE) the ACCUM clause or after (HAVING) the ACCUM clau
change the result. However, if the condition in the HAVING clause could
the ACCUM clause, these statements would produce different results.

CREATE QUERY activeMaleMembers() FOR GRAPH socialNet
{
 SumAccum<INT> @activityAmount;
 start = {person.*};

 ### --- statements produce equivalent results
 result1 = SELECT v FROM start:v -(:e)-> post:tgt
 WHERE v.gender == "Male"
 ACCUM v.@activityAmount +=1;

 result2 = SELECT v FROM start:v -(:e)-> post:tgt
 ACCUM v.@activityAmount +=1
 HAVING v.gender == "Male";

 PRINT result2[result2.@activityAmount];
 PRINT result2[result2.@activityAmount];
}

Results from Query ActiveMaleMembers

5/13/25, 1:39 PM TigerGraph Documentation

976

5/13/25, 1:39 PM TigerGraph Documentation

977

GSQL > RUN QUERY activeMaleMembers()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"result2": [
 {
 "v_id": "person3",
 "attributes": {"result2.@activityAmount": 4},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {"result2.@activityAmount": 4},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 }
]},
 {"result2": [
 {
 "v_id": "person3",
 "attributes": {"result2.@activityAmount": 4},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 },

5/13/25, 1:39 PM TigerGraph Documentation

978

The following example has a compilation error because the result set is taken from the

source vertices, but the HAVING condition is checking the target vertices.

 {
 "v_id": "person1",
 "attributes": {"result2.@activityAmount": 4},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"result2.@activityAmount": 6},
 "v_type": "person"
 }
]}
]
}

find all person having a post subject about cats
This query is illegal because the having condition is testing the wrong
CREATE QUERY printMemberAboutCats() FOR GRAPH socialNet
{
 start = {person.*};

 result = SELECT v FROM start:v -(:e)-> post:tgt
 HAVING tgt.subject == "cats";
 PRINT result;
}

> gsql printMemberAboutCats.gsql
Semantic Check Error in query printMemberAboutCats (SEM-50): line 8, col 3
The SELECT block selects src, but the HAVING clause uses tgt

ORDER BY Clause

Example 4. HAVING the wrong vertex set

Compilation Error for printMemberAboutCats

5/13/25, 1:39 PM TigerGraph Documentation

979

The optional ORDER BY clause sorts the result set.

ASC specifies ascending order (least value first), and DESC specifies descending order

(greatest value first). If neither is specified, then ascending order is used. Each expr must

refer to the attributes or accumulators of a member of the result set, and the expr must

evaluate to a sortable value (e.g., a number or a string). ORDER BY offers hierarchical

sorting by allowing a comma-separated list of expressions, sorting first by the leftmost

expr. It uses the next expression only to sort items where the current sort expr results in

identical values. Any items in the result set which cannot be sorted (because the sort

expressions do not pertain to them) will appear at the end of the set, after the sorted

items.

The following example demonstrates the use of ORDER BY with multiple expressions. The

returned vertex set is first ordered by the number of friends of the vertex, and then ordered

by the number of coworkers of that vertex.

orderClause := ORDER BY expr [ASC | DESC] ["," expr [ASC | DESC]]*

find the most popular people, sorting first based on the number as frien
and then in case of a tie by the number of coworkers
CREATE QUERY topPopular() FOR GRAPH friendNet
{

SumAccum<INT> @numFriends;
SumAccum<INT> @numCoworkers;
start = {person.*};

result = SELECT v FROM start -((friend|coworker):e)-> person:v
 ACCUM CASE WHEN e.type == "friend" THEN v.@numFriends += 1

 WHEN e.type == "coworker" THEN v.@numCoworkers += 1
 END
 ORDER BY v.@numFriends DESC, v.@numCoworkers DESC;

PRINT result;
}

EBNF for ORDER BY Clause

topPopular.gsql: ORDER BY Descending

topPopular.json

5/13/25, 1:39 PM TigerGraph Documentation

980

5/13/25, 1:39 PM TigerGraph Documentation

981

GSQL > RUN QUERY topPopular()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result": [
 {
 "v_id": "person9",
 "attributes": {
 "@numCoworkers": 3,
 "@numFriends": 5,
 "id": "person9"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "@numCoworkers": 1,
 "@numFriends": 4,
 "id": "person8"
 },
 "v_type": "person"
 },
 {
 "v_id": "person12",
 "attributes": {
 "@numCoworkers": 1,
 "@numFriends": 4,
 "id": "person12"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "@numCoworkers": 4,
 "@numFriends": 3,
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",

5/13/25, 1:39 PM TigerGraph Documentation

982

The optional LIMIT clause sets constraints on the number and ranking of items included in

the final result set.

Each of the expr must evaluate to a nonnegative integer. To understand LIMIT, note that

the tentative result set is held in the computer as a list of vertices. If the query has an

ORDER BY clause, the order is specified; otherwise the list order is unknown. Assume we

number the vertices as v_1 , v_2 , ..., v_n . The LIMIT clause specifies a range of vertices,

starting from a lower position in the list to an upper position.

There are three forms:

 "attributes": {
 "@numCoworkers": 3,
 "@numFriends": 3,
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {
 "@numCoworkers": 5,
 "@numFriends": 2,
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "@numCoworkers": 3,
 "@numFriends": 2,
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "@numCoworkers": 3,
 "@numFriends": 2,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "@numCoworkers": 1,
 "@numFriends": 2,
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "@numCoworkers": 6,
 "@numFriends": 1,

"id": "person7"

limitClause := LIMIT (expr | expr "," expr | expr OFFSET expr)

LIMIT Clause

EBNF for LIMIT Clause

LIMIT scenarios

5/13/25, 1:39 PM TigerGraph Documentation

983

Case 1: LIMIT k

• When a single expr is provided, LIMIT returns the first k elements from the tentative

result set. If there are fewer than k elements available, then all elements will be

returned in the result set. If k=5 and the tentative result set has at least 5 items, then

the final result list will be [v_1 , v_2 , v_3 , v_4 , v_5].

Case 2: LIMIT j, k

• When a comma separates two expressions, LIMIT treats the first expression j as an

offset. That is, it skips the first j items in the list. The second expr k tells the

maximum number of items items to include. If the list has at least 7 items, then LIMIT

2, 5 would return [v_3 , v_4 , v_5, v_6 , v_7].

Case 3: LIMIT k OFFSET j

• The behavior of Case 3 is the same as that of Case 2, except that the syntax is

different. The keyword OFFSET separates the two expressions, and the count comes

before the offset, rather than vice versa. If the list has at least 7 items, then LIMIT 5

OFFSET 2 would return [v_3 , v_4 , v_5, v_6 , v_7].

If any of the expressions evaluate to a negative integer, the results are undefined.

OFFSET is intended for result sets which are in a known order. It is a compile time error to

use OFFSET without the ORDER BY clause.

The following examples demonstrate the various forms of the LIMIT clause.

The first example shows the LIMIT clause when used as an upper limit. It returns a result

set with a maximum size of 4 elements in the set.

 id : person7
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "@numCoworkers": 5,
 "@numFriends": 1,
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person11",
 "attributes": {
 "@numCoworkers": 1,
 "@numFriends": 1,
 "id": "person11"
 },
 "v_type": "person"
 }
]}]
}

result = SELECT v FROM S -(:e)-> :v LIMIT k; # case 1: k = Count
result = SELECT v FROM S -(:e)-> :v LIMIT j, k; # case 2: j = Offset
result = SELECT v FROM S -(:e)-> :v LIMIT k OFFSET j; # case 3: k = Count,

limitEx1.gsql: LIMIT by some number

5/13/25, 1:39 PM TigerGraph Documentation

984

CREATE QUERY limitEx1(INT k) FOR GRAPH friendNet
{
 start = {person.*};

 result1 = SELECT v FROM start:v
 ORDER BY v.id
 LIMIT k;

PRINT result1[result1.id]; // api v2
}

GSQL > RUN QUERY limitEx1(4)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result1": [
 {
 "v_id": "person1",
 "attributes": {"result1.id": "person1"},
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {"result1.id": "person10"},
 "v_type": "person"
 },
 {
 "v_id": "person11",
 "attributes": {"result1.id": "person11"},
 "v_type": "person"
 },
 {
 "v_id": "person12",
 "attributes": {"result1.id": "person12"},
 "v_type": "person"
 }
]}]
}

limit1Ex.json Results

5/13/25, 1:39 PM TigerGraph Documentation

985

The following example shows how to use the LIMIT clause with an offset.

The following example shows the alternative syntax for a result size limit with an offset.

This time we try larger values for offset and size. In a large data set, limitTest(5,20) might

CREATE QUERY limitEx2(INT j, INT k) FOR GRAPH friendNet
{
 start = {person.*};
 result2 = SELECT v FROM start:v
 ORDER BY v.id
 LIMIT j, k;

 PRINT result2[result2.id]; // api v2
}

GSQL > RUN QUERY limitEx2(2,3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result2": [
 {
 "v_id": "person11",
 "attributes": {"result2.id": "person11"},
 "v_type": "person"
 },
 {
 "v_id": "person12",
 "attributes": {"result2.id": "person12"},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"result2.id": "person2"},
 "v_type": "person"
 }
]}]
}

limit2Ex.gsql: LIMIT with lower-bound and size

limit2Ex.json Results

5/13/25, 1:39 PM TigerGraph Documentation

986

return 20 vertices, but since we don't have 25 vertices in the original data, the output was

fewer than 20 vertices.

CREATE QUERY limitEx3(INT j, INT k) FOR GRAPH friendNet
{
 start = {person.*};

 result3 = SELECT v FROM start:v
 ORDER BY v.id
 LIMIT k OFFSET j;

 PRINT result3[result3.id]; // api v2
}

limit3Ex.gsql: LIMIT with OFFSET

limit3Ex.json Results

5/13/25, 1:39 PM TigerGraph Documentation

987

GSQL > RUN QUERY limitEx3(5,20)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"result3": [
 {
 "v_id": "person3",
 "attributes": {"result3.id": "person3"},
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {"result3.id": "person4"},
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"result3.id": "person5"},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"result3.id": "person6"},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"result3.id": "person7"},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"result3.id": "person8"},
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {"result3.id": "person9"},
 "v_type": "person"
 }
]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

988

Control Flow Statements

The GSQL Query Language includes a comprehensive set of control flow statements to

empower sophisticated graph traversal and data computation: IF/ELSE, CASE, WHILE, and

FOREACH.

Note that any of these statements can be used as a query-body statement or as a DML-

sub level statement.

If the control flow statement is at the query-body level, then its block(s) of statements are

query-body statements (queryBodyStmts). In a queryBodyStmts block , each individual

statement ends with a semicolon, so there is always a semicolon at the end.

If the control flow statement is at the DML-sub level, then its block(s) of statements are DML-

sub statements (DMLSubStmtList). In a DMLSubStmtList block, a comma separates

statements, but there is no punctuation at the end.

The "Statement Types" subsection in the Chapter on "CREATE / INSTALL / RUN / SHOW /

DROP QUERY" has a more detailed general example of the difference between

queryBodyStmts and DMLSUbStmts.

The IF statement provides conditional branching: execute a block of statements (

queryBodyStmts or DMLSubStmtList) only if a given condition is true. The IF statement

allows for zero or more ELSE-IF clauses, followed by an optional ELSE clause. The IF

statement can be used either at the query-body level or at the DML-sub-statement level.

(See the note about differences in block syntax .)

queryBodyIfStmt := IF condition THEN queryBodyStmts [ELSE IF conditi
DMLSubIfStmt := IF condition THEN DMLSubStmtList [ELSE IF condition

Differences in Block Syntax

IF Statement

IF syntax

5/13/25, 1:39 PM TigerGraph Documentation

989

If a particular IF condition is not true, then the flow proceeds to the next ELSE IF condition.

When a true condition is encountered, its corresponding block of statements is executed,

and then the IF statement terminates (skipping any remaining ELSE-IF or ELSE clauses). If

an ELSE-clause is present, its block of statements are executed if none of the preceding

conditions are true. Overall, the functionality can be summarized as "execute the first

block of statements whose conditional test is true."

if then
IF x == 5 THEN y = 10; END; # y is assigned to 10 only if x is 5.

if then else
IF x == 5 THEN y = 10; # y is 10 only if x is 5.
ELSE y = 20; END; # y is 20 only if x is NOT 5.

#if with ELSE IF
IF x == 5 THEN y = 10; # y is 10 only if x is 5.
ELSE IF x == 7 THEN y = 5; # y is 5 only if x is 7.
ELSE y = 20; END; # y is 20 only if x is NOT 5 and NOT 7.

count the number of friends a person has, and optionally include coworke
CREATE QUERY countFriendsOf2(vertex<person> seed, BOOL includeCoworkers) F
{
 SumAccum<INT> @@numFriends = 0;
 start = {seed};

 IF includeCoworkers THEN
 friends = SELECT v FROM start -((friend | coworker):e)-> :v
 ACCUM @@numFriends +=1;
 ELSE
 friends = SELECT v FROM start -(friend:e)-> :v
 ACCUM @@numFriends +=1;
 END;
 PRINT @@numFriends, includeCoworkers;
}

IF semantics

Example 1. countFriendsOf2.gsql : Simple IF-ELSE at query-body level

Example 1 Results

5/13/25, 1:39 PM TigerGraph Documentation

990

GSQL > RUN QUERY countFriendsOf2("person2", true)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@numFriends": 5,
 "includeCoworkers": true
 }]
}
GSQL > RUN QUERY countFriendsOf2("person2", false)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@numFriends": 2,
 "includeCoworkers": false
 }]
}

determine if a user is active in terms of social networking (i.e., posts
CREATE QUERY calculateActivity(vertex<person> seed) FOR GRAPH socialNet
{
 SumAccum<INT> @@numberPosts = 0;
 start = {seed};
 result = SELECT postVertex FROM start -(posted:e)-> :postVertex
 ACCUM @@numberPosts += 1;

 IF @@numberPosts < 2 THEN
 PRINT "Not very active";
 ELSE IF @@numberPosts < 3 THEN
 PRINT "Semi-active";
 ELSE
 PRINT "Very active";
 END;
}

Example 2. IF-ELSE IF-ELSE at query-body level

5/13/25, 1:39 PM TigerGraph Documentation

991

GSQL > RUN QUERY calculateActivity("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Not very active": "Not very active"}]
}
GSQL > RUN QUERY calculateActivity("person5")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Semi-active": "Semi-active"}]
}

Example 2 Results for Query calculateActivity

Example 3. Nested IF at query-body level

5/13/25, 1:39 PM TigerGraph Documentation

992

use a more advanced activity calculation, taking into account number of
and number of likes that a user made
CREATE QUERY calculateInDepthActivity(vertex<person> seed) FOR GRAPH socia
{
 SumAccum<INT> @@numberPosts = 0;
 SumAccum<INT> @@numberLikes = 0;
 start = {seed};
 result = SELECT postVertex FROM start -(posted:e)-> :postVertex
 ACCUM @@numberPosts += 1;
 result = SELECT likedPost FROM start -(liked:e)-> :likedPost
 ACCUM @@numberLikes += 1;

 IF @@numberPosts < 2 THEN
 IF @@numberLikes < 1 THEN
 PRINT "Not very active";
 ELSE
 PRINT "Semi-active";
 END;
 ELSE IF @@numberPosts < 3 THEN
 IF @@numberLikes < 2 THEN
 PRINT "Semi-active";
 ELSE
 PRINT "Active";
 END;
 ELSE
 PRINT "Very active";
 END;
}

GSQL > RUN QUERY calculateInDepthActivity("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Semi-active": "Semi-active"}]
}

Example 3 Results for Query calculateInDepthActivity

Example 4. Nested IF at DML-sub level

5/13/25, 1:39 PM TigerGraph Documentation

993

give each user post an accumulated rating based on the subject and how m
This query is equivalent to the query ratePosts shown above
CREATE QUERY ratePosts2() FOR GRAPH socialNet {
 SumAccum<INT> @rating = 0;
 allPeople = {person.*};

 results = SELECT v FROM allPeople -(:e)-> post:v
 ACCUM IF e.type == "posted" THEN
 IF v.subject == "cats" THEN
 v.@rating += -1 # -1 if post is about cats
 ELSE IF v.subject == "Graphs" THEN
 v.@rating += 2 # +2 if post is about graphs
 ELSE IF v.subject == "tigergraph" THEN
 v.@rating += 10 # +10 if post is about tigergraph
 END
 ELSE IF e.type == "liked" THEN
 v.@rating += 3 # +3 each time p
 END
 ORDER BY v.@rating DESC
 LIMIT 5;
 PRINT results;
}

Example 4 Results for Query ratePosts2

5/13/25, 1:39 PM TigerGraph Documentation

994

5/13/25, 1:39 PM TigerGraph Documentation

995

GSQL > RUN QUERY ratePosts2()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"results": [
 {
 "v_id": "6",
 "attributes": {
 "postTime": "2011-02-05 02:02:05",
 "subject": "tigergraph",
 "@rating": 13
 },
 "v_type": "post"
 },
 {
 "v_id": "0",
 "attributes": {
 "postTime": "2010-01-12 11:22:05",
 "subject": "Graphs",
 "@rating": 11
 },
 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {
 "postTime": "2011-03-03 23:02:00",
 "subject": "tigergraph",
 "@rating": 10
 },
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {
 "postTime": "2011-02-06 01:02:02",
 "subject": "tigergraph",
 "@rating": 10
 },
 "v_type": "post"
 },
 {
 "v_id": "4",

5/13/25, 1:39 PM TigerGraph Documentation

996

The CASE statement provides conditional branching: execute a block of statements only if

a given condition is true. CASE statements can be used as query-body statements or DML-

sub-statements. (See the note about differences in block syntax .)

One CASE statement contains one or more WHEN-THEN clauses, each WHEN presenting

one expression. The CASE statement may also have one ELSE clause whose statements

are executed if none of the preceding conditions are true.

There are two syntaxes of the CASE statement: one equivalent to an if-else statement, and

the other is structured like a switch statement. The if-else version evaluates the boolean

condition within each WHEN-clause and executes the first block of statements whose

condition is true. The optional concluding ELSE-clause is executed only if all WHEN-clause

conditions are false.

The switch version evaluates the expression following the keyword WHEN and compares

its value to the expression immediately following the keyword CASE. These expressions

do not need to be boolean; the CASE statement compares pairs of expressions to see if

their values are equal. The first WHEN-THEN clause to have an expression value equal to

the CASE expression value is executed; the remaining clauses are skipped. The optional

 "attributes": {
 "postTime": "2011-02-07 05:02:51",
 "subject": "coffee",
 "@rating": 6
 },
 "v_type": "post"
 }
]}]
}

queryBodyCaseStmt := CASE (WHEN condition THEN queryBodyStmts)+ [ELSE
 | CASE expr (WHEN constant THEN queryBodyStmts)+ [ELSE
DMLSubCaseStmt := CASE (WHEN condition THEN DMLSubStmtList)+ [ELSE DM
 | CASE expr (WHEN constant THEN DMLSubStmtList)+ [ELSE DM

CASE Statement

CASE syntax

5/13/25, 1:39 PM TigerGraph Documentation

https://doc.tigergraph.com/2.1.3/GSQL-Language-Reference-Part-2---Querying.html#GSQLLanguageReferencePart2-Querying-queryBlock_vs_DMLSub_warning
https://doc.tigergraph.com/2.1.3/GSQL-Language-Reference-Part-2---Querying.html#GSQLLanguageReferencePart2-Querying-queryBlock_vs_DMLSub_warning

997

ELSE-clause is executed only if no WHEN-clause expression has a value matching the

CASE value.

STRING drink = "Juice";

CASE statement: if-else version
CASE
 WHEN drink == "Juice" THEN @@calories += 50
 WHEN drink == "Soda" THEN @@calories += 120
 ...
 ELSE @@calories = 0 # Optional else-clause
END
Since drink = "Juice", 50 will be added to calories

CASE statement: switch version
CASE drink
 WHEN "Juice" THEN @@calories += 50
 WHEN "Soda" THEN @@calories += 120
 ...
 ELSE @@calories = 0 # Optional else-clause
END
Since drink = "Juice", 50 will be added to calories

Display the total number times connected users posted about a certain su
CREATE QUERY userNetworkPosts (vertex<person> seedUser, STRING subjectName
 SumAccum<INT> @@topicSum = 0;
 OrAccum @visited;
 reachableVertices = {}; # empty vertex set
 visitedVertices (ANY) = {seedUser}; # set that can contain ANY type o

 WHILE visitedVertices.size() !=0 DO # loop terminates when all
 visitedVertices = SELECT s # s is all neighbors of vi
 FROM visitedVertices-(:e)->:s
 WHERE s.@visited == false
 ACCUM s.@visited = true,
 CASE
 WHEN s.type == "post" and s.subject == subjectName THE
 END;
 END;
 PRINT @@topicSum;
}

CASE Semantics

Example 1. CASE as IF-ELSE

5/13/25, 1:39 PM TigerGraph Documentation

998

GSQL > RUN QUERY userNetworkPosts("person1", "Graphs")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@topicSum": 3}]
}

tally male and female friends of the starting vertex
CREATE QUERY countGenderOfFriends(vertex<person> seed) FOR GRAPH socialNet
 SumAccum<INT> @@males = 0;
 SumAccum<INT> @@females = 0;
 SumAccum<INT> @@unknown = 0;
 startingVertex = {seed};

 people = SELECT v FROM startingVertex -(friend:e)->:v
 ACCUM CASE v.gender

 WHEN "Male" THEN @@males += 1
 WHEN "Female" THEN @@females +=1
 ELSE @@unknown += 1
 END;

PRINT @@males, @@females, @@unknown;
}

Example 1 Results for Query userNetworkPosts

Example 2. CASE as switch

Example 2 Results for Query countGenderOfFriends

5/13/25, 1:39 PM TigerGraph Documentation

999

GSQL > RUN QUERY countGenderOfFriends("person4")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@males": 2,
 "@@unknown": 0,
 "@@females": 1
 }]
}

give each social network user a social impact score which accumulates
based on how many friends and posts they have
CREATE QUERY scoreSocialImpact() FOR GRAPH socialNet api("v2") {
 SumAccum<INT> @socialImpact = 0;
 allPeople = {person.*};
 people = SELECT v FROM allPeople:v
 ACCUM CASE WHEN v.outdegree("friend") > 1 THEN v.@socialImpa
 CASE WHEN v.outdegree("friend") > 2 THEN v.@socialImpa
 CASE WHEN v.outdegree("posted") > 1 THEN v.@socialImpa
 CASE WHEN v.outdegree("posted") > 3 THEN v.@socialImpa
 #PRINT people.@socialImpact; // api v1
 PRINT people[people.@socialImpact]; // api v2
}

Example 3. Multiple CASE statements

Example 3 Results for Query scoreSocialImpact

5/13/25, 1:39 PM TigerGraph Documentation

1000

5/13/25, 1:39 PM TigerGraph Documentation

1001

GSQL > RUN QUERY scoreSocialImpact()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"people": [
 {
 "v_id": "person4",
 "attributes": {"people.@socialImpact": 2},
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {"people.@socialImpact": 1},
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {"people.@socialImpact": 2},
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {"people.@socialImpact": 1},
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {"people.@socialImpact": 2},
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {"people.@socialImpact": 2},
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {"people.@socialImpact": 1},
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {"people.@socialImpact": 3},

5/13/25, 1:39 PM TigerGraph Documentation

1002

 "v_type": "person"
 }
]}]
}

give each user post a rating based on the subject and how many likes it
CREATE QUERY ratePosts() FOR GRAPH socialNet api("v2") {
 SumAccum<INT> @rating = 0;
 allPeople = {person.*};

 results = SELECT v FROM allPeople -(:e)-> post:v
 ACCUM CASE e.type
 WHEN "posted" THEN
 CASE
 WHEN v.subject == "cats" THEN v.@rating += -1 # -1 if post ab
 WHEN v.subject == "Graphs" THEN v.@rating += 2 # +2 if post ab
 WHEN v.subject == "tigergraph" THEN v.@rating += 10 # +10 if pos
 END
 WHEN "liked" THEN v.@rating += 3 # +3 each time post
 END;
 #PRINT results.@rating; // api v1
 PRINT results[results.@rating]; // api v2
}

Example 4. Nested CASE statements

Example 4 Results for Query ratePosts

5/13/25, 1:39 PM TigerGraph Documentation

1003

5/13/25, 1:39 PM TigerGraph Documentation

1004

GSQL > RUN QUERY ratePosts()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"results": [
 {
 "v_id": "0",
 "attributes": {"results.@rating": 11},
 "v_type": "post"
 },
 {
 "v_id": "10",
 "attributes": {"results.@rating": 2},
 "v_type": "post"
 },
 {
 "v_id": "2",
 "attributes": {"results.@rating": 0},
 "v_type": "post"
 },
 {
 "v_id": "4",
 "attributes": {"results.@rating": 6},
 "v_type": "post"
 },
 {
 "v_id": "9",
 "attributes": {"results.@rating": -1},
 "v_type": "post"
 },
 {
 "v_id": "3",
 "attributes": {"results.@rating": 2},
 "v_type": "post"
 },
 {
 "v_id": "5",
 "attributes": {"results.@rating": 10},
 "v_type": "post"
 },
 {
 "v_id": "7",
 "attributes": {"results.@rating": 2},

5/13/25, 1:39 PM TigerGraph Documentation

1005

The WHILE statement provides unbounded iteration over a block of statements. WHILE

statements can be used as query-body statements or DML-sub-statements. (See the note

about differences in block syntax .)

The WHILE statement iterates over its body (queryBodyStmts or DMLSubStmtList) until

the condition evaluates to false or until the iteration limit is met. A condition is any

expression that evaluates to a boolean. The condition is evaluated before each iteration.

CONTINUE statements can be used to change the control flow within the while block.

BREAK statements can be used to exit the while loop.

 "v_type": "post"
 },
 {
 "v_id": "1",
 "attributes": {"results.@rating": 10},
 "v_type": "post"
 },
 {
 "v_id": "11",
 "attributes": {"results.@rating": -1},
 "v_type": "post"
 },
 {
 "v_id": "8",
 "attributes": {"results.@rating": 2},
 "v_type": "post"
 },
 {
 "v_id": "6",
 "attributes": {"results.@rating": 13},
 "v_type": "post"
 }
]}]
}

queryBodyWhileStmt := WHILE condition [LIMIT (name | integer)] DO queryB
DMLSubWhileStmt := WHILE condition [LIMIT (name | integer)] DO DMLSubStm

WHILE Statement

WHILE syntax

5/13/25, 1:39 PM TigerGraph Documentation

1006

A WHILE statement may have an optional LIMIT clause. LIMIT clauses has a constant

positive integer value or integer variable to constrain the maximum number of loop

iterations. The example below demonstrates how the LIMIT behaves.

If a limit value is not specified, it is possible for a WHILE loop to iterate infinitely. It is the

responsibility of the query author to design the condition logic so that it is guaranteed to

eventually be true (or to set a limit).

Below are a number of examples that demonstrate the use of WHILE statements.

These three WHILE statements behave the same. Each terminates when
(v.size == 0) or after 5 iterations of the loop.
WHILE v.size() !=0 LIMIT 5 DO
 # Some statements
END;

INT iter = 0;
WHILE (v.size() !=0) AND (iter < 5) DO

Some statements
 iter = iter + 1;
END;

INT iter = 0;
WHILE v.size() !=0 DO
 IF iter == 5 THEN BREAK; END;
 # Some statements

iter = iter + 1;
END;

WHILE LIMIT semantics

Example 1. Simple WHILE loop

5/13/25, 1:39 PM TigerGraph Documentation

1007

find all vertices which are reachable from a starting seed vertex (i.e.,
CREATE QUERY reachable(vertex<person> seed) FOR GRAPH workNet
{
 OrAccum @visited;
 reachableVertices = {}; # empty vertex set
 visitedVertices (ANY) = {seed}; # set that can contain ANY type of ve

 WHILE visitedVertices.size() !=0 DO # loop terminates when all
 visitedVertices = SELECT s # s is all neighbors of vi
 FROM visitedVertices-(:e)->:s
 WHERE s.@visited == false
 POST-ACCUM s.@visited = true;
 reachableVertices = reachableVertices UNION visitedVertices;
 END;
 PRINT reachableVertices;
}

reachable Results

5/13/25, 1:39 PM TigerGraph Documentation

1008

5/13/25, 1:39 PM TigerGraph Documentation

1009

GSQL > RUN QUERY reachable("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"reachableVertices": [
 {
 "v_id": "person3",
 "attributes": {
 "interestList": ["teaching"],
 "skillSet": [6, 1, 4],
 "skillList": [4, 1, 6],
 "locationId": "jp",
 "interestSet": ["teaching"],
 "@visited": true,
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "@visited": true,
 "id": "person9"
 },
 "v_type": "person"
 },
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "interestSet": ["football"],
 "@visited": true,
 "id": "person4"
 },
 "v_type": "person"

5/13/25, 1:39 PM TigerGraph Documentation

1010

 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "interestSet": ["sport", "art"],
 "@visited": true,
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "@visited": true,
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "interestList": ["sport", "financial", "engineering"],
 "skillSet": [5, 2, 8],
 "skillList": [8, 2, 5],
 "locationId": "can",
 "interestSet": ["engineering", "financial", "sport"],
 "@visited": true,
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "interestList": ["music", "art"],
 "skillSet": [10, 7],
 "skillList": [7, 10],
 "locationId": "jp",
 "interestSet": ["art", "music"],

"@visited": true,

5/13/25, 1:39 PM TigerGraph Documentation

1011

 @visited : true,
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "@visited": true,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "interestList": ["management"],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2],
 "locationId": "chn",
 "interestSet": ["management"],
 "@visited": true,
 "id": "person8"
 },
 "v_type": "person"
 },
 {
 "v_id": "company3",
 "attributes": {
 "country": "jp",
 "@visited": true,
 "id": "company3"
 },
 "v_type": "company"
 },
 {
 "v_id": "company2",
 "attributes": {
 "country": "chn",
 "@visited": true,
 "id": "company2"
 },
 "v_type": "company"
 },

{

find all vertices which are reachable within two hops from a starting se
CREATE QUERY reachableWithinTwo(vertex<person> seed) FOR GRAPH workNet
{
 OrAccum @visited;
 reachableVertices = {}; # empty vertex set
 visitedVertices (ANY) = {seed}; # set that can contain ANY type of ve

 WHILE visitedVertices.size() !=0 LIMIT 2 DO # loop terminates when all
 visitedVertices = SELECT s # s is all neighbors of v
 FROM visitedVertices-(:e)->:s
 WHERE s.@visited == false
 POST-ACCUM s.@visited = true;
 reachableVertices = reachableVertices UNION visitedVertices;
 END;
 PRINT reachableVertices;
}

Example 2. WHILE loop using a LIMIT

reachableWithinTwo Results

5/13/25, 1:39 PM TigerGraph Documentation

1012

 {
 "v_id": "company1",
 "attributes": {
 "country": "us",
 "@visited": true,
 "id": "company1"
 },
 "v_type": "company"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "@visited": true,
 "id": "person10"
 },
 "v_type": "person"
 }
]}]
}

5/13/25, 1:39 PM TigerGraph Documentation

1013

GSQL > RUN QUERY reachableWithinTwo("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"reachableVertices": [
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "interestSet": ["football"],
 "@visited": true,
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "interestList": ["teaching"],
 "skillSet": [6, 1, 4],
 "skillList": [4, 1, 6],
 "locationId": "jp",
 "interestSet": ["teaching"],
 "@visited": true,
 "id": "person3"
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "@visited": true,
 "id": "person9"
 },
 "v_type": "person"

5/13/25, 1:39 PM TigerGraph Documentation

1014

 },
 {
 "v_id": "person5",
 "attributes": {
 "interestList": ["sport", "financial", "engineering"],
 "skillSet": [5, 2, 8],
 "skillList": [8, 2, 5],
 "locationId": "can",
 "interestSet": ["engineering", "financial", "sport"],
 "@visited": true,
 "id": "person5"
 },
 "v_type": "person"
 },
 {
 "v_id": "person6",
 "attributes": {
 "interestList": ["music", "art"],
 "skillSet": [10, 7],
 "skillList": [7, 10],
 "locationId": "jp",
 "interestSet": ["art", "music"],
 "@visited": true,
 "id": "person6"
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "@visited": true,
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "interestList": ["management"],
 "skillSet": [2, 5, 1],
 "skillList": [1, 5, 2],
 "locationId": "chn",
 "interestSet": ["management"],

"@visited": true,

5/13/25, 1:39 PM TigerGraph Documentation

1015

The FOREACH statement provides bounded iteration over a block of statements.

FOREACH statements can be used as query-body statements or DML-sub-statements.

(See the note about differences in block syntax .)

The formal syntax for forEachControl appears complex. It can be broken down into the

following cases:

• name IN setBagExpr

• tuple IN setBagExpr

• name IN RANGE [expr, expr]

• name IN RANGE [expr, expr].STEP (expr)

Note that setBagExpr includes container accumulators and explicit sets.

The FOREACH statement has the following restrictions:

 @visited : true,
 "id": "person8"
 },
 "v_type": "person"
 },
 {
 "v_id": "company1",
 "attributes": {
 "country": "us",
 "@visited": true,
 "id": "company1"
 },
 "v_type": "company"
 },
 {
 "v_id": "person2",
 "attributes": {
 "interestList": ["engineering"],
 "skillSet": [6, 5, 3, 2],
 "skillList": [2, 3, 5, 6],
 "locationId": "chn",
 "interestSet": ["engineering"],
 "@visited": true,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "company2",
 "attributes": {
 "country": "chn",
 "@visited": true,
 "id": "company2"
 },
 "v_type": "company"
 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "interestSet": ["sport", "art"],
 "@visited": true,
 "id": "person7"
 },
 "v_type": "person"
 },

{

queryBodyForEachStmt := FOREACH forEachControl DO queryBodyStmts END
DMLSubForEachStmt := FOREACH forEachControl DO DMLSubStmtList END
forEachControl := (name | "(" name [, name]+ ")") IN setBagExpr
 | name IN RANGE "[" expr , expr"]" [".STEP(" expr ")"]

FOREACH Statement

FOREACH syntax

5/13/25, 1:39 PM TigerGraph Documentation

1016

• In a DML-sub level FOREACH, it is never permissible to update the loop variable (the

variable declared before IN, e.g., var in "FOREACH var IN setBagExpr").

• In a query-body level FOREACH, in most cases it is not permissible to update the loop

variable. The following exceptions apply:

◦ If the iteration is over a ListAccum, its values can be updated.

◦ If the iteration is over a MapAccum, its values can be updated, but its keys cannot.

• If the iteration is over a set of vertices, it is not permissible to access (read or write) their

vertex-attached accumulators.

• A query-body-level FOREACH cannot iterate over a set or bag of constants. For example,

FOREACH i in (1,2,3) is not supported. However, DML-sub FOREACH does support this.

The FOREACH statement has an optional RANGE clause RANGE[expr, expr], which can be

used to define the iteration collection. Optionally, the range may specify a step size:

RANGE[expr, expr].STEP(expr)

Each expr must evaluate to an integer. Any of the integers may be negative, but the step

expr may not be 0.

The clause RANGE[a,b].STEP(c) produces the sequence of integers from a to b, inclusive,

with step size c. That is,

(a, a+c, a+2*c, a+3*c, ... a+k*c), where k = the largest integer such that |k*c| ≤ |b-a|.

If the .STEP method is not given, then the step size c = 1.

 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "@visited": true,
 "id": "person1"
 },
 "v_type": "person"
 }
]}]
}

FOREACH ... IN RANGE

Nested FOREACH IN RANGE with MapAccum

5/13/25, 1:39 PM TigerGraph Documentation

1017

The step value can be positive for an ascending range or negative for a descending range.

If the step has the wrong polarity, then the loop has zero iterations; that is, the exit

condition is already satisfied.

CREATE QUERY foreachRangeEx() FOR GRAPH socialNet {
 ListAccum<INT> @@t;
 Start = {person.*};
 FOREACH i IN RANGE[0, 2] DO
 @@t += i;
 L = SELECT Start
 FROM Start
 WHERE Start.id == "person1"
 ACCUM
 FOREACH j IN RANGE[0, i] DO
 @@t += j
 END
 ;
 END;
 PRINT @@t;
}

GSQL > RUN QUERY foreachRangeEx()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@t": [0, 0, 1, 0, 1, 2, 0, 1, 2]}]
}

CREATE QUERY foreachRangeStep(INT a, INT b, INT c) FOR GRAPH minimalNet {
 ListAccum<INT> @@t;
 FOREACH i IN RANGE[a,b].step(c) DO
 @@t += i;
 END;
 PRINT @@t;
}

Results for Query foreachRangeEx

FOREACH IN RANGE with step

5/13/25, 1:39 PM TigerGraph Documentation

1018

GSQL > RUN QUERY foreachRangeStep(100,0,-9)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@t": [
 100,
 91,
 82,
 73,
 64,
 55,
 46,
 37,
 28,
 19,
 10,
 1
]}]
}
GSQL > RUN QUERY foreachRangeStep(-100,100,-9)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@t": []}]
}

Query-body-level FOREACH Examples

foreachRangeStep.json Results

Example 1 - FOREACH with ListAccum

5/13/25, 1:39 PM TigerGraph Documentation

1019

Count the number of companies whose country matches the provided string
CREATE QUERY companyCount(STRING countryName) FOR GRAPH workNet {
 ListAccum<STRING> @@companyList;
 INT countryCount;
 start = {ANY}; # start will have a set of all ver

 s = SELECT v FROM start:v # get all vertices
 WHERE v.type == "company" # that have a type of "company"
 ACCUM @@companyList += v.country; # append the country attribute fro

 # Iterate the ListAccum and compare each element to the countryName para
 FOREACH item in @@companyList DO
 IF item == countryName THEN
 countryCount = countryCount + 1;
 END;
 END;
 PRINT countryCount;
}

GSQL > RUN QUERY companyCount("us")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"countryCount": 2}]
}
GSQL > RUN QUERY companyCount("can")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"countryCount": 1}]
}

companyCount Results

Example 2 - FOREACH with a seed set

5/13/25, 1:39 PM TigerGraph Documentation

1020

#Find all company person who live in a given country
CREATE QUERY employeesByCompany(STRING country) FOR GRAPH workNet {
 ListAccum<VERTEX<company>> @@companyList;
 start = {ANY};

 # Build a list of all company vertices
 # (these are vertex IDs only)
 s = SELECT v FROM start:v
 WHERE v.type == "company"
 ACCUM @@companyList += v;

 # Use the vertex IDs as Seeds for vertex sets
 FOREACH item IN @@companyList DO
 companyItem = {item};
 employees = SELECT t FROM companyItem -(worksFor)-> :t
 WHERE (t.locationId == country);
 PRINT employees;
 END;
}

employeesByCompany Results

5/13/25, 1:39 PM TigerGraph Documentation

1021

5/13/25, 1:39 PM TigerGraph Documentation

1022

GSQL > RUN QUERY employeesByCompany("us")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"employees": []},
 {"employees": []},
 {"employees": [
 {
 "v_id": "person9",
 "attributes": {
 "interestList": [
 "financial",
 "teaching"
],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "id": "person9"
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "interestList": ["football", "sport"],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "interestSet": ["sport", "art"],
 "id": "person7"

5/13/25, 1:39 PM TigerGraph Documentation

1023

 },
 "v_type": "person"
 }
]},
 {"employees": [
 {
 "v_id": "person4",
 "attributes": {
 "interestList": ["football"],
 "skillSet": [10, 1, 4],
 "skillList": [4, 1, 10],
 "locationId": "us",
 "interestSet": ["football"],
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person9",
 "attributes": {
 "interestList": ["financial", "teaching"],
 "skillSet": [2, 7, 4],
 "skillList": [4, 7, 2],
 "locationId": "us",
 "interestSet": ["teaching", "financial"],
 "id": "person9"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "interestList": ["art", "sport"],
 "skillSet": [6, 8],
 "skillList": [8, 6],
 "locationId": "us",
 "interestSet": ["sport", "art"],
 "id": "person7"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",

"interestSet": ["financial", "management"],

Example 3 - Nested FOREACH with MapAccum

5/13/25, 1:39 PM TigerGraph Documentation

1024

 interestSet : [financial , management],
 "id": "person1"
 },
 "v_type": "person"
 }
]},
 {"employees": [
 {
 "v_id": "person10",
 "attributes": {
 "interestList": [
 "football",
 "sport"
],
 "skillSet": [3],
 "skillList": [3],
 "locationId": "us",
 "interestSet": ["sport", "football"],
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "interestList": ["management", "financial"],
 "skillSet": [3, 2, 1],
 "skillList": [1, 2, 3],
 "locationId": "us",
 "interestSet": ["financial", "management"],
 "id": "person1"
 },
 "v_type": "person"
 }
]}
]
}

Count the number of employees from a given country and list their ids
CREATE QUERY employeeByCountry(STRING countryName) FOR GRAPH workNet {
 MapAccum <STRING, ListAccum<STRING>> @@employees;

 # start will have a set of all person type vertices
 start = {person.*};

 # Build a map using person locationId as a key and a list of strings to
 s = SELECT v FROM start:v
 ACCUM @@employees += (v.locationId -> v.id);

 # Iterate the map using (key,value) pairs
 FOREACH (key,val) in @@employees DO
 IF key == countryName THEN
 PRINT val.size();

 # Nested foreach to iterate over the list of person ids
 FOREACH employee in val DO
 PRINT employee;
 END;

 # MapAccum keys are unique so we can BREAK out of the loop
 BREAK;
 END;
 END;
}

GSQL > RUN QUERY employeeByCountry("us")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"val.size()": 5},
 {"employee": "person4"},
 {"employee": "person10"},
 {"employee": "person7"},
 {"employee": "person1"},
 {"employee": "person9"}
]
}

employeeByCountry Results

5/13/25, 1:39 PM TigerGraph Documentation

1025

Show post topics liked by users and show total likes per topic
CREATE QUERY topicLikes() FOR GRAPH socialNet {
 SetAccum<STRING> @@personPosts;
 SumAccum<INT> @postLikes;
 MapAccum<STRING,INT> @@likesByTopic;

 start = {person.*};

 # Find all user posts and generate a set of post topics
 # (set has no duplicates)
 posts = SELECT g FROM start - (posted) -> :g
 ACCUM @@personPosts += g.subject;

 # Use set of topics to increment how many times a specfic
 # post is liked by other users
 likedPosts = SELECT f FROM start - (liked) -> :f
 ACCUM FOREACH x in @@personPosts DO
 CASE WHEN (f.subject == x) THEN
 f.@postLikes += 1
 END
 END
 # Aggregate all liked totals by topic
 POST-ACCUM @@likesByTopic += (f.subject -> f.@postLikes);

 # Display the number of likes per topic
 PRINT @@likesByTopic;
}

DML-sub FOREACH Examples

ACCUM FOREACH

Results for Query topicLikes

5/13/25, 1:39 PM TigerGraph Documentation

1026

GSQL > RUN QUERY topicLikes()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@likesByTopic": {
 "cats": 3,
 "coffee": 2,
 "Graphs": 3,
 "tigergraph": 1
 }}]
}

#Show a summary of the number of friends all persons have by gender
CREATE QUERY friendGender() FOR GRAPH socialNet {
 ListAccum<STRING> @friendGender;
 SumAccum<INT> @@maleGenderCount;
 SumAccum<INT> @@femaleGenderCount;

 start = {person.*};

 # Record a list showing each friend's gender
 socialMembers = SELECT s from start:s -(friend)-> :g
 ACCUM s.@friendGender += (g.gender)

 # Loop over each list of genders and total them
 POST-ACCUM FOREACH x in s.@friendGender DO

 CASE WHEN (x == "Male") THEN
 @@maleGenderCount += 1
 ELSE
 @@femaleGenderCount += 1
 END

 END;

 PRINT @@maleGenderCount;
 PRINT @@femaleGenderCount;
}

Example 1 - POST-ACCUM FOREACH

Results for Query friendGender

5/13/25, 1:39 PM TigerGraph Documentation

1027

CONTINUE and BREAK Statements

The CONTINUE and BREAK statements can only be used within a block of a WHILE or

FOREACH statement. The CONTINUE statement branches control flow to the end of the

loop, skipping any remaining statements in the current iteration, and proceeding to the

next iteration. That is, everything in the loop block after the CONTINUE statement will be

skipped, and then the loop will continue as normal.

The BREAK statement branches control flow out of the loop, i.e., it will exit the loop and

stop iteration.

Below are a number of examples that demonstrate the use of BREAK and CONTINUE.

GSQL > RUN QUERY friendGender()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"@@maleGenderCount": 11},
 {"@@femaleGenderCount": 7}
]
}

Continue and Break Semantics

5/13/25, 1:39 PM TigerGraph Documentation

1028

While with a continue
INT i = 0;
INT nCount = 0;
WHILE i < 10 DO
 i = i + 1;
 IF (i % 2 == 0) { CONTINUE; }
 nCount = nCount + 1;
END;
i is 10, nCount is 5 (skips the increment for every even i).

While with a break
i = 0;
WHILE i < 10 DO
 IF (i == 5) { BREAK; } # When i is 5 the loop is exited
 i = i + 1;
END;
i is now 5

find posts of a given person, and post of friends of that person, friend
until a post about cats is found. The number of friend-hops to reach is
CREATE QUERY findDegreeOfCats(vertex<person> seed) FOR GRAPH socialNet
{
 SumAccum<INT> @@degree = 0;
 OrAccum @@foundCatPost = false;
 OrAccum @visited = false;

 friends (ANY) = {seed};
 WHILE @@foundCatPost != true AND friends.size() > 0 DO
 posts = SELECT v FROM friends-(posted:e)->:v
 ACCUM CASE WHEN v.subject == "cats" THEN @@foundCatPost

 IF @@foundCatPost THEN
 BREAK;
 END;

 friends = SELECT v FROM friends-(friend:e)->:v
 WHERE v.@visited == false
 ACCUM v.@visited = true;
 @@degree += 1;
 END;
 PRINT @@degree;
}

Example 1. Break

Results of Query findDegreeOfCats

5/13/25, 1:39 PM TigerGraph Documentation

1029

GSQL > RUN QUERY findDegreeOfCats("person2")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@degree": 2}]
}
GSQL > RUN QUERY findDegreeOfCats("person4")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@degree": 0}]
}

Example 2. findEnoughFriends.gsql: While loop using continue statement

5/13/25, 1:39 PM TigerGraph Documentation

1030

find all 3-hop friends of a starting vertex. count coworkers as friends
if there are not enough friends
CREATE QUERY findEnoughFriends(vertex<person> seed) FOR GRAPH friendNet
{
 SumAccum<INT> @@distance = 0; # keep track of the distance from the
 OrAccum @visited = false;
 visitedVertices = {seed};
 WHILE true LIMIT 3 DO
 @@distance += 1;
 # traverse from visitedVertices to its friends
 friends = SELECT v
 FROM visitedVertices -(friend:e)-> :v
 WHERE v.@visited == false
 POST-ACCUM v.@visited = true;
 PRINT @@distance, friends;

 # if number of friends at this level is sufficient, finish this it
 IF visitedVertices.size() >= 2 THEN
 visitedVertices = friends;
 CONTINUE;
 END;
 # if fewer than 4 friends, add in coworkers
 coworkers = SELECT v
 FROM visitedVertices -(coworker:e)-> :v
 WHERE v.@visited == false
 POST-ACCUM v.@visited = true;
 visitedVertices = friends UNION coworkers;
 PRINT @@distance, coworkers;
 END;
}

findEnoughFriends.json Example 2 Results

5/13/25, 1:39 PM TigerGraph Documentation

1031

5/13/25, 1:39 PM TigerGraph Documentation

1032

GSQL > RUN QUERY findEnoughFriends("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "@@distance": 1,
 "friends": [
 {
 "v_id": "person4",
 "attributes": {
 "@visited": true,
 "id": "person4"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "@visited": true,
 "id": "person2"
 },
 "v_type": "person"
 },
 {
 "v_id": "person3",
 "attributes": {
 "@visited": true,
 "id": "person3"
 },
 "v_type": "person"
 }
]
 },
 {
 "coworkers": [
 {
 "v_id": "person5",
 "attributes": {
 "@visited": true,
 "id": "person5"
 },
 "v_type": "person"

5/13/25, 1:39 PM TigerGraph Documentation

1033

 },
 {
 "v_id": "person6",
 "attributes": {
 "@visited": true,
 "id": "person6"
 },
 "v_type": "person"
 }
],
 "@@distance": 1
 },
 {
 "@@distance": 2,
 "friends": [
 {
 "v_id": "person9",
 "attributes": {
 "@visited": true,
 "id": "person9"
 },
 "v_type": "person"
 },
 {
 "v_id": "person1",
 "attributes": {
 "@visited": true,
 "id": "person1"
 },
 "v_type": "person"
 },
 {
 "v_id": "person8",
 "attributes": {
 "@visited": true,
 "id": "person8"
 },
 "v_type": "person"
 }
]
 },
 {
 "@@distance": 3,
 "friends": [
 {
 "v_id": "person12",
 "attributes": {
 "@visited": true,

"id": "person12"

Example 3. While loop using break statement

5/13/25, 1:39 PM TigerGraph Documentation

1034

 id : person12
 },
 "v_type": "person"
 },
 {
 "v_id": "person10",
 "attributes": {
 "@visited": true,
 "id": "person10"
 },
 "v_type": "person"
 },
 {
 "v_id": "person7",
 "attributes": {
 "@visited": true,
 "id": "person7"
 },
 "v_type": "person"
 }
]
 }
]
}

find at least the top-k companies closest to a given seed vertex, if the
CREATE QUERY topkCompanies(vertex<person> seed, INT k) FOR GRAPH workNet
{
 SetAccum<vertex<company>> @@companyList;
 OrAccum @visited = false;
 visitedVertices (ANY) = {seed};
 WHILE true DO
 visitedVertices = SELECT v # traverse from x to i
 FROM visitedVertices -(:e)-> :v
 WHERE v.@visited == false
 ACCUM CASE
 WHEN (v.type == "company") THEN # count the number of
 @@companyList += v
 END
 POST-ACCUM v.@visited += true; # mark vertices as vis

 # exit loop when at least k companies have been counted
 IF @@companyList.size() >= k OR visitedVertices.size() == 0 THEN
 BREAK;
 END;
 END;
 PRINT @@companyList;
}

Example 3. topkCompanies Results

5/13/25, 1:39 PM TigerGraph Documentation

1035

GSQL > RUN QUERY topkCompanies("person1", 2)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@companyList": [
 "company2",
 "company1"
]}]
}
GSQL > RUN QUERY topkCompanies("person2", 3)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@companyList": [
 "company3",
 "company2",
 "company1"
]}]
}

Example 4 - Usage of CONTINUE in FOREACH

5/13/25, 1:39 PM TigerGraph Documentation

1036

#List out all companies from a given country
CREATE QUERY companyByCountry(STRING countryName) FOR GRAPH workNet {
 MapAccum <STRING, ListAccum<STRING>> @@companies;
 start = {company.*}; # start will have a set of all co

 #Build a map using company country as a key and a list of strings to hol
 s = SELECT v FROM start:v
 ACCUM @@companies += (v.country -> v.id);

 #Iterate the map using (key,value) pairs
 FOREACH (key,val) IN @@companies DO
 IF key != countryName THEN
 CONTINUE;
 END;

 PRINT val.size();

 #Nested foreach to iterate over the list of company ids
 FOREACH comp IN val DO
 PRINT comp;
 END;
 END;
}

GSQL > RUN QUERY companyByCountry("us")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"val.size()": 2},
 {"comp": "company1"},
 {"comp": "company4"}
]
}

companyByCountry Results

Example 5 - Usage of BREAK in FOREACH

5/13/25, 1:39 PM TigerGraph Documentation

1037

#List all the persons located in the specified country
CREATE QUERY employmentByCountry(STRING countryName) FOR GRAPH workNet {
 MapAccum < STRING, ListAccum<STRING> > @@employees;
 start = {person.*}; # start will have a set of all per

 #Build a map using person locationId as a key and a list of strings to h
 s = SELECT v FROM start:v
 ACCUM @@employees += (v.locationId -> v.id);

 #Iterate the map using (key,value) pairs
 FOREACH (key,val) IN @@employees DO
 IF key == countryName THEN
 PRINT val.size();

 #Nested foreach to iterate over the list of person ids
 FOREACH employee IN val DO
 PRINT employee;
 END;

 BREAK;
 END;
 END;
}

GSQL > RUN QUERY employmentByCountry("us")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"val.size()": 5},
 {"employee": "person1"},
 {"employee": "person4"},
 {"employee": "person7"},
 {"employee": "person9"},
 {"employee": "person10"}
]
}

employmentByCountry Result

5/13/25, 1:39 PM TigerGraph Documentation

1038

Data Modification Statements

The GSQL language provides full support for vertex and edge insertion, deletion, and

attribute update is provided. Therefore, the language is more than just a "query" language.

Each query is considered one transaction. Therefore, modifications to the graph data do not

take effect until the entire query is completed (committed). Accordingly, any modification

statement does not affect any other statements inside the same query.

The query-body DELETE statement deletes a given set of edges or vertices. This

statement can only be used as a query-body statement. (Deletion at the DML-sub level is

served by the DML-sub DELETE statement, described next.

The vertexSet and edgeSet terms in the FROM clause follow the same rules as those in

the FROM clause in a SELECT statement. The WHERE clause can filter the items in the

vertexSet or edgeSet.Below are two examples, one for deleting vertices and one for

deleting edges.

QueryBodyDeleteStmt := DELETE name FROM (edgeSet | vertexSet) [whereClau

Delete all "person" vertices with location equal to "us"
CREATE QUERY deleteEx() FOR GRAPH workNet {
 S = {person.*};
 DELETE s FROM S:s
 WHERE s.locationId == "us";
}

Query-body DELETE Statement

EBNF

DELETE statement example

DELETE statement example 2

5/13/25, 1:39 PM TigerGraph Documentation

1039

The following query can be used to observe the effect of the delete statements. This query

counts the person vertices who work in the US ("us") and the worksFor edges for persons

in the US. When the initial workNet test data loaded, there are 5 persons and 9 worksFor

edges for locationId = "us". If query deleteEx2 is run, the worksAtUS query will then find

the 5 persons but 0 worksFor edges. Next, if the deleteEx query is run, the worksAtUS

query will then find 0 persons and 0 worksFor edges.

For example, the following sequence of countAtLocation, deleteEx2, and deleteEx queries

will produce the following result:

Delete all "worksFor" edges where the person's location is "us"
CREATE QUERY deleteEx2() FOR GRAPH workNet {
 S = {person.*};
 DELETE e FROM S:s -(worksFor:e)-> company:t
 WHERE s.locationId == "us";
}

CREATE QUERY countAtLocation(STRING loc) FOR GRAPH workNet {
 SetAccum<EDGE> @@selEdge;
 Start = {person.*};

 SV = SELECT s FROM Start:s
 WHERE s.locationId == loc;
 PRINT SV.size() AS numVertices;

 SE = SELECT s FROM Start:s -(worksFor:e)-> company:t
 WHERE s.locationId == loc
 ACCUM @@selEdge += e;
 PRINT @@selEdge.size() AS numEdges;
}

RUN QUERY countAtLocation("us")
RUN QUERY deleteEx2()
RUN QUERY countAtLocation("us")
RUN QUERY deleteEx()
RUN QUERY countAtLocation("us")

Query to check the results of deleteEx and deleteEx2

deleteEx.run

5/13/25, 1:39 PM TigerGraph Documentation

1040

Results from DeleteEx Example

5/13/25, 1:39 PM TigerGraph Documentation

1041

5/13/25, 1:39 PM TigerGraph Documentation

1042

Before any deletions
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"numVertices": 5},
 {"numEdges": 9}
]
}
Delete edges
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": []
}
After deleting edges
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"numVertices": 5},
 {"numEdges": 0}
]
}
Delete vertices
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },

5/13/25, 1:39 PM TigerGraph Documentation

1043

DML-sub DELETE is a DML-substatement which deletes one vertex or edge each time it is

called. (Deletion at the query-body level is served by the Query-body DELETE statement

described above.) In practice, this statement resides within the body of a

SELECT...ACCUM/POST-ACCUM clause, so it is called once for each member of a selected

vertex set or edge set.

The ACCUM clause iterates over an edge set, which can encounter the same vertex multiple

times. If you wish to delete a vertex, it is best practice to place the DML-sub DELETE

statement in the POST-ACCUM clause rather than in the ACCUM clause.

The following example uses and modifies the graph data for socialNet.

 "results": []
}
After deleting vertices
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"numVertices": 0},
 {"numEdges": 0}
]
}

DMLSubDeleteStmt := DELETE "(" name ")"

DML-sub DELETE Statement

EBNF

DELETE within ACCUM vs. POST-ACCUM

5/13/25, 1:39 PM TigerGraph Documentation

1044

For example, the following sequence of selectUserPosts and deletePosts queries

will produce the following result:

Remove any post vertices posted by the given user
CREATE QUERY deletePosts(vertex<person> seed) FOR GRAPH socialNet {

start = {seed};

Best practice is to delete a vertex in a POST-ACCUM, which only
occurs once for each vertex v, guaranteeing that a vertex is not
deleted more than once
postAccumDeletedPosts = SELECT v FROM start -(posted:e)-> post:v
 POST-ACCUM DELETE (v);

Possible, but not recommended as the DML-sub DELETE statement occurs
once for each edge of the vertex v
accumDeletedPosts = SELECT v FROM start -(posted:e)-> post:v
 ACCUM DELETE (v);

}

Need a separate query to display the results, because deletions don't ta
CREATE QUERY selectUserPosts(vertex<person> seed) FOR GRAPH socialNet {
 start = {seed};

 userPosts = SELECT v FROM start -(posted:e)-> post:v;
 PRINT userPosts;
}

RUN QUERY selectUserPosts("person3")
RUN QUERY deletePosts("person3")
RUN QUERY selectUserPosts("person3")

deletePosts.run

Results from DeletePosts Example

5/13/25, 1:39 PM TigerGraph Documentation

1045

Before the deletion
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"selectedPosts": [{
 "v_id": "2",
 "attributes": {
 "postTime": "2011-02-03 01:02:42",
 "subject": "query languages"
 },
 "v_type": "post"
 }]}]
}
Deletion; no output results requested at this point
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": []
}
After the deletion
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"selectedPosts": []}]
}

INSERT INTO Statement

5/13/25, 1:39 PM TigerGraph Documentation

1046

The INSERT INTO statement adds edges or vertices to the graph. However, if the ID

value(s) for the inserted vertex/edge match those of an existing vertex/edge, then the new

values will overwrite the old values. To insert an edge, its endpoint vertices must already

exist, either prior to running the query or inserted earlier in that query.The INSERT INTO

statement can be used as a query-body-level statement or a DML-substatement.

The formal syntax is complex because it encompasses several options, and even so, it

requires additional explanation. The first name symbol is the vertex type or edge type. The

user then has two options:

1) Provide a value for the ID(s) and then each attribute, in the canonical order for the

vertex or edge type. This format is similar to that of a LOAD statement. In this case, it is

not necessary to explicitly name the attributes, since it is assumed that every one is being

referenced, in order.

2) Name the specific attributes to be set, and then provide a corresponding list of values.

The attributes can be in any order, with the exception that the IDs must come first. That is,

to insert a vertex, the first attribute name must be PRIMARY_ID. To insert an edge, the first

two attribute names must be FROM and TO.

For each attribute value, provide either an expression expr or "_", which means the default

value for that attribute type. The optional name which follows the first two (id) values is to

specify the source vertex type and target vertex type, if the edge type had been defined

with wildcard vertex types.

insertStmt := INSERT INTO name ["(" (PRIMARY_ID | FROM "," TO) ("," name
 VALUES "(" ("_" | expr) [name] ["," ("_" | expr)

INSERT INTO name VALUES (full_list_of_parameter_values)

INSERT INTO name (IDs, specified_attributes) VALUES (values_for_specified_

EBNF

INSERT with implicit attribute names

INSERT with explicit attribute names

5/13/25, 1:39 PM TigerGraph Documentation

1047

The query insertEx illustrates query-body level INSERT statements: insert new company

vertices and worksFor examples into the workNet graph.

The query whoWorksForCompany can be used to check the effect of query insertEx. Prior

to running insertEx, running whoWorksForCompany("gsql") will find 0 companies called

"gsql" and 0 worksFor edges for company "gsql". If we then run the query insertEx("tic",

"tac", "toe", "gsql"), then insertEx("gsql") will find a company called "gsql" and another one

called "gsql_jp". Moreover, it will find 3 edges, tic, tac, and toe, with different values for the

startMonth, startYear, and fullTime parameters.

CREATE QUERY insertEx(STRING name, STRING name2, STRING name3, STRING comp
 # Vertex insertion
 # Adds 2 'company' vertices. One is located in the USA, and a sister c
 INSERT INTO company VALUES (comp, comp, "us");
 INSERT INTO company (PRIMARY_ID, country) VALUES (comp + "_jp", "jp"

 # Edge insertion
 # Adds a 'worksFor' edge from person 'name' to the company 'comp', fil
 # values for startYear (0), startMonth (0), and fullTime (false).
 INSERT INTO worksFor VALUES (name person, comp company, _, _, _);

 # Adds a 'worksFor' edge from person 'name2' to the company 'comp', fi
 # values for startMonth (0), but specifying values for startYear and f
 INSERT INTO worksFor (FROM, TO, startYear, fullTime) VALUES (name2 per

 # Adds a 'worksFor' edge from person 'name3' to the company 'comp', fi
 # values for startMonth (0), and fullTime (false) but specifying a val
 INSERT INTO worksFor (FROM, TO, startYear) VALUES (name3 person, comp
}

Query-Body INSERT

INSERT statement

Query to check the results of insertEx

5/13/25, 1:39 PM TigerGraph Documentation

1048

The following example show a DML-sub level INSERT. Because the statement applies to

allCompanies, several vertices will be inserted.

Example: Add a child company in Japan to US-based company company3. List all the

Japan-based companies before and after the insertion.

CREATE QUERY whoWorksForCompany(STRING comp) FOR GRAPH workNet {
 SetAccum<EDGE> @@setEdge;

 Comps = {company.*};
 PRINT Comps[Comps.id]; # output api v2

 Pers = {person.*};
 S = SELECT s
 FROM Pers:s -(worksFor:e)-> :t
 WHERE t.id == comp
 ACCUM @@setEdge += e;
 PRINT @@setEdge;
}

Add a child company of a given company name. The new child company is in
CREATE QUERY addNewChildCompany(STRING name) FOR GRAPH workNet {
 allCompanies = {company.*};
 X = SELECT s
 FROM allCompanies:s
 WHERE s.id == name
 ACCUM INSERT INTO company VALUES (name + "_jp", name + "_jp", "jp"
}

Add separate query to list the companies, before and after the insertion
CREATE QUERY listCompanyNames(STRING countryFilter) FOR GRAPH workNet {
 allCompanies = {company.*};
 C = SELECT s
 FROM allCompanies:s
 WHERE s.country == countryFilter;

 PRINT C.size() AS numCompanies;
 PRINT C;
}

DML-sub INSERT

DML-sub INSERT statement

5/13/25, 1:39 PM TigerGraph Documentation

1049

RUN QUERY listCompanyNames("jp")
RUN QUERY addNewChildCompany("company4")
RUN QUERY listCompanyNames("jp")

addNewChildCompany.run

Results from addNewChildCompany Example

5/13/25, 1:39 PM TigerGraph Documentation

1050

5/13/25, 1:39 PM TigerGraph Documentation

1051

Before insertion
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"numCompanies": 1},
 {"C": [{
 "v_id": "company3",
 "attributes": {
 "country": "jp",
 "id": "company3"
 },
 "v_type": "company"
 }]}
]
}
insert company "company4_jp"
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": []
}
after insertion
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {"numCompanies": 2},
 {"C": [
 {
 "v_id": "company3",
 "attributes": {
 "country": "jp",

5/13/25, 1:39 PM TigerGraph Documentation

1052

The UPDATE statement updates the attribute of each vertex or edge in a vertex set or

edge set, respectively, with new attribute values.

The set of vertices or edges to update is described in the FROM clause, following the

same rules as the FROM clause in a SELECT block. In the SET clause, the DMLSubStmtList

may contain assignment statements to update the attributes of a vertex or edge. Both

simple base type attributes and collection type attributes can be updated. These

assignment statements use the vertex or edge aliases declared in the FROM clause. The

optional WHERE clause supports boolean conditions to filter the items in the vertexSet or

edgeSet.

 "id": "company3"
 },
 "v_type": "company"
 },
 {
 "v_id": "company4_jp",
 "attributes": {
 "country": "jp",
 "id": "company4_jp"
 },
 "v_type": "company"
 }
]}
]
}

updateStmt := UPDATE name FROM (edgeSet | vertexSet) SET DMLSubStmtList

UPDATE Statement

EBNF

UPDATE statement example

5/13/25, 1:39 PM TigerGraph Documentation

1053

The UPDATE statement can only be used as a query-body-level statement. However, DML-

sub level updates are still possible by using other statement types. A vertex attribute's

value can be updated within the POST-ACCUM clause of a SELECT block by using the

assignment operator (=); An edge attribute's value can be updated within the ACCUM

clause of a SELECT block by using the assignment operator. In fact, the UPDATE

statement is equivalent to a SELECT statement with ACCUM and/or POST-ACCUM to

update the vertex or edge attribute values. Below is an example.

Updating a vertex's attribute value in a ACCUM clause is not allowed, because the update

can occur multiple times in parallel, and possibly result in an non-deterministic value. If the

vertex attribute value update depends on an edge attribute value, use the vertex-attached

accumulators to save the value and update the vertex attribute's value in the POST-ACCUM

clause.

The query below uses the SELECT statement instead of the UPDATE statement, but is

functional similar to the query above. Query updateEx2 reverses the locationId change

made by updateEx (changing the location back to "us" from "USA").

Change all "person" vertices with location equal to "us" to "USA"
CREATE QUERY updateEx() FOR GRAPH workNet {
 S = {person.*};

 UPDATE s FROM S:s
 SET s.locationId = "USA", # simple base type attribute
 s.skillList = [1,2,3] # collection-type attribute
 WHERE s.locationId == "us";

 # The update cannot become effective within this query, so PRINT S still
 PRINT S;
}

UPDATE statement example 2

5/13/25, 1:39 PM TigerGraph Documentation

1054

Below is an example of an edge update with two attribute changes, including an

incremental change (e.startYear = e.startYear + 1):

In addition to the above UPDATE statement and SELECT statement, a simple assignment

statement at the query-body level can be used to update the attribute value of a single

vertex/edge, if the vertex/edge has been assigned to a variable or parameter.

The second example is equivalent to the above updateEx
CREATE QUERY updateEx2() FOR GRAPH workNet {
 S = {person.*};

 X = SELECT s
 FROM S:s
 WHERE S.locationId == "USA"
 POST-ACCUM S.locationId = "us",
 S.skillList = [3,2,1];
 PRINT S;
}

CREATE QUERY updateEx3() FOR GRAPH workNet{
 S = {person.*};

 # update edge and target vertices' attribute
 UPDATE e FROM S:s - (worksFor:e) -> :t
 SET e.startYear = e.startYear + 1,
 e.fullTime = false
 WHERE s.locationId == "us";

 PRINT S;
}

change the given person's new location
CREATE QUERY updateByAssignment(VERTEX<person> v, STRING newLocation) FOR
 v.locationId = newLocation;
}

Other Update Methods

UPDATE statement example 3

update by assignment

5/13/25, 1:39 PM TigerGraph Documentation

1055

Output Statements and FILE Objects

The PRINT statement specifies output data. Each execution of a PRINT statement adds a

JSON object to the results array which will be part of the query output. A PRINT statement

can appear anywhere that query-body statements are permitted.

A PRINT statement does not trigger immediate output. The full set of data from all PRINT

statements is delivered at one time, when the query concludes.

Each PRINT statement contains a list of expressions for output data. The optional WHERE

clause filters the output. If the condition is false for any items, then those items are

excluded from the output.

Each printExpr contributes one key-value pair to the PRINT statement's JSON object result.

The optional AS clause sets the key for the expression, overriding the default key

(explained below).

printStmt := PRINT printExpr {,printExpr} [WHERE condition] [TO_CSV (fileP
printExpr := (expr | vExprSet) [AS name]
vExprSet := expr "[" vSetProj {, vSetProj} "]"
vSetProj := expr [AS name]

PRINT Statement (API v2)

EBNF

Simple Example Showing JSON Output Format

5/13/25, 1:39 PM TigerGraph Documentation

1056

Each printExpr may be one of the following:

1. A literal value

2. A global or local variable (including VERTEX and EDGE variables)

3. An attribute of a vertex variable, e.g., Person.name

4. A global accumulator

5. An expression whose terms are among the types above. The following operators may

be used:

STRING str = "first statement";
INT number = 5;
PRINT str, number;

str = "second statement";
number = number + 1;
PRINT str, number;

The statements above produce the following output
{
 "version": {"edition": "developer","api": "v2","schema": 0},
 "error": false,
 "message": "",
 "results": [
 {
 "str": "first statement",
 "number": 5
 },
 {
 "str": "second statement",
 "number": 6
 }
]
}

Numeric
Arithmetic: + - * / . %
Bit: << >> & |

String concatenation: +

Set UNION INTERSECT MINUS

PRINT Expressions

5/13/25, 1:39 PM TigerGraph Documentation

1057

Parentheses can be used for controlling order of precedence.

6. A vertex set variable

7. A vertex expression set vExprSet (only available if the output API is set to "v2". Vertex

expression sets are explained in a separate section below.

In output API v2, the print expression list can be a mixed list of any of the expression types.

In output API v1, vertex set variables cannot be on the same PRINT statement with other

types of expressions.

If a printExpr includes the optional AS name clause, then the name sets the key for that

expression in the JSON output. Otherwise, the following rules determine the key: If the

expression is simply a single variable (local variable, global variable, global accumulator,

or vertex set variable), then the key is the variable name. Also, for a vertex expression set,

the key is the vertex set variable name. Otherwise, the key is the entire expression,

represented as a string.

Each data type has a distinct output format.

• Simple numeric, string, and boolean data types follow JSON standards.

• Lists, sets, bags, and arrays are printed as JSON arrays (i.e., a list enclosed in square

brackets).

• Maps and tuples are printed as JSON objects (i.e., a list of key:value pairs enclosed in

curly braces).

• Vertices and edges have a custom JSON object, shown below.

• A vertex set variable is treated as a list of vertices.

• Accumulator output format is determined by the accumulator's return type. For

example, an AvgAccum outputs a DOUBLE value, and a BitwiseAndAccum outputs a

INT value. For container accumulators, simply consider whether the output is a list,

set, bag, or map.

◦ ListAccum, SetAccum, BagAccum, ArrayAccum: list

JSON Format: Keys

JSON Format: Values

5/13/25, 1:39 PM TigerGraph Documentation

1058

◦ MapAccum: map

◦ HeapAccum, GroupByAccum: list of tuples

Full details of vertices are printed only when part of a vertex set variable or vertex expression

set. When a single vertex is printed (from a variable or accumulator whose data type happens

to be VERTEX), only the vertex id is printed.

Vertex (when not part of a vertex set variable)

The output is just the vertex id as a string:

Vertex (as part of a vertex set variable)

Edge

ListAccum<VERTEX> @@vList; // not a vertex set variable
VERTEX v; // not a vertex set variable
...
PRINT @@vList, v; // output will contain only vertex ids

"<vertex_id>"

{
 "v_id": "<vertex_id>",
 "v_type": "<vertex_type>",
 "attributes": {
 <list of key:value pairs,
 one for each attribute
 or vertex-attached accumulator>
 }
}

Cases where only the vertex id will be printed

Output Format for a Value which is a Vertex, not part of a Vertex Set Variable

Output Format for a Vertex as part of a Vertex Set Variable

Output Format for a Value which is an Edge

5/13/25, 1:39 PM TigerGraph Documentation

1059

List, Set or Bag

Map

Tuple

{
 "e_type": "<edge_type>",
 "directed": <boolean_value>,
 "from_id": "<source_vertex_id>",
 "from_type": "<source_vertex_type>",
 "to_id": "<target_vertex_id>",
 "to_type": "<target_vertex_type>",
 "attributes": {
 <list of key:value pairs,
 one for each attribute>
 }
}

[
 <value1>,
 <value2>,
 ...,
 <valueN>
]

{
 <key1>: <value1>,
 <key2>: <value2>,
 ...,
 <keyN>: <valueN>
}

Output format for a Value which is a List, Set, or Bag

Output Format for a Value which is a Map

Output Format for a Value which is a Tuple

5/13/25, 1:39 PM TigerGraph Documentation

1060

Vertex Set Variable

A vertex expression set is a list of expressions which is applied to each vertex in a vertex

set variable. The expression list is used to compute an alternative set of values to display

in the "attributes" field of each vertex.

The easiest way to understand this is to consider examples containing only one term and

then consider combinations. Consider the following example query. C is a vertex set

variable containing the set of all company vertices. Furthermore, each vertex has a vertex-

attached accumulator @count.

{
 <fieldName1>: <value1>,
 <fieldName2>: <value2>,
 ...,
 <fieldNameN>: <valueN>
}

[
 <vertex1>,
 <vertex2>,
 ...,
 <vertexN>
]

CREATE VERTEX company(PRIMARY_ID clientId STRING, id STRING, country STR

CREATE QUERY vExprSet () FOR GRAPH workNet {
 SumAccum<INT> @count;
 C = {company.*};

 # include some print statements here
}

Vertex Expression Set

Output Format for a Value which is a Vertex Set Variable

Example Query for Vertex Expression Set

5/13/25, 1:39 PM TigerGraph Documentation

1061

If we print the full vertex set, the "attributes" field of each vertex will contain 3 fields: "id",

"country", and "@count". Now consider some simple vertex expression sets:

PRINT C[C.country]

prints the vertex set variable C, except that the "attributes" field will contain only "country",

instead of 3 fields.

PRINT C[C.@count]

prints the vertex set variable C, except that the "attributes" field will contain only "@count",

instead of 3 fields.

PRINT C[C.id, C.@count]

prints the vertex set variable C, except that the "attributes" field will contain only "id" and

"@count".

PRINT C[C.id+"_ex", C.@count+1]

prints the vertex set variable C, except that the "attributes" field contains the following:

• One field consists of each vertex's id value, with the string "_ex" appended to it.

• Another field consists of the @count value incremented by 1. Note: the value of

@count itself has not changed, only the displayed value is incremented.

The last example illustrates the general format for a vertex expression set:

The vertex expression set begins with the name of a vertex set variable. It is followed by a

list of attribute expressions, enclosed in square brackets. Each attribute expression

follows the same rules described earlier in the Print Expressions section. That is, each

attribute expression may refer to one or more attributes or vertex-attached accumulators

of the current vertices, as well as literals, local or global variables, and global

vExprSet := expr "[" vSetProj {, vSetProj} "]"
vSetProj := expr [AS name]

Syntax for Vertex Expression Set

5/13/25, 1:39 PM TigerGraph Documentation

1062

accumulators. The allowed operators (for numeric, string, or set operations) are the same

ones mentioned above.

The key for the vertex expression set is the vertex set variable name.

The value for the vertex expression set is a modified vertex set variable, where the regular

"attributes" value for each vertex is replaced with a set of key:value pairs corresponding to

the set of attribute expressions given in the print expression.

An example which shows all of the cases described above, in combination, is shown

below.

Print Basic Example

5/13/25, 1:39 PM TigerGraph Documentation

1063

Note how the results of the six PRINT statements are grouped in the JSON "results" field

below:

1. Each of the six PRINT statements is represented as one JSON object with the "results"

array.

CREATE QUERY printExampleV2(VERTEX<person> v) FOR GRAPH socialNet {

 SetAccum<VERTEX> @@setOfVertices;
 SetAccum<EDGE> @postedSet;
 MapAccum<VERTEX,ListAccum<VERTEX>> @@testMap;
 FLOAT paperWidth = 8.5;
 INT paperHeight = 11;
 STRING Alpha = "ABC";

 Seed = person.*;
 A = SELECT s
 FROM Seed:s
 WHERE s.gender == "Female"
 ACCUM @@setOfVertices += s;

 B = SELECT t
 FROM Seed:s - (posted:e) -> post:t
 ACCUM s.@postedSet += e,
 @@testMap += (s -> t);

Numeric, String, and Boolean expressions, with renamed keys:
 PRINT paperHeight*paperWidth AS PaperSize, Alpha+"XYZ" AS Letters,
 A.size() > 10 AS AsizeMoreThan10;
Note how an expression is named if "AS" is not used:
 PRINT A.size() > 10;

Vertex variables. Only the vertex id is included (no attributes):
 PRINT v, @@setOfVertices;

Map of Person -> Posts posted by that person:
 PRINT @@testMap;

Vertex Set Variable. Each vertex has a vertex-attached accumulator, whic
happens to be a set of edges (SetAccum<EDGE>), so edge format is shown a
 PRINT A AS VSetVarWomen;

Vertex Set Expression. The same set of vertices as above, but with only
one attribute plus one computed attribute:
 PRINT A[A.gender, A.@postedSet.size()] AS VSetExpr;
}

5/13/25, 1:39 PM TigerGraph Documentation

1064

2. When a PRINT statement has more than one expression (like the first one), the

expressions may appear in the output in a different order than on the PRINT statement.

3. The 2nd PRINT statement shows a key that is generated from the expression itself.

4. The 3rd and 4th PRINT statements show a set of vertices (different than a vertex set

variable) and a map, respectively.

5. The 5th PRINT statement shows the vertex set variable A, including its vertex-attached

accumulators (PRINT A).

6. The 6th PRINT statement shows a vertex set expression for A, customized to include

only one static attribute plus a newly computed attribute.

Results from Query printExampleV2 (WITH COMMENTS ADDED)

5/13/25, 1:39 PM TigerGraph Documentation

1065

5/13/25, 1:39 PM TigerGraph Documentation

1066

GSQL > RUN QUERY printExampleV2("person1")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [
 {
 "AsizeMoreThan10": false,
 "Letters": "ABCXYZ",
 "PaperSize": 93.5
 },
 {"A.size()>10": false},
 {
 "v": "person1",
 "@@setOfVertices": ["person4", "person5", "person2"]
 },
 {"@@testMap": {
 "person4": ["3"],
 "person3": ["2"],
 "person2": ["1"],
 "person1": ["0"],
 "person8": ["7", "8"],
 "person7": ["9", "6"],
 "person6": ["10", "5"],
 "person5": ["4", "11"]
 }},
 {"VSetVarWomen": [
 {
 "v_id": "person4",
 "attributes": {
 "gender": "Female",
 "id": "person4",
 "@postedSet": [{
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person4",
 "to_id": "3",
 "attributes": {},
 "e_type": "posted"
 }]
 },
 "v_type": "person"
 },

5/13/25, 1:39 PM TigerGraph Documentation

1067

Instead of printing output in JSON format, output can be written to a FILE object in

comma-separated values (CSV) format. To select this option, at the end of the PRINT

statement, include the keyword TO_CSV followed by the FILE object name:

The bracket > is no longer supported for directing output to a file or FILE. You must use the

keyword TO_CSV.

Each execution of the PRINT statement appends one line to the FILE. If the PRINT

statement includes multiple expressions, then each printed value is separated from its

neighbor by a comma. If an expression evaluates to a set or list, then the collection's

 {
 "v_id": "person5",
 "attributes": {
 "gender": "Female",
 "id": "person5",
 "@postedSet": [
 {
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person5",
 "to_id": "11",
 "attributes": {},
 "e_type": "posted"
 },
 {
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person5",
 "to_id": "4",
 "attributes": {},
 "e_type": "posted"
 }
]
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "gender": "Female",
 "id": "person2",
 "@postedSet": [{
 "from_type": "person",
 "to_type": "post",
 "directed": true,
 "from_id": "person2",
 "to_id": "1",
 "attributes": {},
 "e_type": "posted"
 }]
 },
 "v_type": "person"
 }
]},
 {"VSetExpr": [
 {

"v id": "person4",

PRINT @@setOfVertices TO_CSV file1;

Printing CSV to a FILE Object

PRINT to CSV FILE syntax example

5/13/25, 1:39 PM TigerGraph Documentation

1068

values are delimited by single spaces. Due to the simpler format of CSV vs. JSON, the

TO_CSV feature only supports data with a simple one- or two-dimension structure.

Limitations of PRINT > File

• Printing a full Vertex set variable is not supported.

• If a vertex is printed, only its ID value is printed.

• If printing a vertex set's vertex-attached accumulator or a vertex set's variable, the result

is a list of values, one for each vertex, separated by newlines.

• The syntax for printing a vertex set expression is currently different when printing to a file

than when printing to standard output. Compare:

◦ PRINT A[A.gender]; # with brackets

◦ PRINT A.gender TO_CSV file1; # without brackets

Writing to FILE objects is optimized for parallel processing. Consequently, the order in which

data is written to the FILE is not guaranteed. Therefore, it is strongly recommended that the

user design their queries such that one of these conditions is satisfied:

1. The query prints only one set of data, and the order of the set is not important.

2. Each line of data to print to a file includes a label which can be used to identify the data.

 v_id : person4 ,
 "attributes": {
 "A.@postedSet.size()": 1,
 "A.gender": "Female"
 },
 "v_type": "person"
 },
 {
 "v_id": "person5",
 "attributes": {
 "A.@postedSet.size()": 2,
 "A.gender": "Female"
 },
 "v_type": "person"
 },
 {
 "v_id": "person2",
 "attributes": {
 "A.@postedSet.size()": 1,
 "A.gender": "Female"
 },
 "v_type": "person"
 }
]}
]
}

PRINT WHERE and PRINT TO_CSV FILE Object Example

5/13/25, 1:39 PM TigerGraph Documentation

1069

Instead of printing CSV output to a FILE object, data can be written to a regular file.

This feature is deprecated because printing to a FILE object covers the same functionality.

The table below shows the differences between printing TO_CSV <FILE object> vs.

TO_CSV <fllepath>.

CREATE QUERY printExampleFile() FOR GRAPH socialNet {
 SetAccum<VERTEX> @@testSet, @@testSet2;
 ListAccum<STRING> @@strList;
 int x = 3;
 FILE file1 ("/home/tigergraph/printExampleFile.txt");

 Seed = person.*;
 A = SELECT s
 FROM Seed:s
 WHERE s.gender == "Female"
 ACCUM @@testSet += s, @@strList += s.gender;
 A = SELECT s
 FROM Seed:s
 WHERE s.gender == "Male"
 ACCUM @@testSet2 += s;

 PRINT @@testSet, @@testSet2 TO_CSV file1; # 1st line: 2 4 5, 1 3 6 7 8
 PRINT x WHERE x < 0 TO_CSV file1; # 2nd line: <skipped because no cont
 PRINT x WHERE x > 0 TO_CSV file1; # 3rd line: 3
 PRINT @@strList TO_CSV file1; # 4th line: Female Female Female
 PRINT A.gender TO_CSV file1; # 5th line: Male\n Male\n Male\n Male\n
}

 PRINT @@setOfVertices TO_CSV "/home/tigergraph/vset.csv";

FILE Object filepath

When filepath is specified

Either run-time or compile-

time,

depending on how users compile-time

Printing to a CSV File as a Filepath (DEPRECATED)

PRINT to CSV FILE syntax example

5/13/25, 1:39 PM TigerGraph Documentation

1070

One of the two ways to write data to a FILE object is with the FILE println statement. (The

other way is with the PRINT statement's TO_CSV option.)

println is a method (function) of a FILE object variable. The println statement can be used

either at the query-body level or a a DML-sub-statement, e.g., within the ACCUM clause of

a SELECT block. Each time println is called, it adds one new line of values to the FILE

object, and then to the corresponding file.

The println function can print most of the expressions handled by PRINT. Note, however,

that this does not include vertex expression sets (vExprSet). If the println statement has a

list of expressions to print, then this will produce a comma-separated list of values. If an

expression refers to a list or set, then the output will be a list of values separated by

spaces, the same format produced by TO_CSV.

The data from query-body level FILE print statements (either TO_CSV or println) will appear in

their original order. However, due to the parallel processing of statements in an ACCUM block,

the order in which println statements at the DML-sub-statement level are processed cannot

be guaranteed. Moreover, the output from println statements in an ACCUM block can be

interspersed with the query-body statements.

chooses

to write the query
Vertex IDs displayed correctly

displayed as TigerGraph

internal ID codes

Append or overwrite
Appends, but FILE object

declaration will reset the FILE.
Always appends.

filepath can be absolute or

relative
Currently only absolute Absolute or relative

printlnStmt := fileVar".println" "(" expr {, expr} ")"

FILE println statement

EBNF for FILE println statement

File object query example

5/13/25, 1:39 PM TigerGraph Documentation

1071

All of the PRINT statements in this example use the TO_CSV option, so there is no JSON

output to the console.

All the output in this case goes the the FILE object. In the query definition, the footer is the

last FILE statement, but the println statements from the SELECT block happen to be

delayed and are printed AFTER the footer line.

CREATE QUERY fileEx (STRING fileLocation) FOR GRAPH workNet {

 FILE f1 (fileLocation);
 P = {person.*};

 PRINT "header" TO_CSV f1;

 USWorkers = SELECT v FROM P:v
 WHERE v.locationId == "us"
 ACCUM f1.println(v.id, v.interestList);
 PRINT "footer" TO_CSV f1;
}
INSTALL QUERY fileEx
RUN QUERY

GSQL > RUN QUERY fileEx("/home/tigergraph/fileEx.txt")
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": []
}

Results from Query fileEx

File contents produced by fileEx example

5/13/25, 1:39 PM TigerGraph Documentation

1072

A FILE Object can be passed from one query to a subquery. The subquery can then also

write to the FILE object.

[tigergraph@localhost]$ more /home/tigergraph/fileEx.txt
header
person7,art sport
person10,football sport
person4,football
person9,financial teaching
person1,management financial
footer

CREATE QUERY fileParamSub(FILE f, STRING label, INT num) FOR GRAPH socialN
 f.println(label, "header");
 FOREACH i IN RANGE [1,2] DO
 f.println(label, num+i);
 END;
 f.println(label, "footer");
}

CREATE QUERY fileParamMain(STRING mainlabel) FOR GRAPH socialNet {
 FILE f ("/home/tigergraph/fileParam.txt");
 f.println(mainlabel, "header");
 FOREACH i IN RANGE [1,2] DO
 f.println(mainlabel, i);
 fileParamSub(f, " sub", 10*i);
 END;
 f.println(mainlabel, "footer");
}

Passing a FILE Object as a Parameter

Example: query passing a FILE object to another query

5/13/25, 1:39 PM TigerGraph Documentation

1073

The LOG statement is another means to output data. It works as a function that outputs

information to a log file.

The first argument of the LOG statement is a boolean condition that enables or disables

logging. This allows logging to be easily turned on/off, for uses such as debugging. After

the condition, LOG takes one or more expressions (separated by commas). These

expressions are evaluated and output to the log file.

Unlike the PRINT statement, which can only be used as a query-body statement, the LOG

statement can be used as both a query-body statement and a DML-sub-statement.

The values will be recorded in the GPE log. To find the log file after the query has

completed, open a Linux shell and use the command "gadmin log gpe". It may show you

more than one log file name; use the one ending in "INFO". Search this file for "UDF_".

GSQL > RUN QUERY fileParamMain("main")
GSQL > EXIT

$ cat /home/tigergraph/fileParam.txt
main,header
main,1
 sub,header
 sub,11
 sub,12
 sub,footer
main,2
 sub,header
 sub,21
 sub,22
 sub,footer
main,footer

logStmt := LOG "(" condition "," argList ")"

LOG Statement

EBNF for LOG statement

Examples

5/13/25, 1:39 PM TigerGraph Documentation

1074

The RETURN statement specifies data that a sub-query passes back to an outer query that

called the sub-query. In order for a query to be used as a subquery, its initial CREATE

QUERY statement must include the optional RETURNS clause, and its body must end with

a RETURN statement. Exactly one type is allowed in the RETURNS clause, and thus

RETURN statement can only return one expression.The returned expression must have the

same type as the RETURNS clause indicates. A sub-query must be created before its

corresponding super-query. A sub-query must be install either before or in the same

INSTALL QUERY command with its super-query.

The return type can be any base type or any accumulator type. For the purposes of return

type, SetAccum is equivalent to SET, and BagAccum is equivalent to BAG. A vertex set

variable can be returned if SET<VERTEX<type>> or SetAccum<VERTEX<type>> (<type> is

optional) is used in the RETURNS clause.

For subqueries to return a HeapAccum or GroupByAccum, the accumulators must be defined

at the global level (outside of any query), as part of the schema. HeapAccum also requires a

corresponding tuple type to be defined. See example below.

See also Section 5.11 - Queries and Functions.

BOOLEAN debug = TRUE;
INT x = 10;

LOG(debug, 20);
LOG(debug, 10, x);

createQuery := CREATE QUERY name "(" [parameterList] ")" FOR GRAPH name [R

returnStmt := RETURN expr

RETURN Statement

EBNF for RETURN statement

Subquery Returning HeapAccum Example

5/13/25, 1:39 PM TigerGraph Documentation

1075

TYPEDEF tuple<name string, friends int> myTuple
TYPEDEF HeapAccum<myTuple>(3, friends DESC) myHeap

CREATE QUERY subquery1() FOR GRAPH socialNet RETURNS (myHeap){
myHeap @@heap;
SumAccum<int> @friends;
Start = {person.*};
Start = select s from Start:s-(friend:e)-:t
 accum s.@friends += 1
 post-accum @@heap += myTuple(s.id,s.@friends);
RETURB @@heap;

}

CREATE QUERY query1() FOR GRAPH socialNet {
PRINT subquery1();

}

CREATE QUERY subquery1 (VERTEX<person> m1) FOR GRAPH socialNet RETURNS(Bag
{
 Start = {m1};
 L = SELECT t
 FROM Start:s - (liked:e) - post:t;
 RETURN L;
}
CREATE QUERY mainquery1 () FOR GRAPH socialNet
{
 BagAccum<VERTEX<post>> @@testBag;
 Start = {person.*};
 Start = SELECT s FROM Start:s
 ACCUM @@testBag += subquery1(s);
 PRINT @@testBag;
}

Subquery Example 1

Result

5/13/25, 1:39 PM TigerGraph Documentation

1076

GSQL > RUN QUERY mainquery1()
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@testBag": [
 "6",
 "3",
 "8",
 "4",
 "4",
 "0",
 "0",
 "0",
 "10"
]}]
}

CREATE QUERY subquery2 (VERTEX<person> m1) FOR GRAPH socialNet RETURNS(INT
{
 int x;
 Start = {m1};
 Start = SELECT t FROM Start:t
 ACCUM CASE WHEN t.gender == "Male" THEN x = 5
 WHEN t.gender == "Female" THEN x = 10
 ELSE x = -1
 END;
 RETURN x;
}
CREATE QUERY mainquery2 (SET<VERTEX<person>> m1) FOR GRAPH socialNet
{
 SumAccum<INT> @@sum1;
 Start = {m1};
 Start = SELECT t FROM Start:t
 ACCUM @@sum1 += subquery2(t);
 PRINT @@sum1;
}

Subquery Example 2

Result

5/13/25, 1:39 PM TigerGraph Documentation

1077

GSQL > RUN QUERY mainquery2(["person1","person2"])
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"@@sum1": 15}]
}

5/13/25, 1:39 PM TigerGraph Documentation

1078

Exception Statements

This section describes how the GSQL language responds to exceptions and supports

user-defined exception handling . An exception is a run-time error. The GSQL language

supports both built-in system exceptions and user-defined exceptions. Built-in exceptions

include GSQL language exceptions (such as out-of-range value, wrong data type, and

illegal operation), and errors arising in other TigerGraph components or from the operation

system.

The GSQL query language also supports user-defined exception responses, also known as

exception handling. This section covers the following syntax for user-defined exception

behavior:

When an exception occurs during the execution of a query, the default response is the

following:

• The query will not execute any more statements; it will exit.

• If the query was run using the RUN QUERY command, then an error message will be

displayed.

###
Exception Statements

declExceptStmt := EXCEPTION exceptVarName "(" errorCode ")"
exceptVarName := name
errorCode := integer

raiseStmt := RAISE exceptVarName [errorMsg]
errorMsg := "(" expr ")"

tryStmt := TRY queryBodyStmts EXCEPTION caseExceptBlock+
 [elseExceptBlock] END ";"
caseExceptBlock := WHEN exceptVarName THEN queryBodyStmts
elseExceptBlock := ELSE queryBodyStmts

Default Exception Response

5/13/25, 1:39 PM TigerGraph Documentation

1079

• If the query was run by invoking the GET /query REST++ endpoint, then the output will

be a simple JSON object. Some errors have a error "code" field; others do no t:

The example below show two common errors: wrong data type and divide-by-zero. First

we define a simple query that divides 100.0 by the query's input parameter.

We then test three cases:

1. A valid input (such as n1 = 7)

2. Wrong data type (n1 = "A")

3. Divide by zero (n1 = 0)

First we test using the GSQL interface. When the query runs without error, the output is in

JSON format. Where there is a built-in exception, however, only an error message is

displayed.

{
 "error": true,
 "message": "<errorMsg>"
 "code": "<errType><errorCode>"
}

CREATE QUERY excpBuiltin(INT n1) FOR GRAPH minimalNet {
 PRINT 100.0/n1;
}

Output of Unhandled Exception (query run as REST Endpoint)

Example: query excpBuiltin

Exception response for RUN QUERY

5/13/25, 1:39 PM TigerGraph Documentation

1080

The situation is a little different when running the query as a REST++ endpoint. The output

is always in JSON format.

As of TigerGraph v1.2, the format for the GET /query endpoint has changed. The graph

name must now be specified after /query:

/query/{graph_name}/{query_name}

GSQL > RUN QUERY excpBuiltin(7)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"100.0/n1": 14.28571}]
}

GSQL > RUN QUERY excpBuiltin("a")
Values of parameter n1 must be INT64 type, invalid value [a] provided.

GSQL > RUN QUERY excpBuiltin(0)
Runtime Error: divider is zero.

Exception response for GET /query request

5/13/25, 1:39 PM TigerGraph Documentation

1081

A query author can specify what should be the response if a particular type of exception

occurs within a particular specified block of statements.

$ curl -X GET "http://localhost:9000/query/minimalNet/excpBuiltin?n1=7"
{
 "error": false,
 "message": "",
 "results": [
 {
 "100.0/n1": 14.28571
 }
],
 "version": {
 "edition": "developer",
 "api": "v2",
 "schema": 0
 }
}

$ curl -X GET "http://localhost:9000/query/minimalNet/excpBuiltin?n1=a"
{
 "code": "REST-30000",
 "error": true,
 "message": "Values of parameter n1 must be INT64 type, invalid value [
 "version": {
 "edition": "developer",
 "api": "v2",
 "schema": 0
 }
}

$ curl -X GET "http://localhost:9000/query/minimalNet/excpBuiltin?n1=0"
{
 "error": true,
 "message": "Runtime Error: divider is zero.",
 "version": {
 "edition": "developer",
 "api": "v2",
 "schema": 0
 }
}

User-Defined Exception Behavior

5/13/25, 1:39 PM TigerGraph Documentation

1082

The following statement types are available to specify a user-defined exception condition

or a user-defined exception response.

• The EXCEPTION Declaration Statement names a user-defined exception.

• The RAISE Statement indicates that one of the user-defined exceptions has occurred.

• The TRY…EXCEPTION Statement is used to define and apply user-defined exception

handling to a block of query-body statements. This can be used with or without

preceding user-defined EXCEPTION and RAISE statements.

Built-in exceptions always take precedence over user-defined exceptions. Therefore, user-

defined exceptions can only be used to catch conditions that would not be caught by a built-

in exception. This means that built–in exceptions are best used to capture situations which

are legal according to the general syntax and semantics of the GSQL query language, but

which are illegal or undesirable for a particular user application.

To use a user-defined exception, it must first be declared. An exception declaration

statement declares a user-defined exception type, assigning a name and identification

number. The id number errorCode must be greater than 40,000. Numbers 40,000 and

lower are reserved for system exceptions. Exception statements must be placed before

any query-body statements, after accumulator declaration statements . A query can

declare multiple exception types.

The RAISE statement announces that a user-defined exception has just occurred. The

exceptVarName must match one of the exceptions that was previously declared. An

declExceptStmt := EXCEPTION exceptVarName "(" errorCode ")"
exceptVarName := name
errorCode := integer

raiseStmt := RAISE exceptVarName [errorMsg]
errorMsg := "(" expr ")"

EXCEPTION Declaration Statement

RAISE Statement

5/13/25, 1:39 PM TigerGraph Documentation

1083

optional error message can be specified. Once the RAISE statement is executed, the flow

of execution changes. If the RAISE statement is not within a TRY clause, then the query

ends with the default exception response, using the error code and error message defined

by the exception type and RAISE statements. If the RAISE is within a TRY statement, then

execution jumps to the EXCEPTION handling clause of the TRY statement.

A RAISE statement itself does not include the conditions that define the exception.

Typically, the user will use an IF…THEN statement and place the RAISE statement within

the THEN clause.

In the current version, a RAISE statement can only be used as a query-body-statement. It

cannot be used as a DML-sub-statement. In particular, you cannot RAISE an exception inside

a SELECT statement.

The example below defines and checks for two types of exceptions: an empty input set

(40001) and no matching edges (40002). Remember that the minimum allowed code

number is 40001.

Example: Unhandled User-Defined Exceptions

5/13/25, 1:39 PM TigerGraph Documentation

1084

CREATE QUERY excpCountActivity(SET<VERTEX<person>> vSet, STRING eType) FOR
 # Count how many edges there are from each member of the input person se
 # along the specified edge type.

 MapAccum<STRING,INT> @@allCount;
 EXCEPTION emptyList (40001);
 EXCEPTION noEdges (40002);

 IF ISEMPTY(vSet) THEN ## Raise 40001
 RAISE emptyList ("Error: Input parameter 'vSet' (type SET<VERTEX<perso
 END;

 Start = vSet;
 Results = SELECT s
 FROM Start:s -(:e)-> post:t
 WHERE e.type == eType
 ACCUM @@allCount += (t.subject -> 1);

 IF Results.size() == 0 THEN ## Raise 40002
 RAISE noEdges ("Error: No '" + eType + "' edges from the vertex set");
 END;
 PRINT @@allCount;
}

Results

5/13/25, 1:39 PM TigerGraph Documentation

1085

// Valid input: no exceptions
$ curl -X GET "http://localhost:9000/query/socialNet/excpCountActivity?vSe
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{
 "@@allCount": {
 "cats": 1,
 "tigergraph": 2
 }
 }]
}

// empty input set (due to spelling error in parameter name)
$ curl -X GET "http://localhost:9000/query/socialNet/excpCountActivity?vse
{
 "code": "40001",
 "error": true,
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "message": "Error: Input parameter 'vSet' (type SET<VERTEX<person>>) is
}

// no edges (due to unknown edge type)
$ curl -X GET "http://localhost:9000/query/socialNet/excpCountActivity?vSe
{
 "code": "40002",
 "error": true,
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "message": "Error: No 'commented' edges from the vertex set"
}

5/13/25, 1:39 PM TigerGraph Documentation

1086

The TRY…EXCEPTION Statement is used to define and apply user-defined exception

handling to a block of query-body statements. A TRY...EXCEPTION statement can be

nested within a TRY block or EXCEPTION block.

The current version of GSQL does not support custom handling of built-in exceptions.

Therefore, if a built-in exception occurs, it ignores the TRY..EXCEPTION blocks and simply

applies the default handling, and the query aborts. In future updates, we plan to support

custom handling of both custom exceptions (RAISE) and built-in exception with the

TRY...EXCEPTION block.

The TRY…EXCEPTION Statement is a compound statement containing two blocks. The

first block (TRY) consists of the query-body statements for which custom error handling

should be applied. The second block (EXCEPTION) contains a series of WHEN…THEN

exception handling clauses. Each exception handling clause names an exception type

and specifies what actions to take in the event of the exception. An optional ELSE clause

contains handling statements for all other exceptions. The following text and visual

flowchart details how the TRY... EXCEPTION block handles an exception.

When an exception occurs within a TRY block, the flow of execution skips the remainder of

the TRY block and jumps to the EXCEPTION block. The GSQL flow now seeks to match the

exception type with a handler. After executing the handling statements in the THEN or

ELSE clause, the flow skips the remainder of the EXCEPTION block and continues with the

statement following the END statement. However, if there is no matching WHEN or ELSE

handler, then the exception is propagated. That is, the RAISE state is maintained after

exiting the EXCEPTION block. If the TRY...EXCEPTION block is nested inside another TRY

block, then the handling process is repeated at this upper level. This repeats until either

the exception is handled or there are no more TRY...EXCEPTION blocks.

Finally, if the unhandled exception is not within a TRY block, then the the query is aborted,

and the default exception response is the output.

tryStmt := TRY queryBodyStmts EXCEPTION caseExceptBlock [elseExcep
caseExceptBlock := WHEN exceptVarName THEN queryBodyStmts+
elseExceptBlock := ELSE queryBodyStmts

TRY...EXCEPTION Statement for Custom Error Handling

5/13/25, 1:39 PM TigerGraph Documentation

1087

Case 1: If cond1 is true in the outer TRY block,

• RAISE A and jump to the output EXCEPTION block.

Handled by ELSE HandStmtsZ.

Case 2: If cond2 is true in the inner TRY block,

• RAISE A and jump to the inner EXCEPTION block.

Handled by handStmtsX;

Case 3: If cond3 is true in the inner TRY block,

• RAISE B and jump to the inner EXCEPTION block. There is no matching handler here,

so propagate the exception. Jump to the outer EXCEPTION block. Handled by

handStmtsY.

Custom Handling Example:

The following example is a modified shortest path query. It looks for all paths from a

source to a target in a computer network. It uses breadth-first search and stops at depth N

when it has found at least one path at depth N, or it has searched the entire graph. There

are three conditions which will cause it to RAISE an exception and abort the search:

5/13/25, 1:39 PM TigerGraph Documentation

1088

1. Seeing an edge with a negative connection speed (because the graph has bad data).

2. Seeing an edge with a very slow connection speed (again because the graph has bad

data).

3. If no path was found in the graph (the search is already over, but we skip printing

results).

Note that cases 1 and 2 do NOT mean that a negative or slow speed edge is actually on a

shortest path, only that the query noticed a bad edge during its search. Also, because we

cannot RAISE within the SELECT block, we use a workaround: set an integer variable with

an error code. Immediately after the SELECT block, test the integer variable and RAISE

exceptions as needed.

Example: Path Search with Exceptions

5/13/25, 1:39 PM TigerGraph Documentation

1089

5/13/25, 1:39 PM TigerGraph Documentation

1090

CREATE QUERY compPathValid (vertex<computer> src, vertex<computer> tgt, BO
FOR GRAPH computerNet {
Find valid paths in a computer network from a source to a target.
Stop search once you have found some paths.
3 Exceptions: (1) Negative connection speed, (2) Slow connection speed,
Set enExcp=true to raise exceptions. enExcp=false will find paths, good

OrAccum @@reached, @visited;
ListAccum<STRING> @paths;
DOUBLE minSpeed = 0.4;
INT err;

EXCEPTION negSpeed (40001);
EXCEPTION slowSpeed (40002);
EXCEPTION notReached (40003);

TRY
Start = {src};
Initialize: path to src is itself.
Start = SELECT s

FROM Start:s
ACCUM s.@paths = s.id;

WHILE Start.size() != 0 AND NOT @@reached DO
Start = SELECT t

FROM Start:s -(:e)-> :t
WHERE t.@visited == false
ACCUM CASE

WHEN e.connectionSpeed < 0 THEN err = 1
WHEN e.connectionSpeed < minSpeed THEN err = 2
WHEN t == tgt THEN @@reached += true
END,

List1 * List2 -> List(each elem of List1 concat w/each elem
t.@paths += (s.@paths * ["~"]) * [t.id]

POST-ACCUM t.@visited = true;
IF err == 1 AND enExcp THEN

RAISE negSpeed ("Negative Speed");
ELSE IF err == 2 AND enExcp THEN

RAISE slowSpeed ("Slow Speed");
END;

END; # WHILE

IF NOT @@reached AND enExcp THEN
RAISE notReached ("No path to target");

ELSE
Result = {tgt};
PRINT Result[Result.@paths]; // api v2

END;

5/13/25, 1:39 PM TigerGraph Documentation

1091

As the data in Appendix D show:

• Any search passing through c1 will see negative edges.

• Any search passing through c12 will see negative and slow edges.

• Any search passing through c14 will see negative edges.

The results for 5 cases are shown: 1 valid search plus each of the 3 exception conditions.

The 5th case is the same as the 4th, but exception handling is not enabled.

EXCEPTION
WHEN negSpeed THEN PRINT "bad path: negative speed";
WHEN slowSpeed THEN PRINT "bad path: slow speed";
WHEN notReached THEN PRINT "no path from source to target";

END;
}

compPathValid.json

5/13/25, 1:39 PM TigerGraph Documentation

1092

5/13/25, 1:39 PM TigerGraph Documentation

1093

GSQL > RUN QUERY compPathValid("c10","c12",true)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "c12",
 "attributes": {"Result.@paths": ["c10~c11~c12"]},
 "v_type": "computer"
 }]}]
}
GSQL > RUN QUERY compPathValid("c1","c12",true)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"bad path: negative speed": "bad path: negative speed"}]
}
GSQL > RUN QUERY compPathValid("c10","c13",true)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"bad path: slow speed": "bad path: slow speed"}]
}
GSQL > RUN QUERY compPathValid("c24","c25",true)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"no path from source to target": "no path from source to ta
}

5/13/25, 1:39 PM TigerGraph Documentation

1094

The flowchart below summarizes all the cases for triggering and handling exceptions,

both user-defined and built-in.

GSQL > RUN QUERY compPathValid("c24","c25",false)
{
 "error": false,
 "message": "",
 "version": {
 "edition": "developer",
 "schema": 0,
 "api": "v2"
 },
 "results": [{"Result": [{
 "v_id": "c25",
 "attributes": {"Result.@paths": []},
 "v_type": "computer"
 }]}]
}

Exception Handling Flowchart

5/13/25, 1:39 PM TigerGraph Documentation

1095

5/13/25, 1:39 PM TigerGraph Documentation

1096

Comments

A comment is a section of text that is ignored by the language parser; its purpose is to

provide information to human readers. The comment markers follow the conventions

used in C++ and SQL:

• Single-line or partial-line comments begin with either # or // and end at the end of the

line (with the newline character).

• Multi-line comment blocks begin with /* and end with */

5/13/25, 1:39 PM TigerGraph Documentation

1097

Appendix

5/13/25, 1:39 PM TigerGraph Documentation

1098

Common Errors and Problems

No computer can store all floating point numbers (i.e., non-integers) with perfect

precision. The float data type offers about 7 decimal digits of precision; the double data

type offers about 15 decimal digits of precision. Comparing two float or double values by

using operators involving exact equality (==, <=, >=, BETWEEN ... AND ...) might lead to

unexpected behavior. If the GSQL language parser detects that the user is attempting an

exact equivalence test with float or double data types, it will display a warning message

and suggestion. For example, if there are two float variables v and v2, the expression v ==

v2 causes the following warning message:

Response to Non-existent vertex ID

If a query has a vertex parameter (VERTEX or VERTEX<vType>), and if the ID for a

nonexistent vertex is given when running the query, an error message is shown, and the

query won't run. This is also the response when calling a function to convert a single

vertex ID string to a vertex:

• to_vertex(): See Section "Miscellaneous Functions".

However, if the parameter is a vertex set (SET<VERTEX> or SET<VERTEX<vType>>), and

one or more nonexistent IDs are given when running the query, a warning message is

shown, but the query still runs, ignoring those nonexistent IDs. Therefore, if all given IDs

are nonexistent, the parameter becomes an empty set. T his is also the response when

calling a function to convert a set of vertex IDs to a set of vertices :

• to_vertex_set(): See Section " Miscellaneous Functions ".

• SelectVertex(): See Section " Miscellaneous Functions ".

The comparison 'v==v2' may lead to unexpected behavior because it involves
equality test between float/double numeric values. We suggest to do such
comparison with an error margin, e.g. 'abs((v) - (v2)) < epsilon', where e
is a very small positive value of your choice, such as 0.0001.

Floating Point Precision Limits

5/13/25, 1:39 PM TigerGraph Documentation

1099

Complete Formal Syntax
for Query Language

This is the definition for the GSQL Query Language syntax. It is defined as a set of rules

expressed in EBNF notation.

This defines the EBNF notation used to describe the syntax. Rules contains terminal and

non-terminal symbols. A terminal symbol is a base-level symbol which expresses literal

output. All symbols in single or double quotes (e.g., '+', "=", ")", "10") are terminal symbols.

A non-terminal symbol is defined as some combination of terminal and non-terminal

symbols. The left-hand side of a rule is always a non-terminal; this rule defines the non-

terminal. The example rule below defines assignmentStmt (that is, an Assignment

Statement) to be a name followed by an equal sign followed by an expression, operator,

and expression with a terminating semi-colon. AssignmentStmt, name, and expr are all

non-terminals. Additionally, all KEYWORDS are in all-capitals and are terminal symbols.

The ":=" is part of EBNF and states the left hand side can be expanded to the right hand

side.

A vertical bar | in EBNF indicates choice. Choose either the symbol on the left or on the

right. A sequence of vertical bars means choose any one of the symbols in the sequence.

Square brackets [] indicate an optional part or group of symbols. Parentheses () group

symbols together. The rule below defines a constant to be one, two, or three digits

preceded by an optional plus or minus sign.

assignmentStmt := name "=" expr op expr ";"

op := "+" | "-" | "*" | "/"

Notation Used to Define Syntax

EBNF Syntax example: A rule

EBNF Syntax: vertical bar

EBNF Syntax: Square brackets and parentheses

5/13/25, 1:39 PM TigerGraph Documentation

1100

Star * and plus + are symbols in EBNF for closure. Star means zero or more occurrences,

and plus means one or more occurrences. The following defines intConstant to be an

optional plus or minus followed by one or more digits. It also defines floatConstant to be

an optional plus or minus followed by zero or more digits followed by a decimal followed

by one or more digits. The star and plus also can be applied to groups of symbols as in

the definition of list. The non-terminal list is defined as a parenthesized list of comma-

separated expressions (expr). The list has at least one expression which can be followed

by zero or more comma-expression pairs.

Curly braces { } enclose an optional group of symbols which are repeated zero or more

times. Therefore, curly braces are equivalent to square brackets or parentheses followed

by a star + to indicate zero or more repetitions. All of the following expressions are

equivalent:

For brevity, the literal comma is sometimes shown without quotation marks:

constant := ["+" | "-"] (digit | (digit digit) | (digit digit digit))

intConstant := ["+" | "-"] digit+
floatConstant := ["+" | "-"] digit* "." digit+
list := "(" expr ["," expr]* ")"

list1 := expr ["," expr]*
list2 += expr ("," expr)*
list3 := expr {"," expr}

list4 := expr {, expr}

GSQL Query Language EBNF

EBNF Syntax: square brackets and parentheses

5/13/25, 1:39 PM TigerGraph Documentation

1101

5/13/25, 1:39 PM TigerGraph Documentation

1102

###
EBNF for GSQL Query Language

createQuery := CREATE QUERY name "(" [parameterList] ")" FOR GRAPH name
 [RETURNS "(" baseType | accumType ")"]
 [API "(" stringLiteral ")"]
 "{" [typedefs] [declStmts] [declExceptStmts] queryBodyStmts

parameterValueList := parameterValue [, parameterValue]*
parameterValue := parameterConstant
 | "[" parameterValue [, parameterValue]* "]" // BAG or SE
 | "(" stringLiteral, stringLiteral ")" // a generic
parameterConstant := numeric | stringLiteral | TRUE | FALSE
parameterList := parameterType name ["=" constant]
 ["," parameterType name ["=" constant]]*

typedefs := (typedef ";")+
declStmts := (declStmt ";")+
declStmt := baseDeclStat | accumDeclStmt | fileDeclStmt
declExceptStmts := (declExceptStmt ";")+
queryBodyStmts := (queryBodyStmt ";")+
queryBodyStmt := assignStmt // Assignment
 | vSetVarDeclStmt // Declaration
 | gAccumAssignStmt // Assignment
 | gAccumAccumStmt // Assignment
 | funcCallStmt // Function Call
 | selectStmt // Select
 | queryBodyCaseStmt // Control Flow
 | queryBodyIfStmt // Control Flow
 | queryBodyWhileStmt // Control Flow
 | queryBodyForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | updateStmt // Data Modification
 | insertStmt // Data Modification
 | queryBodyDeleteStmt // Data Modification
 | printStmt // Output
 | printlnStmt // Output
 | logStmt // Output
 | returnStmt // Output
 | raiseStmt // Exception
 | tryStmt // Exception

installQuery := INSTALL QUERY [installOptions] ("*" | ALL |name [, name]*
runQuery := RUN QUERY [runOptions] name "(" parameterValueList ")"

showQuery := SHOW QUERY name
dropQuery := DROP QUERY ("*" | ALL | name [, name]*)

5/13/25, 1:39 PM TigerGraph Documentation

1103

###
Types and names

lowercase := [a-z]
uppercase := [A-Z]
letter := lowercase | uppercase
digit := [0-9]
integer := ["-"]digit+
real := ["-"]("." digit+) | ["-"](digit+ "." digit*)

numeric := integer | real
stringLiteral := '"' [~["] | '\\' ('"' | '\\')]* '"'

name := (letter | "_") [letter | digit | "_"]* // Can be a single "_" or

type := baseType | name | accumType | STRING COMPRESS

baseType := INT
 | UINT
 | FLOAT
 | DOUBLE
 | STRING
 | BOOL
 | VERTEX ["<" name ">"]
 | EDGE
 | JSONOBJECT
 | JSONARRAY
 | DATETIME

filePath := name | stringLiteral

typedef := TYPEDEF TUPLE "<" tupleType ">" name

tupleType := (baseType name) | (name baseType) ["," (baseType name) | (nam

parameterType := baseType
 | [SET | BAG] "<" baseType ">"
 | FILE

###
Accumulators

accumDeclStmt := accumType "@"name ["=" constant][, "@"name ["=" constant]
 | "@"name ["=" constant][, "@"name ["=" constant]]* accumTy
 | [STATIC] accumType "@@"name ["=" constant][, "@@"name ["=
 | [STATIC] "@@"name ["=" constant][, "@@"name ["=" constant

5/13/25, 1:39 PM TigerGraph Documentation

1104

accumType := "SumAccum" "<" (INT | FLOAT | DOUBLE | STRING | STRING COMPR
 | "MaxAccum" "<" (INT | FLOAT | DOUBLE) ">"

 | "MinAccum" "<" (INT | FLOAT | DOUBLE) ">"
 | "AvgAccum"

 | "OrAccum"
 | "AndAccum"

 | "BitwiseOrAccum"
 | "BitwiseAndAccum"

 | "ListAccum" "<" type ">"
 | "SetAccum" "<" elementType ">"
 | "BagAccum" "<" elementType ">"

 | "MapAccum" "<" elementType "," baseType | accumType | name "
 | "HeapAccum" "<" name ">" "(" (integer | name) "," name [ASC |

 | "GroupByAccum" "<" elementType name ["," elementType name]* ,
 | "ArrayAccum" "<" name ">"

elementType := baseType | name | STRING COMPRESS

gAccumAccumStmt := "@@"name "+=" expr

##
Operators, Functions, and Expressions

constant := numeric | stringLiteral | TRUE | FALSE | GSQL_UINT_MAX
 | GSQL_INT_MAX | GSQL_INT_MIN | TO_DATETIME "(" stringLiteral ")

mathOperator := "*" | "/" | "%" | "+" | "-" | "<<" | ">>" | "&" | "|"

condition := expr
 | expr comparisonOperator expr
 | expr [NOT] IN setBagExpr
 | expr IS [NOT] NULL
 | expr BETWEEN expr AND expr
 | "(" condition ")"
 | NOT condition
 | condition (AND | OR) condition
 | (TRUE | FALSE)

comparisonOperator := "<" | "<=" | ">" | ">=" | "==" | "!="

expr := ["@@"]name
| name "." "type"
| name "." ["@"]name
| name "." "@"name ["\'"]
| name "." name "." name "(" [argList] ")"

 | name "." name "(" [argList] ")" [".".FILTER "(" condition ")"]
| name ["<" type ["," type"]* ">"] "(" [argList] ")"
| name "." "@"name ("." name "(" [argList] ")")+ ["." name]
| " " (" " "(" [i] ")") [" "]

5/13/25, 1:39 PM TigerGraph Documentation

1105

| "@@"name ("." name "(" [argList] ")")+ ["." name]
| COALESCE "(" [argList] ")"
| (COUNT | ISEMPTY | MAX | MIN | AVG | SUM) "(" setBagExpr ")"
| expr mathOperator expr
| "-" expr
| "(" expr ")"
| "(" argList "->" argList ")" // key value pair for MapAccum
| "[" argList "]" // a list
| constant
| setBagExpr
| name "(" argList ")" // function call or a tuple object

setBagExpr := ["@@"]name
 | name "." ["@"]name

 | name "." "@"name ("." name "(" [argList] ")")+
 | name "." name "(" [argList] ")" [".".FILTER "(" condition "
 | "@@"name ("." name "(" [argList] ")")+
 | setBagExpr (UNION | INTERSECT | MINUS) setBagExpr
 | "(" argList ")"
 | "(" setBagExpr ")"

###
Declarations and Assignments

Declarations
baseDeclStmt := baseType name ["=" constant][, name ["=" constant]]*
fileDeclStmt := FILE fileVar "(" filePath ")"
fileVar := name

localVarDeclStmt := baseType name "=" expr

vSetVarDeclStmt := name ["(" vertexEdgeType ")"] "=" (seedSet | simpleSet

simpleSet := name | "(" simpleSet ")" | simpleSet (UNION | INTERSECT | MIN

seedSet := "{" [seed ["," seed]*] "}"
seed := '_'
 | ANY
 | ["@@"]name
 | name ".*"
 | "SelectVertex" selectVertParams

selectVertParams := "(" filePath "," columnId "," (columnId | name) ","
 stringLiteral "," (TRUE | FALSE) ")" [".".FILTER "(" cond

columnId := "$" (integer | stringLiteral)

Assignment Statements
assignStmt := name "=" expr

5/13/25, 1:39 PM TigerGraph Documentation

1106

g p
 | name "." name "=" expr
 | name "." "@"name ("+="| "=") expr

gAccumAssignStmt := "@@"name ("+=" | "=") expr

loadAccumStmt := "@@"name "=" "{" "LOADACCUM" loadAccumParams ["," "LOADAC

loadAccumParams := "(" filePath "," columnId "," [columnId ","]*
 stringLiteral "," (TRUE | FALSE) ")" [".".FILTER "(" condi

Function Call Statement
funcCallStmt := name ["<" type ["," type"]* ">"] "(" [argList] ")"
 | "@@"name ("." name "(" [argList] ")")+

argList := expr ["," expr]*

###
Select Statement

selectStmt := name "=" selectBlock

selectBlock := SELECT name FROM (edgeSet | vertexSet)
 [sampleClause]
 [whereClause]
 [accumClause]
 [postAccumClause]
 [havingClause]
 [orderClause]
 [limitClause]

vertexSet := name [":" name]

edgeSet := name [":" name]
 "-" "(" [vertexEdgeType] [":" name] ")" "->"
 [vertexEdgeType] [":" name]

vertexEdgeType := "_" | ANY | name | ("(" name ["|" name]* ")")

sampleClause := SAMPLE (expr | expr "%") EDGE WHEN condition
 | SAMPLE expr TARGET WHEN condition
 | SAMPLE expr "%" TARGET PINNED WHEN condition

whereClause := WHERE condition

accumClause := ACCUM DMLSubStmtList

postAccumClause := POST-ACCUM DMLSubStmtList

5/13/25, 1:39 PM TigerGraph Documentation

1107

Query Language Reserved Words

The following words are reserved for use by the GSQL query language. This includes

words which are currently keywords (such as GRAPH), as well as words which might be

used in the future (such as EXTERN).

For Data Definition & Loading, there exists a different list of reserved keywords found here.

DMLSubStmtList := DMLSubStmt ["," DMLSubStmt]*

DMLSubStmt := assignStmt // Assignment
 | funcCallStmt // Function Call
 | gAccumAccumStmt // Assignment
 | vAccumFuncCall // Function Call
 | localVarDeclStmt // Declaration
 | DMLSubCaseStmt // Control Flow
 | DMLSubIfStmt // Control Flow
 | DMLSubWhileStmt // Control Flow
 | DMLSubForEachStmt // Control Flow
 | BREAK // Control Flow
 | CONTINUE // Control Flow
 | insertStmt // Data Modification
 | DMLSubDeleteStmt // Data Modification
 | printlnStmt // Output
 | logStmt // Output

vAccumFuncCall := name "." "@"name ("." name "(" [argList] ")")+

havingClause := HAVING condition

orderClause := ORDER BY expr [ASC | DESC] ["," expr [ASC | DESC]]*

limitClause := LIMIT (expr | expr "," expr | expr OFFSET expr)

###
Control Flow Statements

queryBodyIfStmt := IF condition THEN queryBodyStmts [ELSE IF condition THE
DMLSubIfStmt := IF condition THEN DMLSubStmtList [ELSE IF condition THE

queryBodyCaseStmt := CASE (WHEN condition THEN queryBodyStmts)+ [ELSE
 | CASE expr (WHEN constant THEN queryBodyStmts)+ [ELSE
DMLSubCaseStmt := CASE (WHEN condition THEN DMLSubStmtList)+ [ELSE DM
 | CASE expr (WHEN constant THEN DMLSubStmtList)+ [ELSE DM

queryBodyWhileStmt := WHILE condition [LIMIT (name | integer)] DO queryB
DMLSubWhileStmt := WHILE condition [LIMIT (name | integer)] DO DMLSub

queryBodyForEachStmt := FOREACH forEachControl DO queryBodyStmts END
DMLSubForEachStmt := FOREACH forEachControl DO DMLSubStmtList END

forEachControl := (name | "(" name (, name)+ ")") (IN | ":") setBagExpr
 | name IN RANGE "[" expr , expr"]" [".STEP(" expr ")"]

###
Other Data Modifications Statements

5/13/25, 1:39 PM TigerGraph Documentation

1108

queryBodyDeleteStmt := DELETE name FROM (edgeSet | vertexSet) [whereClau
DMLSubDeleteStmt := DELETE "(" name ")"

updateStmt := UPDATE name FROM (edgeSet | vertexSet) SET DMLSubStmtList

insertStmt := INSERT INTO name ["(" (PRIMARY_ID | FROM "," TO) ["," name
 VALUES "(" ("_" | expr) [name] ["," ("_" | expr) [na

###
Output Statements

printStmt := PRINT printExpr {, printExpr} [WHERE condition] [TO_CSV (file
printExpr := (expr | vExprSet) [AS name]
vExprSet := expr "[" vSetProj {, vSetProj} "]"
vSetProj := expr [AS name]

printlnStmt := fileVar".println" "(" expr {, expr} ")"

logStmt := LOG "(" condition "," argList ")"

returnStmt := RETURN expr

###
Exception Statements

declExceptStmt := EXCEPTION exceptVarName "(" errorInt ")"
exceptVarName := name
errorInt := integer

raiseStmt := RAISE exceptVarName [errorMsg]
errorMsg := "(" expr ")"

tryStmt := TRY queryBodyStmts EXCEPTION caseExceptBlock+ [elseExce
caseExceptBlock := WHEN exceptVarName THEN queryBodyStmts
elseExceptBlock := ELSE queryBodyStmts

ACCUM ALIGNAS ALIGNOF API
AND AND_EQ ANY AS
ASC ASM AUTO AVG
BAG BATCH BETWEEN BITAND
BITOR BOOL BOTH BREAK
BY CASE CATCH CHAR
CHAR16_T CHAR32_T CLASS COALESCE
COMPL COMPRESS CONCEPT CONST
CONSTEXPR CONST_CAST CONTINUE COUNT
CREATE DATETIME DATETIME_ADD DATETIME_SUB
DECLTYPE DEFAULT DELETE DESC
DISTRIBUTED DO DONE DOUBLE
DYNAMIC_CAST EDGE ELSE END
ENUM ESCAPE EXCEPTION EXPLICIT
EXPORT EXTERN FALSE .FILE
FILTER FLOAT FOR FOREACH
FRIEND FROM GOTO GRAPH
GSQL_INT_MAX GSQL_INT_MIN GSQL_UINT_MAX HAVING
IF IN INLINE INSERT
INT INTERPRET INTERSECT INTERVAL
INTO IS ISEMPTY JSONARRAY
JSONOBJECT LEADING LIKE LIMIT
LIST LOADACCUM LOG LONG
MAP MAX MIN MINUS
MUTABLE NAMESPACE NEW NOEXCEPT
NO_TRANSLATION_EID_TO_IID NOT NOT_EQ
NOW NULL NULLPTR OFFSET
OPERATOR OR ORDER OR_EQ
PINNED POST-ACCUM POST_ACCUM PRIMARY_ID
PRINT PRIVATE PROTECTED PUBLIC
QUERY RAISE RANGE REGISTER
REINTERPRET_CAST REPLACE REQUIRES RETURN
RETURNS RUN SAMPLE SELECT
SELECTVERTEX SET SHORT SIGNED
SIZEOF STATIC STATIC_ASSERT STATIC_CAST
STRING STRUCT SUM SWITCH
TARGET TEMPLATE THEN THIS
THREAD_LOCAL THROW TO TO_CSV
TO_DATETIME TRAILING TRIM TRUE
TRY TUPLE TYPEDEF TYPEID
TYPENAME UINT UNION UNSIGNED
UPDATE USING VALUES VERTEX
VIRTUAL VOID VOLATILE WCHAR_T
WHEN WHERE WHILE XOR
XOR_EQ

Query Language Reserved Words

5/13/25, 1:39 PM TigerGraph Documentation

1109

Example Graphs

Below is the listing of the graph create&load command files and data files to generate the

six example graphs used in this document: workNet , socialNet , friendNet , computerNet ,

minimalNet , andinvestmentNet . The tar-gzip file gsql_ref_examples_2.0.gz contains all

of these files. Each graph has its own folder. To create a particular graph, go in its folder

and run the following command:

gsql graph_create.gsql

gsql_ref_examples_2.0.gz

66KB
gsql_ref_examples_2.0.gz

workNet

graph_create.gsql for workNet

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LNiwwsRfxO9TDUnKGoq%2F-LNix2SBbRguSccCK-F7%2Fgsql_ref_examples_2.0.gz?alt=media&token=b86a3e9c-2edc-47da-9504-79235c96becb

1110

Updated 5/1/18 for v2.0
DROP ALL
CREATE VERTEX person(PRIMARY_ID personId STRING, id STRING, locationId STR
CREATE VERTEX company(PRIMARY_ID clientId STRING, id STRING, country STRIN
CREATE UNDIRECTED EDGE worksFor(FROM person, TO company, startYear INT, st
CREATE GRAPH workNet(*)

USE GRAPH workNet // v1.2
CREATE LOADING JOB loadMember FOR GRAPH workNet {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX person VALUES($0, $0, $1, _, _, SPLIT($3,"|"), SPLIT($3,"|")
 TO TEMP_TABLE t2(id, skill) VALUES ($0, flatten($2,"|",1));

 LOAD TEMP_TABLE t2
 TO VERTEX person VALUES($0, _, _, $"skill", $"skill", _, _);
}

CREATE LOADING JOB loadCompany FOR GRAPH workNet {
 DEFINE FILENAME f;
 LOAD f TO VERTEX company VALUES($0, $0, $1);
}

CREATE LOADING JOB loadMemberCompany FOR GRAPH workNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE worksFor VALUES($0, $1, $2, $3, $4);
}

RUN LOADING JOB loadMember USING f="./persons"
RUN LOADING JOB loadCompany USING f="./companies"
RUN LOADING JOB loadMemberCompany USING f="./person_company"

person1,us,1|2|3,management|financial
person2,chn,2|3|5|6,engineering
person3,jp,4|1|6,teaching
person4,us,4|1|10,football
person5,can,|8|2|5,sport|financial|engineering
person6,jp,7|10,music|art
person7,us,8|6,art|sport
person8,chn,1|5|2,management
person9,us,4|7|2,financial|teaching
person10,us,3,football|sport
person11,can,10,sport|football
person12,jp,1|5|2|2|2,music|engineering|teaching|teaching|teaching

file: persons (vertices)

5/13/25, 1:39 PM TigerGraph Documentation

1111

company1,us
company2,chn
company3,jp
company4,us
company5,can

person1,company1,2016,1,1
person1,company2,2014,3,0
person2,company1,2015,7,1
person2,company2,2012,6,0
person3,company1,2016,6,1
person4,company2,2013,2,1
person5,company2,2016,4,0
person6,company1,2015,1,1
person7,company2,2016,3,0
person7,company3,2014,1,0
person8,company1,2013,2,1
person9,company2,2015,12,1
person9,company3,2016,11,1
person10,company1,2016,2,1
person10,company3,2014,5,0
person11,company5,2016,5,1
person12,company4,2014,1,1

socialNet

file: company (vertices)

file: person_company (edges)

graph_create.gsql for socialNet

5/13/25, 1:39 PM TigerGraph Documentation

1112

Updated 5/1/18 for v2.0
DROP ALL
CREATE VERTEX person(PRIMARY_ID personId UINT, id STRING, gender STRING) W
CREATE UNDIRECTED EDGE friend(FROM person, TO person)
CREATE VERTEX post(PRIMARY_ID postId UINT, subject STRING, postTime DATETI
CREATE DIRECTED EDGE posted(FROM person, TO post)
CREATE DIRECTED EDGE liked(FROM person, TO post, actionTime DATETIME)
CREATE GRAPH socialNet(*)

USE GRAPH socialNet // v1.2
CREATE LOADING JOB loadMember FOR GRAPH socialNet {
 DEFINE FILENAME f;
 LOAD f TO VERTEX person VALUES($0, $0, $1) ;
}

CREATE LOADING JOB loadFriend FOR GRAPH socialNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE friend VALUES($0, $1) ;
}

CREATE LOADING JOB loadPost FOR GRAPH socialNet {
 DEFINE FILENAME f;
 LOAD f TO VERTEX post VALUES($0, $1, $2);
}

CREATE LOADING JOB loadPosted FOR GRAPH socialNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE posted VALUES($0, $1) ;
}

CREATE LOADING JOB loadLiked FOR GRAPH socialNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE liked VALUES($0, $1, $2) ;
}

RUN LOADING JOB loadMember USING f="./persons"
RUN LOADING JOB loadFriend USING f="./friends"
RUN LOADING JOB loadPost USING f="./posts"
RUN LOADING JOB loadPosted USING f="./posted"
RUN LOADING JOB loadLiked USING f="./liked"

file: persons (vertices)

5/13/25, 1:39 PM TigerGraph Documentation

1113

person1,Male
person2,Female
person3,Male
person4,Female
person5,Female
person6,Male
person7,Male
person8,Male

person1,person2
person2,person3
person3,person4
person4,person5
person4,person6
person5,person7
person6,person8
person7,person8
person8,person1

0,Graphs,2010-01-12 11:22:05
1,tigergraph,2011-03-03 23:02:00
2,query languages,2011-02-03 01:02:42
3,cats,2011-02-05 01:02:44
4,coffee,2011-02-07 05:02:51
5,tigergraph,2011-02-06 01:02:02
6,tigergraph,2011-02-05 02:02:05
7,Graphs,2011-02-04 17:02:41
8,cats,2011-02-03 17:05:52
9,cats,2011-02-05 23:12:42
10,cats,2011-02-04 03:02:31
11,cats,2011-02-03 01:02:21

file: friends (edges)

file: posts (vertices)

file: posted (edges)

5/13/25, 1:39 PM TigerGraph Documentation

1114

person1,0
person2,1
person3,2
person4,3
person5,4
person5,11
person6,5
person6,10
person7,6
person7,9
person8,7
person8,8

person1,0,2010-01-11 11:32:00
person2,0,2010-01-12 10:52:15
person2,3,2010-01-11 16:02:26
person3,0,2010-01-16 05:15:53
person4,4,2010-01-13 03:16:05
person5,6,2010-01-12 21:12:05
person6,8,2010-01-14 11:23:05
person7,10,2010-01-12 11:22:05
person8,4,2010-01-11 03:26:05

friendNet

file: liked (edges)

graph_create.gsql for friendNet

5/13/25, 1:39 PM TigerGraph Documentation

1115

Updated 5/1/18 for v2.0
DROP ALL
CREATE VERTEX person(PRIMARY_ID personId UINT, id STRING)
CREATE UNDIRECTED EDGE friend(FROM person, TO person)
CREATE UNDIRECTED EDGE coworker(FROM person, TO person)
CREATE GRAPH friendNet(*)

USE GRAPH friendNet // v1.2
CREATE LOADING JOB loadMember FOR GRAPH friendNet {
 DEFINE FILENAME f;
 LOAD f TO VERTEX person VALUES($0, $0);
}

CREATE LOADING JOB loadFriend FOR GRAPH friendNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE friend VALUES($0, $1);
}

CREATE LOADING JOB loadCoworker FOR GRAPH friendNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE coworker VALUES($0, $1);
}

RUN LOADING JOB loadMember USING f="./persons"
RUN LOADING JOB loadFriend USING f="./friends"
RUN LOADING JOB loadCoworker USING f="./coworkers"

person1
person2
person3
person4
person5
person6
person7
person8
person9
person10
person11
person12

file: persons (vertices)

file: friends (edges)

5/13/25, 1:39 PM TigerGraph Documentation

1116

person1,person2
person1,person3
person1,person4
person2,person8
person3,person9
person4,person6
person5,person6
person6,person9
person7,person9
person8,person10
person9,person8
person10,person12
person11,person12
person12,person8
person12,person9

person1,person4
person1,person5
person1,person6
person2,person3
person2,person4
person3,person5
person3,person6
person4,person5
person4,person6
person5,person6
person6,person5
person7,person9
person7,person5
person7,person4
person8,person9
person9,person2
person10,person7
person11,person7
person12,person7

computerNet

file: coworkers (edges)

graph_create.gsql for computerNet

5/13/25, 1:39 PM TigerGraph Documentation

1117

Updated 5/1/18 for v2.0
DROP ALL
CREATE VERTEX computer(PRIMARY_ID compID UINT, id STRING)
CREATE DIRECTED EDGE connected(FROM computer, TO computer, connectionSpeed
CREATE GRAPH computerNet(*)

USE GRAPH computerNet // v1.2
CREATE LOADING JOB loadComputer FOR GRAPH computerNet {
 DEFINE FILENAME f;
 LOAD f TO VERTEX computer VALUES($0, $0);
}
CREATE LOADING JOB loadConnection FOR GRAPH computerNet {
 DEFINE FILENAME f;
 LOAD f TO EDGE connected VALUES($0, $1, $2, $3);
}

RUN LOADING JOB loadComputer USING f="./computers"
RUN LOADING JOB loadConnection USING f="./connections"

file: computers (vertices)

5/13/25, 1:39 PM TigerGraph Documentation

1118

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10
c11
c12
c13
c14
c15
c16
c17
c18
c19
c20
c21
c22
c23
c24
c25
c26
c27
c28
c29
c30
c31

file: connections (edges)

5/13/25, 1:39 PM TigerGraph Documentation

1119

c1,c2,16.0,3
c1,c3,64.0,3
c1,c4,64.0,2
c1,c5,16.5,3
c1,c6,64.3,3
c1,c7,3.2,3
c1,c8,-3.5,3
c1,c9,-5.1,1
c1,c10,15.5,3
c1,c10,.5,1
c1,c10,126,3
c10,c11,16,3
c11,c12,.5,3
c12,c13,-0.5,3
c12,c14,0.16,4
c12,c15,1e2,3
c12,c16,3.516e3,3
c12,c17,5.12e-3,2
c12,c18,-2.34e-5,1
c12,c19,-0.000000000234,5
c12,c20,0.000123e-5,4
c12,c21,1000e3,1
c12,c22,0.000123e10,1
c14,c23,123456e-6,1
c14,c24,123456e5,3
c23,c24,64,2
c23,c25,16,2
c23,c26,32,2
c23,c27,16,2
c23,c28,3,1
c23,c29,32,2
c23,c30,16,2
c23,c25,3,2
c23,c26,3,2
c23,c27,64,2
c23,c28,32,2
c23,c29,3,2
c23,c30,3,2
c23,c31,32,2
c4,c23,16,2
c4,c23,32,2
c4,c23,64,2
c4,c23,3,2

minimalNet

5/13/25, 1:39 PM TigerGraph Documentation

1120

There is no loading job or data for minimalNet (hence, "minimal.")

DROP ALL
CREATE VERTEX testV(PRIMARY_ID id STRING)
CREATE UNDIRECTED EDGE testE(FROM testV, TO testV)
CREATE GRAPH minimalNet(*)

Updated 5/1/18 for v2.0
DROP ALL
TYPEDEF TUPLE <age UINT (4), mothersName STRING(20) > SECRET_INFO
CREATE VERTEX person(PRIMARY_ID personId STRING, portfolio MAP<STRING, DOU
CREATE VERTEX stockOrder(PRIMARY_ID orderId STRING, ticker STRING, orderSi
CREATE UNDIRECTED EDGE makeOrder(FROM person, TO stockOrder, orderTime DAT
CREATE GRAPH investmentNet (*)

USE GRAPH investmentNet // v1.2
CREATE LOADING JOB loadPerson FOR GRAPH investmentNet {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX person VALUES($0, SPLIT($1, ":", ";"), SECRET_INFO($2, $3)
}

CREATE LOADING JOB loadOrder FOR GRAPH investmentNet {
 DEFINE FILENAME f;
 LOAD f
 TO VERTEX stockOrder VALUES($1, $3, $4, $5),
 TO EDGE makeOrder VALUES($0, $1, $2);
}

RUN LOADING JOB loadPerson USING f="./persons"
RUN LOADING JOB loadOrder USING f="./orders"

person1,AAPL:3142.24;G:6112.23;MS:5000.00,25,JAMES
person2,A:5242.62;GCI:5331.21;BAH:3200.00,67,SMITH
person3,AA:5223.73;P:7935.00;BAK:6923.52,45,WILLIAMS
person4,ACH:3542.62;S:6521.55;BABA:4030.52,51,ANTHONY

investmentNet

graph_create.gsql for minimalNet

graph_create.gsql for investmentNet

file: persons (vertices)

5/13/25, 1:39 PM TigerGraph Documentation

1121

person1,0,1488566548,AAPL,500,34.42
person1,1,1488566549,A,210,50.55
person1,2,1488566550,B,211,202.32
person2,3,1488566555,S,2,42.44
person3,4,1488566155,ABC,2,52.44
person4,5,1488566255,Z,2,62.34
person4,6,1488566655,S,2,10.01

file: orders (vertices and edges)

5/13/25, 1:39 PM TigerGraph Documentation

1122

Interpreted GSQL Limitations

Version 2.4

Currently, interpreted mode cannot be combined with distributed query execution model,

i.e., a query defined with CREATE DISTRIBUTED QUERY cannot be run in interpreted mode.

However, interpreted queries can still run on a distributed graph with a regular, non-

distributed execution model.

The table below lists additional limitations. These limitations are expected to be

temporary. We are continuing to expand the capabilities of Interpreted Mode.

The "Not Supported" column is intended to be comprehensive, but the "Supported" column

is not. Rather it gives examples to show the contrast with what is not supported.

Category
Supported (highlights, not a

full list)
Not Supported

Modes
Queries in regular (non-

distributed) mode
Distributed mode

Statement types

• TYPEDEF tuple

• SELECT ... FROM

<edge_set>

• SELECT ... FROM

<vertex_set>

• CASE ... WHEN ... THEN

• IF ... ELSE ... THEN

• WHILE

• BREAK, CONTINUE

• FOREACH, FOREACH...

RANGE+

• UPDATE

• INSERT

• DELETE

• LOG

• Exceptions:

◦ RAISE

◦ TRY

GSQL features not yet supported in Interpreted
Mode

5/13/25, 1:39 PM TigerGraph Documentation

1123

• Assignment for

accumulators or local

variables

• PRINT

SELECT

block clauses

• ACCUM

• POST-ACCUM

• WHERE

• HAVING

• ORDER BY (but output

will not be sorted)

• LIMIT

• SAMPLE clause in

SELECT

Attributes

and Accumulators

• Global and local

accumulators

• Global and local variables

• Most accumulator types

• Attributes cannot be

accessed outside of the

ACCUM or POST-ACCUM

clauses

• ArrayAccum

• Previous value of

accumulator with '

operator, e.g., @@acc'

Functions

and Operators

• Math operators

• Comparison operators

• Boolean operators

• to_vertex(),

to_vertex_set()

• Math functions

• Most string functions:

to_string(), float_to_int(),

str_to_int(), lower(),

upper()

• IN, NOT IN

• LIKE

• BETWEEN ... AND

• IS NULL, IS NOT NULL

(checking whether

parameters are

absent/present)

• built-in functions

• Set functions:

COUNT(), MAX(),

.FILTER(), etc.

• isDirected()

• trim()

• neighbor(),

neighborAttribute()

• COALESCE()

• evaluate()

• selectVertex()

5/13/25, 1:39 PM TigerGraph Documentation

1124

• LOADACCUM()

• User-Defined Functions

Data types Explicit lists, e.g., [1, 3, 2]

• JSONOBJECT,

JSONARRAY

• STRING COMPRESS as

accumulator type

• Built-in Constants

GSQL_INT_MAX,

GSQL_INT_MIN,

GSQL_UINT_MAX

• Explicit sets, e.g., (1, 3, 2)

• BAG type parameters

Output

options

• JSON format V1

• PRINT ... WHERE

• PRINT TO_CSV

• FILE objects

5/13/25, 1:39 PM TigerGraph Documentation

1125

Using a Remote GSQL Client
Version 1.0 to 2.3. Copyright (c) 2019 TigerGraph. All Rights Reserved.

When the TigerGraph platform is installed, the GSQL client and server are on the same

machine. The client is packaged as a Java jar file, gsql_client.jar located in the

folder <TigerGraph_root_dir>/dev/gdk/gsql/lib/ . Installation consists of copying

the file gsql_client.jar to the client machine and storing in anywhere the user finds to be

appropriate. The client machine needs to have Java 7.0 or higher.

To run the client, execute the jar file each time that you would run gsql if you were local to

the GSQL server. That is, the command

takes the place of gsql. For example, the commands

would become

Therefore, it may be useful to define a Unix alias:

java -jar <path>gsql_client.jar

gsql DROP ALL
gsql create_my_schema.gsql
gsql LS

java -jar gsql_client.jar DROP ALL
java -jar gsql_client.jar create_my_schema.gsql
java -jar gsql_client.jar LS

alias gsql="java -jar <path>/gsql_client.jar"

Installation

Running the Client

5/13/25, 1:39 PM TigerGraph Documentation

1126

The java operation alone is not sufficient, however, because it does not tell the client

where to find the GSQL server. In addition, the client needs to satisfy three conditions:

1. It must know the IP address of the GSQL server.

2. It must have the authorization to access the server in general and to execute the

requested GSQL commands in particular.

3. If a SSL/TLS encrypted connection (e.g., HTTPS) is used, then it must provide the

certificate chain.

There are two ways to provide the IP address of the GSQL Server.

• Method 1: Store the address in a file. Create a one-line file called

gsql_server_ip_config containing the ip address of the GSQL server. This file needs to

be in the same directory where you run GSQL.

• Method 2 : Every time you run the client jar, provide the ip address on the command

line, e.g., " gsql -ip 192.168.55.46 "

The GSQL server applies the same user authentication procedures to remote GSQL users

that it applies to local GSQL users. That is, if user authentication has been enabled, then

each gsql command line must include valid user credentials.

The client addresses the server at server port 8123. You need to make sure your security

policy allows the access to this port.

It is strongly recommended that you enable user authentication. See the document

Managing User Privileges and Authentication v2.1#GSQLAuthentication for more details.

Specifying Server IP Address

Client Authorization and Authentication

HTTPS Connection

5/13/25, 1:39 PM TigerGraph Documentation

1127

If SSL/TLS is enabled for TigerGraph, to connect a GSQL remote client to the GSQL server,

each GSQL command line should provide the certificate chain file via the -cacert option.

This certificate file should be exactly the same as the file of entry Nginx.SSL.Cert setting

SSL for Nginx. See Encrypting Connections: Step 2. Configure SSL with Gadmin. For

example:

Data loading jobs always specify an input file location; logically the data should be on the

server side, not on the client side. Because the command request comes from one

machine and the target data file is on another machine, it no longer makes sense to use a

relative path.

Rule: If a remote GSQL client invokes an instruction containing a relative path, the GSQL

server considers the starting point of the path to be <tigergraph_root_dir>/dev/gdk/gsql on

the GSQL server.

It is strongly recommended that remotely-run GSQL commands use absolute paths only.

For example, if the data file cf_data.csv is in the folder /home/tigergraph/example/cf/,

then the command to run the loading job might look like this:

The GSQL Tutorials employ both GSQL and bash scripts to run the examples. Typically,

each example case contains 3 GSQL command files (for schema creation, data loading,

and querying) and one bash script to run all the parts together and to display status

information. Below is a simplified version of the Collaborative Filtering (cf) bash script:

gsql -cacert /path/to/certificate -ip hostname:port

java -jar gsql_client.jar 'RUN JOB load_cf USING FILENAME="/home/tigergrap

File Path Semantics

Example: Modifying a Bash Script for a Remote
GSQL Client

5/13/25, 1:39 PM TigerGraph Documentation

1128

The bash script will not run from a remote GSQL client unless a few changes are made:

We need to invoke "java -jar gsql_client.jar" instead of "gsql", and need to specify the

server ip address. If we use the gsql_server_ip_config file, this file must be in the same

folder as the command file. The GSQL Tutorial has several different folders, one for each

example, so that suggests making several config files. Below is an approach that

minimizes the changes required and maximizes standardization.

A. Do initial client setup. This is done only once.

1. Store gsql_client.jar in a standard location, say ~/gsql_client/gsql_client.jar (e.g,,

/home/tigergraph/gsql_client/ gsql_client.jar)

2. Create a file called gsql_server_ip_config containing the GSQL server's IP address, and

store it a standard location, say ~/gsql_client/gsql_server_ip_config .

3. In the .bashrc file in your home directory, add an alias for gsql which points to the

standard location:

#!/bin/bash
test='cf'
###
gsql 'DROP ALL'
gsql ../${test}/${test}_model.gsql
gsql 'CREATE GRAPH gsql_demo(*)'

Loading
gsql -g gsql_demo ../${test}/${test}_load.gsql
loading script contains this line:
RUN JOB load_cf USING FILENAME="../cf/data/cf_data.csv", SEPARATOR=",",

Querying
gsql -g gsql_demo ../${test}/${test}_query.gsql
gsql -g gsql_demo INSTALL QUERY ALL
gsql -g gsql_demo 'RUN QUERY topCoLiked("id1", 10)'

123.45.67.255

alias gsql='java -jar ~/gsql_client/gsql_client.jar'

RUN_cf.sh: Bash script for Collaborative Filtering (cf) example

Sample config file: /home/tigergraph/gsql_client/gsql_server_ip_config

5/13/25, 1:39 PM TigerGraph Documentation

1129

B. Add a standard header to each bash script.

This header does the following:

1. Repeat the alias definition for the gsql command. The definition in .bashrc may not be

visible here.

2. By default, bash scripts ignore aliases. Instruct the script to use aliases.

3. Define softlinks from the current folder to the locations of the client jar and config file.

C. Change any relative paths to absolute paths. This is the only step that must be

customized for each script.

Here is the resulting script. Four standard lines were added to the beginning, and one line

was edited in the cf_load.gsql file.

alias gsql='java -jar gsql_client.jar'
shopt -s expand_aliases
ln -s ~/gsql_client/gsql_client.jar gsql_client.jar
ln -s ~/gsql_client/gsql_server_ip_config gsql_server_ip_config

standard which makes 'gsql' work on remote clients

RUN_cf_remote.sh: Modified bash script for Collaborative Filtering (cf) example

5/13/25, 1:39 PM TigerGraph Documentation

1130

#!/bin/bash
alias gsql='java -jar gsql_client.jar'
shopt -s expand_aliases
ln -s ~/gsql_client/gsql_client.jar gsql_client.jar
ln -s ~/gsql_client/gsql_server_ip_config gsql_server_ip_config
test='cf'
###
gsql 'DROP ALL'
gsql ../${test}/${test}_model.gsql
gsql 'CREATE GRAPH gsql_demo(*)'

Loading
gsql -g gsql_demo ../${test}/${test}_load.gsql
loading script contains this line:
RUN JOB load_cf USING FILENAME="/home/tigergraph/tigergraph/document/ex

Querying
gsql -g gsql_demo ../${test}/${test}_query.gsql
gsql -g gsql_demo INSTALL QUERY ALL
gsql -g gsql_demo 'RUN QUERY topCoLiked("id1", 10)'

5/13/25, 1:39 PM TigerGraph Documentation

1131

GSQL Cheatsheets
GSQL Language Quick Reference Manuals

154KB

gsql_ddl_loading_v2.2.pdf

pdf

194KB

gsql_query_v2.2.pdf

pdf

5/13/25, 1:39 PM TigerGraph Documentation

https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LVESSfyhMOOskA2PH2l%2F-LVETP53sGes5iJJAYmn%2Fgsql_ddl_loading_v2.2.pdf?alt=media&token=00cee527-2cf2-4611-a67e-ee28ee9d896e
https://2516822532-files.gitbook.io/~/files/v0/b/gitbook-legacy-files/o/assets%2F-LHvjxIN4__6bA0T-QmU%2F-LVESSfyhMOOskA2PH2l%2F-LVETQdSevtfeiF7CS6L%2Fgsql_query_v2.2.pdf?alt=media&token=fd6d4288-d1b7-4e6a-8543-7e724755fb81

1132

RESTPP API User Guide

5/13/25, 1:39 PM TigerGraph Documentation

1133

Introduction

The TigerGraph TM system uses the well-known Representational State Transfer (REST)

architecture to manage communication with the TigerGraph core components, the Graph

Processing Engine (GPE) and Graph Storage Engine (GSE). REST++ (or RESTPP) is the

TigerGraph customized REST server. (See Figure 1 below) When an upper layer

component, such as the Platform Web UI or GSQL, wishes to access the graph engine, it

sends a request to the REST++ server. Users can also communicate directly with the

REST++ server, either by using one of the standard REST APIs included with the system, or

by authoring and then employing a custom endpoint API. This document describes the

APIs for the built-in endpoints, which provides methods for basic querying and

manipulation of the graph data.

5/13/25, 1:39 PM TigerGraph Documentation

1134

Like most RESTful systems, REST++ employs the HTTP protocol (specifically HTTP/1.1

without request pipelining). Accordingly, REST APIs feature request methods and URLs,

response status codes, and data responses. This guide describes the request methods

and URLs used to query, update, and delete from the graph data. It also describes the

format of the data responses.

The TigerGraph REST APIs employ three HTTP request methods:

• GET is used to request data.

• POST is used to send data.

Figure 1: TigerGraph System Block Diagram

5/13/25, 1:39 PM TigerGraph Documentation

1135

• DELETE is used to delete data.

If the user submits an unsupported HTTP method, the API will return an error message:

"endpoint not found".

5/13/25, 1:39 PM TigerGraph Documentation

1136

RESTPP Requests

To submit a request, an HTTP request is sent to the REST++ server. By default, the REST++

server listens for requests at port 9000. A request needs to specify three things:

1. the request method (GET, POST, or DELETE),

2. the endpoint address, and

3. any required or optionally request parameters.

The endpoint address is the the form of a HTTP URL.

Request parameters are appended to the end using standard HTTP query string format.

In a test or development environment, the requester may be on the same server as REST++.

In this case, the server_ip is localhost .

The Linux curl command is the most convenient way to submit the HTTP request to the

REST++ server.

Example:

Assume the REST++ server is on the local machine (typical configuration) and there is a

graph called socialNet. To get all the User vertices from socialNet:

To list only the first three vertices, we can set limit = 3:

curl -X method "http://server_ip:9000/path_to_endpoint?request_parameters"

curl -X GET "http://localhost:9000/graph/socialNet/vertices/User"

curl -X GET "http://localhost:9000/graph/socialNet/vertices/User?limit=3"

REST Request Format

Example: Get all User vertices

Example: Get up to 3 User vertices

5/13/25, 1:39 PM TigerGraph Documentation

1137

The HTTP request methods GET, POST, and DELETE are case sensitive. Also, curl option

flags are case sensitive.

Input data for POST requests should be in JSON format. There are two ways to supply the

data: inline or in a separate file.

The data should be formatted as a single string without linebreaks. Use the curl - d option,

followed by the JSON string.

The following example uses the POST /graph endpoint to insert one User type vertex

whose id value is "id6" into the graph called "socialNet".

Often it will be more convenient for the input data to be in a separate file, especially if it is

large.

Use the curl option --data-binary @path_to_file as in the example below:

curl -X POST -d 'json_string' "http://server_ip:9000/path_to_endpoint?requ

curl -X POST -d '{"vertices":{"User":{"id6":{"id":{"value":"id6"}}}}}' "ht

curl -X POST --data-binary @json_file "http://server_ip:9000/path_to_endpo

Input Data for POST

Inline Data

Data File

Syntax for a POST request with Inline Data Payload

Example using inline input data

Syntax for a POST request with Payload Data File

5/13/25, 1:39 PM TigerGraph Documentation

1138

If we now store the data string in a file (say, my_input.json), then the example above

becomes the following:

All TigerGraph REST responses are in JSON format. The format details for each built-in

endpoint are described below in the Built-in Endpoints section. By default, the output is

designed for machine reading, with no extra spaces or linefeeds. The output JSON object

can have three fields: error, message, and result.

This document has been updated to show JSON output API v2. Earlier versions of the

TigerGraph platform produced JSON output in a slightly different format (v1). Newer

platforms can be configured to produce output in either v2 or v1 formats.

To make the output more human readable, use the jq command or Python json library built

into most Linux installations. Specifically,

Example:

In the Collaborative Filter example in the GSQL Demo Examples document, the request

without postprocess formatting returns the following:

On the other hand,

curl -X POST --data-binary @my_input.json "http://localhost:9000/graph/soc

curl -X method "http://server_ip:9000/path_to_endpoint?request_para
curl -X method "http://server_ip:9000/path_to_endpoint?request_para

curl -X GET "http://localhost:9000/graph/socialNet/vertices/User?limit=3"

{"version":{"api":"v2","schema":0},"error":false,"message":"","results":[{

REST++ Output

Example using inline input data

5/13/25, 1:39 PM TigerGraph Documentation

https://stedolan.github.io/jq/
https://stedolan.github.io/jq/

1139

returns this much more readable output:

The TigerGraph system administration can choose to enable user authentication for the

REST++ endpoints. If authentication is not enabled, then TigerGraph REST++ endpoints

are public; anyone with access to the HTTP ports of the TigerGraph server can run your

endpoints. When REST++ authentication is enabled, then a valid authorization token must

be included in the header. To see how to enable/disable REST++ authentication, see the

document Managing User Privileges and Authentication.

curl -X GET http://localhost:9000/graph/socialNet/vertices/User?limit=3 |

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_id": "id2",
 "v_type": "User",
 "attributes": {}
 },
 {
 "v_id": "id5",
 "v_type": "User",
 "attributes": {}
 },
 {
 "v_id": "id3",
 "v_type": "User",
 "attributes": {}
 }
]
}

REST++ Authentication

5/13/25, 1:39 PM TigerGraph Documentation

1140

The REST++ server implements OAuth 2.0-style authorization as follows: Each user can

create one or more secrets (unique pseudorandom strings). Each secret is associated

with a particular user and the user's privileges for a particular graph. Anyone who has this

secret can invoke a special REST endpoint to generate authorization tokens (other

pseudorandom strings). An authorization token can then be used to perform TigerGraph

database operations via other REST endpoints. Each token will expire after a certain

period of time. The TigerGraph default lifetime for a token is 1 month.

A user must have a secret before they create a token. Secrets are generated in GSQL (see

Managing User Privileges and Authentication). The special endpoint

GET /requesttoken is used to create a token. The endpoint has two parameters:

• secret (required): the user's secret

• lifetime (optional): the lifetime for the token, in seconds. The default is one month,

approximately 2.6 million seconds.

Once REST++ authentication is enabled, a valid token should always be included in the

HTTP header. If you are using curl to format and submit your REST++ requests, then use

the following syntax:

For example, if the token = 01234567abcdefgh01234567abcdefgh, then the collaborative

filtering example shown above would be

curl -X GET 'localhost:9000/requesttoken?secret=jiokmfqqfu2f95qs6ug85o89rp

curl -X GET -H "Authorization: Bearer <token>" '<request_URL>'

curl -X GET -H "Authorization: Bearer 01234567abcdefgh01234567abcdefgh" "h

Requesting A Token with GET /requesttoken

Using Tokens

Example: REST++ Request to Generate a Token

curl GSQL request, with authorization token in header

5/13/25, 1:39 PM TigerGraph Documentation

1141

The maximum length for the request URL is 8K bytes, including the query string. Requests

with a large parameter size should use a data payload file instead of inline data.

The maximum size for a request body, including the payload file, is set by the system

parameter nginx.client_max_body_size. The default value is 128 (in MB). To increase this

limit to xxx MB, use the following gadmin command:

The upper limit of this setting is 1024 MB. Raising the size limit for the data payload buffer

reduces the memory available for other operations, so be cautious about increasing this

limit.

By default, an HTTP request in the TigerGraph system times out after 16 seconds. to

customize this timeout limit for a particular query instance, you can set the GSQL-

TIMEOUT parameter in the request header. If you are using curl to submit your RESTPP

request, the syntax would be the following:

gadmin --set nginx.client_max_body_size xxx -f

curl -X <GET/POST> -H "GSQL-TIMEOUT: <timeout value in ms>" '<request_URL>

Size and Time limits

5/13/25, 1:39 PM TigerGraph Documentation

1142

Built-in Endpoints

These endpoints are simple diagnostic utilities which respond with the following

message.

POST /echo has the same response as GET /echo.

This endpoint returns a list of the installed endpoints and their parameters. There are three

types of endpoints, described in the table below.

To include one more more of the endpoint types in the output, include TypeName =true in

the parameter query string for each type. For example, "builtin=true&static=true" will

include builtin and static endpoints. If no type parameters are provided, all endpoints are

returned.

curl -X GET "http://localhost:9000/echo"
{
 "error": false,
 "message": "Hello GSQL"
}

Type Description

builtin preinstalled in the TigerGraph system

dynamic generated when compiling GSQL queries

static user-installed endpoints

System Utilities

GET /echo and POST /echo

GET /endpoints

GET echo/ Request and Response

5/13/25, 1:39 PM TigerGraph Documentation

1143

There are over a dozen built-in endpoints, and some have several parameters, so the

formatted JSON output from the builtin=true option is over 300 lines long. It is listed in full

in Appendix A. To illustrate the format, we show a small excerpt: the output for the GET

/echo and GET /endpoints endpoint.

This endpoint returns real-time query performance statistics over the given time period, as

specified by the seconds parameter. The seconds parameter must be a positive integer

curl -X GET "http://localhost:9000/endpoints?builtin=true&dynamic=true&sta

curl -X GET "http://localhost:9000/endpoints?builtin=true" | jq .

 "GET /echo": null,
 "GET /endpoints": {
 "parameters": {
 "builtin": {
 "default": "false",
 "max_count": 1,
 "min_count": 0,
 "type": "BOOL"
 },
 "dynamic": {
 "default": "false",
 "max_count": 1,
 "min_count": 0,
 "type": "BOOL"
 },
 "static": {
 "default": "false",
 "max_count": 1,
 "min_count": 0,
 "type": "BOOL"
 }
 }
 }

GET /statistics

Example: Report on all three types of endpoints

Example: Report on all built-in endpoints

Subset of GET /endpoints output

5/13/25, 1:39 PM TigerGraph Documentation

1144

less than or equal to 60. The REST++ server maintains a truncated log of requests from

the current time and backward for a system-configured log_interval . Only those endpoints

which have completed or timed out during the requested number of seconds and are

within the log_interval will be included in the statistics report. For example:

5/13/25, 1:39 PM TigerGraph Documentation

1145

The following example shows the case when there are two endpoints (/grap
curl -X GET "http://localhost:9000/statistics?seconds=60" | jq '.'

{
 "GET /graph/vertices/{vertex_type}/{vertex_id}": {
 "CompletedRequests": 8,
 "QPS": 0.08,
 "TimeoutRequests": 0,
 "AverageLatency": 130,
 "MaxLatency": 133,
 "MinLatency": 128,
 "LatencyPercentile": [
 200,
 200,
 200,
 200,
 200,
 200,
 200,
 200,
 200,
 200
]
 },
 "GET /statistics": {
 "CompletedRequests": 4226,
 "QPS": 42.26,
 "TimeoutRequests": 0,
 "AverageLatency": 2,
 "MaxLatency": 125,
 "MinLatency": 0,
 "LatencyPercentile": [
 10,
 10,
 10,
 10,
 10,
 10,
 10,
 10,
 10,
 200
]
 }
}

5/13/25, 1:39 PM TigerGraph Documentation

1146

The statistics data are returned in JSON format. For each endpoint which has statistics

data, we return the following items:

• CompletedRequests - the number of completed requests.

• QPS - query per second.

• TimeoutRequests - the number of requests not returning before the system-configured

timeout limit. Timeout requests are not included in the calculation of QPS.

• AverageLatency - the average latency of completed requests.

• MaxLatency - the maximum latency of completed requests.

• MinLatency - the minimum latency of completed requests.

• LatencyPercentile - The latency distribution. The number of elements in this array

depends on the segments parameter of this endpoint. By default, segments is 10,

meaning the percentile range 0-100% will be divided into ten equal segments: 0%-10%,

11%-20%, etc.segments must be [1, 100].

Note: If there is no query sent in the past given seconds, a empty json will be returned.

This endpoint returns the git versions of all components of the system. This can be useful

information when requesting help from TigerGraph's support team.

GET /version

5/13/25, 1:39 PM TigerGraph Documentation

1147

To support multiple graphs within one system, the graph data REST endpoint URLs have been

modified to include a graph name.

This endpoint returns all vertices having the type vertex_type in the graph called

graph_name . graph_name is optional if the database has only one graph but required for a

database with multiple graphs. Optionally, the user can instead chose a particular vertex

by including its primary_id at the vertex_id field . For example:

curl -X GET "http://server_ip:9000/version"
{"error":"false", "message":"TigerGraph RESTPP:
 --- Version ---
product poc4.4_base 7dd9c25dac6be25107aeb1d8c4041138
olgp 4.4 8eaa1b27724df53af8bb1536a132e53c
topology 4.4 334a1a354b87c80dabd0b05b4b7b4647
gpe 4.4 fd45a03bde22aa08a0c6ff9bb8cab33a
gse 4.4 771e133b719eb037b7b990566f451939
third_party 4.4 4bc14a5f4f89bbddcd54f242a29175a2
utility 4.4 0ba01f7d2668bf5cdff8c0fd6a7faef3
realtime 4.4 e86c9ee9df81b201777915ba5028e342
er 4.4 1c80659bee6f6bf1fb1b1559c03ce7ea
tut 4.4 2ebb709b95c7bc1404085a8b3e504779
glelib 4.4 823d806167e84f0494bdcf117763df8b
bigtest prod_master 9700dbfb596b3602ed772e2c9755ec0d
pta prod_master 82ceadbb246c2e5b36783cd029577ede
glive prod_master 70e69c4339d981d802065ff2b6695545
gui 4.4 2d886ca4ac5d9bad6a83bb75de92839f
gvis prod_master 7f947364db0dac10decad21df70187fe
blue_features 4.4 8a4f587ec3b58f0974bb067e4c8d2aad
blue_commons 4.4 7158570b7fc76da4b50c05a7469f14b2
"}

curl -X GET "http://server_ip:9000/graph/{graph_name}/vertices/{vertex_typ

Accessing and Modifying the Graph Data

GET /graph/{graph_name}/vertices

Syntax for GET /graph/vertices

5/13/25, 1:39 PM TigerGraph Documentation

1148

/graph/{graph_name}/vertices has an optional parameter "count_only". The default value

is false. If it is true, the results field contains only the number of vertices selected.

This endpoint returns all edges which connect to a given vertex ID in the graph called

graph_name . graph_name is optional if the database has only one graph but required for a

database with multiple graphs.A source vertex ID must be given. The user may optionally

specify the edge type, the target vertex type, and the target vertex ID. The URL format is as

follows:

• edge_type - type name of the edges. Use "_" to permit any edge type. Omitting the

edge_type field from the URL also permits any edge type. However, skipping edge_type

also means that target_vertex_type and target_vertex_id must be skipped.

• target_vertex_type - type name of the target vertices.

• target_vertex_id - ID of the target vertex.

curl -X GET "http://localhost:9000/graph/socialNet/vertices/User/id1"

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_id": "id1",
 "v_type": "User",
 "attributes": {}
 }
]
}

curl -X GET "http://localhost:9000/graph/{graph_name}/edges/{source_vertex

GET /graph/{graph_name}/edges

Syntax for GET /graph/edges

5/13/25, 1:39 PM TigerGraph Documentation

1149

There are several optional parameters which may be used with either the GET or DELETE

requests for /graph/ endpoints. See the Advanced Parameters section below.

The GET /graph/ endpoints can return at most 10240 items.

Here is a simple example:

5/13/25, 1:39 PM TigerGraph Documentation

1150

5/13/25, 1:39 PM TigerGraph Documentation

1151

curl -X GET "http://localhost:9000/graph/socialNet/edges/VidUser/0/User_Vi

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "2",
 "to_type": "Video",
 "attributes": {
 "rating": 5.2,
 "date_time": 0
 }
 },
 {
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "0",
 "to_type": "Video",
 "attributes": {
 "rating": 6.8,
 "date_time": 0
 }
 },
 {
 "e_type": "User_Video",
 "directed": false,
 "from_id": "0",
 "from_type": "VidUser",
 "to_id": "3",
 "to_type": "Video",
 "attributes": {
 "rating": 10,
 "date_time": 0
 }
 }
]
}

5/13/25, 1:39 PM TigerGraph Documentation

1152

/graph/{graph_name}/edges has two optional parameters "count_only" and "not_wildcard":

• count_only : If it is true, the results contains only the number of edges selected. The

default value is false.

• not_wildcard : This determines how the edge type name "_" is interpreted. If false

(which is the default), "_" means all edge types are included. If not_wildcard is true, "_"

is interpreted literally to select only edges with edge type name equal to underscore.

This endpoint deletes the given vertex(vertices) in the graph called graph_name .

graph_name is optional if the database has only one graph but required for a database

with multiple graphs. The URL structure and semantics are analogous to those in GET

/graph/{graph_name}/vertices. This endpoint has an additional parameter "permanent",

whose default value is false. If "permanent" is true, the deleted vertex ids can never be

inserted back, unless the graph is dropped or the graph store is cleared.

This endpoint deletes the given edge(s). graph_name is optional if the database has only

one graph but required for a database with multiple graphs. The URL structure and

semantics are analogous to thos in GET /graph/{graph_name}/edges.

The above four endpoints, GET /graph/{graph_name}/vertices, GET

/graph/{graph_name}/edges, DELETE /graph/{graph_name}/vertices, and DELETE

curl -X DELETE "http://server_ip:9000/graph/{graph_name}/vertices/{vertex_

curl -X DELETE "http://localhost:9000/graph/{graph_name}/edges/{source_ver

DELETE /graph/{graph_name}/vertices

DELETE /graph/{/graph_name}/edges

Advanced Parameters for /graph/{graph_name}/vertices and

/graph/{graph_name}/edges

5/13/25, 1:39 PM TigerGraph Documentation

1153

/graph/{graph_name}/edges, have optional URL parameters for further operations:

1. Select : Specify which attributes to be returned (GET only).

2. Filter : Apply a filter on the vertices or edges, based on their attribute values.

3. Limit : Limit the total number of vertices or edges.

4. Sort : Sort the data. (For DELETE, sort should be used with limit together.)

5. Timeout : Timeout in seconds. If set to 0, use system wide endpoint timeout setting.

The parameter 'Limit' can reduce the search space and leads to quick response of queries.

However if Limit and Sort are both provided, the query still needs to traverse all potential

vertices/edges and it might lead to slow query response on large graph.

By default the GET /graph/{graph_name}/vertices and /graph/{graph_name}/edges

endpoints return all the attributes of the selected vertices or edges. The select parameter

can be used to specify either the desired or the undesired attributes. The format is

select=attribute_list, where attribute_list is a list of comma-separated attributes. Listing an

attribute name means that this attribute should be included, while an attribute name

preceded by a minus sign means that this attribute should be excluded. An underscore

means all attributes.

• http://server_ip:9000/graph/{graph_name}/vertices?select=attr1,attr2
returns only attributes attr1 and attr2

• http://server_ip:9000/graph/{graph_name}/vertices?select=-attr1,-attr2
returns all attributes except attributes attr1 andattr2

• http://server_ip:9000/graph/{graph_name}/vertices?select=-_ returns no

attribute at all

It is illegal to specify both desired and undesired attributes in the same request.

Example Query: Return the date_time attribute of all product vertices on socialNet.

curl -X GET "http://localhost:9000/graph/socialNet/vertices/product?select

Select

5/13/25, 1:39 PM TigerGraph Documentation

1154

The filter parameter is a set of conditions analogous to the WHERE clause in industry-

standard SQL language. The format is filter=filter_list, where filter_list is a list of comma-

separated filters, and each filter is the concatenation of an attribute, an operator, and a

value (with no white spaces separating the parts). The following six comparison operators

are supported:

1. = equal to

2. != not equal to

3. > greater than

4. >= greater than or equal to

5. > less than

6. <= less than or equal to

Here is an example request: It returns all User vertices with age greater than or equal to

30.

Literal strings should be enclosed in double quotation marks. For example,

filter=name="GSQL" . However, if the URL is itself enclosed in quotes, as is the case when

a REST request is submitted using the curl command, then the quotation marks around a

string should be URL-encoded by replacing each mark with substring %22 .

The Limit parameter is used to set a limit on the number of vertices or edges returned

from a query request. Note that there is also a system limit of 10240 on the number of

vertices or edges returned. The user-defined limit cannot exceed this system limit.

The following example returns up to 3 User vertices on graph "socialNet".

 curl -X GET "http://localhost:9000/graph/{graph_name}/vertices/User?filte

curl -X GET "http://localhost:9000/graph/socialNet/vertices/User?limit=3"

Filter

Limit

5/13/25, 1:39 PM TigerGraph Documentation

1155

The Sort parameter returns results sorted by given attributes. The format is

sort=list_of_index_attributes. The results are sorted by the first attribute first, and so on.

Groups of the sorted results which have identical values on the first attribute are then

sorted by the second attribute, and so on. Below are some examples:

• http://server_ip:9000/graph/{graph_name}/vertices?sort=attr1 sort by

attribute attr1 in ascending order

• http://server_ip:9000/graph/{graph_name}/vertices?sort=-attr1 sort by

attribute attr1 in descending order

• http://server_ip:9000/graph/{graph_name}/vertices?sort=attr1,-attr2 first

sort by attr1 in ascending order, then sort by attr2 in descending order

This endpoint deletes all vertices of the given vertex type in the graph called graph_name .

graph_name is optional if the database has only one graph but required for a database

with multiple graphs. This endpoint has two additional parameters "permanent" and "ack".

The "permanent" parameter is the same as the "permanent" parameter for endpoint

DELETE /graph/{graph_name}/vertices. "ack" specifies whether RESTPP needs to get

acknowledgement from GPEs. If "ack" is set to "none", it doesn't need to get

acknowledgement from any GPE. If "ack" is set to "all" (default), it needs to get

acknowledgement from all GPEs.

This endpoint provides statistics for the graph called graph_name . graph_name is

optional if the database has only one graph but required for a database with multiple

graphs. A JSON object must be given as a data payload in order to specify the function

curl -X DELETE "http://server_ip:9000/graph/{graph_name}/delete_by_type/ve

Sort

DELETE /graph/{graph_name}/delete_by_type/vertices

POST /builtins/{graph_name}

Syntax for GET /graph/delete_by_type/vertices

5/13/25, 1:39 PM TigerGraph Documentation

1156

and parameters. In the JSON object, the keyword "function" is used to specify the function.

Below are the descriptions of each function:

This function returns the minimum, maximum, and average values of the given edge type's

int, uint, float and double attributes, and the count of true and false of a bool attribute.

There is one parameter:

• type: The vertex type name, or "*", which indicates all vertex types.

Below is an example request on socialNet and its output. The vertex type "Person" has a

uint attribute "age".

curl -X POST 'http://localhost:9000/builtins/socialNet' -d '{"function":"

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "vertexName": "Person",
 "attributeStat": [
 {
 "vattrName": "age",
 "MAX": 64,
 "MIN": 15,
 "AVG": 36.5
 }
]
 }
]
}

stat_vertex_attr

stat_edge_attr

5/13/25, 1:39 PM TigerGraph Documentation

1157

Similar to stat_vertex_attr, this function returns the statistics of the minimum, maximum,

and average of the given edge type's int, uint, float and double attributes, and the count of

true and false of a bool attribute. Note each undirected edge is counted twice. There are

three parameters:

• type: The edge type name, or "*", which indicates all edge types.

• from_type: Given a vertex type, the function only includes edges whose source vertex

type is the given type. "*" indicates all types. Default is all types. If a specific edge type

is given, giving a correct from_type can speed up the process.

• to_type: Given a vertex type, the function only includes edges whose destination vertex

type is the given type. "*" indicates all types. Default is all types.

Below is an example request and its output. The edge type "Liked" has a float attribute

"strength".

curl -X POST 'http://localhost:9000/builtins/socialNet' -d '{"function":"

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "Liked",
 "attributes": {
 "weight": {
 "MAX": 2.5,
 "MIN": 1,
 "AVG": 1.375
 }
 }
 }
]
}

stat_vertex_number

5/13/25, 1:39 PM TigerGraph Documentation

1158

This function returns the number of vertices of the given vertex type. There is one

parameter.

• type: The vertex type name, or "*", which indicates all vertex types.

Below is an example request and its output.

5/13/25, 1:39 PM TigerGraph Documentation

1159

curl -X POST 'http://localhost:9000/builtins/socialNet' -d '{"function":"

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "v_type": "User",
 "count": 4
 },
 {
 "v_type": "Page",
 "count": 4
 },
 {
 "v_type": "Product",
 "count": 7
 },
 {
 "v_type": "DescWord",
 "count": 7
 },
 {
 "v_type": "NameUser",
 "count": 9
 },
 {
 "v_type": "VidUser",
 "count": 4
 },
 {
 "v_type": "Video",
 "count": 5
 },
 {
 "v_type": "AttributeTag",
 "count": 4
 }
]
}

stat_edge_number

5/13/25, 1:39 PM TigerGraph Documentation

1160

This function returns the number of edges of the given type. There are three parameters.

• type: The edge type name, or "*", which indicates all edge types.

• from_type: Given a vertex type, the function only those edges whose source vertex

type is the given type. "*" indicates all types. Default is all types. If a specific edge type

is given, giving a correct from_type can speed up the process.

• to_type: Given a vertex type, the function counts only those edges whose destination

vertex type is the given type. "*" indicates all types. Default is all types.

5/13/25, 1:39 PM TigerGraph Documentation

1161

This endpoint is for loading data the the graph called graph_name . graph_name is

optional if the database has only one graph but required for a database with multiple

curl -X POST 'http://localhost:9000/builtins/socialNet' -d '{"function":"

{
 "version": {
 "api": "v2",
 "schema": 0
 },
 "error": false,
 "message": "",
 "results": [
 {
 "e_type": "Liked",
 "count": 4
 },
 {
 "e_type": "Liked_By",
 "count": 5
 },
 {
 "e_type": "Linkto",
 "count": 6
 },
 {
 "e_type": "Has_desc",
 "count": 40
 },
 {
 "e_type": "NameConn",
 "count": 38
 },
 {
 "e_type": "Video_AttributeTag",
 "count": 18
 },
 {
 "e_type": "User_Video",
 "count": 14
 }
]
}

POST /ddl/{graph_name}

5/13/25, 1:39 PM TigerGraph Documentation

1162

graphs. For more details, please see GSQL Language Reference Part 1 - Defining Graphs

and Loading Data

This endpoint submits data as an HTTP request payload, to be loaded into the graph by

the DDL Loader. The data payload can be formatted as generic CSV or JSON. This

endpoint accepts five parameters:

name data type default description

tag string N.A.

loading job name

defined in your DDL

loading job

(REQUIRED)

filename string N.A.

file variable name or

filepath for the file

containing the data

(REQUIRED)

sep one character string ,

separator of CSV

data. If your data is

JSON, you do not

need to specify this

parameter.

eol
one or two character

string
\n

end-of-line character.

Only one character is

allowed, except for

the special case

"\r\n"

ack
string, can only be

"all" or "none"
"all"

"all": request will

return after all GPE

instances have

acknowledged the

POST

"none": request will

return immediately

after RESTPP

processed the POST.

timeout UINT32 0

Timeout in seconds.

If set to 0, use

system-wide

5/13/25, 1:39 PM TigerGraph Documentation

1163

Note that if you have special characters in your parameter values, the special characters

should use URL encoding. For example, if your eol is '\n', it should be encoded as %0A.

Reference guides for URL encoding of special characters can found on the web, such

ashttps://www.w3schools.com/tags/ref_urlencode.asp . To avoid confusion about

whether you should you one or two backslashes, we do not support backslash escape for

this eol or sep parameter.

This endpoint can upsert vertices and/or edges into the graph called graph_name .

graph_name is optional if the database has only one graph but required for a database

with multiple graphs. Due to the cost of checking for the existence of an edge or a vertex,

the standard API does not support separate update and create (insert) operations.

Instead, an upsert operation, a combination of update and insert, is provided. If the target

vertex or edge already exists, it is updated with the values specified in the request. If the

vertex or edge does not yet exist, the action depends on the operator chosen by the user.

Some operators will direct the endpoint to create a new vertex or edge using the attribute

values in the request.

The response is the number of vertices and edges that were accepted. The API uses

JSON format to describe the vertices and edges to be upserted. The JSON code can be

stored in a text file or specified directly in a command line. There is a maximum size for a

POST data payload (see the Size Limits section). The JSON format for describing a vertex

set or edge set is summarized below. The identifiers in bold are keywords. The italicized

terms should be replaced with user-specified values. Moreover, multiple instances may be

included at the italicized levels. See the example below for clarification.

endpoint timeout

setting.

vertexmustexist
string, can only be

"true" or "false"
"false"

Skips loading edges

if both vertices do not

exist.

" vertices " : " vertex_type " : " vertex_id " : " attribute " : "value",

" edges " : " source_vertex_type " : " source_vertex_id " : " edge_type "

POST /graph/{graph_name}

POST /graph JSON format

5/13/25, 1:39 PM TigerGraph Documentation

https://www.w3schools.com/tags/ref_urlencode.asp
https://www.w3schools.com/tags/ref_urlencode.asp

1164

For each attribute , we need to specify its value and op . The operator controls how the

value and a possible existing value in the vertex / edge are aggregated. We support the

following operators:

Type op Meaning

1 "overwrite" or "="

Create a new vertex/edge with

these values, or overwrite the

existing value. This is the

default operation if op is not

given.

2 "ignore_if_exists`" or "~"

If the vertex/edge does not

exist, use the payload value to

initialize the attribute; but if

the vertex/edge already exists

(which means the values of all

attributes exist), do not

change this attribute.

3 "vertex_must_exist"

If both vertices on either side

of an edge do not exist the

loading skips loading edges,

meaning the edge will not be

created in the graph.

4 "add" or "+"
Add the payload value to the

existing value.

5 "and" or "&"

Update to the logical AND of

the payload value and the

existing value.

6 "or" or "|"

Update to the logical OR of the

payload value and the existing

value.

7 "max" or ">"

Update to maximum of the

payload value and the existing

value.

8 "min" or "<"

Update to minimum of the

payload value and the existing

value.

5/13/25, 1:39 PM TigerGraph Documentation

1165

Types 4 through 8 should only be used if the selected vertices or edges exist. If any of these

operators is requested for an non-existing vertices or edges, the entire request is rejected.

If an attribute is not given in the payload, the attribute stays unchanged if the vertex/edge

already exists, or if the vertex/edge does not exist, a new vertex/edge is created and

assigne d default values . The default value is 0 for int/uint, 0.0 for float/double, and "" for

string.

The RESTPP server validates the request before updating the values. The following

schema violations will cause the entire request to fail and no change will be made to a

graph:

• For vertex upsert:

1. Invalid vertex type.

2. Invalid attribute data type.

• For edge upsert:

1. Invalid source vertex type.

2. Invalid edge type.

3. Invalid target vertex type.

4. Invalid attribute data type.

If an invalid attribute name is given, it is ignored.

The following example file add_id6 . json upserts one User vertex with id = " id6 ", one

Liked edge, and one Liked_By edge. The Liked edge is from " id1 " to " id6 "; the Liked_By

edge is from " id6 " to " id1 ".

Upsert Example Data: add_id6.json

5/13/25, 1:39 PM TigerGraph Documentation

1166

The following example submits an upsert request by using the payload data stored in

add_id6.json.

{
 "vertices": {
 "User": {
 "id6": {
 }
 }
 },
 "edges": {
 "User":{
 "id1": {
 "Liked": {
 "User": {
 "id6" : {
 "weight" : {
 "value": 5.0
 }
 }
 }
 }
 },
 "id6": {
 "Liked_By": {
 "User": {
 "id1" : {
 "weight" : {
 "value": 1.0
 }
 }
 }
 }
 }
 }
 }
}

curl -X POST --data-binary @add_id6.json http://localhost:9000/graph

{"accepted_vertices":1,"accepted_edges":2}

POST /gsqlserver/interpreted_query

5/13/25, 1:39 PM TigerGraph Documentation

1167

This endpoint is used to run GSQL queries in Interpreted Mode via a REST request. The

query body should be supplied at the data payload, and the query's parameters are

supplied as the URL's query string. The port should be 14240, however, not 9000.

For example, assuming you are using curl to send your HTTP request:

NOTE: The Path-finding endpoints have been redesigned with different names and different

parameters in TigerGraph version 2.5. The endpoints shown here are only for v2.4 and are

now deprecated.

The TigerGraph platform comes with a family of built-in endpoints which return one or

more unweighted paths connecting a set of source vertices to a set of target vertices. The

user can also specify filtering conditions to specify which edges may be included or the

maximum number of hops in a path.

Path finding is more efficient if the algorithm can do a bidirectional search: travel forward

from the source vertices while traveling backward from target vertices, and then see

where the two paths meet. To do bidirectional search, however, either the edges must be

undirected or directed edge types need to be defined with a companion REVERSE_EDGE

type.

The first table below summarizes the available path-finding endpoints.

curl -X POST "http://localhost:14240/gsqlserver/interpreted_query?a=10" -d
 INTERPRET QUERY (INT a) FOR GRAPH gsql_demo {
 PRINT a;
 }'

Name #paths path type edge type search type

allpaths all
any path (up to

a given depth)
directed bidirectional

all
any path (up to

directed forward

Path-Finding Algorithms

5/13/25, 1:39 PM TigerGraph Documentation

1168

Each endpoint reads a JSON object payload which describes the input parameters. The

next table describes the key-value pairs in the JSON payload. The two required keys are

source_vertices and target_vertices. Each of these contains an array of vertex objects. The

format for a vertex object is as follows: {"type" : "<vertex_type_name>", "id" : "

<vertex_id>"}

singledirectional

lpaths

s given depth)

shortestpath all shortest directed bidirectional

singledirections

hortestpath
all shortest directed forward

shortestsinglep

ath
1 shortest directed bidirectional

undirectedsingl

eshortestpath
1 shortest directed forward

key value

source_vertices
A JSON array of vertex objects. Each path must

start from one of these vertices.

target_vertices
A JSON array of vertex objects. Each path must

end at one of these vertices.

depth
An integer that is the maximum length (number

of hops) for a path.

edge_filters A JSON array of filter objects. See filter below.

rev_edge_filters

A JSON array of filter objects. If an edge type is

undirected and there is no rev_edge_filter

defined, then the edge_filter will be applied in

both directions.

filter

A JSON object which describes a condition on

one vertex type or edge type. By default, an

edge must satisfy the condition in order to be

selected. However, this can be inverted, by

using the "is_deny_filter" option.

A filter object has three key-value pairs:

• "type": the vertex type or edge type to be

filtered.

5/13/25, 1:39 PM TigerGraph Documentation

1169

All filter conditions in the JSON array are combined with the "OR" relationship, i.e., if any

one of the filter conditions is fulfilled, then the filter is satisfied. If "deny_filter" is "true",

then if one filter is condition is satisfied, then the edge is NOT filtered.

Below, we show an example of each of the path endpoints.

NOTE: These shortest-path endpoints have been replaced with improved endpoints in v2.5.

The following query returns all paths connecting vertex set {S, 6} with vertex set {T, 3, c2}

on the graph. It has filter conditions on both directional edge. For positive directions, use

"connected" type edge. For reverse directions, use "rev_connected" type edge. Both have

the attribute filter "nameA != "S" or nameB !="T" ", where nameA and nameB are attributes

for both type of edges.

• "filter": a boolean expression on one

attribute of the given vertex type or edge

type. "AND" and "OR" may be used to make

compound expressions.

• "is_deny_filter" (optional): If "true", then

the filter identifies edges NOT to include.

The default for filters is to select edges to

include.

POST /allpaths/{graphname} (Bi-directional search)

5/13/25, 1:39 PM TigerGraph Documentation

1170

NOTE: These shortest-path endpoints have been replaced with improved endpoints in v2.5.

The following query returns all paths connecting vertex set {S, 6} with vertex set {T, 3, c2}

on the graph. It has filter conditions on positive direction using the "connected" type edge,

because it is a single direction search algorithm. It has the attribute filter that "nameA !=

"S" or nameB !="T" ", where nameA and nameB are attributes of the searching edge.

curl -s -X POST 'http://localhost:9000/allpaths' -d
'{
 "source_vertices":[{"type":"node","id":"S"},{"type":"node","id":"6"}],
 "target_vertices":[{"type": "node", "id":"T"}, {"type":"node","id":"3"},
 "edge_filters":[{"type":"connected", "filter":"nameA != \"S\" or nameB !
 "rev_edge_filters": [{"type":"rev_connected", "filter":" nameA != \"S\"
 "depth": 13
}'

//Returned result, which is an array of vertex json objects and edge json
{"results": [{"v_id":"6","v_type":"node","v":{"name":"6"}},{"v_id":"c2","v
 {"e_type":"connected","from_id":"6","from_type":"node","to_id
 {"nameA":"6","idA":"6","nameB":"c1","idB":"c1","relation":
 ...,],
 "error":false,
 "message":"Cannot get 'vertex_filters' filters, use empty filter."
}

curl -s -X POST 'http://localhost:9000/singledirectionallpaths'
 -d '{
 "source_vertices":[{"type":"node","id":"S"},{"type":"node","id":"6"}
 "target_vertices":[{"type": "node", "id":"T"}, {"type":"node","id":"
 "edge_filters":[{"type":"connected", "filter":"nameA != \"S\" or
 "depth": 13
 }'

POST /singledirectionallpaths/{graphname} (single direction

search)

POST /shortestpath/{graphname} (Bi-directional search)

5/13/25, 1:39 PM TigerGraph Documentation

1171

NOTE: These shortest-path endpoints have been replaced with improved endpoints in v2.5.

The following query returns all shortest paths between vertex set {S, 6} with vertex set {T,

3, c2}. It has filter conditions on both directional edge. For positive directions, use

"connected" type edge. For reverse directions use, "rev_connected" type edge. Both have

the attribute filter "nameA != "S" or nameB !="T" ", where nameA and nameB are attributes

for both type of edges.

NOTE: These shortest-path endpoints have been replaced with improved endpoints in v2.5.

The following query returns a single path connecting vertex set {S, 6} with vertex set {T, 3,

c2} on the graph.

curl -s -X POST 'http://localhost:9000/shortestpath' -d
'{
 "source_vertices":[{"type":"node","id":"S"},{"type":"node","id":"6"}],
 "target_vertices":[{"type": "node", "id":"T"}, {"type":"node","id":"3"},
 "edge_filters":[{"type":"connected", "filter":"nameA != \"S\" or nameB !
 "rev_edge_filters": [{"type":"rev_connected", "filter":" nameA != \"S\"
 "depth": 13
}'

//Returned result, which is an array of vertex json objects and edge json
{"results": [{"v_id":"6","v_type":"node","v":{"name":"6"}},{"v_id":"c2","v
 {"e_type":"connected","from_id":"6","from_type":"node","to_id
 {"nameA":"6","idA":"6","nameB":"c1","idB":"c1","relation":
 ...,],
 "error":false,
 "message":"Cannot get 'vertex_filters' filters, use empty filter."
}

POST /singledirectionshortestpath (single direction search)

5/13/25, 1:39 PM TigerGraph Documentation

1172

NOTE: These shortest-path endpoints have been replaced with improved endpoints in v2.5.

The following query returns one shortest path for each pair of vertex set {S, 6} with vertex

set {T, 3, c2}. It differs from the above query in that only one path for each pair is returned,

even if there are many shortest paths with the same length. The rule to select which

shortest path is fixed if the data is loaded. However, if the graph is reloaded, the selected

path might be different. It has filter conditions on both directional edge types. For positive

directions, use "connected" type edge. For reverse directions, use "rev_connected" type

edge. Both have the attribute filter "nameA != "S" or nameB !="T" ", where nameA and

nameB are attributes for both type of edges.

curl -s -X POST 'http://localhost:9000/singledirectionshortestpath'
 -d '{
 "source_vertices":[{"type":"node","id":"S"},{"type":"node","id":"6"}
 "target_vertices":[{"type": "node", "id":"T"}, {"type":"node","id":"
 "edge_filters":[{"type":"connected", "filter":"nameA != \"S\" or
 "depth": 13
 }'

curl -s -X POST 'http://localhost:9000/undirectedshortestsinglepath' -d
'{
 "source_vertices":[{"type":"node","id":"S"},{"type":"node","id":"6"}],
 "target_vertices":[{"type": "node", "id":"T"}, {"type":"node","id":"3"},
 "edge_filters":[{"type":"connected", "filter":"nameA != \"S\" or nameB !
 "rev_edge_filters": [{"type":"rev_connected", "filter":" nameA != \"S\"
 "depth": 13
}'

//Returned result, which is an array of vertex json objects and edge json
{"results": [{"v_id":"6","v_type":"node","v":{"name":"6"}},{"v_id":"c2","v
 {"e_type":"connected","from_id":"6","from_type":"node","to_id
 {"nameA":"6","idA":"6","nameB":"c1","idB":"c1","relation":
 ...,],
 "error":false,
 "message":"Cannot get 'vertex_filters' filters, use empty filter."
}

POST /undirectedshortestsinglepath/{graphname} (Bi-

directional search)

5/13/25, 1:39 PM TigerGraph Documentation

1173

NOTE: This endpoint has been replaced in v2.5.

The following query returns a single path connecting vertex set {S, 6} with vertex set {T, 3,

c2} on the graph.

For further detail on the graph algorithm queries, take a look at our GSQL Graph Algorithm

Library.

Each time a new TigerGraph query is installed, a dynamic endpoint is generated and

stored at installation_directory/config/endpoints_dynamic. This new endpoint enables the

user to run the new TigerGraph query by using curl commands and giving the parameters

in URL or in a data payload. See the document "GSQL Language Specification, Part 2:

Queries" Section "Running a Query" for more details. For example, the following

TigerGraph query can generate a corresponding endpoint in

<installation_directory>/config/endpoints_dynamic:

curl -s -X POST 'http://localhost:9000/shortestsinglepath'
 -d '{
 "source_vertices":[{"type":"node","id":"S"},{"type":"node","id":"6"}
 "target_vertices":[{"type": "node", "id":"T"}, {"type":"node","id":"
 "edge_filters":[{"type":"connected", "filter":"nameA != \"S\" or
 "depth": 13
 }'

POST /shortestsinglepath (single direction search)

Dynamically Generated Endpoints

parameterIsNULL.gsql

5/13/25, 1:39 PM TigerGraph Documentation

1174

The "payload" object enables the query being executed by giving a data payload. The

"parameter" object includes the query parameters.

To execute this query, with parameter p=0, the following curl command can be used:

CREATE QUERY parameterIsNULL (INT p) FOR GRAPH anyGraph {
 IF p IS NULL THEN
 PRINT "p is null";
 ELSE
 PRINT "p is not null";
 END;

}

{
 "query":{
 "parameterIsNULL":{
 "GET":{
 "function":"queryDispatcher",
 "action":"query",
 "target":"GPE",
 "payload":[
 {
 "rule":"AS_QUERY_STRING"
 }
],
 "parameters":{
 "query":{
 "type":"STRING",
 "default":"parameterIsNULL"
 },
 "p":{
 "type":"INT64",
 "min_count":0
 }
 },
 "summary":"This is query entrance"
 }
 }
 }
}

parameterIsNULL.end

5/13/25, 1:39 PM TigerGraph Documentation

1175

The REST servers log files are located in <installation_directory>/logs.

curl -X GET "http://localhost:9000/query/anyGraph/parameterIsNULL?p=0"

Log Files

5/13/25, 1:39 PM TigerGraph Documentation

1176

JSON Catalog

The request

generates the following output, appropriately 400 lines long when formatted. In addition to

listing each endpoint, the JSON output also lists all the required and optional parameters

for each endpoint. In turn, each parameter is described by some or all of these attributes:

• default

• max_count

• min_count

• type

• max_length

• is_id

• id_type

While this information alone is not sufficient for a full understanding of each endpoint, the

descriptive names of parameters and the attribute values go a long way towards this goal.

curl -X GET "http://server_ip:9000/endpoints?builtin=true"

5/13/25, 1:39 PM TigerGraph Documentation

1177

5/13/25, 1:39 PM TigerGraph Documentation

1178

{
 "DELETE /graph/{graph_name}/delete_by_type/vertices/{vertex_type}" : {
 "parameters" : {
 "ack" : {
 "default" : "all",
 "max_count" : 1,
 "min_count" : 1,
 "options" : ["all", "none"],
 "type" : "STRING"
 },
 "permanent" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 1,
 "type" : "BOOL"
 },
 "vertex_type" : {
 "type" : "TYPENAME"
 }
 }
 },
 "DELETE /graph/{graph_name}/edges/{source_vertex_type}/{source_vertex_i
 "parameters" : {
 "edge_type" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "STRING"
 },
 "filter" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "limit" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT64"
 },
 "not_wildcard" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "permanent" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 1,

5/13/25, 1:39 PM TigerGraph Documentation

1179

 "type" : "BOOL"
 },
 "select" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "sort" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "source_vertex_id" : {
 "id_type" : "$source_vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 256,
 "min_count" : 1,
 "type" : "STRING"
 },
 "source_vertex_type" : {
 "max_count" : 1,
 "min_count" : 1,
 "type" : "TYPENAME"
 },
 "target_vertex_id" : {
 "id_type" : "$target_vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 256,
 "min_count" : 0,
 "type" : "STRING"
 },
 "target_vertex_type" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "TYPENAME"
 },
 "timeout" : {
 "default" : "0",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT32"
 }
 }
 },

"DELETE /graph/{graph name}/vertices/{vertex type}/{vertex id}" : {

5/13/25, 1:39 PM TigerGraph Documentation

1180

 DELETE /graph/{graph_name}/vertices/{vertex_type}/{vertex_id} : {
 "parameters" : {
 "filter" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "limit" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT64"
 },
 "permanent" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 1,
 "type" : "BOOL"
 },
 "sort" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "timeout" : {
 "default" : "0",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT32"
 },
 "vertex_id" : {
 "id_type" : "$vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "vertex_type" : {
 "type" : "TYPENAME"
 }
 }
 },
 "GET /echo" : {
 "parameters" : {
 "sleep" : {
 "default" : "0",
 "type" : "INT32"

}

5/13/25, 1:39 PM TigerGraph Documentation

1181

 }
 }
 },
 "GET /endpoints" : {
 "parameters" : {
 "builtin" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "dynamic" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "static" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 }
 }
 },
 "GET /graph/{graph_name}/edges/{source_vertex_type}/{source_vertex_id}/{
 "parameters" : {
 "count_only" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "edge_type" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "STRING"
 },
 "filter" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "limit" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT64"
 },

5/13/25, 1:39 PM TigerGraph Documentation

1182

},
 "not_wildcard" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "select" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "sort" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "source_vertex_id" : {
 "id_type" : "$source_vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 256,
 "min_count" : 1,
 "type" : "STRING"
 },
 "source_vertex_type" : {
 "max_count" : 1,
 "min_count" : 1,
 "type" : "TYPENAME"
 },
 "target_vertex_id" : {
 "id_type" : "$target_vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 256,
 "min_count" : 0,
 "type" : "STRING"
 },
 "target_vertex_type" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "TYPENAME"
 },
 "timeout" : {
 "default" : "0",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT32"

}

5/13/25, 1:39 PM TigerGraph Documentation

1183

Transaction Processing
and ACID Support
Version 1.0 through 2.2

 }
 }
 },
 "GET /graph/{graph_name}/vertices/{vertex_type}/{vertex_id}" : {
 "parameters" : {
 "count_only" : {
 "default" : "false",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "BOOL"
 },
 "filter" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "limit" : {
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT64"
 },
 "select" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "sort" : {
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "timeout" : {
 "default" : "0",
 "max_count" : 1,
 "min_count" : 0,
 "type" : "UINT32"
 },
 "vertex_id" : {
 "id_type" : "$vertex_type",
 "is_id" : true,
 "max_count" : 1,
 "max_length" : 2560,
 "min_count" : 0,
 "type" : "STRING"
 },
 "vertex_type" : {

5/13/25, 1:39 PM TigerGraph Documentation

1184

This document describes the transactional support provided by the TigerGraph platform.

A TigerGraph transaction is a sequence of operations which acts as a single logical unit of

work. A read-only operation in TigerGraph does not change any vertex/edge attribute

value and doesn't insert any new or delete any existing vertex/edge. An update operation

in TigerGraph is an operation which either changes some vertex/edge attribute value or

insert some new or delete some existing vertex/edge.

The TigerGraph system provides full ACID transactions with sequential consistency.

Transactions are defined as follows:

• Each GSQL query is a transaction . Each query may have multiple read or write

operations.

• Each REST++ GET, POST, or DELETE operation (which may have multiple update

operations within it) is a transaction.

A transaction with update operations may insert/delete multiple vertices/edges or update

the attribute values of multiple edges/vertices. Such update requests are “all or nothing”:

either all changes are successful, or none is successful.

The TigerGraph system provides traditional ACID consistency: A transaction can include

data validation rules. The data validation rules can ensure any transaction will bring the

system from one valid state to another.

The TigerGraph system also provides distributed system Sequential Consistency: every

replica of the data performs the same operations in the same order. This is one of the

strongest forms of consistency available, stronger than causal consistency, for example.

TigerGraph supports the Serializable isolation level, the strongest form of isolation.

Internally, TigerGraph uses MVCC to implement the isolation. MVCC, or Multi-Version

Concurrency Control, makes use of multiple snapshots of portions of the database state

 "type" : "TYPENAME"
 }
 }
 },
 "GET /statistics" : {
 "parameters" : {
 "seconds" : {
 "default" : "10",
 "type" : "UINT32"
 },
 "segments" : {
 "default" : "10",
 "max" : "100",
 "min" : "1",
 "type" : "UINT32"
 }
 }
 },
 "GET /version" : null,
 "POST /builtins" : null,
 "POST /echo" : {
 "parameters" : {
 "sleep" : {
 "default" : "0",
 "type" : "INT32"
 }
 }
 },
 "POST /graph/{graph_name}" : {
 "parameters" : {
 "ack" : {
 "default" : "all",
 "max_count" : 1,
 "min_count" : 1,
 "options" : ["all", "none"],
 "type" : "STRING"
 }
 }
 }
}

Atomicity

Consistency

Isolation Level

5/13/25, 1:39 PM TigerGraph Documentation

1185

in order to support isolated concurrent operations. In principle, there can be one snapshot

per read or write operation.

A read-only transaction R1 will not see any changes made by an uncommitted update

transaction, whether that update transaction was submitted before or after R1 was

submitted to the system.

Multiple same reads in a single transaction T1 will get the same results, even if there are

update transactions which change vertex or edge attribute values read by T1 during T1’s

duration.

Multiple reads in a single read-only transaction T1 will get the same results, even if there

are update transactions which deleted/inserted vertices or edges read by T1 during T1’s

duration.

Committed transactions are written to disk (SSD or HDD). The TigerGraph platform

implements write-ahead logging (WAL) to provide durability.

The TigerGraph platform uses Snapshot/MVCC (Multi-version Concurrency Control) to

implement isolation of concurrent operations. At the high level, the platform can

temporarily maintain multiple versions or snapshots of the graph data. When a transaction

T1 is submitted to the system, it will work on the last consistent snapshot of the graph

which has all the changes made by transactions committed before T1 was submitted but

has no changes made by any transaction not yet committed when T1 was submitted. The

No Dirty Reads

Repeatable reads

No phantom reads

Durability

TigerGraph internal Snapshot Implementation

5/13/25, 1:39 PM TigerGraph Documentation

1186

version of the graph T1 is working on will not be changed by any transactions other than

T1 , even if they commit before T1 is finished.

Let us examine a few transaction processing scenarios.

A read-only transaction R1 is running. Before R1 finishes, an update transaction W2 comes

in. W2 might finish before R1 is finished. But R1 will not see the changes made by W2

before W2 is committed (no dirty reads). Even if W2 is committed before R1 is finished, if

R1 reads the same part of the graph multiple times, it will not see the changes made by

W2 (repeatable reads). There are no phantom reads either. This is because the graph

version R1 is working on cannot be changed by any of the W2 transaction aforementioned.

Bottom line: If W2 starts when R1 is not yet committed, R1 will see results as though W2

did not exist.

An update transaction W1 is running. Before W1 is committed, a read-only transaction R2

comes in. R2 will not wait for W1 to finish and will be executed as if there is no W1. Later.

even if W1 finishes and commits before R2 is finished, R2 will not see any changes made

by W1. This is because the graph version R2 works on is 'fixed' at the time when R2 is

submitted and will not include the changes to be made by W1. Bottom line: If R2 starts

when W1 is not yet committed, R2 will see results as though W1 did not exist.

Example Scenarios

Scenario 1 Read - Write

Scenario 2 Write - Read

5/13/25, 1:39 PM TigerGraph Documentation

1187

An update transaction W1 is running. Before W1 finishes, a new update request W2 comes

in. W2 will wait for W1 to finish before it is executed. When multiple update transactions

come in, they will be executed sequentially by the system according to the time they are

received by the system.

Scenario 3 Write - Write

5/13/25, 1:39 PM TigerGraph Documentation

1188

Data Loader User Guides

Data Loaders are interfaces built in to the TigerGraph system which enable users to use

the same high-level GSQL protocol for high-speed parallel data loading, whether the data

reside directly on the network file system, or come from one of several other supported

data sources. When the data are coming from another data source, some initial

configuration is needed. Then you can use the same type of loading jobs described in the

GSQL Language Reference: Part 1 - Data Definition and Loading.

To configure a data source, see the appropriate data loader user guide:

• AWS S3 Loader User Guide

• Kafka Loader User Guide

5/13/25, 1:39 PM TigerGraph Documentation

1189

AWS S3 Loader User Guide

AWS Simple Storage Service (S3) is a popular destination to store data in the cloud and

has become an essential component in the data pipeline of many enterprises. It is an

object storage service on the AWS platform which can be accessed through a web service

interface.

TigerGraph's S3 Loader makes it easier for you to integrate with an Amazon S3 service

and ingest data from S3 buckets either in realtime or via one-time data import into the

TigerGraph System. Your TigerGraph cluster can be deployed either on-premises or in a

cloud environment.

From a high level, a user provides instructions to the TigerGraph system through GSQL,

and the external Amazon S3 data is loaded into TigerGraph's RESTPP server. The following

diagram demonstrates the S3 Loader data architecture.

Overview

Architecture

5/13/25, 1:39 PM TigerGraph Documentation

1190

You should have uploaded your data to Amazon S3 buckets.

Once you have the buckets set up, you need to prepare the following two configuration

files and place them in your desired location in the TigerGraph system:

1. S3 data source configuration file: This file includes the credentials for accessing

Amazon S3 which consists of access key and secret key. Through the configuration

file, the TigerGraph system acquires the authority to access your buckets. Please see

the example in Step 1. Define the Data Source.

2. S3 file configuration file: This file specifies various options for reading data from

Amazon S3. Please the see example in Step 2. Create a Loading Job.

Prerequisites

5/13/25, 1:39 PM TigerGraph Documentation

1191

There are three basic steps:

1. Define the Data Source

2. Create a Loading Job

3. Run the Loading Job

The GSQL syntax for the S3 Loader is designed to be consistent with the existing GSQL

loading syntax.

Before starting a S3 data loading job, you need to define the credentials to connect to

Amazons S3. The CREATE DATA_SOURCE statement defines a data_source type variable,

with a sub type S3:

After the data source is created, use the SET command to specify the path to a

configuration file for that data source.

This SET command reads, validates, and applies the configuration file, integrating its

settings into TigerGraph's dictionary. The data source configuration file's content,

structured as a JSON object, describes the S3 credential settings, including the access

key and secret key. A sample s3.config is shown in the following example:

CREATE DATA_SOURCE S3 data_source_name

SET data_source_name = "/path/to/s3.config";

Configuring and Using the S3 Loader

1. Define the Data Source

CREATE DATA_SOURCE

S3 Data Source Configuration File

5/13/25, 1:39 PM TigerGraph Documentation

1192

For simplicity, you can merge the CREATE DATA_SOURCE and SET statements:

1. If you have a TigerGraph cluster, the configuration file must be on machine m1, where the

GSQL server and GSQL client both reside, and it must be in JSON format. If the

configuration file uses a relative path, the path should be relative to the GSQL client

working directory.

2. Each time when the config file is updated, you must run "SET data_source_name" to

update the data source details in the dictionary.

The S3 Loader supports the TigerGraph MultiGraph feature. In the MultiGraph context, a

data source can be either global or local:

1. A global data source can only be created by a superuser, who can grant the global

data source to any graph.

2. An admin user can only create a local data source, which cannot be accessed by other

graphs.

The following are examples of permitted DATA_SOURCE operations.

1. A superuser may create a global level data source without assigning it to a particular

graph:

2. A superuser may grant/revoke a data source to/from one or more graphs:

{
 "file.reader.settings.fs.s3a.access.key": "AKIAJ****4YGHQ",
 "file.reader.settings.fs.s3a.secret.key": "R8bli****p+dT4"
}

CREATE DATA_SOURCE S3 data_source_name = "/path/to/s3.config"

CREATE DATA_SOURCE S3 s1 = "/path/to/config"

ADVANCED: MultiGraph Support

s3.config

5/13/25, 1:39 PM TigerGraph Documentation

1193

3. An admin user may create a local data source for a specified graph which the admin

user administers:

In the above statement, the local data_source s1 is only accessible to graph test_graph. A

superuser cannot grant it to another graph.

A data_source variable can be dropped by a user who has the privilege. A global data

source can only be dropped by a superuser. A local data_source can only be dropped by

an admin for the relevant graph or by a superuser. The syntax for the DROP command is

as follows:

Below is an example with a few legal s3 data_source create and drop commands.

The SHOW DATA_SOURCE command will display a summary of all existing data_sources

for which the user has privilege:

GRANT DATA_SOURCE s1 TO GRAPH graph1, graph2
REVOKE DATA_SOURCE s1 FROM GRAPH graph1, graph2

CREATE DATA_SOURCE S3 s1 = "/path/to/config" FOR GRAPH test_graph

DROP DATA_SOURCE <source1>[<source2>...] | * | ALL

CREATE DATA_SOURCE S3 s1 = "/home/tigergraph/s3.config"
CREATE DATA_SOURCE S3 s2 = "/home/tigergraph/s3_2.config"

DROP DATA_SOURCE s1, s2
DROP DATA_SOURCE *
DROP DATA_SOURCE ALL

DROP DATA_SOURCE

SHOW DATA_SOURCE

5/13/25, 1:39 PM TigerGraph Documentation

1194

The S3 Loader uses the same basic CREATE LOADING JOB syntax used for standard

GSQL loading jobs. A DEFINE FILENAME statement should be used to assign a loader

FILENAME variable to a S3 data source name and the path to its config file.

In addition, the filename can be specified in the RUN LOADING JOB statement with the

USING clause. The filename value set by a RUN statement overrides the value set in the

CREATE LOADING JOB.

Below is the syntax for DEFINE FILENAME when using the S3 Loader. In the syntax,

$DATA_SOURCE_NAME is the S3 data source name, and the path points to a configuration

file which provides information about how to read an Amazon S3 file. The S3 file

configuration file must be in JSON format.

Example: Load a S3 Data Source s1, where the path to the file configuration file is

"~/files.conf":

The S3 file configuration file tells the TigerGraph system exactly which Amazon S3 files to

read and how to read them. Similar to the data source configuration file described above,

the contents are in JSON object format. An example file is shown below.

$ GSQL SHOW DATA_SOURCE *

The sample output:
Data Source:
 - S3 s1 ("file.reader.settings.fs.s3a.access.key": "AKIAJ****4YGHQ", "fi
The global data source will be shown in global scope.
The graph scope will only show the data source it has access to.

DEFINE FILENAME filevar "=" [filepath_string | data_source_string];
data_source_string = $DATA_SOURCE_NAME":"<path_to_configfile>

DEFINE FILENAME f1 = "$s1:~/files.config";

2. Create a Loading Job

S3 File Configuration File

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#create-loading-job
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#create-loading-job

1195

The "file.uris" key is required. It specifies one or more paths on your Amazon S3 bucket.

Each path is either to an individual file or to a directory. If it is a directory, then each file

directly under that directory is included. You can specify multiple paths by using a comma-

separated list. An example with multiple paths is show below:

Instead of specifying the config file path, you can also directly provide the S3 file

configuration as a string argument, as shown below:

Besides the required "file.uris" key, you can further configure the S3 loader. A sample full

configuration is shown below:

{
 "file.uris": "s3://my-bucket/data.csv"
}

{
 "file.uris": "s3://my-bucket1/data1.csv,s3://my-bucket1/data2.csv,s3:/
}

DEFINE FILENAME f1 = "$s1:~/files.config";
DEFINE FILENAME f1 = "$s1:{\"file.uris\":\"s3://my-bucket/data.csv\"}";

ADVANCED: Configure How to Read S3 File

files.config

files.config

files.config

5/13/25, 1:39 PM TigerGraph Documentation

1196

Following is a detailed explanation of each option:

• "tasks.max" (default is 1): specifies the maximum number of tasks which can run in

parallel. E.g. if there are 2 files and 2 tasks, each task will handle 1 file. If there are 2

files and 1 task, the single task will handle 2 files. If there is 1 file and 2 tasks, one of

the tasks will handle the file.

• "file.uris": specifies the path(s) to the data files on Amazon S3. The path can also be

dynamic by using expressions to modify the URIs at runtime. These expressions have

the form ${XX} where XX represents a pattern from DateTimeFormatter Java

class.

if you want to ingest data dynamically, i.e. directories/files created every day and avoid

adding new URIs every time, you can include expressions in URIs to do that. For example, for

the URI s3://my-bucket/${yyyy} , it is converted to s3://my-bucket/2019 when running

the loader. You can use as many as you like in the URIs, for instance: s3://my-
bucket/${yyyy}/${MM}/${DD}/${HH}-${mm}

• "file.regexp" (default is .* which matches all files): the regular expression to filter

which files to read.

• "file.recursive" (default is false): whether to recursively access all files in a directory.

• "file.scan.interval.ms" (default is 60000): the wait time in ms before starting another

scan of the file directory after finishing the current scan. Only applicable in stream

mode.

• "file.reader.type" (default is text): the type of file reader to use. If text, read the file line

by line as pure text. If parquet, read the file as parquet format.

{
 "tasks.max": 1,
 "file.uris": "s3://my-bucket/data.csv",
 "file.regexp": ".*",
 "file.recursive": false,
 "file.scan.interval.ms": 60000,
 "file.reader.type": "text",
 "file.reader.batch.size": 10000,
 "file.reader.text.archive.type": "auto",
 "file.reader.text.archive.extensions.tar": "tar",
 "file.reader.text.archive.extensions.zip": "zip",
 "file.reader.text.archive.extensions.gzip": "tar.gz,tgz"
}

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html

1197

• "file.reader.batch.size" (default is 1000): maximum number of lines to include in a

single batch.

• "file.reader.text.archive.type" (default is auto): the archive type of the file to be read. If

auto, determine the archive type automatically. If tar, read the file with tar format. if

zip, read the file with zip format. If gzip, read the file with gzip format. If none, read the

file normally.

• "file.reader.text.archive.extensions.tar" (default is tar): the list of file extensions to be

read with tar format.

• "file.reader.text.archive.extensions.zip" (default is zip): the list of file extensions to be

read with zip format.

• "file.reader.text.archive.extensions.gzip" (default is gzip): the list of file extensions to

be read with gzip format.

The archive type is applied to all files in "file.uris" when loading. If you have different archive

type files to be read at the same time, set auto for "file.reader.text.archive.type" and configure

how to detect each archive extensions by providing the extensions list. Currently we support

tar, zip and gzip archive types.

The S3 Loader uses the same RUN LOADING JOB statement that is used for GSQL

loading from files. Each filename variable can be assigned a string "DATA_SOURCE Var:file

configure", which will override the value defined in the loading job. In the example below,

the config files for f2 and f3 are being set by the RUN command, whereas f1 is using the

config which was specified in the CREATE LOADING JOB statement.

A RUN LOADING JOB instance may only use one type of data source. E.g., you may not mix

both S3 data sources and regular file data sources in one loading job.

All filename variables in one loading job statement must refer to the same DATA_SOURCE

variable.

RUN LOADING JOB job1 USING f1, f2="$s1:~/files1.config", f3="$s2:~/files2.

3. Run the Loading Job

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#run-loading-job
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#run-loading-job

1198

There are two modes for the S3 Loader: streaming mode and EOF mode. The default

mode is streaming mode. In streaming mode, loading will never stop until the job is

aborted. In EOF mode, loading will stop after consuming the provided Amazon S3 file

objects.

To set EOF mode, an optional parameter is added to the RUN LOADING JOB syntax:

S3 Loader loading jobs are managed the same way as native loader jobs. The three key

commands are

• SHOW LOADING STATUS

• ABORT LOADING JOB

• RESUME LOADING JOB

For example, the syntax for the SHOW LOADING STATUS command is as follows:

To refer to a specific job instance, use the job_id which is provided when RUN LOADING

JOB is executed. For each loading job, the above command reports the following

information :

1. current loaded lines

2. average loading speed

3. loaded size

4. duration

See Inspecting and Managing Loading Jobs for more details.

RUN LOADING JOB [-noprint] [-dryrun] [-n [i],j] jobname
 [USING filevar [="filepath_string"][, filevar [="filepath_string"]]*
 [, CONCURRENCY="cnum"][,BATCH_SIZE="bnum"]][, EOF="true"]

SHOW LOADING STATUS job_id|ALL

Manage Loading Jobs

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#inspecting-and-managing-loading-jobs
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#inspecting-and-managing-loading-jobs

1199

Here is an example code for loading data through the S3 Loader:

USE GRAPH test_graph
DROP JOB load_person
DROP DATA_SOURCE s1

Create data_source s3 s1 = "s3_config.json" for graph test_graph.
CREATE DATA_SOURCE S3 s1 FOR GRAPH test_graph
SET s1 = "s3_config.json"

Define the loading jobs.
CREATE LOADING JOB load_person FOR GRAPH test_graph {
 DEFINE FILENAME f1 = "$s1:s3_file_config.json";
 LOAD f1
 TO VERTEX Person VALUES ($2, $0, $1),
 TO EDGE Person2Comp VALUES ($2, $2, $1)
 USING SEPARATOR=",";
}

load the data
RUN LOADING JOB load_person

S3 Loader Example

5/13/25, 1:39 PM TigerGraph Documentation

1200

Kafka Loader User Guide

Kafka is a popular pub-sub system in enterprise IT, offering a distributed and fault-tolerant

real-time data pipeline. TigerGraph's Kafka Loader feature lets you easily integrate with a

Kafka cluster and speed up your real time data ingestion. It is easily extensible using the

many plugins available in the Kafka ecosystem.

The Kafka Loader consumes data in a Kafka cluster and loads into TigerGraph system.

From a high level, a user provides instructions to the TigerGraph system through GSQL,

and the external Kafka cluster loads data into TigerGraph's RestPP server. The following

diagram demonstrates the Kafka Loader data architecture.

Overview

Architecture

5/13/25, 1:39 PM TigerGraph Documentation

1201

You should have a Kafka cluster configured and set up in your environment.

Once you have the external Kafka cluster setup, you need to prepare the following two

configuration files and place them in your desired location in TigerGraph system:

1. Kafka data source configuration file: This file includes the external Kafka broker's

domain name and port. Through the configuration file, TigerGraph system knows the

location and port of the external Kafka broker. Please see an example in Step 1.

Define the Data Source.

2. Kafka topic and partition configuration file: This file includes the Kafka topic, partition

list, and start offset for the loading messages. Please see an example in Step 2.

Create a Loading Job.

Kafka Data Loader Architecture

Prerequisites

5/13/25, 1:39 PM TigerGraph Documentation

1202

There are three basic steps:

1. Define the data source

2. Create a loading job

3. Run the loading job

The GSQL syntax for the Kafka Loader is designed to be consistent with the existing GSQL

loading syntax.

Before starting a Kafka data loading job, you need to define the Kafka server as a data

source. The CREATE DATA_SOURCE statement defines a data_source variable with a

subtype of KAFKA:

Kafka Data Source Configuration File

After the data source is created, then use the SET command to specify the path to a

configuration file for that data source.

This SET command reads, validates, and applies the configuration file, integrating its

settings into TigerGraph's dictionary. The data source configuration file's content,

structured as a JSON object, describes the Kafka server's global settings, including the

data source ip and port. A sample kafka.conf is shown in the following example:

CREATE DATA_SOURCE KAFKA data_source_name

SET data_source_name = "/path/to/kafka.config"

Configuring and Using the Kafka Loader

1. Define the Data Source

CREATE DATA_SOURCE

5/13/25, 1:39 PM TigerGraph Documentation

1203

The "broker" key is required. Additional Kafka configuration parameters may be provided

(see Kafka documentation) by using the optional "kafka_config" key. For its value, provide

a list of key-value pairs. For example:

For simplicity, you can merge the CREATE DATA_SOURCE and SET statements:

1. If you have a TigerGraph cluster, the configuration file must be on machine m1, where the

GSQL server and GSQL client both reside, and it must be in JSON format. If the

configuration file uses a relative path, the path should be relative to the GSQL client

working directory.

2. Each time when the config file is updated, you must run "SET data_source_name" to

update the data source details in the dictionary.

ADVANCED: MultiGraph Support

The Kafka Loader supports the TigerGraph MultiGraph feature. In the MultiGraph context,

a data source can be either global or local:

1. A global data source can only be created by a superuser, who can grant it to any

graph.

2. An admin user can only create a local data source, which cannot be accessed by other

graphs.

The following are examples of permitted DATA_SOURCE operations.

{
 "broker": "broker.full.domain.name:9092",
}

{
 "broker": "broker.full.domain.name:9092",
 "kafka_config": {"group.id":"tigergraph"}
}

CREATE DATA_SOURCE KAFKA data_source_name = "/path/to/kafka.config"

5/13/25, 1:39 PM TigerGraph Documentation

1204

1. A superuser may create a global level data source without assigning it to a particular

graph:

2. A superuser may grant/revoke a data source to/from one or more graphs:

3. An admin user may create a local data source for a specified graph which they

administer:

In the above statement, the local data_source k1 is only accessible to graph test_graph. A

superuser cannot grant it to another graph.

A data_source variable can be dropped by a user who has privilege. A global data source

can only be dropped by a superuser. A local data_source can only be dropped by an admin

for the relevant graph or by a superuser. The syntax for the DROP command is as follows:

Below is an example of several legal kafka data_source create and drop commands.

CREATE DATA_SOURCE KAFKA k1 = "/path/to/config"

GRANT DATA_SOURCE k1 TO GRAPH graph1, graph2
REVOKE DATA_SOURCE k1 FROM GRAPH graph1, graph2

CREATE DATA_SOURCE KAFKA k1 = "/path/to/config" FOR GRAPH test_graph

DROP DATA_SOURCE <source1>[<source2>...] | * | ALL

CREATE DATA_SOURCE KAFKA k1 = "/home/tigergraph/kafka.conf"
CREATE DATA_SOURCE KAFKA k2 = "/home/tigergraph/kafka2.conf"

DROP DATA_SOURCE k1, k2
DROP DATA_SOURCE *
DROP DATA_SOURCE ALL

DROP DATA_SOURCE

5/13/25, 1:39 PM TigerGraph Documentation

1205

The SHOW DATA_SOURCE command will display a summary of all existing data_sources

for which the user has privilege:

The Kafka Loader uses the same basic CREATE LOADING JOB syntax used for standard

GSQL loading jobs. A DEFINE FILENAME statement should be used to assign a loader

FILENAME variable to a Kafka data source name and the path to its config file.

In addition, the filename can be specified in the RUN LOADING JOB statement with the

USING clause. The filename value set by a RUN statement overrides the value set in the

CREATE LOADING JOB.

Below is the syntax for DEFINE FILENAME for use with the Kakfa Loader. In the syntax,

$DATA_SOURCE_NAME is the Kafka data source name, and the path points to a

configuration file with topic and partition information of the Kafka server. The Kafka

configuration file must be in JSON format.

Example: Load a Kafka Data Source k1, where the path to the topic-partition configuration

file is "~/topic_partition1.conf":

$ GSQL SHOW DATA_SOURCE *

the sample output
Data Source:
 - KAFKA k1 ("127.0.0.1:9092")
The global data source will be shown in global scope. The graph scope will

DEFINE FILENAME filevar "=" [filepath_string | data_source_string];
data_source_string = $DATA_SOURCE_NAME":"<path_to_configfile>

DEFINE FILENAME f1 = "$k1:~/topic_partition1.conf";

SHOW DATA_SOURCE

2. Create a Loading Job

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#create-loading-job
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/creating-a-loading-job#create-loading-job

1206

Kafka Topic-Partition Configuration File

The topic-partition configuration file tells the TigerGraph system exactly which Kafka

records to read. Similar to the data source configuration file described above, the

contents are in JSON object format. An example file is shown below:

The "topic" key is required. Optionally, a "partition_list" array can be included to specify

which topic partitions to read and what start offsets to use. If the "partition_list" key is

missing or empty, all partitions in this topic will be used for loading. The default offset for

loading is "-1", which means you will load data from the most recent message in the topic,

i.e., the end of the topic. If you want to load from the beginning of a topic, the "start_offset"

value should be "-2".

You can also overwrite the default offset by setting "default_start_offset" in the Kafka

topic configuration file. For example,

{
 "topic": "topicName1",
 "partition_list": [
 {
 "start_offset": -1,
 "partition": 0
 },
 {
 "start_offset": -1,
 "partition": 1
 },
 {
 "start_offset": -1,
 "partition": 2
 }
]
}

topic_partition1.conf

5/13/25, 1:39 PM TigerGraph Documentation

1207

Instead of specifying the config file path, you can also directly provide the topic-partition

configuration as a string argument, as shown below:

The Kafka Loader uses the same RUN LOADING JOB statement that is used for GSQL

loading from files. Each filename variable can be assigned a string "DATA_SOURCE

Var:topic_partition configure", which will override the value defined in the loading job. In

the example below, the config files for f3 and f4 are being set by the RUN command,

whereas f1 is using the config which was specified in the CREATE LOADING JOB

statement.

A RUN LOADING JOB instance may only use one type of data source. E.g., you may not mix

both Kafka data sources and regular file data sources in one loading job.

all partition will be used if no "partition_list" item
{
 "topic": "topicName1"
}

with empty "partition_list"
{
 "topic": "topicName1",
 "partition_list": []
}

overwrite the default start offset
{
 "topic": "topicName1",
 "default_start_offset", 0
}

DEFINE FILENAME f1 = "$k1:~/topic_partition_config.json";
DEFINE FILENAME f1 = "$k1:{\"topic\":\"zzz\",\"default_start_offset\":2,\"

RUN LOADING JOB job1 USING f1, f3="$k1:~/topic_part3.config", f4="$k1:~/to

3. Run the Loading Job

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#run-loading-job
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#run-loading-job

1208

All filename variables in one loading job statement must refer to the same DATA_SOURCE

variable.

There are two modes for the Kafka Loader: streaming mode and EOF mode. The default

mode is streaming mode. In streaming mode, loading will never stop until the job is

aborted. In EOF mode, loading will stop after consuming the current Kafka message.

To set EOF mode, an optional parameter is added to the RUN LOADING JOB syntax:

Kafka Loader loading jobs are managed the same way as native loader jobs. The three key

commands are

• SHOW LOADING STATUS

• ABORT LOADING JOB

• RESUME LOADING JOB

For example, the syntax for the SHOW LOADING STATUS command is as follows:

To refer to a specific job instance, using the job_id which is provided when RUN LOADING

JOB is executed. For each loading job, the above command reports the following

information :

1. current loaded offset for each partition

2. average loading speed

3. loaded size

4. duration

RUN LOADING JOB [-noprint] [-dryrun] [-n [i],j] jobname
 [USING filevar [="filepath_string"][, filevar [="filepath_string"]]*
 [, CONCURRENCY="cnum"][,BATCH_SIZE="bnum"]][, EOF="true"]

SHOW LOADING STATUS job_id|ALL

Manage Loading Jobs

5/13/25, 1:39 PM TigerGraph Documentation

1209

See Inspecting and Managing Loading Jobs for more details.

Here is an example code for loading data through Kafka Loader:

USE GRAPH test_graph
DROP JOB load_person
DROP DATA_SOURCE k1

#create data_source kafka k1 = "kafka_config.json" for graph test_graph
CREATE DATA_SOURCE KAFKA k1 FOR GRAPH test_graph
SET k1 = "kafka_config.json"

define the loading jobs
CREATE LOADING JOB load_person FOR GRAPH test_graph {
 DEFINE FILENAME f1 = "$k1:topic_partition_config.json";
 LOAD f1
 TO VERTEX Person VALUES ($2, $0, $1),
 TO EDGE Person2Comp VALUES ($2, $2, $1)
 USING SEPARATOR=",";
}

load the data
RUN LOADING JOB load_person

Kafka Loader Example

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#inspecting-and-managing-loading-jobs
https://docs.tigergraph.com/dev/gsql-ref/ddl-and-loading/running-a-loading-job#inspecting-and-managing-loading-jobs

1210

Legal

5/13/25, 1:39 PM TigerGraph Documentation

1211

Patents and Third Party Software

Patent and Third Party Notice for TigerGraph Platform v2.3 April 2019

U.S. Pat. No. 9953106, 9977837, 10120956.

Additional Patents pending.

The TigerGraph software program uses some third-party software components that are

licensed under their own terms. The attached notices are provided for information only.

• Section 1. List of third-party software in the TigerGraph platform.

• Section 2. List of additional third-party software in the TigerGraph Cloud Service

interface.

• Section 3. Table of license types.

A separate third-party disclosure is available for the GraphStudio Visual SDK. See

https://docs.tigergraph.com/ui/graphstudio/patent-and-third-party-notice

===

antlr Copyright (c) 2014 antlr. https://www.antlr.org/ Licensed under BSD3

commons-cli Copyright (c) 2002-2017 The Apache Software Foundation.

https://commons.apache.org/proper/commons-cli/ Licensed under Apache2

commons-codec Copyright (c) 2002-2017 The Apache Software Foundation.

https://commons.apache.org/proper/commons-codec/ Licensed under Apache2

commons-lang3 Copyright (c) 2001-2018 The Apache Software Foundation.

https://commons.apache.org/proper/commons-lang/ Licensed under Apache2

Section 1. List of third-party software in the
TigerGraph platform

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.tigergraph.com/ui/graphstudio/patent-and-third-party-notice
https://docs.tigergraph.com/ui/graphstudio/patent-and-third-party-notice
https://www.antlr.org/
https://www.antlr.org/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-cli/
https://commons.apache.org/proper/commons-codec/
https://commons.apache.org/proper/commons-codec/
https://commons.apache.org/proper/commons-lang/
https://commons.apache.org/proper/commons-lang/

1212

diffutils Copyright (c) 2010 Free Software Foundation. https://github.com/java-diff-

utils/java-diff-utils Licensed under Apache2

grpc Copyright (c) 2018 The gRPC authors. https://grpc.io/ Licensed under Apache2

guava Copyright (c) 2010-2016 OneLogin, Inc. https://github.com/google/guava

Licensed under Apache2

java-saml Copyright (c) 2010-2016 OneLogin, Inc. https://github.com/onelogin/java-saml

 Licensed under MIT

jline Copyright (c) 2002-2018 Guillaume Nodet. https://github.com/jline/jline3 Licensed

under BSD3

joda-time Copyright (c) 2002-2018 Joda. https://www.joda.org/joda-time/ Licensed

under Apache2

json Copyright (c) 2002 JSON. https://github.com/stleary/JSON-java Licensed under

JSON

LDAP SDK Copyright (c) 2009 Ping Identity Corporation.

https://github.com/pingidentity/ldapsdk/blob/master/README.md Licensed under

LDAPSDK

log4j Copyright (c) 1999-2018 The Apache Software Foundation.

https://logging.apache.org/log4j/2.x/ Licensed under Apache2

netty Copyright (c) 2018 The Netty Project. https://netty.io/ Licensed under Apache2

protobuf-java Copyright (c) 2008 Google. https://developers.google.com/protocol-buffers/

 Licensed under BSD3

slf4j Copyright (c) 2004-2017 QOS.ch. https://www.slf4j.org/ Licensed under MIT

stax2-api Copyright (c) 2013-2019 Tatu Saloranta. https://github.com/FasterXML/stax2-

api Licensed under BSD

5/13/25, 1:39 PM TigerGraph Documentation

https://github.com/java-diff-utils/java-diff-utils
https://github.com/java-diff-utils/java-diff-utils
https://github.com/java-diff-utils/java-diff-utils
https://grpc.io/
https://grpc.io/
https://github.com/google/guava
https://github.com/google/guava
https://github.com/onelogin/java-saml
https://github.com/onelogin/java-saml
https://github.com/onelogin/java-saml
https://github.com/jline/jline3
https://github.com/jline/jline3
https://www.joda.org/joda-time/
https://www.joda.org/joda-time/
https://github.com/stleary/JSON-java
https://github.com/stleary/JSON-java
https://github.com/pingidentity/ldapsdk/blob/master/README.md
https://github.com/pingidentity/ldapsdk/blob/master/README.md
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
https://netty.io/
https://netty.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://www.slf4j.org/
https://www.slf4j.org/
https://github.com/FasterXML/stax2-api
https://github.com/FasterXML/stax2-api
https://github.com/FasterXML/stax2-api

1213

woodstox-core-asl Copyright (c) 2014-2019 Tatu Saloranta.

https://github.com/FasterXML/woodstox Licensed under Apache2

xmlsec Copyright (c) 2002-2016 Aleksey Sanin. https://www.aleksey.com/xmlsec/

Licensed under MIT

yamlbeans Copyright (c) 2008 Nathan Sweet.

https://github.com/EsotericSoftware/yamlbeans Licensed under MIT

zookeeper Copyright (c) 2010-2018 The Apache Software Foundation.

https://zookeeper.apache.org/ Licensed under Apache2

gson Copyright (c) 2008-2019 Google. https://github.com/google/gson Licensed under

Apache2

javacc Copyright (c) 2006 Sun Microsystems. https://javacc.org/ Licensed under BSD3

javacpp Copyright (c) 1989 Ty Coon. https://github.com/bytedeco/javacpp Licensed

under Apache

murmurhash Copyright (c) 2010-2019 aapleby. https://github.com/aappleby/smhasher

Licensed under MIT

kafka Copyright (c) 2017 The Apache Software Foundation. https://kafka.apache.org/

Licensed under Apache2

librdkafka Copyright (c) 2012-2018 Magnus Edenhill.

https://github.com/edenhill/librdkafka Licensed under BSD2

libfcgi Copyright (c) 2012-2019 toshic. https://github.com/toshic/libfcgi Licensed under

FCGI

zlib Copyright (c) 1995-2017 Jean-loup Gailly. https://zlib.net/ Licensed under ZLIB

libcurl Copyright (c) 1996-2019 Daniel Stenberg. https://curl.haxx.se/libcurl/ Licensed

under CURL

5/13/25, 1:39 PM TigerGraph Documentation

https://github.com/FasterXML/woodstox
https://github.com/FasterXML/woodstox
https://www.aleksey.com/xmlsec/
https://www.aleksey.com/xmlsec/
https://github.com/EsotericSoftware/yamlbeans
https://github.com/EsotericSoftware/yamlbeans
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://github.com/google/gson
https://github.com/google/gson
https://javacc.org/
https://javacc.org/
https://github.com/bytedeco/javacpp
https://github.com/bytedeco/javacpp
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://kafka.apache.org/
https://kafka.apache.org/
https://github.com/edenhill/librdkafka
https://github.com/edenhill/librdkafka
https://github.com/toshic/libfcgi
https://github.com/toshic/libfcgi
https://zlib.net/
https://zlib.net/
https://curl.haxx.se/libcurl/
https://curl.haxx.se/libcurl/

1214

zeromq Copyright (c) 2007-2016 various copyright holders. http://zeromq.org/ Licensed

under LGPL3

libhttp_parser Copyright (c) 2009-2019 Joyent. https://github.com/nodejs/http-parser

Licensed under MIT

yaml-cpp Copyright (c) 2008-2015 Jesse Beder. https://github.com/jbeder/yaml-cpp

Licensed under MIT

cryptopp Copyright (c) 1995-2016 Wei Dai. https://www.cryptopp.com/ Licensed under

BOOST

boost Copyright (c) 1998-2005 Beman Dawes, David Abrahams. https://www.boost.org/

Licensed under BOOST

snappy Copyright (c) 2011 Google, Inc. https://github.com/google/snappy Licensed

under BSD3

jsoncpp Copyright (c) 2007-2010 Baptiste Lepilleur. https://github.com/open-source-

parsers/jsoncpp Licensed under MIT

cereal Copyright (c) 2014 Randolph Voorhies, Shane Grant.

https://github.com/USCiLab/cereal Licensed under BSD3

nginx Copyright (c) 2011-2018 nginx. http://nginx.org/ Licensed under BSD2

jemalloc Copyright (c) 2002-2018 Jason Evans, (c) 2007-2012 Mozilla Foundation, (c)

2009-2018 Facebook, Inc. http://jemalloc.net/ Licensed under BSD2

sparsehash Copyright (c) 2005 Google. https://github.com/sparsehash/sparsehash

Licensed under BSD3

rapidjson Copyright (c) 2006-2013 Alexander Chemeris.

https://github.com/Tencent/rapidjson Licensed under MIT

openjdk Copyright (c) 2019 Oracle. https://openjdk.java.net/ Licensed under GPL2+CE

GPL2 with Classpath Exception: Clarification that the using the licensed code with other

code does not require that other code to be GPL2 compatible.

5/13/25, 1:39 PM TigerGraph Documentation

http://zeromq.org/
http://zeromq.org/
https://github.com/nodejs/http-parser
https://github.com/nodejs/http-parser
https://github.com/jbeder/yaml-cpp
https://github.com/jbeder/yaml-cpp
https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.boost.org/
https://www.boost.org/
https://github.com/google/snappy
https://github.com/google/snappy
https://github.com/open-source-parsers/jsoncpp
https://github.com/open-source-parsers/jsoncpp
https://github.com/open-source-parsers/jsoncpp
https://github.com/USCiLab/cereal
https://github.com/USCiLab/cereal
http://nginx.org/
http://nginx.org/
http://jemalloc.net/
http://jemalloc.net/
https://github.com/sparsehash/sparsehash
https://github.com/sparsehash/sparsehash
https://github.com/Tencent/rapidjson
https://github.com/Tencent/rapidjson
https://openjdk.java.net/
https://openjdk.java.net/

1215

gcc Copyright (c) 1992-2017 Free Software Foundation. https://gcc.gnu.org/ (gcc)

Licensed under GPL3, with Runtime Library Exception The GCC license provides an

exception to GPLv3 to allow compilation of non- GPL (including proprietary) programs to

use, in this way, the header files and runtime libraries covered by this Exception. The

complete terms are available at https://www.gnu.org/licenses/gcc-exception.html

tsar Copyright (c) 2004 Apache. https://github.com/alibaba/tsar Licensed under

Apache2

gperftools Copyright (c) 2005 Google. https://github.com/gperftools/gperftools (we use

its tcmalloc) Licensed under BSD3

python 2.7 Copyright (c) 2001-2019 Python.

https://www.python.org/download/releases/2.7/license/ Licensed under Python2

===

The TigerGraph Cloud Service permits users to use the TigerGraph graph database and

analytics platform via a web interface. TigerGraph does not copy or distribute the

TigerGraph Cloud software to the end user.

In additional to having the third-party components of the TigerGraph Platform, the

TigerGraph Cloud Service interface includes the following additional third-party software.

Netdata Copyright (c) 2016-2018, Costa Tsaousis. Copyright (c) 2018, Netdata Inc.

https://github.com/netdata/netdata Licensed under GPL v3 or later .

The following table explains the license abbreviations used in the list of TigerGraph Third

Party Software. A link is provided to an official source for each license.

Section 2. List of additional third-party software
in the TigerGraph Cloud Service interface

Section 3. Table of license types.

5/13/25, 1:39 PM TigerGraph Documentation

https://gcc.gnu.org/
https://gcc.gnu.org/
https://www.gnu.org/licenses/gcc-exception.html
https://www.gnu.org/licenses/gcc-exception.html
https://github.com/alibaba/tsar
https://github.com/alibaba/tsar
https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools
https://www.python.org/download/releases/2.7/license/
https://www.python.org/download/releases/2.7/license/
https://github.com/netdata/netdata
https://github.com/netdata/netdata
https://github.com/netdata/netdata/tree/master/LICENSE
https://github.com/netdata/netdata/tree/master/LICENSE

1216

Abbreviation License Name and Source

Apache2

Apache License version 2.0

https://www.apache.org/licenses/LICENSE-2.0

BOOST
Boost Software License

http://www.boost.org/LICENSE_1_0.txt

BSD2

2-Clause BSD (Berkeley Standard Distribution)

License

https://opensource.org/licenses/BSD-2-Clause

BSD3

3-Clause BSD (Berkeley Standard Distribution)

License

https://opensource.org/licenses/BSD-3-Clause

CURL
Curl License

https://curl.haxx.se/docs/copyright.html

FCGI

FastCGI2 License

https://github.com/FastCGI-

Archives/fcgi2/blob/master/LICENSE.TERMS

GPL2

GNU General Public License version 2.0

https://www.gnu.org/licenses/old-licenses/gpl-

2.0.en.html

GPL2+CE

GNU General Public License, version 2, with the

Classpath Exception

https://openjdk.java.net/legal/gplv2+ce.html

GNU

General Public License version 3.0

https://www.gnu.org/licenses/gpl-3.0.en.html

JSON
JSON License

http://www.json.org/license.html

UnboundID LDAP SDK Free Use License

5/13/25, 1:39 PM TigerGraph Documentation

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
https://curl.haxx.se/docs/copyright.html
https://curl.haxx.se/docs/copyright.html
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://github.com/FastCGI-Archives/fcgi2/blob/master/LICENSE.TERMS
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://openjdk.java.net/legal/gplv2+ce.html
https://openjdk.java.net/legal/gplv2+ce.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
http://www.json.org/license.html
http://www.json.org/license.html

1217

LDAPSDK https://docs.ldap.com/ldap-

sdk/docs/LICENSE-UnboundID-LDAPSDK.txt

LGPL3

GNU Lesser General Public License version 3.0

https://www.gnu.org/licenses/lgpl-3.0.en.html

MIT

MIT (Massachusetts Institute of Technology)

License

https://opensource.org/licenses/MIT

MPICH

MPICH License

http://git.mpich.org/mpich.git/blob/HEAD:/COP

YRIGHT

OPENSSL

OpenSSL License

https://www.openssl.org/source/license.html

Python2

Python 2.7 License

https://www.python.org/download/releases/2.

7/license/

SLI_OFL1.1

SIL Open Font License version 1.1

http://scripts.sil.org/cms/scripts/page.php?

item_id=OFL_web

ZLIB
zlib License

https://www.zlib.net/zlib_license.html

5/13/25, 1:39 PM TigerGraph Documentation

https://docs.ldap.com/ldap-sdk/docs/LICENSE-UnboundID-LDAPSDK.txt
https://docs.ldap.com/ldap-sdk/docs/LICENSE-UnboundID-LDAPSDK.txt
https://docs.ldap.com/ldap-sdk/docs/LICENSE-UnboundID-LDAPSDK.txt
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
http://git.mpich.org/mpich.git/blob/HEAD:/COPYRIGHT
https://www.openssl.org/source/license.html
https://www.openssl.org/source/license.html
https://www.openssl.org/source/license.html
https://www.python.org/download/releases/2.7/license/
https://www.python.org/download/releases/2.7/license/
https://www.python.org/download/releases/2.7/license/
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
http://scripts.sil.org/cms/scripts/page.php?item_id=OFL_web
https://www.zlib.net/zlib_license.html
https://www.zlib.net/zlib_license.html

